PID闭环控制
PID控制原理
PID控制原理自动控制系统可分为开环控制系统和闭环控制系统。
个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。
1、开环控制系统开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。
在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。
2、闭环控制系统闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。
闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。
3、阶跃响应阶跃响应是指将一个阶跃输入(step )加到系统上时,系统的输出。
稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差。
控制系统的性能可以用稳、准、快三个字来描述。
稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的;准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error)描述,它表示系统输出稳态值与期望值之差;快是指控制系统响应的快速性,通常用上升时间来定量描述。
当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI和PD控制。
PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
比例(P)控制比例控制是一种最简单的控制方式。
其控制器的输出与输入误差信号成比例关系。
当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。
模拟量闭环控制一般用PID
模拟量闭环控制一般用PID。
需要较好的动态品质和较高的稳态精度时,可以选用PI控制方式;控制对象的惯性滞后较大时,应选择PID控制方式。
各部分的作用如下:
在P,I,D这三种控制作用中,比例部分与误差信号在时间上是一致的,只要误差一出现,比例部分就能及时地产生与误差成正比的调节作用,具有调节及时的特点。
比例系数KC越大,比例调节作用越强,系统的稳态精度越高;但是对于大多数系统,KC过大会使系统的输出量振荡加剧,稳定性降低。
控制器中的积分作用与当前误差的大小和误差的历史情况都有关系,只要误差不为零,控制器的输出就会因积分作用而不断变化,一直要到误差消失,系统处于稳定状态时,积分部分才不再变化,因此积分部分可以消除稳态误差,提高控制精度。
但是积分作用的动作缓慢,可能给系统的动态稳定性带来不良影响,因此很少单独使用。
积分时间常数TI增大时,积分作用减弱,系统的动态性能(稳定性)可能有所改善,但是消除稳态误差的速度减慢。
根据误差变化的速度(即误差的微分),微分部分提前给出较大的调节作用。
微分部分反映了系统变化的趋势,它较比例调节更为及时,所以微分部分具有超前和预测的特点。
微分时间常数增大时,超调量减小,动态性能得到改善,但是抑制高频干扰的能力下降。
基于PID控制的步进电机位置闭环控制系统设计
基于PID控制的步进电机位置闭环控制系统设计一、引言在现代自动化控制系统中,步进电机广泛应用于各种精密定位和定量控制需求的场景。
步进电机的控制涉及到位置的精确定位和稳定性的维持,这就需要一个有效的闭环控制系统来实现。
PID控制器被广泛应用于步进电机的闭环控制系统设计中,本文将探讨基于PID控制的步进电机位置闭环控制系统的设计原理和实现方法。
二、步进电机简介步进电机是一种特殊的直流电动机,通过控制脉冲信号的频率和顺序来实现精确控制。
步进电机的圆周分为若干等角度的步进角,每个步进角对应一个旋转角度,这使得步进电机在控制方面更加便捷和精确。
由于步进电机无需传感器反馈,因此常用于定量控制和精确位置控制的场合。
三、PID控制器原理PID控制器是一种经典的闭环控制器,其由比例(P)、积分(I)、微分(D)三个部分组成。
比例控制决定输出与偏差的比例关系,积分控制消除系统稳态误差和提高系统的响应速度,微分控制用于抑制系统对于负荷变化的敏感性。
PID控制器采用反馈控制策略,利用实际输出和期望输出之间的偏差来调整控制量。
四、步进电机位置闭环控制系统设计步进电机的位置闭环控制系统设计基于PID控制器。
首先,需要传感器来获得实际位置信息,然后与期望位置进行比较以获取偏差。
接下来,将偏差作为输入,经过PID控制器计算出控制量,并输出给步进电机驱动器。
步进电机驱动器根据控制量控制步进电机的旋转,从而实现位置的精确控制。
五、传感器选择为了获取步进电机的实际位置信息,需要选择合适的传感器。
常用的传感器包括光电编码器和霍尔传感器。
光电编码器具有高精度和高分辨率的特点,但价格较高;霍尔传感器则具有较低的价格和较高的可靠性,但分辨率较低。
根据具体需求和预算可选择合适的传感器。
六、PID参数调整PID控制器的性能很大程度上取决于参数的选择。
比例参数决定了响应的速度和稳定性,过大的比例参数会导致系统震荡,过小则导致响应速度慢;积分参数消除稳态误差,过大的积分参数会导致系统震荡,过小则无法消除稳态误差;微分参数能够抑制系统对负荷变化的敏感性,过大的微分参数会导致系统噪声,过小则无法起到抑制作用。
