高考物理(热点+题型全突破)专题4.1 曲线运动题型特点与命题规律(含解析)

合集下载

高考物理最新力学知识点之曲线运动知识点总复习含解析

高考物理最新力学知识点之曲线运动知识点总复习含解析

高考物理最新力学知识点之曲线运动知识点总复习含解析一、选择题1.如图所示,一个内侧光滑、半径为R 的四分之三圆弧竖直固定放置,A 为最高点,一小球(可视为质点)与A 点水平等高,当小球以某一初速度竖直向下抛出,刚好从B 点内侧进入圆弧并恰好能过A 点。

重力加速度为g ,空气阻力不计,则( )A .小球刚进入圆弧时,不受弹力作用B .小球竖直向下抛出的初速度大小为gRC .小球在最低点所受弹力的大小等于重力的5倍D .小球不会飞出圆弧外2.一位网球运动员以拍击球,使网球沿水平方向飞出,第一只球落在自己一方场地的B 点,弹跳起来,刚好擦网而过,落在对方场地的A 点,第二只球直接擦网而过,也落在A 点,如图。

设球与地面的碰撞后,速度大小不变,速度方向与水平地面夹角相等,其运动过程中阻力不计,则第一只球与第二只球飞过网C 处时水平速度大小之比为A .1:1B .1:3C .3:1D .1:93.如图所示,“跳一跳”游戏需要操作者控制棋子离开平台时的速度,使其能跳到旁边等高平台上。

棋子在某次跳跃过程中的轨迹为抛物线,经最高点时速度为v 0,此时离平台的高度为h 。

棋子质量为m ,空气阻力不计,重力加速度为g 。

则此跳跃过程( )A .所用时间2h t g=B .水平位移大小22h x v g=C .初速度的竖直分量大小为2gh D 20v gh +4.小船横渡一条两岸平行的河流,水流速度与河岸平行,船相对于水的速度大小不变,船头始终垂直指向河岸,小船的运动轨迹如图中虚线所示。

则小船在此过程中()A.无论水流速度是否变化,这种渡河耗时最短B.越接近河中心,水流速度越小C.各处的水流速度大小相同D.渡河的时间随水流速度的变化而改变5.质量为m的小球在竖直平面内的圆管轨道内运动,小球的直径略小于圆管的直径,如v 图所示.已知小球以速度v通过最高点时对圆管的外壁的压力恰好为mg,则小球以速度2通过圆管的最高点时().A.小球对圆管的内、外壁均无压力mgB.小球对圆管的内壁压力等于2mgC.小球对圆管的外壁压力等于2D.小球对圆管的内壁压力等于mg6.如图所示,质量为m的物体,以水平速度v0离开桌面,若以桌面为零势能面,不计空气阻力,则当它经过离地高度为h的A点时,所具有的机械能是( )A.mv02+mg h B.mv02-mg hC.mv02+mg (H-h) D.mv027.下列与曲线运动有关的叙述,正确的是A.物体做曲线运动时,速度方向一定时刻改变B.物体运动速度改变,它一定做曲线运动C.物体做曲线运动时,加速度一定变化D.物体做曲线运动时,有可能处于平衡状态8.如图所示为一皮带传动装置,右轮的半径为,a是它边缘上的一点。

高考物理高考物理曲线运动常见题型及答题技巧及练习题(含答案)

高考物理高考物理曲线运动常见题型及答题技巧及练习题(含答案)

高考物理高考物理曲线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,2.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g取若北小球运动的角速度,求此时细线对小球的拉力大小。

【答案】【解析】【分析】根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。

高考物理(热点题型全突破)专题4.1曲线运动题型特点与命题规律(含解析)

高考物理(热点题型全突破)专题4.1曲线运动题型特点与命题规律(含解析)

高考物理(热点题型全突破)专题4.1曲线运动题型特点与命题规律(含解析)一、本章内容、考试范围及要求考点内容要求题型一、曲线运动运动的合成与分解运动的合成与分解Ⅱ选择、计算二、抛体运动抛体运动Ⅱ选择、计算三、圆周运动匀速圆周运动、角速度、线速度、向心加速度Ⅰ选择、计算匀速圆周运动的向心力Ⅱ离心现象Ⅰ二、常见题型展示1. 物体做曲线运动的条件与轨迹分析2. 运动的合成与分解的理解与应用3. 平抛运动的过程分析与分解方法4. 平抛运动的规律、推论以及应用5. 物体圆周运动的条件、各物理量之间的关系6. 水平面内的圆周运动问题的分析(摩擦力提供向心力、圆锥摆问题、火车转弯等)7. 竖直面内的圆周运动问题的分析三大类问题:(1)细绳(单内轨道)——临界状态(2)杆(双轨道)——临界状态(3)单外轨道——临界状态8. 圆周问题的多解问题(圆周运动具有周期性)本章考试题型归纳与分析:考试的题型:选择题、解答题考试核心考点与题型:选择题:圆周运动的条件与轨迹分析以及运动的合成与分解、平抛运动的分析 (2)解答题:平抛运动分析或者竖直面内圆周运动两大模型的分析 三、近几年高考在本章中的考查特点 1. 注重重要知识点和重要物理方法的考查【典例1】(2016全国卷Ⅰ,18)(多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则( )A .质点速度的方向总是与该恒力的方向相同B .质点速度的方向不可能总是与该恒力的方向垂直C .质点加速度的方向总是与该恒力的方向相同D .质点单位时间内速率的变化量总是不变 【答案】BC【典例2】(2016全国卷Ⅱ,16)小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短。

将两球拉起,使两绳均被水平拉直,如图所示。

将两球由静止释放。

在各自轨迹的最低点( )A .P 球的速度一定大于Q 球的速度B .P 球的动能一定小于Q 球的动能C .P 球所受绳的拉力一定大于Q 球所受绳的拉力D .P 球的向心加速度一定小于Q 球的向心加速度 【答案】C【解析】小球从水平位置摆动至最低点,由动能定理得,mgL =12mv 2,解得v =2gL ,因L P <L Q ,故v P <v Q ,选项A 错误;因为E k =mgL ,又m P >m Q ,则两小球的动能大小无法比较,选项B 错误;对小球在最低点受力分析得,F T -mg =m v 2L ,可得F T =3mg ,选项C 正确;由a =v 2L=2g 可知,两球的向心加速度相等,选项D 错误。

高考物理高考物理曲线运动常见题型及答题技巧及练习题(含答案)

高考物理高考物理曲线运动常见题型及答题技巧及练习题(含答案)

