广东省高考数学第二轮复习 专题七 概率与统计 文

合集下载

2015高考数学(文)二轮专题复习课件:专题七_第四讲 算法初步、框图、复数

2015高考数学(文)二轮专题复习课件:专题七_第四讲 算法初步、框图、复数
随堂讲义· 第一部分
专题七
知识复习专题
概率与统计、推理与证明、 算法初步、框图、复数
第四讲
算法初步、框图、复数
算法初步、框图、复数在广东高考中都一定有小题, 认真掌握好相关知识点,此类题都属于中等偏容易 题.预测2015年高考中会有框图、复数小题.
Z 主 干考点 梳 理
栏 目 链 接
Z 主 干考点 梳 理
Z 主 干考点 梳 理
(3)共轭复数. 复数 z=a+bi 的共轭复数 (4)复数的模.
a2+b2 . 复数 z=a+bi 的模|z|=|a+bi|=________
Hale Waihona Puke a-bi . =________
栏 目 链 接
2.复数相等的充要条件. a+bi=c+di
a=c且b=d ,b,c,d∈R). ____________(a a=b=0 ____________(a ,b∈R).
= 解法一 25(3+4i) 25 由题意得 z= = 3-4i (3-4i)(3+4i)
栏 目 链 接
25(3+4i) =3+4i.故选 D. 25 解法二 设 z=a+bi(a,b∈R),则 (3-4i)z=(3-4i)(a+bi)=(3a+4b)+(3b-4a)i=25,
3a+4b=25, a=3, 由复数相等得 解得 因此 z= 3+ 4i.故 3b-4a=0, b=4,
选 D.
栏 目 链 接
G 高 考热点 突 破
突破点1 程序框图
例1 执行下图所示的程序框图,则输出的S值是( )
栏 目 链 接
3 2 A.4 B. C. D.-1 2 3
G 高 考热点 突 破
解析
根据程序框图的要求一步一步地计算判断.

2019高考数学二轮复习专题七概率与统计2.7.3正态分布、统计与统计案例课件理

2019高考数学二轮复习专题七概率与统计2.7.3正态分布、统计与统计案例课件理

2.正态分布 X~N(μ,σ2)的三个常用数据 (1)P(μ-σ<X≤μ+σ)=0.6826; (2)P(μ-2σ<X≤μ+2σ)=0.9544; (3)P(μ-3σ<X≤μ+3σ)=0.9974.
[解题指导]
[解]
(1)抽取的一个零件的尺寸在(μ-3σ, μ+3σ)之内的概率
为 0.9974, 从而零件的尺寸在(μ-3σ, μ+3σ)之外的概率为 0.0026, 故 X~B(16,0.0026). 因此 P(X≥1)=1-P(X=0)=1-0.997416≈0.0408. X 的数学期望为 E(X)=16×0.0026=0.0416.
[对点训练]
2 1.(2018· 兰州检测)设 X~N(μ1,σ2 1),Y~N(μ2,σ2),这两个
正态分布密度曲线如图所示,下列结论中正确的是(
)
A. P(Y≥μ2)≥P(Y≥μ1) B.P(X≤σ2)≤P(X≤σ1) C.对任意正数 t,P(X≥t)≥P(Y≥t) D.对任意正数 t,P(X≤t)≥P(Y≤t)
3.方差公式 1 - - - s = [(x1- x )2+(x2- x )2+…+(xn- x )2] n
2
[对点训练] 1.(2018· 安徽皖南八校联考)某校为了解 1000 名高一新生的 健康状况, 用系统抽样法(按等距的规则)抽取 40 名同学进行检查, 将学生从 1~1000 进行编号,现已知第 18 组抽取的号码为 443, 则第一组用简单随机抽样抽取的号码为( A.16 B.17 C.18 D.19 )
[答案]
C
2. 某校组织了“2017 年第 15 届希望杯数学竞赛(第一试)”, 已知此次选拔赛的数学成绩 X 服从正态分布 N(72,121)(单位: 分), 此次考生共有 500 人,估计数学成绩在 72 分到 83 分之间的人数 约为(参数数据:P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)= 0.9544.)( A.238 ) B.170 C.340 D.477

广东省高考数学第二轮复习 专题七 概率与统计第1讲 计数原理、二项式定理 理

广东省高考数学第二轮复习 专题七 概率与统计第1讲 计数原理、二项式定理 理

专题七 概率与统计第1讲 计数原理、二项式定理真题试做1.(2012·浙江高考,理6)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ).A .60种B .63种C .65种D .66种2.(2012·重庆高考,理4)⎝⎛⎭⎪⎫x +12x 8的展开式中常数项为( ).A.3516B.358C.354D .105 3.(2012·浙江高考,理14)若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=__________.4.(2012·广东高考,理10)⎝ ⎛⎭⎪⎫x 2+1x 6的展开式中x 3的系数为__________.(用数字作答)考向分析高考中对本节注重基础知识和基本解题方法、规律的考查,伴随运算能力的考查,基本都为中等难度试题.预测下一步对排列组合会更加注重分类、分步计算原理的考查,注重与概率的联系,更要加强对本节知识的理解深度;二项式定理的应用可能会对x 的n 次多项式(1+ax )n 的考查升温,尤其是利用(1+ax )n的展开式考查赋值思想.热点例析热点一 分类加法和分步乘法计数原理【例1】方程ay =b 2x 2+c 中的a ,b ,c ∈{-3,-2,0,1,2,3},且a ,b ,c 互不相同.在所有这些方程所表示的曲线中,不同的抛物线共有( ).A .60条B .62条C .71条D .80条规律方法 “分类”与“分步”的区别:关键是看事件的完成情况,如果每种方法都能将事件完成是分类;如果必须要连续若干步才能将事件完成是分步,分类要用分类加法计数原理将种数相加;分步要用分步乘法计数原理将种数相乘.变式训练1 从A ,B ,C ,D ,E 五名学生中选出四名分别参加数学、物理、化学、英语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( ).A .24B .48C .72D .120 热点二 求展开式中的指定项【例2】在⎝ ⎛⎭⎪⎫x -2x 6的二项展开式中,常数项等于__________.规律方法 运用二项式定理一定要牢记通项T r +1=C r n a n -r b r ,其中n ∈N *,r ∈N ,r ≤n .注意与(b +a )n的展开式虽然相同,但其展开式中的某一项是不相同的,所以一定要注意顺序问题.变式训练2 若⎝ ⎛⎭⎪⎫x +1x n的展开式中第3项与第7项的二项式系数相等,则该展开式中1x2的系数为__________.热点三 求展开式中的各项系数的和【例3】若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( ).A .1B .-1C .0D .2规律方法 求展开式中系数和问题,往往根据展开式的特点赋值.变式训练 3 若(2x -1)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 0+a 1+a 2+a 3+a 4+a 5=__________.思想渗透分类讨论思想在排列组合中的应用由实际意义引起的分类讨论在排列组合问题中比较常见,这是因为分类、分步是解决排列组合问题的两个指导思想.一般采取先分类再分步的策略,分类时要先确定分类标准,是根据特殊元素来分类还是根据特殊位置来分类,然后再解决每一类中的分步问题,最后汇总.在分类时注意标准的选取,做到不重不漏.【典型例题】将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有________种.解析:分三类:第一格填2,则第二格有A 13种填法,第三、四格自动对号入座,不能自由排列;第一格填3,则第三格有A 13种填法,第二、四格自动对号入座,不能自由排列;第一格填4,则第四格有A 13种填法,第二、三格自动对号入座,不能自由排列;共计有3A 13=9种填法. 答案:91.(2012·天津高考,理5)在⎝⎛⎭⎪⎫2x 2-1x 5的二项展开式中,x 的系数为( ).A .10B .-10C .40D .-402.(2012·广东实验高中模拟,理6)已知n ∈N *,若对任意实数x 都有x n=a 0+a 1(x -n )+a 2(x -n )2+…+a n (x -n )n,则a n -1的值为( ).A .n 2B .n nC.(n -1)n 32D.(n -1)n n -123.(2012·陕西高考,理8)两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( ).A .10种B .15种C .20种D .30种4.(2012·山东高考,理11)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( ).A .232B .252C .472D .4845.(2012·辽宁高考,理5)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ).A .3×3!B .3×(3!)3C .(3!)4D .9!6.设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ). A .0 B .1 C .11 D .127.(2012·广东深圳高级中学期末,理5)值域为{2,5,10},其对应关系为y =x 2+1的函数的个数( ).A .1B .27C .39D .88.一袋中有除颜色外其他均相同的6个球,其中3个黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?参考答案命题调研·明晰考向真题试做1.D 解析:和为偶数共有3种情况,取4个数均为偶数的取法有44C =1(种),取2奇数2偶数的取法有2245C C ⋅=60(种),取4个数均为奇数的取法有45C =5(种),故不同的取法共有1+60+5=66(种).2.B 解析:二项式⎝ ⎛⎭⎪⎫x +12x 8的通项为T r +1=8C r (x )8-r (2x )-r =2-r8228C r r x-,令8-2r 2=0得r =4,所以二项展开式的常数项为T 5=2-4C 48=358,故选B.3.10 解析:由x 5=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5可得,555554444444553333333334455C ,0C C ,0C C C ,x a x x a x a x x a x a x a x ⎧=⋅⎪⋅=+⎨⎪⋅=++⎩可解得⎩⎪⎨⎪⎧a 5=1,a 4=-5,a 3=10.4.20 解析:T r +1=6C r ·(x 2)r ·⎝ ⎛⎭⎪⎫1x6-r =6C r·x 3r -6,∴要求展开式中x 3的系数,即3r -6=3,∴r =3,即T 4=36C ·x 3=20x 3,∴x 3的系数为20.精要例析·聚焦热点热点例析【例1】B 解析:因为a ,b 不能为0,先确定a ,b 的值有25A 种,则c 有14C 种,即所形成的抛物线有2154A C =80条.当b =±2时,b 2的值相同,重复的抛物线有1133C C =9条;当b =±3时,b 2的值相同,重复的抛物线有1133C C =9条,所以不同的抛物线共有21115433A C 2C C -=62条.【变式训练1】C 解析:第一类,不选A ,此时参赛方案有44A 种;第二类,选A ,此时先选元素(人),有1314C C ⋅种,再排元素有1323C A ⋅种方法,所以此种情况下参赛方法共有13131423C C C A ⋅⋅⋅种.所以共有4131341423A C C C A +⋅⋅⋅=24+48=72(种).选C.【例2】 -160 解析:⎝⎛⎭⎪⎫x -2x 6的二项展开式中的常数项为36C ·(x )3·⎝ ⎛⎭⎪⎫-2x 3=-160.【变式训练2】 56 解析:∵C n 2=C n 6,∴n =8.T r +1=88C r r x -⎝ ⎛⎭⎪⎫1x r =828C r r x -, 当8-2r =-2时,r =5. ∴系数为58C =56.【例3】 A 解析:(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 1+a 2+a 3+a 4)(a 0-a 1+a 2-a 3+a 4)=(2+3)4·(2-3)4=1.【变式训练3】 1 创新模拟·预测演练1.D 解析:T r +1=C r 5(2x 2)5-r ⎝ ⎛⎭⎪⎫-1x r =(-1)r 25-r C r 5x 10-3r,∴当10-3r =1时,r =3.∴(-1)325-3C35=-40.2.A 解析:x n =[n +(x -n )]n ,根据二项式通项公式得a n -1=C n -1n n =n 2.正确选项为A. 3.C 解析:甲获胜有三种情况,第一种共打三局,甲全胜,此时,有一种情形;第二种共打四局,甲第四局获胜且前三局中只有两局获胜,此时,共有C 23=3种情形;第三种共打五局,甲第五局获胜且前四局只有两局获胜,此时,共有C 24=6种情形,所以甲赢共有10种情况,同理乙赢也有10种情形,故选C.4.C 解析:完成这件事可分为两类,第一类3张卡片颜色各不相同共有31114444C C C C =256种;第二类3张卡片有两张同色且不是红色卡片共有12113434C C C C =216种,由分类加法计数原理得共有472种,故选C.5.C 解析:完成这件事可以分为两步,第一步排列三个家庭的相对位置,有33A 种排法;第二步排列每个家庭中的三个成员,共有333333A A A 种排法.由乘法原理可得不同的坐法种数有33333333A A A A ,故选C.6.D 解析:∵52能被13整除, ∴512 012可化为(52-1)2 012,其二项式系数为T r +1=20122012C 52r r-·(-1)r .故(52-1)2 012被13除余数为20122012C ·(-1)2 012=1,则当a =12时,512 012+12被13整除.7.B 解析:分别由x 2+1=2,x 2+1=5,x 2+1=10解得x =±1,x =±2,x =±3,由函数的定义,定义域中元素的选取分四种情况:①取三个元素:有111222C C C ⋅⋅=8种;②取四个元素:先从±1,±2,±3三组中选取一组13C ,再从剩下的两组中选两个元素1122C C ⋅,故共有111322C C C ⋅⋅=12种;③取五个元素:C 56=6种;④取六个元素:1种.由分类计数原理,共有8+12+6+1=27种.8.解:分三类:若取1个黑球,和另三个球排4个位置,有44A =24种不同的排法; 若取2个黑球,从另三个球中选2个排4个位置,2个黑球是相同的,自动进入,不需要排列,即有2234C A =36种不同的排法;若取3个黑球,从另三个球中选1个排4个位置,3个黑球是相同的,自动进入,不需要排列,即有1134C A =12种不同的排法;所以有24+36+12=72种不同的排法.。