Pid控制直流双闭环调速系统ppt课件
比例部分
比例部分的数学式表示是:Kp*e(t)
在模拟 PID 控制器中,比例环节的作用是对偏差瞬间作 出反应。偏差一旦产生控制器立即产生控制作用,使控制量 向减少偏差的方向变化。控制作用的强弱取决于比例系数 Kp ,比例系数Kp越大,控制作用越强,则过渡过程越快, 控制过程的静态偏差也就越小;但是Kp越大,也越容易产生 振荡,破坏系统的稳定性。故而,比例系数Kp选择必须恰当, 才能过渡时间少,静差小而又稳定的效果。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
直流双闭环调速系统
单闭环直流调速系统 同开环调速系统一样,转速闭环调速系统
中电机的转速大小受转速给定电压Un*控制, 给定电压为零时,电机停止;给定电压增大 时,电机转速升高;给定电压减小时,电机 转速下降。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
整定方法
凑试法 临界比例法 经验法
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
这种算法的缺点是:由于全量输出,所以每次 输出均与过去状态有关,计算时要对ek进行累加,工作 量大;并且,因为计算机输出的uk对应的是执行机构的 实际位置,如果计算机出现故障,输出的u将大幅度变 化,会引起执行机构的大幅度变化,有可能因此造成严 重的生产事故,这在实生产际中是不允许的。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
PLC闭环控制系统中PID控制器的实现
PLC闭环控制系统中PID控制器的实现1引言在工业生产中,常需要用闭环控制方式来实现温度、压力、流量等连续变化的模拟量控制。
无论使用模拟控制器的模拟控制系统,还是使用计算机(包括P L C)的数字控制系统,P I D控制都得到了广泛的应用。
P I D控制器是比例-积分-微分控制的简称,具有(1)不需要精确的控制系统数学模型;(2)有较强的灵活性和适应性;(3)结构典型、程序设计简单,工程上易于实现,参数调整方便等优点。
积分控制可以消除系统的静差,微分控制可以改善系统的动态相应速度,比例、积分、微分三者有效地结合可以满足不同的控制要求。
2P L C实现P I D的控制方式2.1P I D过程控制模块这种模块的P I D控制程序是P L C生产厂家设计的,并存放在模块中,用户使用时序要设置一些参数,使用起来非常方便,一个模块可以控制几路甚至几十路闭环回路。
2.2P I D功能指令现在很多P L C都有供P I D控制用的功能指令,如S7-200的P I D指令。
它们实际上是用于P I D控制的子程序,与模拟量输入/输出模块一起使用,可以得到类似于使用P I D 过程控制模块的效果。
2.3用自编的程序实现P I D闭环控制有的P L C没有P I D过程控制模块和P I D控制用的功能指令,有时虽然可以使用P I D控制指令,但是希望采用某种改进的P I D控制算法。
在上述情况下都需要用户自己编制P I D控制程序。
3P L C-P I D控制器的实现本文以西门子S7-200P L C为例,说明P I D控制的原理及P L C的P I D功能指令的使用及控制功能的实现。
3.1P I D控制器的数字化P L C的P I D控制器的设计是以连续系统的P I D控制规律为基础,将其数字化写成离散形式的P I D控制方程,再跟据离散方程进行控制程序设计。
在连续系统中,典型的P I D闭环控制系统如图1所示。
图1中s p(t)是给定值,p v(t)是反馈量,c(t)是系统的输出量,P I D控制的输入输出关系式为:式中:M(t)—控制器的输出量,M0为输出的初始值;e(t)=s p(t)-p v(t)-误差信号;K C比例系数;T I-积分时间常数;T D-微分时间常数。
PID属于闭环反馈控制
PID属于闭环反馈控制,由3个参数组成。
首先,既然是闭环控制,我们要首先明确两个控制量:一个是目标量,就是我们想要的那个量,在变频器就是我们想要的那个频率X1。
另一个是变频器的输出量,也叫反馈量,就是变频器实际输出的频率X2。
在供水系统中,当系统稳定时,X1=X2;供水量增加时,系统的反应是需要时间的,这时X1就要大于X2,就会产生一个偏差值X3,X3=X1-X2。
下面说PID,P的名字叫“比例增益”,实际就是放大倍数,放大谁呢?放大X3。
通俗说P就是大老板,平时用走的,老板说:“快点!”就要用跑的。
P设定值越大,反应越快,动作越猛。
但是很不幸,反应的太快就叫神经过敏。
动作太猛就会跑过头。
变频器又蠢,跑过头半步,转过身就是一大步,于是X2经常就会在X1周围来回振荡,就是贴不上去。
---P可以使变频器对细微的变化即作出足够的反映,但是,变频系统的稳定性会下降,容易引起振荡。
这时,二老板I就上场了。
I的名字叫“积分时间”,就是一个动作时间,二老板I出厂以后就会对X2说:“朝着X1跑,不许太快,限时某某秒跑到,不许早也不许晚。
”执行I以后就会出现,反应很快,可跑的很慢。
大老板要生气的!---I会增加变频器反馈控制的稳定性,减少振荡;但是会导致变频器应对急剧的变化时来不及反应。