高考物理高考物理曲线运动常有题型及答题技巧及练习题 (含答案)一、高中物理精讲专题测试曲线运动1. 如图,圆滑轨道abcd 固定在竖直平面内,ab水平,bcd 为半圆,在b 处与 ab 相切.在直轨道 ab 上放着质量分别为 m A =2kg 、 m B =1kg的物块 A 、 B (均可视为质点),用轻质细绳将A 、B 连结在一同,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左边的圆滑水平川面上停着一质量 M =2kg 、长 L=0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,以后A 向左滑上小车,B 向右滑动且恰巧能冲到圆弧轨道的最高点 d 处.已知 A 与小车之间的动摩擦因数μ知足 0.1 ≤μ≤,0.3g 取 10m/ s 2,求( 1) A 、 B 走开弹簧瞬时的速率 v A 、v B ;( 2)圆弧轨道的半径 R ;(3) A 在小车上滑动过程中产生的热量Q (计算结果可含有μ).【答案】( 1) 4m/s ( 2) 0.32m(3) 当知足0.1 ≤μ <0.2 , Q 1μ; 当知足 0.2 ≤μ≤ 0.3时 =10时, 1mA v121(m A M ) v 222【分析】【剖析】(1)弹簧恢复到自然长度时,依据动量守恒定律和能量守恒定律求解两物体的速度; (2)依据能量守恒定律和牛顿第二定律联合求解圆弧轨道的半径R ;( 3)依据动量守恒定律和能量关系求解恰巧能共速的临界摩擦力因数的值,而后议论求解热量 Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为 v A 、 v B , 由动量守恒定律:0= m A v A m B v B 由能量关系: E P =1m A v A 2 1m B v B 222解得 v A =2m/s ;v B =4m/s(2)设 B 经过 d 点时速度为 v d ,在 d 点:m B g m B v d 2R由机械能守恒定律:1m B v B 2 =1m B v d 2 m B g 2R22解得 R=0.32m(3)设 μ =1μv,由动量守恒定律:时 A 恰巧能滑到小车左端,其共同速度为m A v A =(m A M )v 由能量关系: 1m A gL1m A v A 21m A M v 222解得 μ1=0.2议论:(ⅰ)当知足0.1 ≤μ <0时.2, A 和小车不共速, A 将从小车左端滑落,产生的热量为Q1m A gL10(J)(ⅱ)当知足0.2≤μ≤0.A3和小车能共速,产生的热量为时,Q11m A v121m A M v2,解得 Q2=2J 222.如下图,水平桌面上有一轻弹簧,左端固定在 A 点,自然状态时其右端位于B点.D 点位于水平桌面最右端,水平桌面右边有一竖直搁置的圆滑轨道MNP,其形状为半径R=0.45m 的圆环剪去左上角 127 °的圆弧, MN 为其竖直直径, P 点到桌面的竖直距离为R, P 点到桌面右边边沿的水平距离为 1.5R.若用质量 m1= 0.4kg 的物块将弹簧迟缓压缩到C 点,开释后弹簧恢还原长时物块恰停止在 B 点,用同种资料、质量为m2= 0.2kg 的物块将弹簧迟缓压缩到 C 点开释,物块过 B 点后其位移与时间的关系为x= 4t﹣ 2t 2,物块从 D 点飞离桌面后恰巧由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为 m2的物块在 D 点的速度;(2)判断质量为 m2=0.2kg 的物块可否沿圆轨道抵达M 点:(3)质量为 m2= 0.2kg 的物块开释后在桌面上运动的过程中战胜摩擦力做的功.【答案】( 1) 2.25m/s (2)不可以沿圆轨道抵达M 点(3)2.7J【分析】【详解】(1)设物块由 D 点以初速度 v D做平抛运动,落到P 点时其竖直方向分速度为:v y2gR2 100.45 m/s=3m/svy4tan53 °v D3所以: v D= 2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg=m v2,R解得: v gR 3 2m/s 2物块抵达P 的速度:v P v D2v2y32 2.252m/s=3.75m/s若物块能沿圆弧轨道抵达M 点,其速度为v M,由 D 到 M 的机械能守恒定律得:1m2v M21m2v P2m2g 1 cos53R22可得: v M20.3375 ,这明显是不行能的,所以物块不可以抵达M 点(3)由题意知 x= 4t - 2t2,物块在桌面上过 B 点后初速度 v B= 4m/s ,加快度为:a4m/s2则物块和桌面的摩擦力:m2 g m2 a可得物块和桌面的摩擦系数:0.4质量 m10.4kg的物块将弹簧迟缓压缩到C点,开释后弹簧恢还原长时物块恰停止在B=点,由能量守恒可弹簧压缩到 C 点拥有的弹性势能为:E p m1gx BC 0质量为 m2=0.2kg 的物块将弹簧迟缓压缩到 C 点开释,物块过 B 点时,由动能定理可得:E p m2 gx BC 1m2v B2 2可得, x BC2m在这过程中摩擦力做功:W1m2gx BC 1.6J 由动能定理, B 到 D 的过程中摩擦力做的功:W 21m2v D21m2v02 22代入数据可得:W2= - 1.1J质量为 m2=0.2kg 的物块开释后在桌面上运动的过程中摩擦力做的功W W1W2 2.7J即战胜摩擦力做功为 2.7 J.3.图示为一过山车的简略模型,它由水平轨道和在竖直平面内的圆滑圆形轨道构成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,经过竖直平面的圆形轨道后,停在右边水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不互相重叠,求:(1)物块经过 B 点时的速度大小 v B;(2)物块抵达 C 点时的速度大小 v C;(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q 【答案】 (1)11m / s (2)9m / s(3)72J【分析】【剖析】【详解】(1)物块从 A 到 B 运动过程中,依据动能定理得:mgL11mv B21mv02 22解得: v B11m / s(2)物块从 B 到 C 运动过程中,依据机械能守恒得:1mv B21mv C2mg·2R22解得: v C9m / s(3)物块从 B 到 D 运动过程中,依据动能定理得:mgL201mv B2 2解得: L230.25m对整个过程,由能量守恒定律有:Q 1mv020 2解得: Q=72J【点睛】选用研究过程,运用动能定理解题.动能定理的长处在于合用任何运动包含曲线运动.知道小滑块能经过圆形轨道的含义以及要使小滑块不可以离开轨道的含义.4.如下图,在竖直平面内固定有两个很凑近的齐心圆形轨道,外圆ABCD圆滑,内圆的上半部分 B′C′粗D糙′,下半部分 B′A′光D滑.一质量′m=0.2kg 的小球从轨道的最低点 A 处以初速度 v0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m,取g=10m/s2.(1)若要使小球一直紧贴着外圆做完好的圆周运动,初速度v0起码为多少?