2017届高三数学(文)二轮复习课件(全国通用)专题突破 专题7 概率与统计 第2讲 统计及统计案例

2017届高三数学(文)二轮复习课件(全国通用)专题突破 专题7 概率与统计 第2讲 统计及统计案例
5
x乙 =
s 乙= 1 28 302 29 302 30 302 31 302 32 302 = 2 . 所以 x甲 < x乙 ,s 甲>s 乙,故选 B.
︱高中总复习︱二轮·文数
(2)(2016· 北京卷,文17)某市居民用水拟实行阶梯水价,每人月用水量中不超 过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收 费,从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得 到如下频率分布直方图: ①如果w为整数,那么根据此次调查,为使80%以上居 民在该月的用水价格为4元/立方米,w至少定为多少? (2)解:①由用水量的频率分布直方图知, 该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],
4.(2015· 全国Ⅱ卷,文18)某公司为了解用户对其产品的满意度,从A,B两地 区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用
户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.
A地区用户满意度评分的频率分布直方图
B地区用户满意度评分的频数分布表
满意度评 分分组 频数 [50,60) 2 [60,70) 8 [70,80) 14 [80,90) 10 [90,100] 6
x
46.6
y 563
w 6.8
x x
8 i 1 i
2
w w
8 i 1 i
2
x x y y
8 i 1 i i
w w y y
8 i 1 i i
289.8
1.6
1469
108.8
1 8 表中 wi= xi , w = wi . 8 i 1

广东省高考数学(理科)二轮专题突破训练:专题七+概率与统计(含高考真题,3份)专题七 第1讲

广东省高考数学(理科)二轮专题突破训练:专题七+概率与统计(含高考真题,3份)专题七 第1讲

第1讲 排列、组合与二项式定理考情解读 1.高考中对两个计数原理、排列、组合的考查以基本概念、基本方法(如“在”“不在”问题、相邻问题、相间问题)为主,主要涉及数字问题、样品问题、几何问题、涂色问题、选取问题等;对二项式定理的考查,主要是利用通项求展开式的特定项,利用二项式定理展开式的性质求有关系数问题.主要考查分类与整合思想、转化与化归思想、补集思想和逻辑思维能力.2.排列、组合、两个计数原理往往通过实际问题进行综合考查,一般以选择、填空题的形式出现,难度中等,还经常与概率问题相结合,出现在解答题的第一或第二个小题中,难度也为中等;对于二项式定理的考查,主要出现在选择题或填空题中,难度为易或中等.1.分类加法计数原理和分步乘法计数原理如果每种方法都能将规定的事件完成,则要用分类加法计数原理将方法种数相加;如果需要通过若干步才能将规定的事件完成,则要用分步乘法计数原理将各步的方法种数相乘. 2.排列与组合(1)排列:从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.从n 个不同元素中取出m 个元素的排列数公式是A m n =n (n -1)(n -2)…(n -m +1)或写成A m n =n !(n -m )!. (2)组合:从n 个不同元素中取出m (m ≤n )个元素组成一组,叫做从n 个不同元素中取出m 个元素的一个组合.从n 个不同元素中取出m 个元素的组合数公式是 C m n =n (n -1)(n -2)…(n -m +1)m !或写成C m n=n !m !(n -m )!. (3)组合数的性质①C m n =C n -mn;②C m n +1=C m n +C m -1n. 3.二项式定理(1)二项式定理:(a +b )n =C 0n a n b 0+C 1n a n -1b +C 2n a n -2b 2+…+C r n a n -r b r +…+C n n a 0b n (r =0,1,2,…,n ).(2)二项展开式的通项T r +1=C r n a n -r b r ,r =0,1,2,…,n ,其中C r n 叫做二项式系数.(3)二项式系数的性质①对称性:与首末两端“等距离”两项的二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,…,C k n =C n -k n ,….②最大值:当n 为偶数时,中间的一项的二项式系数取得最大值;当n 为奇数时,中间的两项的二项式系数,相等,且同时取得最大值. ③各二项式系数的和a .C 0n +C 1n +C 2n +…+C k n +…+C n n =2n ;b .C 0n +C 2n +…+C 2r n +…=C 1n +C 3n +…+C 2r +1n+…=12·2n =2n -1.热点一 两个计数原理例1 (1)将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大.当3,4固定在图中的位置时,填写空格的方法为( )A .6种B .12种C .18种D .24种(2)如果一个三位正整数“a 1a 2a 3”满足a 1<a 2且a 3<a 2,则称这样的三位数为凸数(如120,343,275),那么所有凸数的个数为( ) A .240 B .204 C .729D .920思维启迪 (1)先确定数字1,2,9的位置,再分步填写空格;(2)按中间数进行分类. 答案 (1)A (2)A解析 (1)∵每一行从左到右,每一列从上到下分别依次增大,1,2,9只有一种填法,5只能填在右上角或左下角,5填后与之相邻的空格可填6,7,8任一个;余下两个数字按从小到大只有一种方法.共有2×3=6种结果,故选A.(2)分8类,当中间数为2时,有1×2=2种;当中间数为3时,有2×3=6种;当中间数为4时,有3×4=12种;当中间数为5时,有4×5=20种;当中间数为6时,有5×6=30种;当中间数为7时,有6×7=42种;当中间数为8时,有7×8=56种;当中间数为9时,有8×9=72种.故共有2+6+12+20+30+42+56+72=240种.思维升华(1)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类加法计数原理.(2)对于复杂的两个原理综合使用的问题,可恰当列出示意图或表格,使问题形象化、直观化.(1)(2014·大纲全国)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种(2)已知函数f(x)=ln(x2+1)的值域为{0,1,2},则满足这样条件的函数的个数为()A.8 B.9 C.26 D.27答案(1)C(2)B解析(1)由题意知,选2名男医生、1名女医生的方法有C26C15=75(种).(2)因为值域为{0,1,2}即ln(x2+1)=0⇒x=0,ln(x2+1)=1⇒x=±e-1,ln(x2+1)=2⇒x=±e2-1,所以定义域取值即在这5个元素中选取,①当定义域中有3个元素时,C11C12C12=4,②当定义域中有4个元素时,C11C34=4,③当定义域中有5个元素时,有一种情况.所以共有4+4+1=9(个)这样的函数.热点二排列与组合例2(1)(2014·重庆)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120C.144 D.168(2)数列{a n}共有12项,其中a1=0,a5=2,a12=5,且|a k+1-a k|=1,k=1,2,3,…,11,则满足这种条件的不同数列的个数为()A.84 B.168C.76 D.152思维启迪(1)将不能相邻的节目插空安排;(2)考虑数列中项的增减变化次数.答案(1)B(2)A解析(1)先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法,故共有36+36+48=120(种)安排方法.(2)∵|a k+1-a k|=1,k=1,2,3,…,11,∴前一项总比后一项大1或小1,a1到a5中4个变化必然有3升1减,a5到a12中必然有5升2减,是组合的问题,∴C14×C27=84.思维升华解排列、组合的应用题,通常有以下途径:(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素.(2)以位置为主体,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列或组合数.(1)在航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,则实验顺序的编排方法共有()A.24种B.48种C.96种D.144种(2)从0,1,2,3,4中任取四个数字组成无重复数字的四位数,其中偶数的个数是________(用数字作答).答案(1)C(2)60解析 (1)首先安排A 有2种方法;第二步在剩余的5个位置选取相邻的两个排B ,C ,有4种排法,而B ,C 位置互换有2种方法;第三步安排剩余的3个程序,有A 33种排法,共有2×4×2×A 33=96(种).(2)0,1,2,3,4中任取四个数字组成无重复数字的四位数,且为偶数,有两种情况: 一是当0在个位的四位偶数有A 34=24(个);二是当0不在个位时,先从2,4中选一个放在个位,再从余下的三个数选一个放在首位,应有A 12A 13A 23=36(个),故共有四位偶数60个. 热点三 二项式定理例3 (1)在(a +x )7展开式中x 4的系数为35,则实数a 的值为________.(2)如果(1+x +x 2)(x -a )5(a 为实常数)的展开式中所有项的系数和为0,则展开式中含x 4项的系数为________.思维启迪 (1)利用通项公式求常数项;(2)可用赋值法求二项展开式所有项的系数和. 答案 (1)1 (2)-5解析 (1)通项公式:T r +1=C r 7a 7-r x r ,所以展开式中x 4的系数为C 47a 3=35,解得a =1.(2)∵令x =1得(1+x +x 2)(x -a )5的展开式中所有项的系数和为(1+1+12)(1-a )5=0,∴a =1,∴(1+x +x 2)(x -a )5=(1+x +x 2)(x -1)5=(x 3-1)(x -1)4=x 3(x -1)4-(x -1)4, 其展开式中含x 4项的系数为C 34(-1)3-C 04(-1)0=-5.思维升华 (1)在应用通项公式时,要注意以下几点:①它表示二项展开式的任意项,只要n 与r 确定,该项就随之确定; ②T r +1是展开式中的第r +1项,而不是第r 项;③公式中,a ,b 的指数和为n 且a ,b 不能随便颠倒位置; ④对二项式(a -b )n 展开式的通项公式要特别注意符号问题.(2)在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法.(1)(2014·湖北)若二项式(2x +a x )7的展开式中1x3的系数是84,则实数a 等于( )A .2 B.54 C .1D.24(2)(2014·浙江)在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)等于( ) A .45 B .60 C .120 D .210答案 (1)C (2)C解析 (1)二项式(2x +ax)7的展开式的通项公式为T r +1=C r 7(2x )7-r ·(a x)r =C r 727-r a r x 7-2r, 令7-2r =-3,得r =5.故展开式中1x3的系数是C 5722a 5=84,解得a =1. (2)因为f (m ,n )=C m 6C n 4,所以f (3,0)+f (2,1)+f (1,2)+f (0,3)=C 36C 04+C 26C 14+C 16C 24+C 06C 34=120.1.排列、组合应用题的解题策略(1)在解决具体问题时,首先必须弄清楚是“分类”还是“分步”,接着还要搞清楚“分类”或者“分步”的具体标准是什么.(2)区分某一问题是排列问题还是组合问题,关键看选出的元素与顺序是否有关.若交换某两个元素的位置对结果产生影响,则是排列问题;若交换任意两个元素的位置对结果没有影响,则是组合问题.也就是说排列问题与选取元素的顺序有关,组合问题与选取元素的顺序无关. (3)排列、组合综合应用问题的常见解法:①特殊元素(特殊位置)优先安排法;②合理分类与准确分步;③排列、组合混合问题先选后排法;④相邻问题捆绑法;⑤不相邻问题插空法;⑥定序问题倍缩法;⑦多排问题一排法;⑧“小集团”问题先整体后局部法;⑨构造模型法;⑩正难则反、等价转化法.2.二项式定理是一个恒等式,对待恒等式通常有两种思路一是利用恒等定理(两个多项式恒等,则对应项系数相等);二是赋值.这两种思路相结合可以使得二项展开式的系数问题迎刃而解.另外,通项公式主要用于求二项式的指数,求满足条件的项或系数,求展开式的某一项或系数,在运用公式时要注意以下几点:(1)C r n an -r b r是第r +1项,而不是第r 项. (2)运用通项公式T r +1=C r n an -r b r 解题,一般都需先转化为方程(组)求出n 、r ,然后代入通项公式求解.(3)求展开式的特殊项,通常都是由题意列方程求出r ,再求出所需的某项;有时需先求n ,计算时要注意n 和r 的取值范围及它们之间的大小关系.真题感悟1.(2014·浙江)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答). 答案 60解析 把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A 44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C 23种分法,再分给4人有A 24种分法,所以不同获奖情况种数为A 44+C 23A 24=24+36=60.2.(2014·山东)若(ax 2+b x )6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.答案 2解析 (ax 2+bx)6的展开式的通项为T r +1=C r 6(ax 2)6-r ·(b x)r =C r 6a 6-r b r x 12-3r, 令12-3r =3,得r =3,由C 36a6-3b 3=20得ab =1, 所以a 2+b 2≥2ab =2,故a 2+b 2的最小值为2. 押题精练1.给一个正方体的六个面涂上4种不同的颜色(红、黄、绿、蓝),要求相邻2个面涂不同的颜色,则所有涂色方法的种数为( ) A .6 B .12 C .24 D .48 答案 A解析 由于涂色过程中,要使用4种颜色,且相邻的面不同色,对于正方体的3组对面来说,必然有2组对面同色,1组对面不同色,而且3组对面具有“地位对等性”,因此,只需从4种颜色中选择2种涂在其中2组对面上,剩下的2种颜色分别涂在另外2个面上即可.因此共有C 24=6(种)不同的涂法,故选A.2.某电视台一节目收视率很高,现要连续插播4个广告,其中2个不同的商业广告和2个不同的公益宣传广告,要求最后播放的必须是商业广告,且2个商业广告不能连续播放,则不同的播放方式有( )A .8种B .16种C .18种D .24种 答案 A解析 可分三步:第一步,最后一个排商业广告有A 12种;第二步,在前两个位置选一个排第二个商业广告有A 12种;第三步,余下的两个排公益宣传广告有A 22种.根据分步乘法计数原理,可得不同的播放方式共有A 12A 12A 22=8(种).故选A.3.(x +13x)2n 的展开式中第6项的二项式系数最大,则其常数项为( )A .120B .252C .210D .45 答案 C解析 根据二项式系数的性质,得2n =10,故二项式(x +13x)2n 的展开式的通项公式是T r +1=C r 10(x )10-r ·(13x)r =C r 10.根据题意令5-r 2-r 3=0,解得r =6,故所求的常数项等于C 610=210. 4.设f (x )是(x 2+12x )6展开式的中间项,若f (x )≤mx 在区间[22,2]上恒成立,则实数m 的取值范围是________. 答案 [5,+∞)解析 (x 2+12x )6展开共七项,中间项为C 36(x 2)3(12x )3=20·x 6·18x 3=52x 3,所以f (x )=52x 3. f (x )≤mx 在区间[22,2]上恒成立,即52x 3-mx ≤0在区间[22,2]上恒成立. 52x 3-mx =x (52x 2-m ),因为x ∈[22,2],所以x >0,即52x 2-m ≤0在区间[22,2]上恒成立,所以m ≥(52·x 2)max ,在区间[22,2]上,易知当x =2时,52x 2有最大值,最大值为5,所以m ≥5.即实数m 的取值范围是[5,+∞).(推荐时间:60分钟)一、选择题1.(2014·安徽)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对答案 C解析如图,在正方体ABCD-A1B1C1D1中,与面对角线AC成60°角的面对角线有B1C,BC1,A1D,AD1,AB1,A1B,D1C,DC1,共8条,同理与DB成60°角的面对角线也有8条.因此一个面上的2条面对角线与其相邻的4个面上的8条对角线共组成16对.又正方体共有6个面,所以共有16×6=96(对).又因为每对被计算了2次,因此成60°角的面对角线有12×96=48(对).2.在(x-2x)5的二项展开式中,x2的系数为()A.40 B.-40 C.80 D.-80 答案 A解析(x-2x)5的展开式的通项为T r+1=C r5x5-r(-2x)r=(-2)r C r5,令5-3r2=2,得r=2,故展开式中x2的系数是(-2)2C25=40,故选A.3.从8名女生和4名男生中,抽取3名学生参加某档电视节目,如果按性别比例分层抽样,则不同的抽取方法数为()A.224 B.112C.56 D.28答案 B解析根据分层抽样,从8个人中抽取男生1人,女生2人;所以取2个女生1个男生的方法:C28C14=112.4.若(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a0+a1+a3+a5的值为()A.122 B.123 C.243 D.244答案 B解析在已知等式中分别取x=0、x=1与x=-1,得a0=1,a0+a1+a2+a3+a4+a5=35,a0-a1+a2-a3+a4-a5=-1,因此有2(a1+a3+a5)=35+1=244,a1+a3+a5=122,a0+a1+a3+a5=123,故选B.5.(2014·四川)在x(1+x)6的展开式中,含x3项的系数为()A.30 B.20C.15 D.10答案 C解析因为(1+x)6的展开式的第r+1项为T r+1=C r6x r,x(1+x)6的展开式中含x3的项为C26x3=15x3,所以系数为15.6.计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的排列方式的种数有()A.A44A55B.A33A44A35C.C13A44A55D.A22A44A55答案 D解析先把3种品种的画看成整体,而水彩画受限制应优先考虑,不能放在头尾,故只能放在中间,又油画与国画有A22种放法,再考虑国画与油画本身又可以全排列,故排列的方法有A22A44A55种.7.二项式(x-13x)n的展开式中第4项为常数项,则常数项为()A.10 B.-10 C.20 D.-20 答案 B解析由题意可知二项式(x-13x)n的展开式的常数项为T4=C3n(x)n-3(-13x)3=(-1)3C3n,令3n-15=0,可得n=5.故所求常数项为T4=(-1)3C35=-10,故选B.8.有A、B、C、D、E五位学生参加网页设计比赛,决出了第一到第五的名次.A、B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名.请你分析一下,这五位学生的名次排列的种数为()A.6 B.18C.20 D.24答案 B解析由题意知,名次排列的种数为C13A33=18.9.在二项式(x2-1x)n的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为()A.32 B.-32C.0 D.1答案 C解析依题意得所有二项式系数的和为2n=32,解得n=5.因此,令x=1,则该二项展开式中的各项系数的和等于(12-11)5=0,故选C.10.用红、黄、蓝、白、黑五种颜色涂在“田”字形的4个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,则所有涂色方法的种数为()A.60 B.80C.120 D.260答案 D解析如图所示,将4个小方格依次编号为1,2,3,4.如果使用2种颜色,则只能是第1,4个小方格涂一种,第2,3个小方格涂一种,方法种数是C25A22=20;如果使用3种颜色,若第1,2,3个小方格不同色,第4个小方格只能和第1个小方格相同,方法种数是C35A33=60,若第1,2,3个小方格只用2种颜色,则第4个方格只能用第3种颜色,方法种数是C35×3×2=60;如果使用4种颜色,方法种数是C45A44=120.根据分类加法计数原理,知总的涂法种数是20+60+60+120=260,故选D.二、填空题11.“雾霾治理”“光盘行动”“网络反腐”“法治中国”“先看病后付费”成为2013年社会关注的五个焦点.小王想利用2014“五一”假期的时间调查一下社会对这些热点的关注度.若小王准备按照顺序分别调查其中的4个热点,则“雾霾治理”作为其中的一个调查热点,但不作为第一个调查热点的调查顺序总数为________.答案 72解析 先从“光盘行动”“网络反腐”“法治中国”“先看病后付费”这4个热点选出3个,有C 34种不同的选法;在调查时,“雾霾治理”安排的调查顺序有A 13种可能情况,其余三个热点调查顺序有A 33种,故不同调查顺序的总数为C 34A 13A 33=72.12.(x -1)(4x 2+1x 2-4)3的展开式中的常数项为________. 答案 160解析 (x -1)(4x 2+1x 2-4)3=(x -1)(2x -1x )6,其中(2x -1x)6展开式的第r +1项为T r +1=C r 6(2x )6-r ·(-1x)r =(-1)r ·C r 6·26-r ·x 6-2r , 令r =3,可得T 4=(-1)3C 36·23=-160,所以二项式(x -1)(4x 2+1x 2-4)3的展开式中常数项为(-1)×(-160)=160. 13.(2014·北京)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有________种.答案 36解析 将产品A 与B 捆绑在一起,然后与其他三种产品进行全排列,共有A 22A 44种方法,将产品A ,B ,C 捆绑在一起,且A 在中间,然后与其他两种产品进行全排列,共有A 22A 33种方法.于是符合题意的排法共有A 22A 44-A 22A 33=36(种).14.(2014·课标全国Ⅱ)(x +a )10的展开式中,x 7的系数为15,则a =________.(用数字填写答案)答案 12解析 设通项为T r +1=C r 10x10-r a r ,令10-r =7, ∴r =3,∴x 7的系数为C 310a 3=15,∴a 3=18,∴a =12. 15.某工厂将甲、乙等五名新招聘员工分配到三个不同的车间,每个车间至少分配一名员工,且甲、乙两名员工必须分到同一个车间,则不同分法的种数为________.答案 36解析 若甲、乙分到的车间不再分人,则分法有C 13×A 22×C 13=18种;若甲、乙分到的车间再分一人,则分法有3×C 13×A 22=18种.所以满足题意的分法共有18+18=36种.16.已知(x+ax)6(a>0)的展开式中常数项为240,则(x+a)(x-2a)2的展开式中x2项的系数为________.答案-6解析(x+ax)6的二项展开式的通项为T r+1=C r6x6-r(ax)r=C r6a,令6-3r2=0,得r=4,则其常数项为C46a4=15a4=240,则a4=16,由a>0,故a=2.又(x+a)(x-2a)2的展开式中,x2项为-3ax2.故x2项的系数为(-3)×2=-6.。

高考数学二轮复习专题七概率与统计7.2概率课件文

高考数学二轮复习专题七概率与统计7.2概率课件文
的座位号分别为 1,2,3,4,5,他们按照座位号从小到大的顺序先后上 车,乘客 P1 因身体原因没有坐 1 号座位,这时司机要求余下的乘客按 以下规则就座:如果自己的座位空着,就只能坐自己的座位;如果自 己的座位已有乘客就座,就在这 5 个座位的剩余空位中任意选择座 位. (1)若乘客 P1 坐到了 3 号座位,其他乘客按规则就座,则此时共有 4 种 坐法.下表给出了其中两种坐法,请填入余下两种坐法(将乘客就座 的座位号填入表中空格处);
1 1 1 P(B)= ,P(C)= ,P(D)= . 4 6 4 1 1 1 4 6 4 1 3 2 3 5 12 5 12
故取到黑球、黄球、绿球的概率分别是 , , .
-7热点1 热点2 热点3 热点4
古典概型的概率
【思考】 怎样判断一个概率模型是古典概型?如何查找古典概型
的基本事件?
例 2 一辆小客车有 5 个座位,其座位号为 1,2,3,4,5,乘客 P1,P2,P3,P4,P5
4 P(A)= 8 1 . 2 1 2
=
所以乘客 P5 坐到 5 号座位的概率是 .
-12热点1 热点2 热点3 热点4
题后反思1.具有以下两个特点的概率模型简称古典概型: (1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等. 2.用列举法写出所有基本事件时,可借助“树状图”列举,以便做到不 重、不漏.
-8热点1 热点2 热点3 热点4
乘客
P1 3
P2 2 2
P3 1 4
P4 4 5
P5 5 1
座位号
3
(2)若乘客 P1 坐到了 2 号座位,其他乘客按规则就座,求乘客 P5 坐到 5 号座位的概率.
-9-

广东省高考数学第二轮复习 专题七 概率与统计第3讲 随机变量及其分布列 理

广东省高考数学第二轮复习 专题七 概率与统计第3讲 随机变量及其分布列 理

真题试做1.(2012·上海高考,理17)设10≤x 1<x 2<x 3<x 4≤104,x 5=105.随机变量ξ1取值x 1,x 2,x 3,x 4,x 5的概率均为0.2,随机变量ξ2取值x 1+x 22,x 2+x 32,x 3+x 42,x 4+x 52,x 5+x 12的概率也均为0.2.若记Dξ1,Dξ2分别为ξ1,ξ2的方差,则( ).A .Dξ1>Dξ2B .Dξ1=Dξ2C .Dξ1<Dξ2D .D ξ1与Dξ2的大小关系与x 1,x 2,x 3,x 4的取值有关 2.(2012·课标全国高考,理15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为__________.3.(2012·山东高考,理19)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分,该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望EX .4.(2012·陕西高考,理20)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时办理业务所需的时间(分) 1 2 3 4 5频率 0.1 0.4 0.3 0.1 0.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X 表示至第2分钟末已办理完业务的顾客人数,求X 的分布列及数学期望. 考向分析本讲是概率统计的重点,主要考查三方面的内容:①相互独立事件及其概率,题型有选择、填空,有时也出现在解答题中与其他知识交会命题;②二项分布及其应用,准确把握独立重复试验的特点是解答二项分布问题的关键,一般以中档题为主;③随机变量的分布列、期望和方差,以考生比较熟悉的实际应用题为背景,综合排列组合、概率公式、互斥事件及独立事件等基础知识,考查对随机变量的识别及概率计算能力,解答时要注意分类与整合、转化与化归思想的运用,其中有选择题,也有填空题,但更多的是解答题,难度中档.热点例析热点一 相互独立事件及其概率【例1】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)求开始第5次发球时,甲得分领先的概率. 规律方法 (1)求复杂事件的概率的一般步骤:①列出题中涉及的各事件,并且用适当的符号表示;②理清各事件之间的关系,列出关系式.即把随机事件分成几个互斥事件的和,每个小事件再分为n 个相互独立事件的乘积.③根据事件之间的关系准确选取概率公式进行计算.(2)直接计算符合条件的事件的概率较繁时,可先间接地计算对立事件的概率,再求出符合条件的事件的概率.变式训练1 甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率. 热点二 二项分布及其应用【例2】购买某种保险,每个投保人每年度向保险公司交纳保险费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1-0.999104.(1)求一投保人在一年度内出险的概率p ;(2)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保险费(单位:元).规律方法 事件服从二项分布的条件是:(1)每次试验中,事件发生的概率是相同的.(2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生.(4)随机变量是这n 次独立重复试验中事件发生的次数.变式训练2 某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率; (3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总得分数,求ξ的分布列.热点三 离散型随机变量的分布列、均值与方差【例3】(2012·天津高考,理16)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E (ξ).规律方法 求离散型随机变量的分布列,关键是计算各个概率值,一方面要弄清楚相应的概型(古典概型、相互独立事件的概率、独立重复试验等),以便套用相关的计算公式计算;另一方面要注意运用分布列的性质检验所求概率值是否正确.变式训练3 (2012·山东青岛模拟,理19)甲居住在城镇的A 处,准备开车到单位B 处上班,若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图(例如,A →C →D 算作两个路段:路段AC 发生堵车事件的概率为110,路段CD 发生堵车事件的概率为115,且甲在每个路段只能按箭头指的方向前进).(1)请你为其选择一条由A 到B 的路线,使得途中发生堵车事件的概率最小;(2)若记路线A →C →F →B 中遇到堵车次数为随机变量ξ,求ξ的分布列及E (ξ). 思想渗透转化与化归思想——期望与概率的实际应用解题中要善于透过问题的实际背景,发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.【典型例题】某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假设甲、乙两厂的产品都符合相应的执行标准.(1)且X 1的数学期望E (X 1)=(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 3 8 3 4 3 4 4 7 56 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望; (3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的等级系数的数学期望产品的零售价;(2)“性价比”大的产品更具可购买性.解:(1)因为E (X 1)=6,所以5×0.4+6a +7b +8×0.1=6,即6a +7b =3.2,又由X 1的概率分布列得0.4+a +b +0.1=1,即a +b =0.5.由⎩⎪⎨⎪⎧ 6a +7b =3.2,a +b =0.5,解得⎩⎪⎨⎪⎧a =0.3,b =0.2. (2)X 2的概率分布列如下:所以E (X 2) 4.8, 即乙厂产品的等级系数X 2的数学期望等于4.8. (3)乙厂的产品更具可购买性,理由如下:因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其“性价比”为66=1.因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其“性价比”为4.84=1.2.所以乙厂的产品更具可购买性.1.设随机变量ξ服从正态分布N (3,σ2),若P (ξ>m )=a ,则P (ξ>6-m )等于( ). A .a B .1-2a C .2a D .1-a2.设一随机试验的结果只有A 和A 且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生0,A 不发生,则ξ的方差D (ξ)等于( ).A .mB .2m (1-m )C .m (m -1)D .m (1-m )3.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以Z 表示取出球的最大号码,令a =P (Z =6),则函数y =⎝ ⎛⎭⎪⎫12x 2-2ax 的单调递增区间是( ). A.⎝ ⎛⎭⎪⎫-∞,12 B.⎝ ⎛⎭⎪⎫12,+∞ C .(-∞,1) D .(1,+∞)4.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是( ).A.16625B.96625C.624625D.46255.(2012·浙江五校联考,理16)甲、乙两个篮球队进行比赛,比赛采用5局3胜制(即先胜3局者获胜).若甲、乙两队在每场比赛中获胜的概率分别为23和13,记需要比赛的场次为ξ,则E (ξ)=__________.6.(2012·广东东莞模拟,理17)某汽车驾驶学校在学员结业前对其驾驶技术进行4次考核,规定:按顺序考核,一旦考核合格就不必参加以后的考核,否则还需要参加下次考核.若小李参加每次考核合格的概率依次组成一个公差为18的等差数列,他参加第一次考核合格的概率超过12,且他直到参加第二次考核才合格的概率为932.(1)求小李第一次参加考核就合格的概率P 1;(2)求小李参加考核的次数X 的分布列和数学期望E (X ).参考答案命题调研·明晰考向真题试做 1.A 2.38解析:设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,∴该部件的使用寿命超过1 000的事件为(A B +A B +AB )C .∴该部件的使用寿命超过1 000小时的概率为P =⎝⎛ 12×12+12×12+12×⎭⎪⎫12×12=38.3.解:(1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D ,由题意知P (B )=34,P (C )=P (D )=23,由于A =B C D +B C D +B C D , 根据事件的独立性和互斥性得P (A )=P (B C D +B C D +B C D )=P (B C D )+P (B C D )+P (B C D )=P (B )P (C )P (D )+P (B )P (C )P (D )+P (B )P (C )P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736.(2)根据题意,X 的所有可能取值为0,1,2,3,4,5, 根据事件的独立性和互斥性得P (X =0)=P (B C D )=[1-P (B )][1-P (C )][1-P (D )] =⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23 =136, P (X =1)=P (B C D )=P (B )P (C )P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23 =112, P (X =2)=P (B C D +B C D )=P (B C D )+P (B C D )=⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23 =19, P (X =3)=P (BC D +B C D )=P (BC D )+P (B C D )=34×23×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-23×23=13, P (X =4)=P (B CD )=⎝ ⎛⎭⎪⎫1-34×23×23=19, P (X =5)=P (BCD )=34×23×23=13.故X 的分布列为所以EX =0×136+1×12+2×9+3×3+4×9+5×3=12.4.解:设Y Y 的分布列如下:(1)A A 对应三种情形: ①第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=P(Y=1)P(Y=3)+P(Y=3)P(Y=1)+P(Y=2)P(Y=2)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.(2)方法一:X所有可能的取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=P(Y=1)P(Y>1)+P(Y=2)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01.所以X的分布列为E(X)方法二:X所有可能的取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;P(X=1)=1-P(X=0)-P(X=2)=0.49.所以X的分布列为E(X)精要例析·聚焦热点热点例析【例1】解:记Ai表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;Bi表示事件:第3次和第4次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球时,甲、乙的比分为1比2;C表示事件:开始第5次发球时,甲得分领先.(1)B=A0·A+A1·A,P(A)=0.4,P(A0)=0.42=0.16,P(A1)=2×0.6×0.4=0.48,P(B)=P(A0·A+A1·A)=P(A0·A)+P(A1·A)=P(A0)P(A)+P(A1)P(A)=0.16×0.4+0.48×(1-0.4)=0.352.(2)P(B0)=0.62=0.36,P(B1)=2×0.4×0.6=0.48,P(B2)=0.42=0.16,P(A2)=0.62=0.36.C=A1·B2+A2·B1+A2·B2,P(C)=P(A1·B2+A2·B1+A2·B2)=P(A1·B2)+P(A2·B1)+P(A2·B2)=P(A1)P(B2)+P(A2)P(B1)+P(A2)P(B2)=0.48×0.16+0.36×0.48+0.36×0.16=0.307 2.【变式训练1】 解:设A k ,B k 分别表示甲、乙在第k 次投篮投中,则P (A k )=13,P (B k )=12(k =1,2,3).(1)记“乙获胜”为事件C ,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (C )=P (A 1B 1)+P (A 1B 1A 2B 2)+P (A 1B 1A 2B 2A 3B 3)=P (A 1)P (B 1)+P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)P (B 2)P (A 3)P (B 3) =23×12+⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫123=1327. (2)记“投篮结束时乙只投了2个球”为事件D ,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (D )=P (A1B1A 2B 2)+P (A1B1A2B 2A 3)=P (A1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)P (B 2)P (A 3)=⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫13=427.【例2】 解:各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000人中出险的人数为ξ,则ξ~B (104,p ).(1)记A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当ξ=0,P (A )=1-P (A )=1-P (ξ=0)=1-(1-p )104,又P (A )=1-0.999104,故p =0.001.(2)该险种总收入为10 000a 元,支出是赔偿金总额与成本的和. 支出10 000ξ+50 000.盈利η=10 000a -(10 000ξ+50 000),盈利的期望为E (η)=10 000a -10 000E (ξ)-50 000,由ξ~B (104,10-3)知,E (ξ)=10 000×10-3,∴E (η)=104a -104E (ξ)-5×104=104a -104×104×10-3-5×104.∴E (η)≥0⇔104a -104×10-5×104≥0 ⇔a -10-5≥0⇔a ≥15(元).故每位投保人应交纳的最低保险费为15元.【变式训练2】 解:(1)设X 为射手在5次射击中击中目标的次数,则X ~B ⎝ ⎛⎭⎪⎫5,23.在5次射击中,恰有2次击中目标的概率P (X =2)=25C ×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-233=40243.(2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5);“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A 4A 5)+P (A 1A 2A 3A 4A 5)+P (A1A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881.(3)由题意可知,ξ的所有可能取值为0,1,2,3,6,P (ξ=0)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫133=127;P (ξ=1)=P (A 1A 2A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=23×⎝ ⎛⎭⎪⎫132+13×23×13+⎝ ⎛⎭⎪⎫132×23=29; P (ξ=2)=P (A 1A 2A 3)=23×13×23=427; P (ξ=3)=P (A 1A 2A 3)+P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫232×13+13×⎝ ⎛⎭⎪⎫232=827; P (ξ=6)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫233=827.所以ξ【例3】 解:依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4),则P (A i )=C 4i ⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率P (A 2)=24C ⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=34C ⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫23+44C ⎝ ⎛⎭⎪⎫134=19.所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ的分布列是随机变量ξ的数学期望E (ξ)=0×27+2×81+4×81=81.【变式训练3】 解:(1)记路段AC 发生堵车事件为AC ,各路段发生堵车事件的记法与此类同.因为各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,所以路线A →C →D →B 中遇到堵车的概率为P 1=1-P (AC ·CD ·DB )=1-P (AC )P (CD )P (DB )=1-[1-P (AC )][1-P (CD )][1-P (DB )]=1-910×1415×56=310.同理:路线A →C →F →B 中遇到堵车的概率为P 2=1-P (AC ·CF ·FB )=239800⎝⎛⎭⎪⎫小于310.路线A →E →F →B 中遇到堵车的概率为P 3=1-P (AE ·EF ·FB )=91300⎝⎛⎭⎪⎫大于310.显然由A 到B 只可能在以上三条路线中选择.因此选择路线A →C →F →B ,可使得途中发生堵车事件的概率最小. (2)路线A →C →F →B 中遇到堵车次数ξ可能取值为0,1,2,3.P (ξ=0)=P (AC ·CF ·FB )=561800,P (ξ=1)=P (AC ·CF ·FB )+P (AC ·CF ·FB )+P (AC ·CF ·FB )=110×1720×1112+910×320×1112+910×1720×112=6372 400, P (ξ=2)=P (AC ·CF ·FB )+P (AC ·CF ·FB )+P (AC ·CF ·FB )=110×320×1112+110×1720×112+910×320×112=772 400, P (ξ=3)=P (AC ·CF ·FB )=110×320×112=1800.所以ξ∴E (ξ)=0×561800+1×2 400+2×2 400+3×800=3.创新模拟·预测演练1.D 解析:正态分布曲线关于x =μ对称,即关于x =3对称,m 与6-m 关于x =3对称,∴P (ξ<6-m )=P (ξ>m )=a , 则P (ξ>6-m )=1-a . 2.D3.A 解析:P (Z =6)=121536C C 1C 2=,y =⎝ ⎛⎭⎪⎫12x 2-x 在⎝ ⎛⎭⎪⎫-∞,12上单调递增. 4.B 解析:若摸出的两球中含有4,必获奖,有5种情形;若摸出的两球是2,6,也能获奖.故获奖的情形共6种,获奖的概率为266C=25.现有4人参与摸奖,恰有3人获奖的概率是3342C 5⎛⎫ ⎪⎝⎭·35=96625.5.10727解析:依题意ξ的可能取值分别为3,4,5, P (ξ=3)=23×23×23+13×13×13=927,P (ξ=4)=23C ⎝ ⎛⎭⎪⎫232×13×23+23C ×⎝ ⎛⎭⎪⎫132×23×13=1027,P (ξ=5)=1-P (ξ=3)-P ()ξ=4=827.E (ξ)=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=10727. 6.解:(1)由题意得(1-P 1)·⎝⎛⎭⎪⎫P 1+18=932, ∴P 1=14或58.∵P 1>12,∴P 1=58.(2)由(1)知小李4次考核每次合格的概率依次为58,34,78,1,所以P (X =1)=58,P (X =2)=932, P (X =3)=⎝ ⎛⎭⎪⎫1-58⎝ ⎛⎭⎪⎫1-34×78=21256, P (X =4)=⎝ ⎛⎭⎪⎫1-58⎝ ⎛⎭⎪⎫1-34⎝ ⎛⎭⎪⎫1-78×1=3256, 所以X∴E (X )=1×58+2×32+3×256+4×256=256.。

广东省高考数学第二轮复习 专题七 概率与统计第2讲 概

广东省高考数学第二轮复习 专题七 概率与统计第2讲 概

专题七 概率与统计第2讲 概率、统计与统计案例真题试做1.(2012·山东高考,理4)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( ).A .7B .9C .10D .152.(2012·陕西高考,理6)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( ).A.x 甲<x 乙,m 甲>m 乙B.x 甲<x 乙,m 甲<m 乙C.x 甲>x 乙,m 甲>m 乙D.x 甲>x 乙,m 甲<m 乙3.(2012·广东高考,理7)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ).A.49B.13C.29D.194.(2012·广东高考,理17)某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.考向分析概率部分主要考查了概率的概念、条件概率、互斥事件的概率加法公式、对立事件的求法,以及古典概型与几何概型的计算,均属容易题.统计部分选择、填空都是独立考查本节知识,解答题均与概率的分布列综合.预测下一步概率部分会更加注重实际问题背景,考查分析、推理能力,统计部分在直方图、茎叶图、相关性部分都可单独命题,且多为一个小题,解答题仍会与分布列结合.热点例析热点一 随机事件的概率【例1】(2012·江西高考,理18)如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V (如果选取的3个点与原点在同一个平面内,此时“立体”的体积V =0).(1)求V =0的概率;(2)求V 的分布列及数学期望E (V ).规律方法 高考中,概率解答题一般有两大方向.一、以频率分布直方图为载体,考查统计学中常见的数据特征:如平均数、中位数、频数、频率等或古典概型;二、以应用题为载体,考查条件概率、独立事件的概率、随机变量的期望与方差等.需要注意第一种方向的考查.变式训练1 (2012·北京昌平二模,理16)某游乐场将要举行狙击移动靶比赛.比赛规则是:每位选手可以选择在A 区射击3次或选择在B 区射击2次,在A 区每射中一次得3分,射不中得0分;在B 区每射中一次得2分,射不中得0分.已知参赛选手甲在A 区和B 区每次射中移动靶的概率分别是14和p (0<p <1). (1)若选手甲在A 区射击,求选手甲至少得3分的概率;(2)我们把在A 、B 两区射击得分的数学期望高者作为选择射击区的标准,如果选手甲最终选择了在B 区射击,求p 的取值范围.热点二 古典概型与几何概型【例2】(2012·北京高考,理2)设不等式组⎩⎪⎨⎪⎧ 0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是( ).A.π4B.π-22C.π6D.4-π4规律方法 较为简单的问题可以直接使用古典概型公式计算,较为复杂的概率问题的处理方法:一是转化为几个互斥事件的和,利用互斥事件的加法公式进行求解;二是采用间接解法,先求事件A 的对立事件A 的概率,再由P (A )=1-P (A )求事件A 的概率.变式训练2 (1)在长为18 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36 cm 2与81 cm 2之间的概率为( ).A.56B.12C.13D.16(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为X ,Y ,则log 2X Y =1的概率为( ).A.16B.536C.112D.12热点三 线性相关【例3】设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x -85.71,则下列结论中不正确的是( ).A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg规律方法 线性回归的基本思想及应用主要按以下步骤完成:①画散点图,检验是否线性相关;②数据计算,求回归方程;③利用回归方程,进行科学预测.变式训练3 假设关于某设备的使用年限x 和所支出的维修费用y (万元)有如下的统计资料:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若由资料知y x 试求:(1)线性回归方程y ^=b ^x +a ^的回归系数a ^,b ^;(2)估计使用年限为10年时,维修费用是多少?热点四 独立性检验【例4】为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试.两个班同学的成绩(百分制)的茎叶图如图所示:按照大于或等于80分为优秀,80分以下为非优秀统计成绩.(1)根据以上数据完成下面的2×2列联表:优秀 非优秀 总计A 班 20B 班 20总计 40(2)附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )P (K 2≥k ) 0.050 0.010 0.001k 3.841 6.635 10.828规律方法 K 2来确定在多大程度上两个分类变量有关系的方法.K 2值越大,说明两个分类变量X 与Y 有关系的可能性越大.要会用倍度表判断X 与Y 有关系的可信程度.变式训练4 为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否在犯错误的概率不超过0.01的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关?附:P (K 2≥k ) 0.050 0.010 0.001K 2的观测值k =(a +b )(c +d )(a +c )(b +d ).思想渗透数形结合思想——解答统计问题用数形结合思想解答的统计问题主要有:(1)通过频率分布直方图研究数据分布的总体趋势.(2)根据样本数据散点图确定两个变量是否存在相关关系.求解时注意的问题:(1)频率分布直方图中纵轴表示频率组距,每个小长方形的面积等于这一组的频率.(2)在频率分布直方图中,组距是一个固定值,故各小长方形高的比就是频率之比.(2)画出频率分布直方图;(3)根据样本的频率分布图,估计身高小于134 cm 的人数约占总人数的百分比. 解:(1)(2)(3)由图估计,身高小于134 cm 的学生数约占总数的19%.1.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人,现采用分层抽样抽取容量为30的样本,则抽取各职称的人数分别为( ).A .5,10,15B .3,9,18C .3,10,17D .5,9,162.(2012·江西高考,理9)样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ).若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =αx +(1-α)y ,其中0<α<12,则n ,m 的大小关系为( ). A .n <m B .n >m C .n =m D .不能确定3.(2012·安徽高考,理5)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( ).A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差4.(2012·福建高考,理6)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ).A.14B.15C.16D.175.(2012·广东韶关模拟,理7)下列四个判断:①某校高三一班和高三二班的人数分别是m ,n ,某次测试数学平均分分别是a ,b ,则这两个班的数学平均分为a +b 2; ②10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有c >a >b ;③从总体中抽取的样本(x 1,y 1),(x 2,y 2),…,(x n ,y n ),若记x =1n ∑i =1n x i ,y =1n ∑i =1ny i ,则回归直线y =bx +a 必过点(x ,y );④已知ξ服从正态分布N (0,σ2),且P (-2≤ξ≤0)=0.4,则P (ξ>2)=0.2. 其中正确的有( ).A .0个B .1个C .2个D .3个6.设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a 的值为( ).A.73B.53C .5D .3 7.有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排列组成.设随机变量(1)求P (ξ=2);(2)求随机变量ξ的分布列和数学期望.8.(2012·广东深圳高级中学期末,理17)计算机考试分理论考试与上机操作考试两部分进行,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”则计算机考试“合格”并颁发“合格证书”.甲、乙、丙三人在理论考试中合格的概率分别为35,34,23;在上机操作考试中合格的概率分别为910,56,78.所有考试是否合格相互之间没有影响. (1)甲、乙、丙三人在同一次计算机考试中谁获得“合格证书”可能性最大? (2)求这三人计算机考试都获得“合格证书”的概率;(3)用ξ表示甲、乙、丙三人在理论考核中合格人数,求ξ的分布列和数学期望E (ξ).参考答案命题调研·明晰考向真题试做 1.C 解析:由题意可得,抽样间隔为30,区间[451,750]恰好为10个完整的组,所以做问卷B 的有10人,故选C.2.B 解析:由题图可得x 甲=34516=21.562 5,m 甲=20,x 乙=45716=28.562 5,m 乙=29,所以x甲<x 乙,m 甲<m 乙.故选B.3.D 解析:在个位数与十位数之和为奇数的两位数中:(1)当个位数是偶数时,由分步计数乘法原理知,共有5×5=25个;(2)当个位数是奇数时,由分步计数乘法原理知,共有4×5=20个.综上可知,基本事件总数共有25+20=45(个),满足条件的基本事件有5×1=5(个),∴概率P =545=19. 4.解:(1)0.006×10×3+0.01×10+0.054×10+x ×10=1 x =0.018.(2)成绩不低于80分的学生有(0.018+0.006)×10×50=12(人),其中成绩在90分以上(含90分)的人数为0.06×10×50=3.随机变量ξ可取0,1,2.P (ξ=0)=29212C C =611,P (ξ=1)=1193212C C C =922,P (ξ=0)=23212C C =122. 所以随机变量ξ所以ξ的数学期望为E (ξ)=0×611+1×922+2×122=12. 精要例析·聚焦热点热点例析 【例1】 解:(1)从6个点中随机选取3个点总共有C36=20种取法,选取的3个点与原点在同一个平面内的取法有1334C C =12种,因此V =0的概率为P (V =0)=1220=35. (2)V 的所有可能取值为0,1,1,2,4,因此V 的分布列为由V E (V )=0×35+16×120+13×320+23×320+43×120=940. 【变式训练1】 解:(1)设“选手甲在A 区射击得0分”为事件M ,“选手甲在A 区射击至少得3分”为事件N ,则事件M 与事件N 为对立事件,P (M )=03C ·⎝ ⎛⎭⎪⎫140·⎝ ⎛⎭⎪⎫1-143=2764, P (N )=1-P (M )=1-2764=3764. (2)设选手甲在A 区射击的得分为ξ,则ξ的可能取值为0,3,6,9.P (ξ=0)=⎝ ⎛⎭⎪⎫1-143=2764;P (ξ=3)=13C ·14·⎝ ⎛⎭⎪⎫1-142=2764; P (ξ=6)=23C ·⎝ ⎛⎭⎪⎫142·⎝ ⎛⎭⎪⎫1-14=964; P (ξ=9)=⎝ ⎛⎭⎪⎫143=164. 所以ξ∴E (ξ)=0×2764+3×64+6×64+9×64=4. 设选手甲在B 区射击的得分为η,则η的可能取值为0,2,4.P (η=0)=(1-p )2;P (η=2)=12C ·p ·(1-p )=2p (1-p );P (η=4)=p 2.所以η∴E (η)根据题意,有E (η)>E (ξ),∴4p >94,∴916<p <1. 【例2】 D解析:由题意知此概型为几何概型,设所求事件为A ,如图所示,边长为2的正方形区域为总度量μΩ,满足事件A 的是阴影部分区域μA ,故由几何概型的概率公式得:P (A )=2221224424ππ-⨯⨯-=.【变式训练2】 (1)D 解析:AM 的长介于6~9 cm 之间,这是一个几何概型,p =318=16. (2)C 解析:总事件数为36种,而满足条件的(X ,Y )为(1,2),(2,4),(3,6),共3种情形.p =336=112. 【例3】D 解析:D 选项中,若该大学某女生身高为170 cm ,则可断定其体重约为:0.85×170-85.71=58.79(kg).故D 不正确.于是有b =90-5×42=10=1.23; a ^=y -b ^x =5-1.23×4=0.08.(2)回归直线方程为y ^=1.23x +0.08,当x =10年时,y ^=1.23×10+0.08=12.3+0.08=12.38(万元),即估计使用10年时,维修费用是12.38万元.【例4】 (2)k =40×(14×13-6×7)221×19×20×20≈4.912>3.841. 所以在犯错误的概率不超过0.05的前提下认为环保知识测试成绩与专业有关.【变式训练4】 解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为14%.(2)K 2的观测值k =500×(40×270-30×160)2200×300×70×430≈9.967. 由于9.967>6.635,所以在犯错误的概率不超过0.01的前提下认为该地区的老年人是否需要帮助与性别有关.创新模拟·预测演练1.B 解析:高级、中级、初级职称的人数所占比例分别为15150=0.1,45150=0.3,90150=0.6.故选B.2.A 解析:由已知,得x 1+x 2+…+x n =n x ,y 1+y 2+…+y m =m y , z =(x 1+x 2+…+x n )+(y 1+y 2+…+y m )m +n =n x +m ym +n=αx +(1-α)y , 整理,得(x -y )[αm +(α-1)n ]=0,∵x ≠y ,∴αm +(α-1)n =0,即n m =α1-α. 又0<α<12,∴0<α1-α<1, ∴0<n m<1.又n ,m ∈N +,∴n <m . 3.C 解析:由图可得,x 甲=4+5+6+7+85=6,x 乙=3×5+6+95=6,故A 错;而甲的成绩的中位数为6,乙的成绩的中位数为5,故B 错;s 甲2=(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)25=2, s 乙2=3×(5-6)2+(6-6)2+(9-6)25=2.4,故C 正确;甲的成绩的极差为4,乙的成绩的极差也为4,故D 错.4.C 解析:∵由图象知阴影部分的面积是10)d x x ⎰=312202132x x ⎛⎫⋅- ⎪⎝⎭=23-12=16,∴所求概率为161=16. 5.B 解析:①中,平均数应是ma +nb m +n,故①错;②中,a =14.7,b =15,c =17,故c >b >a ,所以②错;③正确;④中,P (ξ>2)=1-2×0.42=0.1,故④错;所以选B. 6.A 解析:∵ξ~N (3,4),P (ξ<2a -3)=P (ξ>a +2),∴2a -3与a +2关于μ=3对称,∴2a -3+a +22=3,解得a =73. 7.解:(1)密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别总是1,2,即只能取表格第1,2列中的数字作为密码.∴P (ξ=2)=2343=18. (2)由题意可知ξ的取值为2,3,4三种情形.若ξ=3,注意表格的第一排总含有数字1,第二排总含有数字2,则密码中只可能取数字1,2,3或1,2,4.∴P (ξ=3)=2×(33-23)43=1932. 若ξ=4,则P (ξ=4)=122232323A A A A 4=932或P (ξ=4)=1-18-1932=932, ∴ξ的分布列为:∴E (ξ)=2×18+3×32+4×32=32. 8.解:记“甲理论考试合格”为事件A 1,“乙理论考试合格”为事件A 2,“丙理论考试合格”为事件A 3,记A i 为A i 的对立事件,i =1,2,3;记“甲上机考试合格”为事件B 1,“乙上机考试合格”为事件B 2,“丙上机考试合格”为事件B 3. (1)记“甲计算机考试获得合格证书”为事件A ,记“乙计算机考试获得合格证书”为事件B ,记“丙计算机考试获得合格证书”为事件C ,则P (A )=35×910=2750,P (B )=34×56=58,P (C )=23×78=712,有P (B )>P (C )>P (A ),故丙获得“合格证书”可能性最大; (2)记“三人该课程考核都合格”为事件D .P (D )=P [](A 1·B 1)·(A 2·B 2)·(A 3·B 3) =P (A 1·B 1)·P (A 2·B 2)·P (A 3·B 3)=P (A 1)·P (B 1)·P (A 2)·P (B 2)·P (A 3)·P (B 3)=35×910×34×56×23×78=63320, 所以,这三人该课程考核都合格的概率为63320. (3)用ξ表示甲、乙、丙三人在理论考核中合格人数,则ξ可以取0,1,2,3,故ξ的分布列如下:ξ的数学期望:E (ξ)=0×130+1×1360+2×920+3×310=12160.。

2011届高三二轮复习专题(文科)——概率与统计

2011届高三二轮复习专题(文科)——概率与统计

潮阳林百欣中学2011届高三二轮复习专题(文科)——概率与统计随着概率统计在日常生活、社会生活及各学科领域中的广泛应用,为了使高中生能够具备基本的统计与概率的思想、方法和知识,在遇到有关问题时能自觉地运用所学知识和方法,适应社会的发展,概率统计在高考中日益受到重视。

考纲要求:⑴抽样:①会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。

⑵用样本估计总体:①会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点。

②能从样本数据中提取基本的数字特征(如平均数、标准差),会计算数据标准差,并作出合理的解释。

⑶变量的相关性:①会作两个有关联变量数据的散点图,会利用散点图认识变量间的相关关系。

②了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。

⑷概率①了解概率的意义,了解两个互斥事件的概率加法公式。

②理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

③了解几何概型的意义。

⑸统计案例:了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用。

近年广东高考概率与统计考点逐年扩散,综合程度提高2007~2010年文科数学概率统计考题分析:及统计知识(如频率分布直方图、样本平均值、方差)为主,理科考查离散型随机变量的分布列、数学期望及二项分布问题。

但其它知识与方法也有体现:如回归方程,2×2列连表,独立性检验的知识,但难度并不大。

所以对于这一章的复习,要注意覆盖面,不能随意删减。

⑴古典概型与统计。

典型结构是:在某一情景下给出数据,对具体数据进行统计角度和概率角度的分析求解,并根据数字特征的意义进行定性分析或解释。

例1.(本题满分12分)随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位: cm),获得身高数据的茎叶图如图。

(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差(3)现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率.例2.(本题满分12分)某班同学利用国庆节进行社会实践,对][5525,岁的人群随机抽取n 人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数......频率分布直方图:(Ⅰ)补全频率分布直方图并求,,n a p 的值;(Ⅱ)从年龄段在)[5040,的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在)[4540,岁的概率⑵几何概型与规划。

广东高考文科数学--概率知识点

广东高考文科数学--概率知识点

广东高考文科数学-统计及概率知识点一、统计1.简单随机抽样1.1简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

1..2简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

2.系统抽样2.1系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。

第一个样本采用简单随机抽样的办法抽取。

K (抽样距离)=N (总体规模)/n (样本规模)前提条件:可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。

如果有明显差别,说明样本在总体中的分布呈某种循环性规律,不可用系统抽样。

2.2系统抽样,即等距抽样是实际中最为常用的抽样方法之一。

因为它对抽样框的要求较低,实施也比较简单。

更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

3.分层抽样3.1分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法:1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

4.用样本的数字特征估计总体的数字特征4.1本均值:nx x x x n +++= 214.2样本标准差:n x x x x x x s s n 222212)()()(-++-+-== 4.3(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)如果把一组数据中的每一个数据乘以一个共同的常数k ,标准差变为原来的k 倍(3)一组数据中的最大值和最小值对标准差的影响,区间)3,3(s x s x +-的应用; “去掉一个最高分,去掉一个最低分”中的科学道理5.两个变量的线性相关1、概念:(1)回归直线方程(2)回归系数2.最小二乘法:y a bx =+,其中()()()1122211n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx====⎧---⎪⎪==⎨--⎪⎪=-⎩∑∑∑∑ 3.直线回归方程的应用(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x )代入回归方程对预报量(即因变量Y )进行估计,即可得到个体Y 值的容许区间。

(广东专用)高考数学二轮复习 专题七 第3讲 统计与统计案例配套课件 理

(广东专用)高考数学二轮复习 专题七 第3讲 统计与统计案例配套课件 理

总 计
a+c b+d
n
A
则 K2(χ2)= nad-bc2
a+bc+da+cb+d (其中 n=a+b+c+d 为样 本容量).
10
热点分类突破
➢ 热点一 抽样方法 ➢ 热点二 用样本估计总体 ➢ 热点三 统计案例
A
11
热点一 抽样方法
例1 (1)(2013·陕西)某单位有840名职工,现采用系
横坐标之和
A
7
(2)方差:s2=1n[(x1- x)2+(x2- x)2+…+(xn- x)2]. 标准差: s= 1n[x1- x 2+x2- x 2+…+xn- x 2].
A
8
4.变量的相关性与最小二乘法 (1)相关关系的概念、正相关和负相关、相关系数.
(2)最小二乘法:对于给定的一组样本数据(x1,y1),(x2,
n
y2),…,(xn,yn),通过求 Q= (yi-a-bxi)2 最小时,
i=1
得到线性回归方程y^=b^x+a^的方法叫做最小二乘法.
A
9
5.独立性检验 对于取值分别是{x1,x2}和{y1,y2}的分类变量X和Y, 其样本频数列联表是
y1 y2 总计
x1 a b a+b
x2 c d c+d
A
19
热点二 用样本估计总体
例2 (1)(2014·山东)为了研究某药品的疗效,选取若干 名志愿者进行临床试验,所有志愿者的舒张压数据(单 位 : kPa) 的 分 组 区 间 为 [12,13) , [13,14) , [14,15) , [15,16),[16,17],将其按从左到右的顺序分别编号为 第一组,第二组,…,第五组,如图是根据试验数据 制成的频率分布直方图.已知第一组与第二组共有20人,

数学高考二轮复习-概率与统计PPT文档30页

数学高考二轮复习-概率与统计PPT文档30页
不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
数学高考二轮复习-概率与统计
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真题试做1.(2012·课标全国高考,文3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( ).A .-1B .0 C.12D .1 2.(2012·广东高考,文13)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为__________.(从小到大排列)3.(2012·辽宁高考,文11)在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20 cm 2的概率为( ).A.16B.13C.23D.454.(2012·广东高考,文17)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比分数段 [50,60) [60,70) [70,80) [80,90)x ∶y 1∶1 2∶1 3∶4 4∶5从近三年的高考试题来看,概率统计一般是1+1的模式,一大一小.几何概型是高考一个新的热点,并且它是一个重要的知识交会点,通常会把几何概型与线性规划、解析几何以及其他数学知识综合起来进行考查,且重点考查“长度型”和“面积型”,主要以填空题、选择题的形式出现,试题难度为中、低档,所占分值为5分左右.古典概型是考查的热点,经常在解答题中与统计一起考查,属中、低档题,以考查基本概念为主,同时注重运算能力与逻辑推理能力的考查.而对于统计方面的考查,主要是考查分层抽样、系统抽样的有关计算或三种抽样方法的区别以及茎叶图,频率分布表,频率分步直方图的识图及运用.考查概率与统计知识点的高考试题,既有自身概念的思想体现,如:样本估计总体的思想、假设检验的思想;又有必然与或然思想、函数与方程思想和数形结合思想.热点例析热点一 随机抽样和用样本估计总体【例1】(2012·四川高考,文3)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( ).A .101B .808C .1 212D .2 012【例2】(2012·山东高考,文14)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为__________.规律方法 (1)解答与抽样方法有关的问题的关键是深刻理解各种抽样方法的特点、适用范围和实施步骤,熟练掌握系统抽样中被抽个体号码的确定方法,掌握分层抽样中各层人数的计算方法.(2)与频率分布直方图、茎叶图有关的问题,应正确理解图表中各个量的意义,通过图表掌握信息是解决该类问题的关键.(3)在做茎叶图或读茎叶图时,首先要弄清楚“茎”和“叶”分别代表什么,正确求出数据的众数和中位数;方差越小,数据越稳定.特别提醒:频率分布直方图中的纵坐标为频率组距,而不是频率值. 变式训练1 (2012·湖南高考,文13)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.(注:方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)热点二 变量的相关性和统计案例【例3】(2012·福建高考,文18)某工厂为了对新研发的一种产品进行合理定价,将该(1)求回归直线方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)规律方法 解决线性回归问题的关键是:(1)正确理解计算b ^,a ^的公式并准确的计算,若对数据作适当的预处理,可避免对大数字进行运算;(2)分析两个变量的相关关系时,可根据样本数据作散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.变式训练(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ;(2)利用(1)中所求出的直线方程预测该地2013年的粮食需求量.热点三 古典概型与几何概型【例4】(2012·湖北高考,文10)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( ).A .12-1πB .1πC .1-2πD .2π规律方法 (1)解决古典概型问题的关键是①正确求出基本事件总数和所求事件包含的基本事件数. ②P (A )=m n既是古典概型的定义,又是求概率的计算公式,应熟练掌握.(2)解决几何概型的关键是寻找试验的全部结果构成的区域和事件发生时构成的区域,有时需要设出变量,在坐标系中表示所需要的区域.(3)若事件正面情况比较多、反面情况较少,则一般利用对立事件进行计算.对于“至少”、“至多”等事件的概率计算,往往用这种方法求解.变式训练3 (1)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ).A.13B.12C.23D.34(2)如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( ).A .14 B.13 C.12 D.23热点四 概率统计综合问题【例5】(2012·北京高考,文17)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下((1)(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a ,b ,c ,其中a >0,a +b +c =600.当数据a ,b ,c 的方差s 2最大时,写出a ,b ,c 的值(结论不要求证明),并求此时s 2的值.(注:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为数据x 1,x 2,…,x n 的平均数)规律方法 1.抽样方法和概率问题的综合一般是从分层抽样开始,设置分层抽样中的一些计算问题,然后就分层抽样中各个层设置一个古典概型计算问题.虽然此类题目所考查的知识横跨两部分,但是分解开来后,并不难解决.由于此类题目多与实际问题联系紧密,题干较长,信息量大,且会有图表,因此要认真审题并要掌握解答题目所需的知识.要做到:(1)分层抽样中的公式运用要准确.①抽样比=样本容量个体总量=各层样本容量各层个体总量. ②层1的数量∶层2的数量∶层3的数量=样本1的容量∶样本2的容量∶样本3的容量.(2)在计算古典概型概率时,基本事件的总数要计算准确.2.频率分布与概率的综合主要有两种形式:(1)题目中给出了样本的频率分布表,它反映了样本在各个组内的频数和频率,要求根据频率分布表画出频率分布直方图,并根据样本在各组的频数,设置分层抽样和概率计算等.(2)利用频率与概率的关系,频率近似于概率,给出某类个体中的一个个体被抽中的概率,从而求出样本容量及其他类个体的数量.在解决此类问题时,可将题目中所给概率作为此类个体被抽中的频率,从而求解.变式训练4 某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X =70时,Y =460;X 每增加10,Y 增加5.已知近20年X 的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200, 140,110,160,220,140,160.(1)完成如下的频率分布表(2)率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.思想渗透数形结合思想——解决有关统计问题(1)通过频率分布直方图和频数条形图研究数据分布的总体趋势;(2)根据样本数据散点图确定两个变量是否存在相关关系.解答时注意的问题:(1)频率分布直方图中的纵坐标为频率组距,而不是频率值; (2)注意频率分布直方图与频数条形图的纵坐标的区别.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170~185 cm 之间的概率;(3)从样本中身高在180~190 cm 之间的男生中任选2人,求至少有1人身高在185~190 cm 之间的概率.解:(1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400.(2)由统计图知,样本中身高在170~185 cm 之间的学生有14+13+4+3+1=35人,样本容量为70,所以样本中学生身高在170~185 cm 之间的频率f =3570=0.5,故由f 估计该校学生身高在170~185 cm 之间的概率P 1=0.5.(3)样本中身高在180~185 cm 之间的男生有4人,设其编号为①,②,③,④,样本中身高在185~190 cm 之间的男生有2人,设其编号为⑤,⑥,从上述6人中任取2人的树状图为:故从样本中身高在180~190 cm 之间的男生中任选2人的所有可能结果数为15,至少有1人身高在185~190 cm 之间的可能结果数为9,因此,所求概率P 2=915=35.1.(2012·湖南高考,文5)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系.根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是( ).A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg2.要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3人调查学习负担情况.宜采用的抽样方法依次为( ).A .①简单随机抽样法,②系统抽样法B .①分层抽样法,②简单随机抽样法C .①系统抽样法,②分层抽样法D .①②都用分层抽样法 分组 [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) 频数 2 3 4 5 4 2 A .0.35 B .0.45C .0.55D .0.654.设不等式组⎩⎪⎨⎪⎧ 0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ).A.π4B.π-22C.π6D.4-π45.(2012·浙江五校联考,文11)为了分析某同学在班级中的数学学习情况,统计了该同学在6次月考中的数学名次,用茎叶图表示如图所示:,则该组数据的中位数为__________.6.(2012·广东广州一模,文17)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图的频率分布直方图.(1)求图中实数a 的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.7.(2012·广东深圳二模,文17)设函数f (x )=x 2+bx +c ,其中b ,c 是某范围内的随机数,分别在下列条件下,求事件A “f (1)≤5且f (0)≤3”发生的概率.(1)若随机数b ,c ∈{1,2,3,4};(2)已知随机函数Rand( )产生的随机数的范围为{x |0≤x ≤1},b ,c 是算法语句b =4Rand( )和c =4Rand( )的执行结果.(注:符号“”表示“乘号”)参考答案命题调研·明晰考向真题试做1.D 解析:样本相关系数越接近1,相关性越强,现在所有的样本点都在直线y =12x +1上,样本的相关系数应为1.2.1,1,3,3 解析:设该组数据依次为x 1≤x 2≤x 3≤x 4,则x 1+x 2+x 3+x 44=2,x 2+x 32=2,∴x 1+x 4=4,x 2+x 3=4. ∵x 1,x 2,x 3,x 4∈N +,∴⎩⎪⎨⎪⎧ x 1=1,x 2=1,x 3=3,x 4=3,或⎩⎪⎨⎪⎧ x 1=1,x 2=2,x 3=2,x 4=3,或⎩⎪⎨⎪⎧ x 1=2,x 2=2,x 3=2,x 4=2.又∵标准差为1,∴x 1=1,x 2=1,x 3=3,x 4=3.3.C 解析:此概型为几何概型,由于在长为12 cm 的线段AB 上任取一点C ,因此总的几何度量为12,满足矩形面积大于20 cm 2的点在C 1与C 2之间的部分,如图所示.因此所求概率为812,即23,故选C. 4.解:(1)依题意得,10(2a +0.02+0.03+0.04)=1,解得a =0.005.(2)这100名学生语文成绩的平均分约为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73.(3)数学成绩在[50,60)的人数为:100×0.05=5,数学成绩在[60,70)的人数为:100×0.4×12=20,数学成绩在[70,80)的人数为:100×0.3×43=40,数学成绩在[80,90)的人数为:100×0.2×54=25,所以数学成绩在[50,90)之外的人数为:100-5-20-40-25=10.精要例析·聚焦热点热点例析【例1】 B 解析:四个社区抽取的总人数为12+21+25+43=101,由分层抽样可知,9612=N 101,解得N =808.故选B. 【例2】 9 解析:由于组距为1,则样本中平均气温低于22.5 ℃的城市频率为0.10+0.12=0.22.平均气温低于22.5 ℃的城市个数为11,所以样本容量为110.22=50. 而平均气温高于25.5 ℃的城市频率为0.18,所以,样本中平均气温不低于25.5 ℃的城市个数为50×0.18=9.【变式训练1】 6.8 解析:∵x =8+9+10+13+155=11, ∴s 2=(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)25=6.8.【例3】 解:(1)由于x =16(x 1+x 2+x 3+x 4+x 5+x 6)=8.5, y =16(y 1+y 2+y 3+y 4+y 5+y 6)=80, 所以a ^=y -b ^x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250.(2)设工厂获得的利润为L 元,依题意得L =x (-20x +250)-4(-20x +250)=-20x 2+330x -1 000=-20⎝⎛⎭⎪⎫x -3342+361.25, 当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润.【变式训练2】 解:(1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来x =0,y =3.2,b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×29(-4)2+(-2)2+22+42=26040=6.5, a ^=y -b ^x =3.2.由上述计算结果,知所求回归直线方程为y ^-257=b ^ (x -2 006)+a ^=6.5(x -2 006)+3.2,即y ^=6.5(x -2 006)+260.2.①(2)利用直线方程①,可预测2013年的粮食需求量为:6.5×(2 013-2 006)+260.2=6.5×7+260.2=305.7(万吨)≈306(万吨).【例4】 C 解析:设OA =OB =2R ,连接AB ,如图所示,由对称性可得,阴影的面积就等于直角扇形拱形的面积,S 阴影=14π(2R )2-12×(2R )2=(π-2)R 2,S 扇=πR 2,故所求的概率是(π-2)R 2πR 2=1-2π.【变式训练3】 (1)A 解析:记三个兴趣小组分别为1,2,3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,则事件A 包含“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此P (A )=39=13. (2)C 解析:由题意知,可设事件A 为“点Q 落在△ABE 内”,构成试验的全部结果为矩形ABCD 内所有点,事件A 为△ABE 内的所有点,又因为E 是CD 的中点,所以S △ ABE =12AD ×AB ,S 矩形ABCD =AD ×AB ,所以P (A )=12. 【例5】 解:(1)厨余垃圾投放正确的概率约为“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23. (2)设生活垃圾投放错误为事件A ,则事件A 表示生活垃圾投放正确.事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )约为400+240+601 000=0.7, 所以P (A )约为1-0.7=0.3.(3)当a =600,b =c =0时,s 2取得最大值.因为x =13(a +b +c )=200, 所以s 2=13×[(600-200)2+(0-200)2+(0-200)2]=80 000. 【变式训练4】 解:(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200(2)P =P (Y <490或Y >530)=P (X <130或X >210)=P (X =70)+P (X =110)+P (X =220)=120+320+220=310. 故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.创新模拟·预测演练1.D 解析:D选项中,若该大学某女生身高为170 cm,则可断定其体重约为:0.85×170-85.71=58.79 kg.故D不正确.2.B 解析:①中总体由差异明显的几部分构成,宜采用分层抽样法,②中总体中的个体数较少,宜采用简单随机抽样法,故选B.3.B 解析:样本数据落在区间[10,40)的频数为2+3+4=9,故所求的频率为920=0.45.4. D 解析:题目中02,02xy≤≤⎧⎨≤≤⎩表示的区域为如图所示的正方形,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此P=222244224ππ⨯-⋅-=⨯,故选D.5.18.5 解析:由茎叶图知中间两位数为18和19,所以中位数为18+192=18.5.6.解:(1)由于图中所有小矩形的面积之和等于1,所以10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.(2)根据频率分布直方图,成绩不低于60分的频率为1-10×(0.005+0.01)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为640×0.85=544.(3)成绩在[40,50)分数段内的人数为40×0.05=2,分别记为A,B.成绩在[90,100]分数段内的人数为40×0.1=4,分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种.如果两名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这两名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这两名学生的数学成绩之差的绝对值一定大于10.记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共7种.所以所求概率为P(M)=715.7.解:由f(x)=x2+bx+c知,事件A“f(1)≤5且f(0)≤3”,即⎩⎪⎨⎪⎧b+c≤4,c≤3.(1)因为随机数b,c∈{1,2,3,4},所以共等可能地产生16个数对(b,c),列举如下:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).事件A:⎩⎪⎨⎪⎧b+c≤4,c≤3,包含了其中6个数对(b,c),即(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).所以P (A )=616=38,即事件A 发生的概率为38. (2)由题意,b ,c 均是区间[0,4]中的随机数,产生的点(b ,c )均匀地分布在边长为4的正方形区域Ω中(如图),其面积S (Ω)=16.事件A :⎩⎪⎨⎪⎧ b +c ≤4,c ≤3,所对应的区域为如图所示的梯形(阴影部分), 其面积为:S (A )=12×(1+4)×3=152.所以P (A )=S (A )S (Ω)=15216=1532,即事件A 的发生概率为1532.。

相关文档
最新文档