“这可怎么办啊?”这时狗头军师D登场。
D叫“动作微分”,这家伙一上来就支招:“笨!你不会反应快点,跑得快点,等快到的时候再减速,慢点贴过去吗?”D的作用就是根据变化的趋势,提前给出一个较大的调节动作,等X2接近到X1附近时,再相对缓慢的贴上去。
PID调节的意义在于依靠P获得对细微变化较为敏锐的反应,I抵消P所带来的不稳定因素,D补偿因为I所造成的反应迟钝现象。
pid控制
1.2.5 梯形积分PID控制算法
在PID控制律中积分项的作用是消除余差, 为了减小余差,应提高积分项的运算精度, 为此,可将矩形积分改为梯形积分。
梯形积t分的计算k 公e(i式) 为e(i:1)
e(t)dt
T
0
i0
2
1.2.6 变速积分算法
变速积分的基本思想是,设法改变积分项 的累加速度,使其与偏差大小相对应:偏 差越大,积分越慢;反之则越快,有利于 提高系统品质。
1.3.2 衰减曲线法
将PID控制器,置于纯比例控制作用下(即:积分系数Ti= ∞ 、 微分系数Td =0),用阶跃信号作为输入信号,然后从大到小 逐渐改变比例系数Kp ,直到使系统输出产生1/4的幅值衰减 过程,如下图所示。令此时的比例系数为K2,相邻两个波峰 (幅值相差4倍)间的时间间隔为T2,
1.1 PID控制原理
闭环控制系统原理框图
图中所示为控制系统的一般形式。被控量y(t)的检测值c(t)与给定值r(t) 进行比较,形成偏差值e(t),控制器以e(t)为输入,按一定的控制规律 形成控制量u(t),通过u(t)对被控对象进行控制,最终使得被控量y(t) 运行在与给定值r(t) 对应的某个非电量值上。
1.2.3 积分分离PID控制算法
具体实现的步骤是: 1、根据实际情况,人为设定阈值ε>0; 2、当∣e (k)∣>ε时,采用PD控制,可避免产生 过大的超调,又使系统有较快的响应; 3、当∣e (k)∣≤ε时,采用PID控制,以保证系统 的控制精度。
1.2.3 积分分离PID控制算法
积分分离控制算法可表示为: k u(k) kpe(k) ki e( j)T kd (e(k) e(k 1)) / T j0
pid控制原理
pid控制原理
PID控制是基于闭环反馈原理的一种控制算法,被广泛应用于自动控制系统中。
全名为Proportional (比例) – Integral (积分) –Derivative (微分) Control,它根据控制对象的误差来实时调节输出信号,以实现准确地控制目标值。
PID控制器的主要原理可以分解为三部分:
1. 比例控制:该部分根据误差的大小比例放大,并产生相应的输出信号。
比例项的作用是使控制器对误差的改变产生较快的反应,但可能会引起超调或震荡现象。
2. 积分控制:该部分根据误差随时间的累积情况进行调节,以减小系统的稳态误差。
积分项的作用是消除系统的静态误差,但会增加系统的响应时间。
3. 微分控制:该部分根据误差的变化率进行调节,以提高系统的动态响应能力。
微分项的作用是抑制系统的超调及震荡,但过大的微分作用可能导致系统不稳定。
PID控制器通常通过调节比例、积分和微分参数来优化控制过程。
比例参数决定了系统的响应速度和超调量,积分参数影响系统的稳态误差,而微分参数则影响系统的抗干扰能力。
PID控制器的设计和调整一般需要根据具体的控制对象和要求进行实际操作和优化。
使用PID控制器能够实现精确控制、
稳定性较好的控制效果,因此在工业自动化、机械控制等领域得到广泛应用。
对闭环控制pid理解
PID控制理解
闭环控制器中最著名的控制机制是比例-积分-微分(PID)控制。
PID是对误差(控制对象实际输出值与期望输出值之间的差)进行处理以得到控制器的控制量的三种方式的统称。
比例控制(P-Proportional)是将误差乘以一个增益系数Kp从而得到控制量,其本质是将误差放大并立即用之纠正错误。
Kp越大则误差纠正越快,但是Kp太大会产生大的超调,甚至导致系统的不稳。
比例控制不能完全消除误差,因为当误差接近于0时,比例控制的作用也接近于0,其结果体现为一个稳态误差(静差)。
积分(I-Integral)控制是获取误差的时间积分,将其乘以一个增益系数K i 后得到控制量,其本质是对曾经产生的误差做出反应,这样在误差接近于0时其作用并不接近于0,就可消除静态误差。
积分增益系数可能产生副作用是导致系统不稳定。
微分(D-Differential)控制是将误差的变化率乘以增益系数K d来作为控制量,其本质是对抗和稳定系统的暂态响应,因此可认为其作为电子阻尼达到稳定系统的作用。
三种控制方式本质不同但是可以联合使用,并通过系统整定各取所长来优化系统。
PID调节是一种误差驱动机制,即系统中总是存在一定误差。
pid 闭环调节策略
PID闭环调节策略PID(Proportional-Integral-Derivative)是一种经典的闭环调节策略,它是自动控制系统中最常用的一种调节算法。
PID调节器通过对系统的误差进行测量和分析,根据比例、积分和微分的关系来调整控制器的输出,以使系统的输出达到期望值。
1. PID调节器的工作原理PID调节器的工作原理基于对系统的误差进行反馈调节。
它通过测量系统实际输出与期望输出之间的差异,计算出一个控制量,从而实现对系统的调节。
PID调节器的工作原理可以简单概括为以下三个部分:1.比例(Proportional)调节:根据实际输出与期望输出之间的差异,计算出一个比例调节量。