(2)若 v0=3m/s ,经过一段时间小球抵达最高点,内轨道对小球的支持力F C=2N,则小球在这段时间内战胜摩擦力做的功是多少?(3)若 v0=3.1m/s ,经过足够长的时间后,小球经过最低点 A 时遇到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保存三位有效数字)【答案】( 1)v0= 10m/s(2) 0.1J ( 3) 6N; 0.56J【分析】【详解】(1)在最高点重力恰巧充任向心力mg mv C2R从到机械能守恒2mgR1mv02 -1mv C222解得v010m/s(2)最高点mv C'2mg - F CR从 A到 C用动能定理-2mgR - W f 1mv C'2-1mv02 22得 W f =0.1J(3)由 v0 =3.1m/s< 10m/s 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,因为摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做来去运动.设此时小球经过最低点的速度为v A,遇到的支持力为F A12mgR mv Amv2AF A - mgR得 F A =6N整个运动过程中小球减小的机械能E 1mv02 - mgR 2得 E =0.56J5.如下图,水平实验台 A 端固定, B 端左右可调,将弹簧左端与实验平台固定,右端有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连结),弹簧压缩量不一样时,将滑块弹出去的速度不一样.圆弧轨道固定在地面并与一段动摩擦要素为0.4 的粗拙水平川面相切D 点, AB 段最长时, BC两点水平距离x BC=0.9m, 实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m,θ =37,°已知 sin37 =0°.6, cos37 =0.°8.达成以下问題:(1)轨道尾端 AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B=3m/s ,求落到 C 点时速度与水平方向夹角;(2)滑块沿着圆弧轨道运动后能在DE 上持续滑行 2m, 求滑块在圆弧轨道上对 D 点的压力大小:(3)经过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰巧无碰撞从 C 点进入圆弧轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离 .【答案】(1) 45°( 2) 100N (3) 4m/s 、0.3m【分析】(1)依据题意 C 点到地面高度h C R Rcos3700.08m从 B 点飞出后,滑块做平抛运动,依据平抛运动规律:h h C1gt 22化简则 t0.3s依据 x BC v B t可知 v B3m / s飞到 C 点时竖直方向的速度v y gt 3m / s所以 tan v y1 v B即落到圆弧 C 点时,滑块速度与水平方向夹角为45°(2)滑块在 DE 阶段做匀减速直线运动,加快度大小fg am依据 v E2v D22ax DE联立两式则 v D4m / s在圆弧轨道最低处F N mg m v D2R则 F N 100N ,即对轨道压力为100N.(3)滑块弹出恰巧无碰撞从 C 点进入圆弧轨道,说明滑块落到 C 点时的速度方向正好沿着轨迹该出的切线,即tan v y v0因为高度没变,所以 v y v y3m / s ,370所以 v04m / s对应的水平位移为x AC v0 t 1.2m所以缩短的AB 段应当是x AB x AC x BC0.3m【点睛】滑块经历了弹簧为变力的变加快运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;波及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动联合等时性研究.6.如下图 ,粗拙水平川面与半径R 1.6m 的圆滑半圆轨道BCD在 B 点光滑连结,O点是半圆轨道 BCD 的圆心,B、O、D三点在同一竖直线上,质量m2kg 的小物块 (可视为质点)静止在水平川面上的A点 .某时辰用一压缩弹簧(未画出 )将小物块沿AB方向水平弹出 ,小物块经过 B 点时速度大小为10m/s(不计空气阻力).已知x AB10m ,小物块与水平川面间的动摩擦因数=0.2 ,重力加快度大小g10m/s2求:.(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作使劲的大小;(3)小物块走开最高点后落回到地面上的地点与 B 点之间的距离.【答案】 (1)140J (2)25N (3)4.8m【分析】(1)设压缩弹簧的弹性势能为E P,从A到B依据能量守恒,有E P 1mv B2mgx AB 2代入数据得 E P140J(2)从 B 到 D,依据机械能守恒定律有1mv B21mv D2mg 2R22在 D 点,依据牛顿运动定律有Fmg m vD2R代入数据解得 F25N由牛顿第三定律知,小物块对轨道作使劲大小为25N(3)由 D 点到落地址物块做平抛运动竖直方向有2R 1 gt22落地址与 B 点之间的距离为x v D t代入数据解得x 4.8m点睛:此题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,重点是确立运动过程,剖析运动规律,选择适合的物理规律列方程求解.7.如下图,轨道ABCD的 AB 段为一半径R= 0.2 m 的圆滑 1/4 圆形轨道, BC段为高为h=5 m 的竖直轨道, CD 段为水平轨道.一质量为 0.2 kg 的小球从 A 点由静止开始下滑,抵达B 点时速度的大小为 2 m/s,走开 B 点做平抛运动 (g= 10 m/s2),求:(1)小球走开 B 点后,在CD 轨道上的落地址到 C 点的水平距离;(2)小球抵达 B 点时对圆形轨道的压力大小;(3)假如在 BCD 轨道上搁置一个倾角θ=45°的斜面(如图中虚线所示),那么小球走开B 点后可否落到斜面上?假如能,求它第一次落在斜面上的地点距离 B 点有多远.假如不可以,请说明原因.【答案】(1)2 m(2)6 N(3)能落到斜面上,第一次落在斜面上的地点距离B点 1.13 m【分析】①.小球走开 B 点后做平抛运动,h 1gt 2 2x v B t解得: x2m所以小球在CD 轨道上的落地址到 C 的水平距离为2m②.在圆弧轨道的最低点B,设轨道对其支持力为N由牛二定律可知:N mg m v2BR代入数据,解得N3N故球抵达 B 点时对圆形轨道的压力为3N③.由①可知,小球必定能落到斜面上依据斜面的特色可知,小球平抛运动落到斜面的过程中,其着落竖直位移和水平位移相等v B t1gt 2,解得:t 0.4s2则它第一次落在斜面上的地点距 B 点的距离为S2v B t 0.8 2m .8.如下图,在圆滑水平桌面EAB上有质量为m=2 kg的小球P 和质量为M= 1 kg 的小球 Q, P、 Q 之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边沿 E 处搁置一质量也为M =1 kg 的橡皮泥球S,在 B 处固定一与水平桌面相切的圆滑竖直半圆形轨道。

高考物理曲线运动常见题型及答题技巧及练习题(含答案)

高考物理曲线运动常见题型及答题技巧及练习题(含答案)

高考物理曲线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g取若北小球运动的角速度,求此时细线对小球的拉力大小。

【答案】【解析】【分析】根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。

【详解】若小球刚好离开圆锥面,则小球所受重力与细线拉力的合力提供向心力,有:此时小球做圆周运动的半径为:解得小球运动的角速度大小为:代入数据得:若小球运动的角速度为:小球对圆锥体有压力,设此时细线的拉力大小为F,小球受圆锥面的支持力为,则水平方向上有:竖直方向上有:联立方程求得:【点睛】解决本题的关键知道小球圆周运动向心力的来源,结合牛顿第二定律进行求解,根据牛顿第二定律求出临界速度是解决本题的关键。

2.如图所示,将一小球从倾角θ=60°斜面顶端,以初速度v0水平抛出,小球落在斜面上的某点P,过P点放置一垂直于斜面的直杆(P点和直杆均未画出)。

已知重力加速度大小为g,斜面、直杆处在小球运动的同一竖直平面内,求:(1)斜面顶端与P点间的距离;(2)若将小球以另一初速度v从斜面顶端水平抛出,小球正好垂直打在直杆上,求v的大小。

【答案】(1);(2);【解析】本题考查平抛与斜面相结合的问题,涉及位移和速度的分解。

(1)小球从抛出到P点,做平抛运动,设抛出点到P点的距离为L小球在水平方向上做匀速直线运动,有:在竖直方向上做自由落体运动,有:联立以上各式,代入数据解得:(2)设小球垂直打在直杆上时竖直方向的分速度为v y,有:在水平方向上,有:在竖直方向上,有:,由几何关系,可得:联系以上各式,得:另解:小球沿斜面方向的分运动为匀加速直线运动,初速度为:,加速度为小球垂直打在直杆上,速度为,有:在斜面方向上,由匀变速运动规律得:联立以上各式,得:点睛:物体平抛运动可分解成水平方向的匀速直线运动和竖直方向的自由落体;也可分解为沿斜面方向的匀变速直线运动和垂直斜面的匀变速直线运动。

高考物理曲线运动试题类型及其解题技巧含解析

高考物理曲线运动试题类型及其解题技巧含解析

高考物理曲线运动试题类型及其解题技巧含解析一、高中物理精讲专题测试曲线运动1.如图所示,半径R=2.5m的竖直半圆光滑轨道在B点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A点.一瞬时冲量使滑块以一定的初速度从A点开始运动,经B点进入圆轨道,沿圆轨道运动到最高点C,并从C点水平飞出,落在水平面上的D点.经测量,D、B间的距离s1=10m,A、B间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C点时的速度大小;(2)滑块刚进入圆轨道时,在B点轨道对滑块的弹力;(3)滑块在A点受到的瞬时冲量的大小.【答案】(1)(2)45N(3)【解析】【详解】(1)设滑块从C点飞出时的速度为v c,从C点运动到D点时间为t滑块从C点飞出后,做平抛运动,竖直方向:2R=gt2水平方向:s1=v c t解得:v c=10m/s(2)设滑块通过B点时的速度为v B,根据机械能守恒定律mv B2=mv c2+2mgR解得:v B=10m/s设在B点滑块受轨道的压力为N,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A=16.1m/s设滑块在A点受到的冲量大小为I,根据动量定理I=mv A解得:I=8.1kg•m/s;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.2.如图所示,在竖直平面内有一倾角θ=37°的传送带BC.已知传送带沿顺时针方向运行的速度v=4 m/s,B、C两点的距离L=6 m。

一质量m=0.2kg的滑块(可视为质点)从传送带上端B点的右上方比B点高h=0. 45 m处的A点水平抛出,恰好从B点沿BC方向滑人传送带,滑块与传送带间的动摩擦因数μ=0.5,取重力加速度g=10m/s2 ,sin37°= 0.6,cos37°=0.8。

高中物理曲线运动常见题型及答题技巧及练习题(含答案)含解析

高中物理曲线运动常见题型及答题技巧及练习题(含答案)含解析

高中物理曲线运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试曲线运动1.如图所示,在风洞实验室中,从A 点以水平速度v 0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F ,经过一段时间小球运动到A 点正下方的B 点 处,重力加速度为g ,在此过程中求(1)小球离线的最远距离; (2)A 、B 两点间的距离; (3)小球的最大速率v max .【答案】(1)202mv F(2)22022m gv F (3)2220 4v F m g F【解析】 【分析】(1)根据水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)根据水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A 、B 两点间的距离;(3)小球到达B 点时水平方向的速度最大,竖直方向的速度最大,则B 点的速度最大,根据运动学公式结合平行四边形定则求出最大速度的大小; 【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解 水平方向:F =m a x v 02=2a x x m解得:202m mv x F= (2)水平方向速度减小为零所需时间01xv t a = 总时间t =2t 1竖直方向上:22202212m gv y gt F== (3)小球运动到B 点速度最大 v x =v 0 V y =gt222220max 4x y v v v v F m g F==++【点睛】解决本题的关键将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.2.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B到C的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B至C过程中小球克服阻力做的功;(3)小球离开C点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小3.如图所示,一根长为0.1 m的细线,一端系着一个质量是0.18kg的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N.求:(1)线断裂的瞬间,线的拉力;(2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N;(2)线断裂时小球运动的线速度为5m/s;(3)落地点离桌面边缘的水平距离2m.【解析】【分析】【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg、桌面弹力F N和细线的拉力F,重力mg和弹力F N平衡,线的拉力提供向心力,有:F N=F=mω2R,设原来的角速度为ω0,线上的拉力是F0,加快后的角速度为ω,线断时的拉力是F1,则有:F1:F0=ω2: 20 =9:1,又F1=F0+40N,所以F0=5N,线断时有:F1=45N.(2)设线断时小球的线速度大小为v,由F1=2vmR,代入数据得:v=5m/s.(3)由平抛运动规律得小球在空中运动的时间为:t=220.810hsg⨯==0.4s,则落地点离桌面的水平距离为:x=vt=5×0.4=2m.4.如图所示,在竖直平面内有一倾角θ=37°的传送带BC.已知传送带沿顺时针方向运行的速度v=4 m/s,B、C两点的距离L=6 m。

2024届高考物理一轮复习热点题型:曲线运动及其实例分析(解析版)

2024届高考物理一轮复习热点题型:曲线运动及其实例分析(解析版)

曲线运动及其实例分析1.目录题型一 曲线运动的条件及轨迹分析类型1基本概念的辨析与理解类型2 曲线运动的动力学解释题型二 运动的合成与分解类型1合运动与分运动的关系类型2两互成角度运动合运动性质的判断类型3运动合成与分解思想的迁移应用题型三 小船渡河问题题型四 实际运动中的两类关联速度模型类型1 绳端关联速度的分解问题类型2杆端关联速度的分解问题曲线运动的条件及轨迹分析【解题指导】1.条件物体受到的合力方向与速度方向始终不共线。

2.特征(1)运动学特征:做曲线运动的物体的速度方向时刻发生变化,即曲线运动一定为变速运动。

(2)动力学特征:做曲线运动的物体所受合力一定不为零且和速度方向始终不在同一条直线上。

合力在垂直于速度方向上的分力改变物体速度的方向,合力在沿速度方向上的分力改变物体速度的大小。

(3)轨迹特征:曲线运动的轨迹始终夹在合力的方向与速度的方向之间,而且向合力的一侧弯曲。

(4)能量特征:如果物体所受的合力始终和物体的速度垂直,则合力对物体不做功,物体的动能不变;若合力不与物体的速度方向垂直,则合力对物体做功,物体的动能发生变化。

类型1基本概念的辨析与理解1(2023·海南海口·校考模拟预测)曲线运动是生活中一种常见的运动,下列关于曲线运动的说法中正确的是()A.可能存在加速度为0的曲线运动B.平抛运动是加速度随时间均匀变化的曲线运动C.匀速圆周运动一定是加速度变化的曲线运动D.圆周运动不可以分解为两个相互垂直的直线运动【答案】C【详解】A.根据曲线运动的特点可知,曲线运动的物体加速度不为0,故A错误;B.平抛运动是加速度为重力加速度的匀变速曲线运动,故B错误;C.匀速圆周运动的加速度方向不断变化,故C正确;D.圆周运动可以分解为两个相互垂直的简谐运动,故D错误;故选C。

2.(2023春·云南·高三统考阶段练习)关于质点做曲线运动,下列说法正确的是()A.曲线运动一定是变速运动,变速运动也一定是曲线运动B.质点做曲线运动,其加速度有可能不变C.质点做曲线运动的过程中,某个时刻所受合力方向与速度方向可能相同D.有些曲线运动也可能是匀速运动【答案】B【详解】A.曲线运动一定是变速运动,但变速运动不一定是曲线运动,也可以是直线运动,故A错误;B.质点做曲线运动,其加速度有可能不变,比如平抛运动的加速度为重力加速度,保持不变,故B 正确;C.质点做曲线运动的过程中,每个时刻所受合力方向与速度方向都不在同一直线上,故C错误;D.曲线运动的速度方向时刻发生变化,不可能是匀速运动,故D错误。

高考物理最新力学知识点之曲线运动解析含答案

高考物理最新力学知识点之曲线运动解析含答案

高考物理最新力学知识点之曲线运动解析含答案一、选择题1.甲、乙两球位于同一竖直直线上的不同位置,甲比乙高h,如图所示。

将甲、乙两球分别以v1、v2的速度沿同一水平方向抛出,不计空气阻力,在下列条件下,乙球可能击中甲球的是()A.同时抛出,且v1<v2B.甲先抛出,且v1<v2C.甲先抛出,且v1>v2D.甲后抛出,且v1>v22.如图所示的皮带传动装置中,轮A和B固定在同一轴上,A、B、C分别是三个轮边缘的质点,且R A=R C=2R B,则三质点的向心加速度之比a A∶a B∶a C等于()A.1∶2∶4B.2∶1∶2C.4∶2∶1D.4∶1∶43.如图所示,在匀速转动的圆筒内壁上紧靠着一个物体,物体随筒一起转动,物体所需的向心力由下面哪个力来提供()A.重力B.弹力C.静摩擦力D.滑动摩擦力4.小船横渡一条两岸平行的河流,水流速度与河岸平行,船相对于水的速度大小不变,船头始终垂直指向河岸,小船的运动轨迹如图中虚线所示。

则小船在此过程中()A.无论水流速度是否变化,这种渡河耗时最短B.越接近河中心,水流速度越小C.各处的水流速度大小相同D.渡河的时间随水流速度的变化而改变5.如图所示,两小球从斜面的顶点先后以不同的初速度向右水平抛出,在斜面上的落点分别是a和b,不计空气阻力。

关于两小球的判断正确的是( )A.落在b点的小球飞行过程中速度变化快B.落在a点的小球飞行过程中速度变化大C.小球落在a点和b点时的速度方向不同D.两小球的飞行时间均与初速度0v成正比6.如图所示,人用轻绳通过定滑轮拉穿在光滑竖直杆上的物块A,人以速度v0向左匀速拉绳,某一时刻,绳与竖直杆的夹角为,与水平面的夹角为,此时物块A的速度v1为A. B.C. D.7.某质点同时受到在同一平面内的几个恒力作用而平衡,某时刻突然撤去其中一个力,以后这物体将()①可能做匀加速直线运动;②可能做匀速直线运动;③其轨迹可能为抛物线;④可能做匀速圆周运动.A.①③B.①②③C.①③④D.①②③④8.如图所示,在水平圆盘上,沿半径方向放置用细线相连的两物体A和B,它们与圆盘间的摩擦因数相同,当圆盘转速加大到两物体刚要发生滑动时烧断细线,则两个物体将要发生的运动情况是( )A.两物体仍随圆盘一起转动,不会发生滑动B.只有A仍随圆盘一起转动,不会发生滑动C.两物体均滑半径方向滑动,A靠近圆心、B远离圆心D.两物体均滑半径方向滑动,A、B都远离圆心9.一个人在岸上以恒定的速度v,通过定滑轮收拢牵引船上的绳子,如图所示,当船运动到某点,绳子与水平方向的夹角为α时,船的运动速度为( )A .υB .cos vC .v cosαD .v tanα10.如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R :bc 是半径为R 的四分之一的圆弧,与ab 相切于b 点.一质量为m 的小球.始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动,重力加速度大小为g .小球从a 点开始运动到其他轨迹最高点,机械能的增量为A .2mgRB .4mgRC .5mgRD .6mgR11.小明玩飞镖游戏时,从同一位置先后以速度v A 和v B 将飞镖水平掷出,依次落在靶盘上的A 、B 两点,如图所示,飞镖在空中运动的时间分别t A 和t B .不计空气阻力,则( )A .v A <vB ,t A <t BB .v A <v B ,t A >t BC .v A >v B ,t A >t BD .v A >v B ,t A <t B12.如图为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点。

高中物理曲线运动试题类型及其解题技巧及解析

高中物理曲线运动试题类型及其解题技巧及解析

高中物理曲线运动试题类型及其解题技巧及解析一、高中物理精讲专题测试曲线运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,在竖直平面内有一绝缘“⊂”型杆放在水平向右的匀强电场中,其中AB 、CD 水平且足够长,光滑半圆半径为R ,质量为m 、电量为+q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)若小球初速度v 0=4gR ,则小球运动到半圆上B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;(3)若小球初速度v=4gR ,初始位置变为x=4R ,则小球在杆上静止时通过的路程为多大.【答案】(1)5.5mg (2)04v gR >(3)()44R π+ 【解析】 【分析】 【详解】(1)加速到B 点:221011-22mgx qEx mv mv μ-=- 在B 点:2v N mg m R-=解得N=5.5mg(2)在物理最高点F :tan qE mgα=解得α=370;过F 点的临界条件:v F =0从开始到F 点:2101-(sin )(cos )02mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =可见要过C 点的条件为:04v gR >(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:2121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-1s x R x π=++解得:(44)s R π=+3.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。

2023年高考物理---《曲线运动的条件和特征》基础梳理与例题讲解

2023年高考物理---《曲线运动的条件和特征》基础梳理与例题讲解

2023年高考物理---《曲线运动的条件和特征》基础梳理与
例题讲解
基础梳理
1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.
2.曲线运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动.
3.曲线运动的条件:物体所受合力的方向与它的速度方向不在同一直线上或它的加速度方向与速度方向不在同一直线上.
技巧点拨
1.运动轨迹的判断
(1)若物体所受合力方向与速度方向在同一直线上,则物体做直线运动.
(2)若物体所受合力方向与速度方向不在同一直线上,则物体做曲线运动.
2.曲线运动中速度方向、合力方向与运动轨迹之间的关系
(1)速度方向与运动轨迹相切;
(2)合力方向指向曲线的“凹”侧;
(3)运动轨迹一定夹在速度方向和合力方向之间.
3.合力方向与速率变化的关系
例题讲解
1.(运动轨迹的分析)(2020·浙江杭州市建人高复模拟)如图1所示,一热气球在匀加速竖直向上运动的同时随着水平气流向右匀速运动,若设竖直向上为y轴正方向,水平向右为x轴正方向,则热气球实际运动的轨迹可能是( )
图1
答案 B
解析气球水平向右做匀速运动,竖直向上做匀加速运动,则合加速度竖直向上,合力竖直向上,轨迹向上弯曲,选B.
2.(速度、加速度与合外力的关系)(2021·内蒙古杭锦后旗奋斗中学高三月考)物体沿轨迹从M点向N点做减速圆周运动的过程中其所受合力方向可能是下列图中的( )
答案 C
解析物体从M点向N点做曲线运动,合力方向指向轨迹的凹侧,故A、D错误;物体速度方向沿轨迹的切线,物体减速,合力方向与速度方向成钝角,故C正确,B错误.。

高考物理曲线运动常见题型及答题技巧及练习题(含答案)含解析

高考物理曲线运动常见题型及答题技巧及练习题(含答案)含解析

高考物理曲线运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试曲线运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性: ①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得:()()211332m m v m m gR +≤+ 解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤3.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:vy =m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 2==m/s 物块到达P 的速度:P v ===3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J.4.如图所示,在竖直平面内有一倾角θ=37°的传送带BC.已知传送带沿顺时针方向运行的速度v=4 m/s,B、C两点的距离L=6 m。

2024年新高考版物理专题四曲线运动讲解部分

2024年新高考版物理专题四曲线运动讲解部分
答案 B
二、小船渡河问题 1.小船渡河问题分析思路
2.小船渡河的最短时间渡河情景 Nhomakorabea渡河条件 渡河结果
船头垂直于河岸
最短时间tmin= d
v船
3.小船渡河的最小位移
渡河情景
渡河条件 渡河结果
船头斜向上游且v船>v水,船沿岸 方向分速度v船 cos θ=v水
船头斜向上游,与合速度方向垂 直,且v水>v船
向恒为竖直向下,如图所示。
3.平抛运动的两个重要推论 1)推论一:做平抛运动的物体在任一时刻任一位置处,设其末速度方向与 水平方向的夹角为θ,位移方向与水平方向的夹角为β,则tan θ=2 tan β。
2)推论二:做平抛(或类平抛)运动的物体任意时刻的瞬时速度的反向延长 线一定通过此时水平分位移的中点。如图乙中B点所示。
a.a= v2 =rω2=vω
r
b.单位:m/s2
①作用效果是产生向心加速度 ②方向始终指向圆心
a.F=ma= mv2 =mω2r=mωv
r
b.单位:N
①T= 1 ②v=rω= 2π r=2πfr
f
T
③a= v2 =rω2=ωv= 4π2r =4π2f 2r
r
T2
④t= ·T

2.常见的几种传动装置 1)皮带传动:如图1、图2所示,皮带与两轮之间无相对滑动时,vA=vB,由v=ωr 知ω与r成反比,由a=v2 知a与r成反比。
r
2)摩擦传动和齿轮传动:如图3、图4所示,两轮边缘接触,接触点无打滑现 象时vA=vB,由v=ωr知ω与r成反比,由a=v2 知a与r成反比。
r
3)同轴转动:如图5、图6所示,绕同一转轴转动的物体,角速度相同,ωA=ωB, 由v=ωr、a=ω2r知v、a与r成正比。

高考物理曲线运动常见题型及答题技巧及练习题(含答案)含解析

高考物理曲线运动常见题型及答题技巧及练习题(含答案)含解析

高考物理曲线运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试曲线运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,物体A 置于静止在光滑水平面上的平板小车B 的左端,物体在A 的上方O 点用细线悬挂一小球C(可视为质点),线长L =0.8m .现将小球C 拉至水平无初速度释放,并在最低点与物体A 发生水平正碰,碰撞后小球C 反弹的速度为2m/s .已知A 、B 、C 的质量分别为m A =4kg 、m B =8kg 和m C =1kg ,A 、B 间的动摩擦因数μ=0.2,A 、C 碰撞时间极短,且只碰一次,取重力加速度g =10m/s 2.(1)求小球C 与物体A 碰撞前瞬间受到细线的拉力大小; (2)求A 、C 碰撞后瞬间A 的速度大小;(3)若物体A 未从小车B 上掉落,小车B 的最小长度为多少? 【答案】(1)30 N (2)1.5 m/s (3)0.375 m 【解析】 【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m 0gl 12=m 0v 02 代入数据解得:v 0=4m/s ,对小球,由牛顿第二定律得:F ﹣m 0g =m 02v l代入数据解得:F =30N(2)小球C 与A 碰撞后向左摆动的过程中机械能守恒,得:212C mv mgh = 所以:22100.22C v gh ==⨯⨯=m/s小球与A 碰撞过程系统动量守恒,以小球的初速度方向为正方向, 由动量守恒定律得:m 0v 0=﹣m 0v c +mv A 代入数据解得:v A =1.5m/s(3)物块A 与木板B 相互作用过程,系统动量守恒,以A 的速度方向为正方向, 由动量守恒定律得:mv A =(m+M )v代入数据解得:v =0.5m/s由能量守恒定律得:μmgx 12=mv A 212-(m+M )v 2 代入数据解得:x =0.375m ;3.如图所示,半径为4l,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .(1)装置静止时,求小球受到的绳子的拉力大小T ;(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内). ①小球恰好离开竖直杆时,竖直杆的角速度0ω多大? ②轻绳b 伸直时,竖直杆的角速度ω多大?【答案】(1)1515T mg = (2)①ω0=15215g l②2g l ω≥【解析】 【详解】(1)设轻绳a 与竖直杆的夹角为α15cos α=对小球进行受力分析得cos mgT α=解得:41515T mg =(2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。

高考物理曲线运动常见题型及答题技巧及练习题(含答案)及解析

高考物理曲线运动常见题型及答题技巧及练习题(含答案)及解析

高考物理曲线运动常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.如图所示,将一小球从倾角θ=60°斜面顶端,以初速度v0水平抛出,小球落在斜面上的某点P,过P点放置一垂直于斜面的直杆(P点和直杆均未画出)。

已知重力加速度大小为g,斜面、直杆处在小球运动的同一竖直平面内,求:(1)斜面顶端与P点间的距离;(2)若将小球以另一初速度v从斜面顶端水平抛出,小球正好垂直打在直杆上,求v的大小。

【答案】(1);(2);【解析】本题考查平抛与斜面相结合的问题,涉及位移和速度的分解。

(1)小球从抛出到P点,做平抛运动,设抛出点到P点的距离为L小球在水平方向上做匀速直线运动,有:在竖直方向上做自由落体运动,有:联立以上各式,代入数据解得:(2)设小球垂直打在直杆上时竖直方向的分速度为v y,有:在水平方向上,有:在竖直方向上,有:,由几何关系,可得:联系以上各式,得:另解:小球沿斜面方向的分运动为匀加速直线运动,初速度为:,加速度为小球垂直打在直杆上,速度为,有:在斜面方向上,由匀变速运动规律得:联立以上各式,得:点睛:物体平抛运动可分解成水平方向的匀速直线运动和竖直方向的自由落体;也可分解为沿斜面方向的匀变速直线运动和垂直斜面的匀变速直线运动。

2.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

高中物理曲线运动试题类型及其解题技巧含解析

高中物理曲线运动试题类型及其解题技巧含解析

高中物理曲线运动试题类型及其解题技巧含解析一、高中物理精讲专题测试曲线运动1.如图所示,在风洞实验室中,从A 点以水平速度v 0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F ,经过一段时间小球运动到A 点正下方的B 点 处,重力加速度为g ,在此过程中求(1)小球离线的最远距离; (2)A 、B 两点间的距离; (3)小球的最大速率v max .【答案】(1)202mv F(2)22022m gv F (3)2220 4v F m g F【解析】 【分析】(1)根据水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)根据水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A 、B 两点间的距离;(3)小球到达B 点时水平方向的速度最大,竖直方向的速度最大,则B 点的速度最大,根据运动学公式结合平行四边形定则求出最大速度的大小; 【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解 水平方向:F =m a x v 02=2a x x m解得:202m mv x F= (2)水平方向速度减小为零所需时间01xv t a = 总时间t =2t 1竖直方向上:22202212m gv y gt F== (3)小球运动到B 点速度最大 v x =v 0 V y =gt222220max 4x y v v v v F m g F==++【点睛】解决本题的关键将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.2.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得:()()211332m m v m m gR +≤+解得:0v ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++代入数值解得:0v ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++解得:0v ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是0v ≤0v ≤≤3.如图所示,一根长为0.1 m 的细线,一端系着一个质量是0.18kg 的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N .求: (1)线断裂的瞬间,线的拉力; (2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m ,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N;(2)线断裂时小球运动的线速度为5m/s;(3)落地点离桌面边缘的水平距离2m.【解析】【分析】【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg、桌面弹力F N和细线的拉力F,重力mg和弹力F N平衡,线的拉力提供向心力,有:F N=F=mω2R,设原来的角速度为ω0,线上的拉力是F0,加快后的角速度为ω,线断时的拉力是F1,则有:F1:F0=ω2: 2ω=9:1,又F1=F0+40N,所以F0=5N,线断时有:F1=45N.(2)设线断时小球的线速度大小为v,由F1=2vmR,代入数据得:v=5m/s.(3)由平抛运动规律得小球在空中运动的时间为:t 220.810hsg⨯==0.4s,则落地点离桌面的水平距离为:x=vt=5×0.4=2m.4.如图所示,在竖直平面内有一倾角θ=37°的传送带BC.已知传送带沿顺时针方向运行的速度v=4 m/s,B、C两点的距离L=6 m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题4.1 曲线运动题型特点与命题规律一、本章内容、考试范围及要求考点内容要求题型一、曲线运动运动的合成与分解运动的合成与分解Ⅱ选择、计算二、抛体运动抛体运动Ⅱ选择、计算三、圆周运动匀速圆周运动、角速度、线速度、向心加速度Ⅰ选择、计算匀速圆周运动的向心力Ⅱ离心现象Ⅰ二、常见题型展示1. 物体做曲线运动的条件与轨迹分析2. 运动的合成与分解的理解与应用3. 平抛运动的过程分析与分解方法4. 平抛运动的规律、推论以及应用5. 物体圆周运动的条件、各物理量之间的关系6. 水平面内的圆周运动问题的分析(摩擦力提供向心力、圆锥摆问题、火车转弯等)7. 竖直面内的圆周运动问题的分析三大类问题:(1)细绳(单内轨道)——临界状态(2)杆(双轨道)——临界状态(3)单外轨道——临界状态8. 圆周问题的多解问题(圆周运动具有周期性)本章考试题型归纳与分析:考试的题型:选择题、解答题考试核心考点与题型:选择题:圆周运动的条件与轨迹分析以及运动的合成与分解、平抛运动的分析(2)解答题:平抛运动分析或者竖直面内圆周运动两大模型的分析 三、近几年高考在本章中的考查特点 1. 注重重要知识点和重要物理方法的考查【典例1】(2016全国卷Ⅰ,18)(多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则( )A .质点速度的方向总是与该恒力的方向相同B .质点速度的方向不可能总是与该恒力的方向垂直C .质点加速度的方向总是与该恒力的方向相同D .质点单位时间内速率的变化量总是不变 【答案】BC【典例2】(2016全国卷Ⅱ,16)小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短。

将两球拉起,使两绳均被水平拉直,如图所示。

将两球由静止释放。

在各自轨迹的最低点( )A .P 球的速度一定大于Q 球的速度B .P 球的动能一定小于Q 球的动能C .P 球所受绳的拉力一定大于Q 球所受绳的拉力D .P 球的向心加速度一定小于Q 球的向心加速度 【答案】C【解析】小球从水平位置摆动至最低点,由动能定理得,mgL =12mv 2,解得v =2gL ,因L P <L Q ,故v P <v Q ,选项A 错误;因为E k =mgL ,又m P >m Q ,则两小球的动能大小无法比较,选项B 错误;对小球在最低点受力分析得,F T -mg =m v 2L ,可得F T =3mg ,选项C 正确;由a =v 2L=2g 可知,两球的向心加速度相等,选项D 错误。

【典例3】(2015安徽理综,14)图示是α粒子(氦原子核)被重金属原子核散射的运动轨迹,M 、N 、P 、Q 是轨迹上的四点,在散射过程中可以认为重金属原子核静止不动.图中所标出的α粒子在各点处的加速度方向正确的是( )A.M点B.N点C.P点D.Q点【答案】C【解析】α粒子在散射过程中受到重金属原子核的库仑斥力作用,方向总是沿着二者连线且指向粒子轨迹弯曲的凹侧,其加速度方向与库仑力方向一致,故C项正确.2 加强运动合成和分解的考查【典例4】(2014四川理综,4)有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为( )A.kvk2-1B.v1-k2C.kv1-k2D.vk2-1【答案】B3出现了对斜抛运动的考查【典例5】(2016江苏单科,2)有A、B两小球,B的质量为A的两倍,现将它们以相同速率沿同一方向抛出,不计空气阻力,图中①为A的运动轨迹,则B的运动轨迹是( )A.① B.② C.③ D.④【答案】 A4注重以生活中的实际问题为背景【典例6】(2015新课标全国Ⅰ,18)一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L1和L2,中间球网高度为h.发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h.不计空气的作用,重力加速度大小为g.若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v的最大取值范围是( )A.L12g6h<v<L1g6hB.L14gh<v<(4L21+L22)g6hC.L12g6h<v<12(4L21+L22)g6hD.L14gh<v<12(4L21+L22)g6h【答案】D【典例7】(2015浙江理综,17)如图所示为足球球门,球门宽为L.一个球员在球门中心正前方距离球门s 处高高跃起,将足球顶入球门的左下方死角(图中P点).球员顶球点的高度为h,足球做平抛运动(足球可看成质点,忽略空气阻力),则( )A.足球位移的大小x=L24+s2B.足球初速度的大小v0=g2h(L24+s2)C.足球末速度的大小v=g2h(L24+s2)+4ghD.足球初速度的方向与球门线夹角的正切值tanθ=L 2s【答案】B【典例8】 (2015浙江理综,19)(多选)如图所示为赛车场的一个水平“U”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r .一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r .赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max .选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( )A .选择路线①,赛车经过的路程最短B .选择路线②,赛车的速率最小C .选择路线③,赛车所用时间最短D .①、②、③三条路线的圆弧上,赛车的向心加速度大小相等 【答案】ACD【解析】赛车经过路线①的路程s 1=πr +2r =(π+2)r ,路线②的路程s 2=2πr +2r =(2π+2)r ,路线③的路程s 3=2πr ,A 正确;根据F max =mv 2R,可知R 越小,其不打滑的最大速率越小,所以路线①的最大速率最小,B 错误;三种路线对应的最大速率v 2=v 3=2v 1,则选 择路线①所用时间t 1=(π+2)r v 1,路线②所用时间t 2=(2π+2)r2v 1,路线③所用时间t 3=2πr2v 1,t 3最小,C 正确;由F max =ma ,可知三条路线对应的a 相等,D 正确. 5 注重与当代前沿科技的结合【典例9】(2015天津理综,4)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是( )A.旋转舱的半径越大,转动的角速度就应越大B.旋转舱的半径越大,转动的角速度就应越小C.宇航员质量越大,旋转舱的角速度就应越大D.宇航员质量越大,旋转舱的角速度就应越小【答案】B【解析】由题意知有mg=F=mω2r,即g=ω2r,因此r越大,ω越小,且与m无关,B正确.6 注重理论知识在实际问题中的应用【典例10】(2014浙江理综,23)如图所示,装甲车在水平地面上以速度v0=20 m/s沿直线前进,车上机枪的枪管水平,距地面高为h=1.8 m.在车正前方竖直立一块高为两米的长方形靶,其底边与地面接触.枪口与靶距离为L时,机枪手正对靶射出第一发子弹,子弹相对于枪口的初速度为v=800 m/s.在子弹射出的同时,装甲车开始匀减速运动,行进s=90 m后停下.装甲车停下后,机枪手以相同方式射出第二发子弹.(不计空气阻力,子弹看成质点,重力加速度g=10 m/s2)(1)求装甲车匀减速运动时的加速度大小;(2)当L=410 m时,求第一发子弹的弹孔离地的高度,并计算靶上两个弹孔之间的距离;(3)若靶上只有一个弹孔,求L的范围.【答案】 (1)209m/s 2(2)0.55 m 0.45 m (3)492 m <L ≤570 m四、分析总结与趋势预测 1. 分析总结曲线运动一般以选择题的形式出现,重点考查加速度、线速度、角速度、向心加速度等概念及其应用。

本部分知识也经常与其他知识点如牛顿定律、能量、电场、磁场、电磁感应等知识综合出现在计算题中。

(1)常考点①运动的合成和分解的规律方法. ②平抛运动的规律及研究方法.③圆周运动的运动学规律及受力特点.尤其是牛顿第二定律在圆周运动中的应用.④带电粒子在匀强电场中运动的研究方法是平抛运动规律及研究方法的迁移.而带电粒子在匀强磁场中的运动,其研究方法离不开圆周运动的特点运动规律.另外,各种曲线运动从功能关系入手研究是高考命题的一大热点.(2)命题分析这部分内容知识点较多,且极容易结合天体运动、机械能、复合场(电场和磁场)等内容综合命题。

其中运动的合成与分解要求能求解小船过河问题、绳子牵连问题、能判断物体的运动轨迹;抛体运动中的斜抛运动只需要定性知道;平抛运动要求掌握其运动规律,并能求解相关问题;能分析判断物体是否做匀速圆周运动及其角速度、线速度、半径之间的关系,能分析向心加速度的变化;离心现象为Ⅰ类知识点,要求能判断物体是否做离心运动;向心力是Ⅱ类要求,要求能理解应用,能用来处理与机械能、万有引力定律、复合场等知识的综合问题,这类试题主观性强,综合力度大,与生活实际以及新科技联系紧密。

从考纲中可以看出,本章绝大多数知识点是Ⅱ级要求.在高考试题中,这些知识点既会独立出现,也会与其他知识点综合出现,更多的是与其他知识点综合出现.从近几年的高考试题可以看出,与本专题相关的试题具有如下特点:a.它可以与其他章节知识相结合来进行考查,特别是与牛顿第二定律、能量转化和守恒、电场和磁场相结合来考查,也可以是单独命题进行考查.b.它可以以选择题的形式出现,也可以是实验题和计算题.2. 趋势预测(1)在提倡素质教育的今天,高考把考查学生的能力放在首位,平抛运动的规律及其研究的方法,圆周运动的角速度、线速度和向心加速度是近几年高考的热点.(2)与实际应用和生产生活、科技联系的命题成为一种命题趋势.特别是神舟系列飞船发射成功、探月计划已经实施,并获得了巨大成功更会结合万有引力命题.(3)由于高考题目数量的限定,单一内容的命题的概率变小;联系实际综合命题出现的可能性增大五、复习策略本章内容是牛顿运动定律在曲线运动中的具体应用,复习好本章的概念和规律,将加深对速度、加速度及其关系的理解,加深对牛顿第二定律的理解,提高解决实际问题的能力。

在本专题内容的复习中,一定要多与万有引力、天体运动、电磁场等知识进行综合,以便开阔视野,提高自己分析综合能力。

相关文档
最新文档