比例调节量与误差成正比,用于快速响应系统的变化。
2.积分(Integral)调节:根据误差的累积值,计算出一个积分调节量。
积分调节量用于消除系统的静态误差,使系统的输出更加稳定。
3.微分(Derivative)调节:根据误差变化的速率,计算出一个微分调节量。
微分调节量用于抑制系统的过冲和振荡,使系统的响应更加平滑。
PID调节器根据比例、积分和微分的关系,将这三个调节量进行加权求和,得到最终的控制量。
通过不断调整比例、积分和微分的权重,可以实现对系统的精确控制。
2. PID调节器的参数调整PID调节器的性能取决于其参数的选择。
通常情况下,PID调节器的参数需要经过一定的调试和优化才能得到最佳的控制效果。
常见的PID参数调整方法有以下几种:1.手动调整法:通过观察系统的响应曲线,根据经验和直觉来调整PID参数。
这种方法简单直观,但需要较多的试错和调试。
2.经验公式法:根据系统的特性和要求,选择一些经验公式来计算PID参数的初始值。
然后通过观察系统的响应曲线,进行进一步的调试和优化。
3.自整定法:利用系统的频率响应和步跃响应等特性,通过一些特定的算法来自动调整PID参数。
这种方法可以减少人工干预,提高调节的自动化程度。
无论使用哪种方法进行参数调整,都需要注意以下几点:•比例参数(Kp):控制系统的响应速度和稳定性,过大会导致系统振荡,过小会导致响应迟缓。
pid控制的基本原理及应用
PID控制的基本原理及应用1. 简介PID控制是一种常用的闭环控制方法,广泛应用于工业自动化、机械控制以及电子设备等领域。
PID控制器根据系统的反馈信号和给定的参考输入信号,通过比较两者的差异来调整系统的输出,使系统的输出与给定的目标值尽可能一致。
2. PID控制的基本原理PID控制器由三个组成部分组成,包括比例(P)、积分(I)和微分(D)三个控制元素。
下面将介绍每个控制元素的基本原理。
2.1 比例控制(P)比例控制是PID控制器的基础部分,它根据系统输出与目标值之间的差异进行调整。
比例控制器的输出正比于这个差异,如果系统的输出偏离目标值较多,比例控制器的输出也会相应增加。
比例控制可以使系统快速接近目标值,但无法消除稳态误差。
2.2 积分控制(I)积分控制器通过累积系统输出与目标值之间的误差来调整系统的输出。
积分控制器的输出正比于误差的积分,它可以消除稳态误差,并帮助系统更快地达到目标值。
然而,过多的积分作用可能导致系统不稳定。
2.3 微分控制(D)微分控制器通过监测系统输出与目标值之间的变化率来调整系统的输出。
微分控制器的输出反比于误差的变化率,它可以减小系统的超调和稳定系统输出。
然而,微分控制器对信号噪声敏感,过大的微分作用可能导致系统震荡。
3. PID控制的应用PID控制器在工业自动化和机械控制方面有广泛的应用。
下面列举了几个常见的应用领域。
3.1 温度控制PID控制器在温度控制方面应用广泛。
通过测量温度传感器的反馈信号和设定的目标温度,PID控制器可以调整加热或冷却设备的输出,使系统保持在目标温度范围内。
3.2 速度控制PID控制器在电机速度控制方面应用广泛。
通过测量电机转速的反馈信号和设定的目标转速,PID控制器可以调整电机控制信号,实现精确的速度控制。
3.3 液位控制PID控制器在液位控制方面也有应用。
通过测量液位传感器的反馈信号和设定的目标液位,PID控制器可以调整液位控制阀门的开度,以实现液位的稳定控制。
pid控制的基本原理解释及应用
PID控制的基本原理解释及应用1. 什么是PID控制PID控制是指一种常用的闭环控制算法,代表了比例 Proportional、积分Integral 和微分 Derivative 这三个控制项。
PID控制通过根据目标设定值与实际值之间的误差,综合调整这三个控制项的权重来实现对控制系统的精确控制。
2. PID控制的基本原理PID控制的基本原理是通过对误差的比例项、积分项和微分项进行加权求和,得到最终的控制量。
下面分别介绍这三个控制项的作用:2.1 比例项(P项)比例项根据误差的大小来直接产生控制量的变化。
比例项越大,控制量的变化越剧烈,系统响应速度越快,但也容易引起过冲现象;比例项越小,控制量的变化越缓慢,系统响应速度越慢,但也更稳定。
2.2 积分项(I项)积分项通过积分误差的累积来产生控制量的变化。
积分项的作用是消除比例控制器无法消除的稳态误差,使得系统能够更好地追踪目标设定值。
但过大的积分项可能导致系统超调和震荡,过小则无法完全消除稳态误差。
2.3 微分项(D项)微分项根据误差的变化率来调整控制量的变化速度。
微分项的作用是抑制系统的超调和震荡,提高系统的稳定性和响应速度。
但过大的微分项可能导致过度抑制系统振荡,过小则无法有效抑制振荡。
3. PID控制的应用PID控制广泛应用于工业过程控制、机器人控制以及自动化系统中的各种调节过程。
下面列举了一些常见的应用场景:3.1 温度控制在温度控制领域,PID控制被广泛应用于热处理、恒温恒湿等各种需要对温度进行精确控制的过程。
PID控制通过实时调整加热器的功率或冷却器的风扇转速,使得系统保持在目标温度附近。
3.2 速度控制在机械传动领域,PID控制常被用于调节电机的转速。
通过根据设定转速与实际转速之间的误差,调整电机的驱动力以保持恒定的转速。
这在自动化生产线上非常常见,如流水线上的传送带、机器人臂等。
3.3 流量控制在流体控制领域,PID控制可以用来调节阀门的开度,以实现精确的流量控制。
PID控制算法
1,PID是一个闭环控制算法。
因此要实现PID算法,必须在硬件上具有闭环控制,就是得有反馈。
比如控制一个电机的转速,就得有一个测量转速的传感器,并将结果反馈到控制路线上,下面也将以转速控制为例。
2,PID是比例(P)、积分(I)、微分(D)控制算法。
但并不是必须同时具备这三种算法,也可以是PD,PI,甚至只有P算法控制。
我以前对于闭环控制的一个最朴素的想法就只有P控制,将当前结果反馈回来,再与目标相减,为正的话,就减速,为负的话就加速。
现在知道这只是最简单的闭环控制算法.3,比例(P)、积分(I)、微分(D)控制算法各有作用:比例,反应系统的基本(当前)偏差e(t),系数大,可以加快调节,减小误差,但过大的比例使系统稳定性下降,甚至造成系统不稳定;积分,反应系统的累计偏差,使系统消除稳态误差,提高无差度,因为有误差,积分调节就进行,直至无误差;微分,反映系统偏差信号的变化率e(t)-e(t-1),具有预见性,能预见偏差变化的趋势,产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除,因此可以改善系统的动态性能。
但是微分对噪声干扰有放大作用,加强微分对系统抗干扰不利。
积分和微分都不能单独起作用,必须与比例控制配合。
4,控制器的P,I,D项选择。
下面将常用的各种控制规律的控制特点简单归纳一下:1、比例控制规律P:采用P控制规律能较快地克服扰动的影响,它的作用于输出值较快,但不能很好稳定在一个理想的数值,不良的结果是虽较能有效的克服扰动的影响,但有余差出现.它适用于控制通道滞后较小、负荷变化不大、控制要求不高、被控参数允许在一定范围内有余差的场合.如:金彪公用工程部下设的水泵房冷、热水池水位控制;油泵房中间油罐油位控制等.2、比例积分控制规律(PI):在工程中比例积分控制规律是应用最广泛的一种控制规律.积分能在比例的基础上消除余差,它适用于控制通道滞后较小、负荷变化不大、被控参数不允许有余差的场合.如:在主线窑头重油换向室中F1401到F1419号枪的重油流量控制系统;油泵房供油管流量控制系统;退火窑各区温度调节系统等。
pid空调控制算法
PID控制算法在空调系统中的应用非常广泛,它是一种闭环控制策略,用于调节空调系统的出风温度、湿度等参数,以保持室内环境的舒适度。
PID代表比例(Proportional)、积分(Integral)和微分(Differential)三个控制环节。
在空调系统中,PID控制器接收到设定的目标温度(如15℃)和实际测量的出风温度(如13℃),计算出两者之间的偏差(2℃)。
然后,PID控制器根据这个偏差值,通过比例(P)、积分(I)和微分(D)三个环节来计算控制信号。
比例控制(P):根据当前偏差值的大小,控制器输出一个与偏差成正比的信号,以调整空调系统的输出,如调节制冷或制热的功率。
比例控制可以快速响应偏差,但可能导致系统存在稳态误差。
积分控制(I):积分环节对偏差值进行累积,以消除稳态误差。
当系统存在持续的偏差时,积分控制会逐渐增加或减少控制信号,直到偏差消除。
微分控制(D):微分环节对偏差值的变化率进行测量,有助于预测系统的未来行为,从而提前调整控制信号,减少超调和振荡,提高系统的动态响应。
在实际应用中,PID控制器的参数(Kp、Ki、Kd)需要根据空调系统的特定特性进行调整。
通常,调整过程从比例控制开始,然后加入积分控制,最后根据需要加入微分控制。
通过适当的参数调整,PID控制器可以实现对空调系统的精确控制,确保室内温度稳定在设定值附近,同时避免过度反应和系统振荡。
基于PID控制算法的电机速度闭环控制研究
基于PID控制算法的电机速度闭环控制研究一、引言电机是现代工业中最为广泛使用的设备之一,而电机的速度控制对于工业自动化中的许多应用都至关重要。
PID控制算法是一种常用的控制方法,其结构简单、参数调节方便,因此在电机速度闭环控制中得到了广泛应用。
本文旨在研究基于PID控制算法的电机速度闭环控制,并通过实验验证其控制性能。
二、PID控制算法的基本原理PID控制算法是一种基于误差的反馈控制方法,由比例(P)、积分(I)和微分(D)三部分组成。
其基本原理如下:1. 比例控制(P部分):根据误差信号与比例参数的乘积计算控制量,用于快速响应系统变化产生的误差。
2. 积分控制(I部分):根据误差信号与积分参数的乘积计算控制量,用于自动纠正系统长期的累积误差。
3. 微分控制(D部分):根据误差信号、时间导数以及微分参数的乘积计算控制量,用于预测系统未来发展趋势并对其进行调整。
PID控制算法根据实际系统的特性进行参数调节,以使得系统稳定性和控制性能得到优化。
三、电机速度闭环控制系统的搭建1. 硬件平台搭建在实验中,我们选取一个直流电机作为被控对象,并使用电流环进行电机速度的闭环控制。
搭建硬件平台主要包括直流电机、编码器、电机驱动器和控制器等组成。
2. 调节参数选取在PID控制算法中,参数的选取对系统控制性能具有重要影响。
常用的参数调节方法包括试错法、经验公式法和自整定法等。
在本研究中,我们选取自整定法进行参数调节。
具体方法为:- 设置P、I、D参数初值,并将积分部分和微分部分作为反馈控制的参数。
- 通过实验运行系统,观察系统响应特性,根据实际情况逐步调整参数,使系统达到稳定状态。
- 反复调整参数,直到系统达到理想的控制性能。
3. 控制策略设计在电机速度闭环控制中,我们可以采用位置式PID控制策略或增量式PID控制策略。
位置式PID控制策略将控制量作为控制器的输出,而增量式PID控制策略将增量值作为控制器的输出。
根据实际需求,选择合适的控制策略。
双闭环pid控制原理
双闭环pid控制原理在控制系统中,双闭环PID控制被广泛应用于各种工业自动化过程控制中。
它是一种反馈控制系统,通过不断调整控制器的输出来实现对被控对象的稳定控制。
双闭环PID控制是在传统的PID控制器的基础上增加了一个额外的反馈回路,从而提高了系统的响应速度和稳定性。
双闭环PID控制系统由两个反馈回路组成:内环和外环。
内环是控制器输出与被控对象的内部变量之间的反馈回路。
它的目的是通过控制内部变量(例如,位置、速度等)来实现对被控对象的内部环境的稳定控制。
内环通常采用较高的控制频率,以快速响应被控对象的变化。
外环是控制器输出与被控对象的外部变量之间的反馈回路。
它的目的是通过控制外部变量(例如,位置、温度等)来实现对被控对象的外部环境的稳定控制。
外环通常采用较低的控制频率,以减少系统的计算负荷。
在双闭环PID控制系统中,控制器根据被控对象的外部变量进行调整,并将结果作为内环的输入。
内环根据被控对象的内部变量进行调整,并将结果作为控制器的输入。
这样,内环和外环形成了互相调节的关系,从而实现了对被控对象的精确控制。
双闭环PID控制系统的优点在于它能够快速地响应被控对象的变化,并在稳态下保持精确的控制。
然而,双闭环PID控制系统的设计和调试可能会比较复杂,需要根据具体的控制要求和被控对象的特性进行合理的参数配置。
总结起来,双闭环PID控制是一种利用两个反馈回路实现对被控对象的稳定控制的控制系统。
它通过将控制器的输出作为内环的输入,再将内环的输出作为外环的输入,从而实现了对被控对象的精确控制。
这种控制方式在工业自动化过程控制中具有广泛的应用。
pid温度控制原理
pid温度控制原理PID温度控制原理。
PID温度控制是指利用PID控制算法对温度进行精确控制的一种方法。
PID控制是一种闭环控制方法,通过不断地调整控制器的输出,使得被控制的温度始终保持在设定值附近。
在工业生产中,PID温度控制被广泛应用于各种加热设备、冷却设备以及恒温设备中,以确保生产过程中温度的稳定性和精确性。
首先,我们来了解一下PID控制算法的基本原理。
PID控制算法是由比例(P)、积分(I)和微分(D)三个部分组成的控制器。
比例部分通过测量实际温度与设定温度之间的偏差来调整控制器的输出,使得温度能够快速地接近设定值;积分部分通过累积偏差的积分来消除静差,使得温度能够稳定地保持在设定值附近;微分部分通过测量偏差的变化率来抑制温度的波动,使得温度能够平稳地保持在设定值附近。
三者结合起来,可以实现对温度的精确控制。
在实际应用中,PID控制算法需要根据被控对象的特性进行参数调整。
比例系数的大小决定了控制器对偏差的敏感程度,过大会导致震荡,过小会导致响应慢;积分时间的长短决定了控制器对静差的消除程度,过长会导致超调,过短会导致静差;微分时间的长短决定了控制器对温度波动的抑制程度,过长会导致振荡,过短会导致灵敏度不够。
因此,在实际应用中,需要根据被控对象的特性进行参数调整,以实现最佳的控制效果。
除了参数调整外,PID控制算法还需要考虑控制器的工作方式。
通常情况下,PID控制器可以采用位置型控制或增量型控制。
位置型控制是指控制器输出的数值直接作为控制量,适用于需要精确控制的场合;增量型控制是指控制器输出的变化量作为控制量,适用于需要快速响应的场合。
根据被控对象的特性和控制要求,选择合适的控制方式可以提高控制效果。
在工业生产中,PID温度控制广泛应用于各种加热设备、冷却设备以及恒温设备中。
例如,在注塑成型过程中,需要对模具温度进行精确控制,以确保产品的质量和生产效率;在化工生产中,需要对反应釜温度进行精确控制,以确保反应过程的稳定性和安全性;在食品加工中,需要对烤箱温度进行精确控制,以确保产品的口感和品质。
直流电机pid闭环芯片
直流电机pid闭环芯片
直流电机PID闭环芯片。
直流电机PID闭环控制是一种常见的电机控制方法,它通过使
用PID控制器来调节电机的转速和位置,以实现精准的控制。
而
PID闭环芯片则是用来实现PID控制的电路芯片,它集成了PID控
制器所需的电路和逻辑功能,可以方便地应用于各种电机控制系统中。
PID控制器是由比例(P)、积分(I)和微分(D)三个部分组
成的控制算法,它通过不断地调节输出信号来使系统的实际输出值
尽可能地接近期望值。
在直流电机控制中,PID闭环控制可以实现
电机的精准转速和位置控制,提高系统的稳定性和响应速度。
PID闭环芯片通常集成了电压放大器、误差放大器、积分器、
微分器和输出级等功能模块,可以直接连接到电机驱动器或控制系
统中,实现快速、准确的电机控制。
通过调节PID参数,可以适应
不同的电机和控制要求,实现灵活的控制策略。
在实际应用中,直流电机PID闭环芯片广泛应用于工业自动化、
机器人、电动车、航空航天等领域,为各种电机控制系统提供了可靠的控制解决方案。
它不仅可以提高系统的精度和稳定性,还可以降低系统的能耗和维护成本,是现代电机控制技术中不可或缺的重要组成部分。
总之,直流电机PID闭环芯片作为一种高性能的电机控制器,为电机控制系统的精准控制提供了强大的支持,将在未来的电机控制领域中发挥越来越重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
~PID控制当今的自动控制技术都是基于反馈的概念。
反馈理论的要素包括三个部分:测量、比较和执行。
测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。
目录概述基本用途现实意义1系统分类开环控制系统1闭环控制系统1阶跃响应1PID控制的原理和特点比例(P)控制1积分(I)控制1微分(D)控制PID控制器的参数整定1PID控制实现PID 的反馈逻辑1打开 PID 功能1目标信号与反馈信号1目标值给定1反馈信号的连接1P 、 I 、 D 参数的预臵与调整比例增益 P1积分时间1微分时间 D1P 、 I 、 D 参数的调整原则展开概述这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。
PID(比例-积分-微分)控制器作为最早实用化的控制器已有70多年历史,现在仍然是应用最广泛的工业控制器。
PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。
PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。
其输入e (t)与输出u (t)的关系为u(t)=kp(e(t)+1/TI∫e(t)dt+TD*de(t)/dt) 式中积分的上下限分别是0和t 因此它的传递函数为:G(s)=U(s)/E(s)=kp(1+1/(TI*s)+TD*s) 其中kp为比例系数; TI为积分时间常数; TD为微分时间常数基本用途它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp, Ti和Td)即可。
在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。
首先,PID应用范围广。
虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。
其次,PID参数较易整定。
也就是,PID参数Kp,Ti和Td可以根据过程的动态特性及时整定。
如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定。
第三,PID控制器在实践中也不断的得到改进,下面两个改进的例子。
在工厂,总是能看到许多回路都处于手动状态,原因是很难让过程在“自动”模式下平稳工作。
由于这些不足,采用PID的工业控制系统总是受产品质量、安全、产量和能源浪费等问题的困扰。
PID参数自整定就是为了处理PID参数整定这个问题而产生的。
现在,自动整定或自身整定的PID控制器已是商业单回路控制器和分散控制系统的一个标准。
在一些情况下针对特定的系统设计的PID控制器控制得很好,但它们仍存在一些问题需要解决:如果自整定要以模型为基础,为了PID 参数的重新整定在线寻找和保持好过程模型是较难的。
闭环工作时,要求在过程中插入一个测试信号。
这个方法会引起扰动,所以基于模型的PID参数自整定在工业应用不是太好。
如果自整定是基于控制律的,经常难以把由负载干扰引起的影响和过程动态特性变化引起的影响区分开来,因此受到干扰的影响控制器会产生超调,产生一个不必要的自适应转换。
另外,由于基于控制律的系统没有成熟的稳定性分析方法,参数整定可靠与否存在很多问题。
因此,许多自身整定参数的PID控制器经常工作在自动整定模式而不是连续的自身整定模式。
自动整定通常是指根据开环状态确定的简单过程模型自动计算PID参数。
PID在控制非线性、时变、耦合及参数和结构不确定的复杂过程时,工作地不是太好。
最重要的是,如果PID控制器不能控制复杂过程,无论怎么调参数都没用。
虽然有这些缺点,PID 控制器是最简单的有时却是最好的控制器现实意义目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。
同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。
智能控制的典型实例是模糊全自动洗衣机等。
自动控制系统可分为开环控制系统和闭环控制系统。
一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。
控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。
不同的控制系统,其传感器、变送器、执行机构是不一样的。
比如压力控制系统要采用压力传感器。
电加热控制系统的传感器是温度传感器。
目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。
有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。
可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。
还有可以实现 PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。
系统分类开环控制系统开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输入没有影响。
在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。
闭环控制系统闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。
闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。
闭环控制系统的例子很多。
比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。
如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。
另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。
阶跃响应阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。
稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差。
控制系统的性能可以用稳、准、快三个字来描述。
稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的;准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error)描述,它表示系统输出稳态值与期望值之差;快是指控制系统响应的快速性,通常用上升时间来定量描述。
PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。
PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI 和PD控制。
PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
比例(P)控制比例控制是一种最简单的控制方式。
其控制器的输出与输入误差信号成比例关系。
当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。
对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。
为了消除稳态误差,在控制器中必须引入“积分项”。
积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。
这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。
因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
微分(D)控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。
自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。
其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。
解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。
这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。
所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。
PID控制器的参数整定PID控制器的参数整定是控制系统设计的核心内容。
它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。
PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。
它主要是依据系统的数学模型,经过理论计算确定控制器参数。
这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。
二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。
PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。
两种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。
但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。
现在一般采用的是临界比例法。
利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。
在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。
对于温度系统:P(%)20--60,I(分)3--10,D(分)0.5--3 对于流量系统:P(%)40--100,I(分)0.1--1 对于压力系统:P(%)30--70,I(分)0.4--3 对于液位系统:P(%)20--80,I(分)1--5 参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢。