最新新东方考研数学讲义(绝密版)

合集下载

考研数学强化讲义之真题分类解析(吐血力荐)

考研数学强化讲义之真题分类解析(吐血力荐)

求:(1)证明
lim
x
xn
存在,并求之.
1
(2)计算 lim
x
xn1 xn
xn2
.
例 8 设数列xn满足:x1 0, xnexn1 exn 1(n 1, 2,
),
证明xn
收敛,并求
lim
n
xn
.
例 9 设 an
1 xn
0
1 x2 dx
(n 0,1, 2,
)
(1)证明:数列 {an } 单调减少,且
(C) f x 在 x 0 处连续但不可导 (D) f x 在 x 0 处可导

9

f
(
x)
lim
n
(n 1)x nx2 1
,

f (x) 的间断点为 x
.

10
求函数
f
(x)
= lim(
sin t
x
)sintsin x
的表达式,并指出函数
(D) F(x) 是单调函数 f (x) 是单调函数
例 2 设 f (x) 是周 期为 4 的可导奇 函数,且 f (x) 2(x 1), x [0, 2] ,则 f (7)
__________.
例 3 设 f (x)
x
2 sin t dt ,
x
(Ⅰ)证明 f (x) 是以 为周期的周期函数;(Ⅱ)求 f (x) 的值域.
(D)3

7
函数
f
(x)
lim(1
sin
t
)
x2 t
在 (, ) 内()
t 0
x
(A)连续 (B)有可去间断点 (C)有跳跃间断点 (D)有无穷间断点

考研高数讲义新高等数学下册辅导讲义——第十二章

考研高数讲义新高等数学下册辅导讲义——第十二章

1 n11
学习笔记:
必要条件: 若
un 收敛,则
lim
n
un
0。
n1
逆否命题: 若级数的一般项不趋于 0,则级数必发散。
1234
【例】
2345
un
n1
( 1)
n
,当 n
n1
( 1) n 1 n n1
,其一般项为
时, un 不趋于 0,因此这个级数发散。
注: lim un 0 并非级数收敛的充分条件 n
学习笔记:
定义: 对任意项级数
un ,若
un 收敛,则称原级数
un 绝对
n1
n1
n1
收敛 ;若原级数收敛 , 但取绝对值以后的级数发散
, 则称原级数
un 条件收敛 。
n1
【例】 (
n1
1)n 1 1 条件收敛; n
1 n 1 n 2 为绝对收敛。
定理 7 绝对收敛的级数一定收敛。 【例 11】判断级数的敛散性。

vn2 都收敛,则
(un vn ) 2 收敛 .
n1
n1
n1
( B)若
unvn 收敛,则
u
2 n

vn2 收敛 .
n1
n1
n1
( C)若正项级数
un 发散,则 un
n1
1
.
n
( D)若级数 un 收敛,且 un vn( n 1,2, ) ,则级数 vn 也收敛 .
n1
n1
【答案】(A )
【重点小结】 级数敛散性判别总结 1. 利用部分和数列的极限判别级数的敛散性 2. 利用正项级数审敛法
un ,则各项乘以常数 c 所得

最新09考研高等数学强化讲义(第六章)全07224

最新09考研高等数学强化讲义(第六章)全07224

09考研高等数学强化讲义(第六章)全07224新东方考研高等数学电子教材主讲:汪诚义欢迎使用新东方在线电子教材教材说明:本教案是针对新东方在线使用的内部讲义,本讲义按章节提供。

根据老师的意见,例题的解题步骤不给提供,在课件的板书上有显示,学员自己可以先做题目再听老师的讲解效果会更好。

严禁翻印、在上网任意传播!第六章多元函数微分学§6.1 多元函数的概念、极限与连续性(甲)内容要点一、多元函数的概念1.二元函数的定义及其几何意义设«Skip Record If...»是平面上的一个点集,如果对每个点«Skip Record If...»,按照某一对应规则«Skip Record If...»,变量«Skip Record If...»都有一个值与之对应,则称«Skip Record If...»是变量«Skip Record If...»,«Skip RecordIf...»的二元函数,记以«Skip Record If...»,«Skip Record If...»称为定义域。

二元函数«Skip Record If...»的图形为空间一块曲面,它在«Skip Record If...»平面上的投影域就是定义域«Skip Record If...»。

例如«Skip Record If...»,«Skip Record If...»二元函数的图形为以原点为球心,半径为1的上半球面,其定义域«Skip Record If...»就是«Skip Record If...»平面上以原点为圆心,半径为1的闭圆。

最新09考研高等数学强化讲义(第七章)全78848

最新09考研高等数学强化讲义(第七章)全78848

09考研高等数学强化讲义(第七章)全78848新东方考研高等数学电子教材主讲:汪诚义欢迎使用新东方在线电子教材教材说明:本教案是针对新东方在线使用的内部讲义,本讲义按章节提供。

根据老师的意见,例题的解题步骤不给提供,在课件的板书上有显示,学员自己可以先做题目再听老师的讲解效果会更好。

严禁翻印、在上网任意传播!第七章多元函数积分学§7.1 二重积分(甲)内容要点一、在直角坐标系中化二重积分为累次积分以及交换积分顺序问题口诀(40):多重积分的计算,累次积分最关键。

模型I:设有界闭区域«Skip Record If...»其中«Skip Record If...»,«Skip Record If...»在«Skip Record If...»上连续,«Skip Record If...»在«Skip Record If...»上连续,则«Skip Record If...»模型II:设有界闭区域«Skip Record If...»其中«Skip Record If...»,«Skip Record If...»在«Skip Record If...»上连续,«Skip Record If...»在«Skip Record If...»上连续则«Skip Record If...»关于二重积分的计算主要根据模型I或模型II,把二重积分化为累次积分从而进行计算,对于比较复杂的区域«Skip Record If...»如果既不符合模型I中关于«Skip Record If...»的要求,又不符合模型II中关于«Skip Record If...»的要求,那么就需要把«Skip Record If...»分解成一些小区域,使得每一个小区域能够符合模型I或模型II中关于区域的要求,利用二重积分性质,把大区域上二重积分等于这些小区域上二重积分之和,而每个小区域上的二重积分则可以化为累次积分进行计算。

考研陈文灯考研数学讲义【绝密版】

考研陈文灯考研数学讲义【绝密版】

e2
三、补充习题(作业)
1. f (x) ln 1 x ,求y''(0) 3
1 x2
2
2.曲线
x y
et et
sin 2t 在(0,1)处切线为y cos 2t
2x
1
0
考研资料——免费提供
微信公众:机械考研汇
- 8 -1
3. y x ln(e 1 )(x 0)的渐进线方程为y x 1
证: Lagrange : f (b) f (a) f '( ) ba
械考研汇
令 f (x) ln 2 x, ln 2 b ln 2 a 2 ln
ba
:机

众 令(t) ln t ,'(t) 1 ln t 0( ) (e2 ) ln 2
公 t
t2
e2

微 ln 2 b ln 2 a 4 (b a) (关键:构造函数)
证: f (x) f (0) f '(0)x 1 f ''(0)x2 1 f '''()x3
2!
3!
其中 (0, x), x [1,1]
考研资料——免费提供
微信公众:机械考研汇
- 7 -1
0
将 x=1,x=-1 代入有
f (1)
f (0)
1 2
f ''(0) 1 6
f '''(1 )
lim b
b1 ( 1x
x 1 x2
)dx
4
1 ln 2 2
考 5. f (x) 连续,(x) 1 f (xt)dt ,且 lim f (x) A ,求(x) 并讨论'(x) 在 x 0 的连

线性代数考研讲义完整版

线性代数考研讲义完整版

考研数学线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲基本概念1.线性方程组的基本概念线性方程组的一般形式为:a11x1+a12x2+…+a1n x n=b1,a21x1+a22x2+…+a2n x n=b2,…………a m1x1+a m2x2+…+a mn x n=b m,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2, …,k n)(称为解向量),它满足:当每个方程中的未知数x i都用k i替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b1=b2=…=b m=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由m⨯n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m⨯n型矩阵.例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个4⨯5矩阵.对于上面的线性方程组,称矩阵a11 a12…a1n a11 a12…a1n b1A= a 21 a22…a2n 和(A|)= a21 a22…a2n b2…………………a m1 a m2…a mn a m1 a m2…a mnb m为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n个数构成的有序数组称为一个n维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2,⋯ ,a n的向量可表示成a1(a1,a2,⋯ ,a n)或a2,┆a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n矩阵,右边是n⨯1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个m⨯n的矩阵的每一行是一个n维向量,称为它的行向量; 每一列是一个m维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A的列向量组为,2,⋯ ,n时(它们都是表示为列的形式!)可记A=(1,2,⋯ ,n).1矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个m⨯n的矩阵A和B可以相加(减),得到的和(差)仍是m⨯n矩阵,记作A+B (A-B),法则为对应元素相加(减).数乘: 一个m⨯n的矩阵A与一个数c可以相乘,乘积仍为m⨯n的矩阵,记作c A,法则为A 的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:①加法交换律:A+B=B+A.②加法结合律:(A+B)+C=A+(B+C).③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A.④数乘结合律: c(d)A=(cd)A.⑤ c A=0⇔ c=0 或A=0.转置:把一个m⨯n的矩阵A行和列互换,得到的n⨯m的矩阵称为A的转置,记作A T(或A').有以下规律:① (A T)T=A.② (A+B)T=A T+B T.③ (c A)T=c A T.转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当是列向量时, T表示行向量,当是行向量时, T表示列向量.向量组的线性组合:设1,2,…,s是一组n维向量, c1,c2,…,c s是一组数,则称c 11+c22+…+c s s为1,2,…,s的(以c1,c2,…,c s为系数的)线性组合.n维向量组的线性组合也是n维向量.(3) n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵.把n阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法.对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|),用初等行变换把它化为阶梯形矩阵(B|γ).(2)用(B|γ)判别解的情况:如果最下面的非零行为(0,0, ⋯,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|γ)的零行,得到一个n×(n+1)矩阵(B0|γ0),并用初等行变换把它化为简单阶梯形矩阵(E|η),则η就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵⇒A是阶梯形矩阵.(B) A是上三角矩阵⇐A是阶梯形矩阵.(C) A是上三角矩阵⇔A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立?(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲行列式一.概念复习1. 形式和意义形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式: a11 a12 (1)a21 a22 (2)……… .a n1 a n2…a nn如果行列式的列向量组为1,2, …,n,则此行列式可表示为|1,2, …,n|.意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.) 每个n阶矩阵A对应一个n阶行列式,记作|A|.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)2阶和3阶行列式的计算公式:a11 a12a21 a22 = a11a22-a12a21 .a11 a12 a13a21 a22 a23 = a11a22a33+ a12a23a31+ a13a21a32-a13a22a31- a11a23a32-a12a21a33.a31 a32 a33一般地,一个n阶行列式a11 a12 (1)a21 a22 (2)………a n1 a n2…a nn的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a 2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项. 所谓代数和是在求总和时每项先要乘+1或-1.规定(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项n nj j j a a a 2121所乘的是.)1()(21n j j j τ-全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:023********,(436512)=3+2+3+2+0+0=10.至此我们可以写出n 阶行列式的值:a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(n n n nj j j j j j j j j a a a τ-∑ … … …a n1 a n2 … a nn这里∑n j j j 21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n阶行列式的第i行和第j列划去后所得到的n-1阶行列式称为(i,j)位元素a ij的余子式,记作M ij.称A ij=(-1)i+j M ij为元素a ij的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题第三类初等变换(倍加变换)不改变行列式的值.化零降阶法用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:①把行列式转置值不变,即|A T|=|A| .②某一行(列)的公因子可提出.于是, |c A|=c n|A|.③对一行或一列可分解,即如果某个行(列)向量则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量换为或所得到的行列式.例如+2|=|,1|+|,2|.|,④把两个行(列)向量交换, 行列式的值变号.⑤如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0.⑥某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0.⑦如果A与B都是方阵(不必同阶),则A * = A O =|A||B|.O B * B范德蒙行列式:形如1 1 1 (1)a 1 a 2 a 3 … a na 12 a 22 a 32 … a n 2… … … …a 1n-i a 2n-i a 3n-i … a n n-i的行列式(或其转置).它由a 1,a 2 ,a 3,…,a n 所决定,它的值等于).(i j ji a a -∏< 因此范德蒙行列式不等于0⇔ a 1,a 2 ,a 3,…,a n 两两不同.对于元素有规律的行列式(包括n 阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则 应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n 阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D 1/D, D 2/D,⋯,D n /D),这里D 是系数行列式的值, D i 是把系数行列式的第i 个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A|)作初等行变换,使得A变为单位矩阵: (A|)→(E|η),η就是解.用在齐次方程组上:如果齐次方程组的系数矩阵A是方阵,则它只有零解的充分必要条件是|A|≠0.二. 典型例题1.利用性质计算元素有规律的行列式例1① 2 a a a a ②1+x 1 1 1 ③1+a 1 1 1a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a 3 .a a a 2 a 1 1 1 1+x 4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例31+x1 1 1 11 1+x2 1 1 .1 1 1+x3 11 1 1 1+x4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 33x2-29 x3 6 -6例7求x-3 a -1 4f(x)= 5 x-8 0 –2 的x4和x3的系数.0 b x+1 12 2 1 x例8 设4阶矩阵A =(, 1, 2 ,3),B =(, 1, 2 ,3),|A | =2, |B |=3 ,求|A +B | . 例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z. 1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01)2 2 2 20 -7 0 05 3 -2 23.几个n 阶行列式两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a nb 1c 2 0 … 0 0证明 0 b 2 c 3 0 0 =11111(1)n i i i i n i b b a c c --+=-∑.… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出).例12 a 0 a 1 a 2 … a n-1 a nb 1c 1 0 … 0 0证明 b 2 0 c 2 … 0 0 =011111n n ii i i i n i i a c c c a b c c -+==-∑∏.… … … …b n … 0c n提示: 只用对第1行展开(M 1i 都可直接求出).另一个常见的n 阶行列式:例13 证明a+b b 0 … 0 0a a+b b … 0 0… … … … = 110n n n n i ii a b a b a b ++-=-=-∑(当a ≠b 时). 0 0 0 … a+b b0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题例14设有方程组x 1+x 2+x 3=a+b+c,ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等.(2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.② x3(x+4). ③ a3(a+10). 例2 1875.例3 x1x2x3x4+x2x3x4+x1x3x4+x1x2x4+x1x2x3.例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a2-a3+a4-a5.例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1.例10 -28.例14 x1=a,x2=b,x3=c..第三讲矩阵一.概念复习1. 矩阵乘法的定义和性质定义2.1 当矩阵A的列数和B的行数相等时,和A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和.设a11 a12...a1n b11 b12...b1s c11 c12 (1)A= a21 a22...a2n B= b21 b22...b2s C=AB=c21 c22 (2)………………………a m1 a m2…a mn ,b n1 b n2…b ns ,c m1 c m2…c ms ,则c ij=a i1b1j+a i2b2j+…+a in b nj.矩阵的乘法在规则上与数的乘法有不同:①矩阵乘法有条件.②矩阵乘法无交换律.③矩阵乘法无消去律,即一般地由AB=0推不出A=0或B=0.由AB=AC和A 0推不出B=C.(无左消去律)由BA=CA和A 0推不出B=C. (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:①加乘分配律A(B+C)= AB+AC,(A+B)C=AC+BC.②数乘性质(c A)B=c(AB).③结合律(AB)C= A(BC).④ (AB)T=B T A T.2. n阶矩阵的方幂和多项式任何两个n阶矩阵A和B都可以相乘,乘积AB仍是n阶矩阵.并且有行列式性质: |AB|=|A||B|.如果AB=BA,则说A和B可交换.方幂设k是正整数, n阶矩阵A的k次方幂A k即k个A的连乘积.规定A 0=E.显然A的任何两个方幂都是可交换的,并且方幂运算符合指数法则:①A k A h= A k+h.② (A k)h= A kh.但是一般地(AB)k和A k B k不一定相等!n阶矩阵的多项式设f(x)=a m x m+a m-1x m-1+…+a1x+a0,对n阶矩阵A规定f(A)=a m A m+a m-1A m-1+…+ a1A+a0E.称为A的一个多项式.请特别注意在常数项上加单位矩阵E.乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n 阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有:(A ±B )2=A 2±2AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ).二项展开式成立: B AC B A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A 的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则 A 11 A 12 B 11 B 12 = A 11B 11+A 12B 21 A 11B 12+A 12B 22A 21 A 22B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22要求A ij 的列数B jk 和的行数相等.准对角矩阵的乘法:形如A 1 0 0A = 0 A 2 0………0 0 …A n的矩阵称为准对角矩阵,其中A1,A2,…,A k都是方阵.两个准对角矩阵A10 ...0 B10 0A= 0 A2 ...0 , B= 0 B2 0………………0 0 …A k 0 0 …B k如果类型相同,即A i和B i阶数相等,则A1B10 0AB = 0 A2B2 …0 .………00 …A k B k(2)乘积矩阵的列向量组和行向量组设A是m⨯n矩阵B是n⨯s矩阵.A的列向量组为1,2,…,n,B的列向量组为,2,…,s, AB的列向量组为1,2,…,s,则根据矩阵乘法的定义容易看出(也是分块1法则的特殊情形):①AB的每个列向量为:i=A i,i=1,2,…,s.即A(1,2,…,s)=(A1,A2,…,A s).②=(b 1,b2,…,b n)T,则A= b11+b22+…+b n n.应用这两个性质可以得到:如果i=(b1i,b2i,…,b ni)T,则=A I=b1i1+b2i2+…+b ni n.i即:乘积矩阵AB的第i个列向量i是A的列向量组1,2,…,n的线性组合,组合系B i类似地, 乘积矩阵AB的第i个行向量是B的行向量组的线性组合,组合系数就是A的第i个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵从左侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵从右侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(α,β,γ), C=(α+2β-γ,3α-β+γ,α+2γ),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i个元素改为c.E(i,j(c))(i≠j):把E的第j行的c倍加到第i行上(或把第i列的c倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设B=(1,2,…,s),则X也应该有s列,记X=(X1,X2,…,X s),则有AX i=i,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)→(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)→(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵. 此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0⇒B=0;AB=AC⇒B=C.(左消去律);BA=0⇒B=0;BA=CA⇒B=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C⇔B=A-1C. BA=C⇔B=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理n阶矩阵A可逆⇔|A|≠0.证明“⇒”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|≠0. (并且|A-1|=|A|-1.)“⇐”因为|A|≠0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E, CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=E⇔BA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c≠0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)②如果A和B都可逆,则AB也可逆,并且(AB)-1=B-1A-1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c)).(4) 逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1是矩阵方程AX=E的解,于是可用初等行变换求A-1:(A|E) (E|A-1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.②伴随矩阵若A是n阶矩阵,记A ij是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵为A11 A21…A n1A*= A12 A22…A n2 =(A ij)T.………A1n A2n…A mn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但是在A可逆时, A*和A-1有密切关系.基本公式: AA*=A*A=|A|E.于是对于可逆矩阵A,有A-1=A*/|A|, 即A*=|A|A-1.因此可通过求A*来计算A-1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc 0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.② |A*|=|A|n-1.③ (A T)*=(A*)T.④ (c A)*=c n-1A*.⑤ (AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A;n=2时,(A*)*=A.二典型例题1.计算题例1=(1,-2,3) T,=(1,-1/2,1/3)T, A= T,求A6.讨论:(1)一般地,如果n阶矩阵A= T,则A k=(T)k-1A=(tr A)k-1A .(2)乘法结合律的应用:遇到形如T的地方可把它当作数处理.① 1 -1 1T= -1 1 -1 ,求T.(2003一)②设=(1,0,-1)T, A=T,求|a E-A n|.③n维向量=(a,0,⋯,0,a)T, a<0, A=E-T, A-1=E+a-1 T,求a. (03三,四)④ n维向量=(1/2,0,⋯,0,1/2)T, A=E- T, B=E+2 T,求AB. (95四)⑤ A=E- T,其中,都是n维非零列向量,已知A2=3E-2A,求T.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n=A n-2+A2-E. (2) 求A n.例4设A为3阶矩阵, 1,2,3是线性无关的3维列向量组,满足A 1=1+2+3, A2=22+3, A3=22+33.求作矩阵B,使得A(1,2,3)=(1,2,3)B. (2005年数学四)例5设3阶矩阵A=(1,2,3),|A|=1,B=(1+2+3,1+22+33,1+42+93),求|B|.(05)例6 3维向量1,2,3,1,2,3满足+3+21-2=0,31-2+1-3=0,2+3-2+3=0,1已知1,2,3|=a,求|1,2,3|.例7设A是3阶矩阵,是3维列向量,使得P=(,A,A2)可逆,并且A 3=3A-2A2.又3阶矩阵B满足A=PBP-1.(1)求B.(2)求|A+E|.(01一)2 1 0例8 3阶矩阵A,B满足ABA*=2BA*+E,其中A= 1 2 0 ,求|B|.(04一)0 0 1例9 3 -5 1设3阶矩阵A= 1 -1 0 , A-1XA=XA+2A,求X.-1 0 2例10 1 1 -1设3阶矩阵A= -1 1 1 , A*X=A-1+2X,求X.1 -1 1例11 4阶矩阵A,B满足ABA-1=BA-1+3E,已知1 0 0 0A*= 0 1 0 0 ,求B. (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A= 2 1 0 , B= 0 0 0 , XA+2B=AB+2X,求X11.2 13 0 0 -1例13设1=(5,1,-5)T,2=(1,-3,2)T,3=(1,-2,1)T,矩阵A满足A 1=(4,3) T, A2=(7,-8) T, A3=(5,-5) T,求A.2.概念和证明题例14 设A是n阶非零实矩阵,满足A*=A T.证明:(1)|A|>0.(2)如果n>2,则|A|=1.例15 设矩阵A=(a ij)3 3满足A*=A T,a11,a12,a13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * |A|A*(C) A|B* 0 (D ) |B A* 00 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆.讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c) 0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设是n维非零列向量,记A=E-T.证明(1) A 2=A⇔T =1.(2)T =1⇒ A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆⇔ E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab≠0,证明(1) A-b E和B-a E都可逆.(2) A可逆⇔ B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵, E+AB可逆,证明(E+AB)-1A也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果A.B都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例1 35A=35 -2 1 –2/3 .3 -3/2 1①3.②a2(a-2n). ③-1. ④E. ⑤4.例2 O.例3 (1)提示: A n=A n-2+A2-E⇔A n-2(A2-E)=A2-E ⇔ A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例 4 1 0 0B= 1 2 2 .1 1 3例5 2.例 6 –4a.例7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例9 -6 10 4X= -2 4 2 .-4 10 0例10 1 1 0(1/4) 0 1 1 .1 0 1例11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例12 1 0 02 0 0 .6 -1 -1例13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19E(i,j).例22提示:用克莱姆法则.例如证明 ,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲向量组的线性关系与秩一.概念复习1. 线性表示关系设1,2,…,s是一个n维向量组.如果n维向量等于1,2,…,s的一个线性组合,就说可以用1,2,…,s线性表示.如果n维向量组1,2,…,t中的每一个都可以可以用1,2,…,s线性表示,就说向量,2,…,t可以用1,2,…,s线性表示.1判别“是否可以用1,2,…,s线性表示? 表示方式是否唯一?”就是问:向量方程x 11+x22+…+x s s=是否有解?解是否唯一?用分量写出这个向量方程,就是以1,2,…,s为增广矩阵的线性方程组.反之,判别“以A为增广矩阵的线性方程组是否有解?解是否唯一?”的问题又可转化为“是否可以用A的列向量组线性表示? 表示方式是否唯一?”的问题.向量组之间的线性表示问题与矩阵乘法有密切关系: 乘积矩阵AB的每个列向量都可以表示为A的列向量组的线性组合,从而AB的列向量组可以用A的列向量组线性表示;反之,如果向量组1,2,…,t可以用1,2,…,s线性表示,则矩阵(1,2,…,t)等于矩阵(1,2,…,s)和一个s t矩阵C的乘积.C可以这样构造: 它的第i个列向量就是i 对1,2,…,s的分解系数(C不是唯一的).。

新东方在线考研数学基础班-概率与统计讲义

新东方在线考研数学基础班-概率与统计讲义

第一章随机事件和概率第一节 基本概念1、排列组合初步(1)排列组合公式从m个人中挑出n个人进行排列的可能数。

从m个人中挑出n个人进行组合的可能数。

例1.1:方程的解是A. 4 B. 3 C. 2 D. 1例1.2:有5个队伍参加了甲A联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种 B.140种 C.160种 D.180种(4)一些常见排列1 特殊排列相邻彼此隔开顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。

例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?2 重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?3 对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?4 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序)例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序)例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

新东方考研数学概率基础课

新东方考研数学概率基础课

随机事件和概率:
伯努利概型练习题:
随机事件和概率:
概率的基本公式:
加法公式:
P ( A B ) P ( A ) P ( B ) P ( A B )
减法公式:
P (A B ) P (A ) P (A B )
乘法公式(条件概率公式):
P(B| A) P(AB) P (B |A )P (概念: 随机试验:
事件所有可能结果事先已知 每次具体结果不确定 可重复做
基本事件: 结果集合中不能再分的基本元素
随机事件和概率:
基本概念: 事件:
由基本事件构成的集合,记作 A B 事件的关系与运算:(集合概念)
AB
AB,AB
AB,AB
得摩根定律:A BA B ,ABA B
随机事件和概率:
加法、乘法原理,排列组合练习题:
随机事件和概率:
三种重要的概型:
一个变量:数轴 两个变量:平面坐标系
古典概型:
基本事件个数有限,等概率
P(A)A所 基 包 本 含 事 的 件 基 的 本 总 事 数 件 数
几何概型: 利用几何度量代替事件的数量
随机事件和概率:
古典、几何概型练习题:
A B ,A B 全 集
AB
随机事件和概率:
重要的解题方法: (1)根据“可以,还可以”还是“先后”:
判断用加法还是乘法原理 (2)根据是否注重顺序:
判断使用排列还是组合公式 (3)至多至少问题
先求其对立面
随机事件和概率:
加法、乘法原理,排列组合练习题:
随机事件和概率:
加法、乘法原理,排列组合练习题:
随机变量的数字特征:
几种特殊分布的期望与方差:

考研高数讲义新高等数学上册辅导讲义——第一章上课资料

考研高数讲义新高等数学上册辅导讲义——第一章上课资料
函数如果lim那么存在常数o使得当函数性质3数列lim函数若lim0则必存在nxoxtxoxtx0则必存在某邻域nxofxod不能判断大小性质4数列与子列的关系若limuja则它的任一子数列也收敛且极限也nt的两个子数列的极限不相等则该数列发散性质5数列极限与函数极限limfx存在limfxn存在且为同一值x反之
零,但不一定等于 0。
函数极限与无穷小的关系定理
lim f ( x) A ( A 为 一 常 数 )
x x0 x
lim ( x) 0
x x0 x
f (x) A ( x) , 且
二、无穷大(量)
如果当 x x0 时,对应的函数值 f ( x) 的绝对值
x
x
| f ( x) |无限增大,则称当
x0 时, f ( x)是无穷
【例 2】(91 三)设数列的通项为:
n2 n ,若n为奇数,
xn
n
则当 n ,xn是( )
1, 若n为偶数,
n
(A)无穷大量 . (C)有界变量 . 【答案】( D)
(B)无穷小量 . (D)无界变量 .
二、无穷小与无穷大的关系
定理: lim f ( x) x x0 x
1 lim
0
x x0 f ( x)
有 限 次的 四 则 运 算 和复合
初等函数
第二节 数列和函数的极限
一、数列极限的定义
数列: un f (n),n N * ,称为整标函数。其函 数值: u1, u2 , , un , 叫做数列(序列)。数列的 每一个数称为项, 第 n项 un称为数列的一般项。 简 记数列为 {un } 数列极限:已给数列 {un }和常数 A,如果对于
三、无穷小的性质 ( 1)有限个无穷小的代数和仍是无穷小。 ( 2)有界函数与无穷小的乘积仍是无穷小

考研数学讲义

考研数学讲义

第一部分第一章集合与映射§1.集合§2.映射与函数本章教学要求:理解集合的概念与映射的概念,掌握实数集合的表示法,函数的表示法与函数的一些基本性质。

第二章数列极限§1.实数系的连续性§2.数列极限§3.无穷大量§4.收敛准则本章教学要求:掌握数列极限的概念与定义,掌握并会应用数列的收敛准则,理解实数系具有连续性的分析意义,并掌握实数系的一系列基本定理。

第三章函数极限与连续函数§1.函数极限§2.连续函数§3.无穷小量与无穷大量的阶§4.闭区间上的连续函数本章教学要求:掌握函数极限的概念,函数极限与数列极限的关系,无穷小量与无穷大量阶的估计,闭区间上连续函数的基本性质。

第四章微分§1.微分和导数§2.导数的意义和性质§3.导数四则运算和反函数求导法则§4.复合函数求导法则及其应用§5.高阶导数和高阶微分本章教学要求:理解微分,导数,高阶微分与高阶导数的概念,性质及相互关系,熟练掌握求导与求微分的方法。

第五章微分中值定理及其应用§1.微分中值定理§2.L'Hospital法则§3.插值多项式和Taylor公式§4.函数的Taylor公式及其应用§5.应用举例§6.函数方程的近似求解本章教学要求:掌握微分中值定理与函数的Taylor公式,并应用于函数性质的研究,熟练运用L'Hospital法则计算极限,熟练应用微分于求解函数的极值问题与函数作图问题。

第六章不定积分§1.不定积分的概念和运算法则§2.换元积分法和分部积分法§3.有理函数的不定积分及其应用本章教学要求:掌握不定积分的概念与运算法则,熟练应用换元法和分部积分法求解不定积分,掌握求有理函数与部分无理函数不定积分的方法。

线性代数考研讲义完整版

线性代数考研讲义完整版

线性代数考研讲义完整版前言线性代数是数学中的重要分支,也是计算机科学和物理学等领域中不可或缺的基础知识。

在考研数学中,线性代数是必考内容,因此对线性代数的掌握程度也是考生考研数学成绩的重要指标之一。

在本篇文章中,我们将介绍线性代数考研讲义的完整版,包括向量、矩阵、行列式、线性方程组、特征值、特征向量等知识点,帮助考生全面掌握线性代数的基本原理和应用。

第一章向量1.1 向量的基本概念•向量是有大小和方向的量,在平面和空间中表示为有向线段。

•向量的大小称为模长,方向由箭头所指示。

•向量之间可以进行加、减、数乘等运算。

1.2 向量的几何意义•向量可以表示平移和旋转等变换。

•向量运算可以表示点与直线、点与面的关系。

1.3 向量的坐标表示•向量的坐标表示可以转化为矩阵的形式。

•两个向量的数量积可以表示为它们坐标的点积。

1.4 向量的线性运算•向量加、减、数乘的线性运算满足交换律、结合律、分配律等基本性质。

•向量组的线性运算可以表示为矩阵的形式。

第二章矩阵2.1 矩阵的基本概念•矩阵是一个由数个数排成的矩形数表。

•矩阵可以表示为行向量和列向量的组合形式。

•矩阵的大小也称为维数,行数和列数分别表示为矩阵的行数和列数。

2.2 矩阵的运算•矩阵加法、减法、数乘等运算满足基本性质。

•矩阵乘法满足结合律,但不满足交换律。

•矩阵的转置、伴随矩阵等运算也具有重要的应用意义。

2.3 矩阵的初等变换•矩阵的初等变换包括交换矩阵的两行(列)、某行(列)乘以一个非零数、某行(列)乘以非零数加到另一行(列)上等三种操作。

•矩阵的初等变换可以通过矩阵乘法表示为简单矩阵的乘积,也称为初等矩阵。

第三章行列式3.1 行列式的定义•行列式是一个数值函数,是一个方阵中各行各列对应元素的代数和。

•若行列式的值为零,则该矩阵为奇异矩阵,否则为非奇异矩阵。

3.2 行列式的性质•行列式可以表示为对角线元素的乘积形式。

•行列式的任意两行(列)互换改变行列式的符号,相同的两行(列)使行列式为零。

《2021数学》第三章考研讲义

《2021数学》第三章考研讲义

《2021数学》第三章 整式、分式和函数一、基本定义1.单项式数与字母的积这样的代数式叫做单项式,如23x ;单独一个数或一个字母也是单项式.其中单项式中的字母因数叫做单项式的系数;所有字母的指数的和叫做这个单项式的次数;若单项式表示p m n x y ax ,那么a 称为单项式pm n x y ax 的系数,p m n ++叫做这个单项式的次数. 2.多项式几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.3.整式单项式和多项式统称为整式. 4.分式分式定义:用A 、B 表示两个整式,B A ÷就可以表示成BA的形式,如果除式B中含有字母,式子BA就叫做分式. 5.最简分式分式的分子与分母没有公因式时,叫做最简分式. 【练习】1.若x 2+xy +y =14,y 2+xy +x =28,则x +y 的值为( ) A.6或-7 B.-6或-7 C.6或7 D.7 E.-6或7【答案及解析】A 由已知两式相加得(x +y)2+(x +y )−42=0,把x+y 看作整体,分解得到(x +y +7)×(x +y −6)=0,故x+y=6或x+y=-7.二、整式的因式因式定理:)(x f 含有(b ax -)因式⇔)(x f 能被(b ax -)整除⇔()0bf a=; 尤其,)(x f 含有(a x -)因式⇔)(x f 能被(a x -)整除⇔0)(=a f 【练习】1.已知多项式f (x )=2x 4−3x 3−ax 2+7x +b 能被x 2+x −2整除,则 ab 的值是( )A.1B.-1C.2D.-2E.0【答案及解析】C 令x 2+x −2=0,得x=-2或x=1,从而,{f (−2)=0f (1)=0,解出a=12,b=6,则a b=2.2. 多项式f (x )=x 2+x +n 能被x +5整除,则此多项式也可以被( )整除. A. x −6 B. x +6 C. x −4 D. x +4 E. x +2【答案及解析】C 由因式定理,f (−5)=0,得n=-20,故f (x )=x 2+x −20=(x −4)(x +5).三、分解因式1.分解因式的概念:把一个多项式化成几个整式的积的形式,这种变形叫做分解因式(又叫因式分解). (1)因式分解的实质是一种恒等变形,是一种化和为积的变形. (2)因式分解与整式乘法是互逆的.(3)在因式分解的结果中,每个因式都必须是整式. (4)因式分解要分解到不能再分解为止. 2.因式分解的基本方法:(1)运用公式法;(2)分组分解法;(3)十字相乘法;(4)双十字相乘法.3.因式分解的一般步骤:一提二套三分组. 【练习】1.解分式方程2x2−2x−1+6x−6x2−1=7,解得x=()A. 1B.12C.1或12D.-1E.0【答案及解析】B 2x 2−2x−1+6x−6x2−1=(2x2−2)(x+1)+6x−6x2−1=2(x+1)2+6x+1=7,且x2−1≠0,x≠±1,故x=122. 已知2x−3x2−x =Ax−1+Bx,其中A,B为常数,那么A+B的值为( )A.-2B.2C.-4D.4E.1【答案及解析】B 2x−3x2−x =Ax−1+Bx=(A+B)x−Bx2−x,A+B=2.四、集合的有关概念1.集合的概念集合:将能够确切指定的一些对象看成一个整体,这个整体就叫做集合,简称集.元素:集合中各个对象叫做这个集合的元素.2.集合的分类有限集:含有有限个元素的集合.无限集:含有无限个元素的集合.规定:空集是不含任何元素的集合.3.元素与集合的关系属于:如果a是集合A的元素,就说a属于A,记作a∈A;不属于:如果a不是集合A的元素,就说a不属于A,记作a∉A.4.常用数集1.非负整数集(自然数集):全体非负整数的集合,记作N.2.正整数集:非负整数集排除0的集合,记作N+.3.整数集:全体整数的集合,记作Z.4.有理数集:全体有理数的集合,记作Q.5.实数集:全体实数的集合,记作R.【注】(1)自然数集与非负整数集是相同的,也就是说,自然数集包括0;(2)非负整数集内排除0的集,记作N.5.集合的基本运算1.A=B(指集合A 与集合B 有完全相同的元素).2.A ⊂B(集合A 真包含于集合B).A ⊆B(指集合A 包含于集合B ,即集合A 的元素都是集合B 的元素). A ⊈B(指集合A 不包含于集合B ,并且A ≠B).3.A ⋃B(指集合A 与B 的并集,是由属于集合A 或属于集合B 的全体元素组成的集合).4.A ⋂B(指集合A 与B 的交集,是由既属于集合A 又属于集合B 的全体元素组成的集合)5.∁⋃A (指集合A 的补集,是由属于全集但不属于集合A 的元素组成的集合). 【练习】1. 设集合A={x|−12<x ≤2},B={x |x 2≤1},则A ⋃B=( ) A. {x |−1≤x ≤2} B. {x|−12≤x ≤14} C. {x|x <2} D. {x |1≤x ≤2} E. {x |−2≤x ≤1}【答案及解析】A B={x |x 2≤1}={x |−1≤x ≤1}, A={x|−12<x ≤2}, A⋃B = {x |−1≤x ≤2}.2.设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},则∁⋃(A ∩B)=( ) A.{2,3} B.{1,4,5} C.{4,5} D.{1,5} E.{1,4}【答案及解析】B A={1,2,3},B={2,3,4},A ∩B={2,3},则∁⋃(A ∩B)={1,4,5}.五、函数1.一元二次函数 (1) 函数形式.一般式:.顶点式:. 分解式:.2(0)y ax bx c a =++≠224()24b ac b y a x a a-=++(0)a ≠12()()(0)y a x x x x a =--≠(2) 函数图像:抛物线 (3) 一般解析式与图像关系一般解析式:. 开口:开口向上;开口向下.截距:在轴上的截距为. 判别式:.零点:当时,在轴上的交点为对称轴:. 顶点:.最值:,最小值;最大值. 单调性:若,单调减(增)区间为; 2. 指数函数及对数函数 (1)指数和对数运算公式(2)图像及性质 2(0)y ax bx c a =++≠0a >0a <y c 24b ac ∆=-0∆>x 1,2x =2bx a =-24,24b ac b aa ⎛⎫-- ⎪⎝⎭0a >244acb a -0a <244ac b a-0(0)a ><,2b a ⎛⎫-∞- ⎪⎝⎭【练习】1. 一元二次函数y=x(1-x)的最大值为( )A.0.05B.0.10C.0.15D.0.20E.0.25【答案及解析】E 看到二次函数求最值,要想到图像的顶点公式,或者利用配方法.y =x (1−x )=x −x 2=−(x −12)2+14≤14,当x =12时,函数取最大值y max =14 = 0.25. 2. 已知log a 12<1,那么a 的取值范围为( ) A.0< a ≤12 B. a>1 C.a>1或0< a <12D.0< a < 32E. 12< a <1【答案及解析】C 由log a 12<1=log a a ,得当a>1时a> 12,故a>1;当0<a<1时,a<12,故0< a <12.因此a>1或0<a<12.练习题1.如果a 2+b 2+2c 2+2ac =2bc =0,则a+b 的值为( ) A.0 B.1 C.-1 D.-2 E.22.如果3(a 2+b 2+c 2)=(a +b +c)2,则a,b,c 三者的关系为( ) A. a +b =b +c B. a +b +c =1 C. a =b =c D. ab +bc =ac E.abc=13.已知(2021-a)(2021-a)=2021,那么(2021-a)2+(2021-a)2=( ) A.4002 B.4012 C.4042 D.4020 E.40004.若x ,y ,x 为实数,设A=x 2−2y +π2,B=y 2−2z +π3,C=z 2−2x +π6,则在A ,B ,C 中( )A.至少有一个大于零B.至少有一个小于零C.都大于零D.都小于零E.至少有两个大于零 5.已知x 2-x+a -3是一个完全平方式,则a=( ). A. 214 B. 314C. 114D. 334 E. 2346.对任意实数x ,等式ax -4x+5+b=0恒成立,则(a+b)2021为( ) A.0 B.-1 C.1 D.2021 E.27.当a ,b ,c 为( )时,多项式f(x)=2x ー7与g(x)=a(x -1)2ーb(x+2)+c(x 2+x -2)相等. A.a =−119,b =53,c =119B.a =−11,b =15,c =11C.a =119,b =53,c =−119D.a =11,b =15,c =−11E.以上答案均不正确8.确定m ,b 的值为( ),使mx 4+bx 2+1能被(x -1)2整除. A. m=1,b=4 B.m=3,b=-4 C.m=-3,b=4 D.m=1,b=-3 E.m=1,b=39. 已知(x 2+px+8)(x 2-3x+q)的展开式中不含x 2和x 3项,则p ,q 的值为( ). A. {p =2q =1 B.{p =3q =2 C. {p =2q =2D. {p =1q =3E. {p =3q =110.已知x 2−3x +1=0,则|x −1x |=( )A.√2B. √3C.1D. 2E. √511.设集合P={1,2,3,4},Q={x ||x |≤2,x ∈R },则P ∩Q 等于( ) A.{1,2} B.{3,4} C. {1} D.{-2,-1,0,1,2} E.{1,4}12. 已知二次函数f (x )满足 f (1+x )=f (1−x ),且f (0)=0,f (1)=1,以及在区间[m,n]上的值域是[m,n],则实数m+n的值为( )A.0B.1C.2D.3E.413.一元二次函数y=x(1-x)的最大值为( )A.0.05B.0.10C.0.15D.0.20E.0.2514. 如果log a5>log b5>0,那么a与b的关系是( )A.0<a<b<1B. 1<a<bC. 0<b<a<1D.1<b<aE. -1<a<b<115. 已知(a2+2a+5)3x>(a2+2a+5)1-x,则x的取值范围是( )A. [14,+∞) B.(14,+∞) C. [14,1]D.[1, +∞)E.(1,+∞)答案及解析1.A a 2+b 2+2c 2+2ac −2bc =(a +c )2+(b −c )2=0,根据非负性,所以a=-c,b=c,从而a+b=0,选择A 选项。

(绝密)考研数学完整版及参考标准答案

(绝密)考研数学完整版及参考标准答案

2019考研数学完整版及参考答案一、选择题:1-8小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则( )(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< .(2)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()d x f t t ⎰是(A )连续的奇函数.(B )连续的偶函数(C )在0x =间断的奇函数(D )在0x =间断的偶函数. ( )(3)设函数()g x 可微,1()()e ,(1)1,(1)2g x h x h g +''===,则(1)g 等于( )(A )ln31-. (B )ln3 1.--(C )ln 2 1.--(D )ln 2 1.-(4)函数212e e e xx x y C C x -=++满足的一个微分方程是 [ ](A )23e .xy y y x '''--= (B )23e .xy y y '''--=(C )23e .x y y y x '''+-=(D )23e .x y y y '''+-=(5)设(,)f x y 为连续函数,则140d (cos ,sin )d f r r r r πθθθ⎰⎰等于()(A)0(,)d xx f x y y . (B )0(,)d x f x y y .(C)(,)d yy f x y x . (D) 0(,)d y f x y x .(6)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是()(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠.(7)设12,,,s ααα均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是 [ ](A) 若12,,,s ααα线性相关,则12,,,s A A A ααα线性相关. (B) 若12,,,s ααα线性相关,则12,,,s A A A ααα线性无关. (C) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性相关.(D) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性无关.(8)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()(A)1C P AP -=. (B)1C PAP -=.(C)T C P AP =. (D)T C PAP =.一.填空题 (9)曲线4sin 52cos x xy x x+=- 的水平渐近线方程为(10)设函数2301sin d ,0(),0x t t x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在0x =处连续,则a =(11)广义积分22d (1)x xx +∞=+⎰. (12) 微分方程(1)y x y x-'=的通解是 (13)设函数()y y x =由方程1e yy x =-确定,则d d x y x==(14)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B .三 、解答题:15-23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分) 试确定,,A B C 的值,使得23e (1)1()x Bx Cx Ax o x ++=++,其中3()o x是当0x →时比3x 高阶的无穷小.(16)(本题满分10分)求 arcsin e d exxx ⎰. (17)(本题满分10分)设区域{}22(,)1,0D x y x y x =+≤≥, 计算二重积分221d d .1Dxyx y x y +++⎰⎰ (18)(本题满分12分)设数列{}n x 满足110,sin (1,2,)n n x x x n π+<<==(Ⅰ)证明lim n n x →∞存在,并求该极限;(Ⅱ)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. (19)(本题满分10分) 证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.(20)(本题满分12分)设函数()f u 在(0,)+∞内具有二阶导数,且z f=满足等式22220z zx y∂∂+=∂∂. (I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '==,求函数()f u 的表达式.(21)(本题满分12分)已知曲线L 的方程221,(0)4x t t y t t⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应于0x x ≤的部分)及x 轴所围成的平面图形的面积. (22)(本题满分9分) 已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩ 有3个线性无关的解.(Ⅰ)证明方程组系数矩阵A 的秩()2r A =;(Ⅱ)求,a b 的值及方程组的通解. (23)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解. (Ⅰ) 求A 的特征值与特征向量;(Ⅱ) 求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ.数学答案1. A 【分析】 题设条件有明显的几何意义,用图示法求解. 【详解】 由()0,()0f x f x '''>>知,函数()f x 单调增加,曲线()y f x =凹向,作函数()y f x =的图形如右图所示,显然当0x ∆>时,00d ()d ()0y y f x x f x x ''∆>==∆>,故应选(A).【评注】 对于题设条件有明显的几何意义或所给函数图形容易绘出时,图示法是求解此题的首选方法.本题还可用拉格朗日定理求解:0000()()(),y f x x f x f x x x x ξξ'∆=+∆-=∆<<+∆因为()0f x ''>,所以()f x '单调增加,即0()()f f x ξ''>,又0x ∆>,则0()()d 0y f x f x x y ξ''∆=∆>∆=>,即0d y y <<∆.定义一般教科书均有,类似例题见《数学复习指南》(理工类)P.165【例6.1】,P.193【1(3)】. 2. B 【分析】由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数()f x 去计算0()()d x F x f t t =⎰,然后选择正确选项.【详解】取,0()1,0x x f x x ≠⎧=⎨=⎩. 则当0x ≠时,()2220011()()d lim d lim 22x xF x f t t t t x x εεεε++→→===-=⎰⎰,而0(0)0lim ()x F F x →==,所以()F x 为连续的偶函数,则选项(B)正确,故选(B).【评注】对于题设条件含抽象函数或备选项为抽象函数形式结果以及数值型结果的选择题,用赋值法求解往往能收到奇效.符合题设条件的函数在多教科书上均可见到,完全类似例题见2006文登最新模拟试卷(数学三)(8).3. C 【分析】题设条件1()()e g x h x +=两边对x 求导,再令1x =即可.【详解】1()()e g x h x +=两边对x 求导,得1()()e ()g x h x g x +''=.上式中令1x =,又(1)1,(1)2h g ''==,可得1(1)1(1)1(1)e (1)2e (1)ln 21g g h g g ++''===⇒=--,故选(C ).【评注】本题考查复合函数求导,属基本题型. 完全类似例题见文登暑期辅导班《高等数学》第2讲第2节【例12】,《数学复习指南》理工类P.47【例2.4】,《数学题型集粹与练习题集》理工类P.1【典例精析】. 4. D 【分析】本题考查二阶常系数线性非齐次微分方程解的结构及非齐次方程的特解与对应齐次微分方程特征根的关系.故先从所给解分析出对应齐次微分方程的特征方程的根,然后由特解形式判定非齐次项形式.【详解】由所给解的形式,可知原微分方程对应的齐次微分方程的特征根为 121,2λλ==-.则对应的齐次微分方程的特征方程为 2(1)(2)0,20λλλλ-+=+-=即.故对应的齐次微分方程为20y y y '''+-=. 又*e x y x =为原微分方程的一个特解,而1λ=为特征单根,故原非齐次线性微分方程右端的非齐次项应具有形式()e x f x C =(C 为常数).所以综合比较四个选项,应选(D ).【评注】对于由常系数非齐次线性微分方程的通解反求微分方程的问题,关键是要掌握对应齐次微分方程的特征根和对应特解的关系以及非齐次方程的特解形式..完全类似例题见文登暑期辅导班《高等数学》第7讲第2节【例9】和【例10】,《数学复习指南》P.156【例5.16】,《数学题型集粹与练习题集》(理工类)P.195(题型演练3),《考研数学过关基本题型》(理工类)P.126【例14】及练习.5. C 【分析】 本题考查将坐标系下的累次积分转换为直角坐标系下的累次积分,首先由题设画出积分区域的图形,然后化为直角坐标系下累次积分即可.【详解】 由题设可知积分区域D 如右图所示,显然是Y 型域,则原式0(,)d yy f x y x =.故选(C).【评注】 本题为基本题型,关键是首先画出积分区域的图形.完全类似例题见文登暑期辅导班《高等数学》第10讲第2节例4,《数学复习指南》(理工类)P.286【例10.6】,《考研数学过关基本题型》(理工类)P.93【例6】及练习.6. D 【分析】 利用拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+在000(,,)x y λ(0λ是对应00,x y 的参数λ的值)取到极值的必要条件即可.【详解】 作拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,并记对应00,x y 的参数λ的值为0λ,则000000(,,)0(,,)0x y F x y F x y λλ⎧'=⎪⎨'=⎪⎩, 即0000000000(,)(,)0(,)(,)0x x y y f x y x y f x y x y λϕλϕ⎧''+=⎪⎨''+=⎪⎩ .消去0λ,得00000000(,)(,)(,)(,)0x y y x f x y x y f x y x y ϕϕ''''-=, 整理得 000000001(,)(,)(,)(,)x y x y f x y f x y x y x y ϕϕ'''='.(因为(,)0y x y ϕ'≠), 若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选(D).【评注】 本题考查了二元函数极值的必要条件和拉格朗日乘数法. 相关定理见《数学复习指南》(理工类)P.251定理1及P.253条件极值的求法.7. A 【分析】 本题考查向量组的线性相关性问题,利用定义或性质进行判定.【详解】 记12(,,,)s B ααα=,则12(,,,)s A A A AB ααα=.所以,若向量组12,,,s ααα线性相关,则()r B s <,从而()()r AB r B s ≤<,向量组12,,,s A A A ααα也线性相关,故应选(A).【评注】 对于向量组的线性相关问题,可用定义,秩,也可转化为齐次线性方程组有无非零解进行讨论.8. B 【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得.【详解】由题设可得110110110110,010********1001001001B AC B A --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ , 而 1110010001P --⎛⎫⎪= ⎪ ⎪⎝⎭,则有1C PAP -=.故应选(B).【评注】(1)每一个初等变换都对应一个初等矩阵,并且对矩阵A 施行一个初等行(列)变换,相当于左(右)乘相应的初等矩阵.(2)牢记三种初等矩阵的转置和逆矩阵与初等矩阵的关系. 完全类似例题及性质见《数学复习指南》(理工类)P.381【例2.19】,文登暑期辅导班《线性代数》第2讲例12.9. 【分析】 直接利用曲线的水平渐近线的定义求解即可.【详解】 4sin 14sin 1lim lim 2cos 52cos 55x x xx x x x x x x →∞→∞++==--. 故曲线的水平渐近线方程为 15y =.【评注】本题为基本题型,应熟练掌握曲线的水平渐近线,垂直渐近线和斜渐近线的求法.注意当曲线存在水平渐近线时,斜渐近线不存在,为什么?完全类似例题见文登暑期辅导班《高等数学》第6讲第4节【例12】,《数学复习指南》(理工类)P.180【例6.30】,【例6.31】.10. 【分析】本题为已知分段函数连续反求参数的问题.直接利用函数的连续性定义即可.【详解】 由题设知,函数()f x 在 0x =处连续,则 0lim ()(0)x f x f a →==,又因为 2203200sin d sin 1lim ()limlim 33xx x x t t x f x x x →→→===⎰. 所以 13a =. 【评注】遇到求分段函数在分段点的连续性问题,一般从定义入手.本题还考查了积分上限函数的求导,洛必达法则和等价无穷小代换等多个基本知识点,属基本题型.完全类似例题见文登暑期辅导班《高等数学》第1讲第1节【例13】,《数学复习指南》(理工类)P.35【例1.51】.88年,89年,94年和03年均考过该类型的试题,本题属重点题型.11. 【分析】利用凑微分法和牛顿-莱布尼兹公式求解.【详解】2022222200d 1d(1+)111111lim lim lim (1)2(1)21+21+22b b b b b x x x x x x b +∞→∞→∞→∞==-=-+=++⎰⎰. 【评注】 本题属基本题型,对广义积分,若奇点在积分域的边界,则可用牛顿-莱布尼兹公式求解,注意取极限.完全类似例题见文登暑期辅导班《高等数学》第5讲第6节【例1】,《数学复习指南》(理工类)P.119【例3.74】.12 .【分析】本方程为可分离变量型,先分离变量,然后两边积分即可【详解】 原方程等价为d 11d y x y x ⎛⎫=- ⎪⎝⎭, 两边积分得 1ln ln y x x C =-+,整理得e x y Cx -=.(1e CC =)【评注】 本题属基本题型.完全类似公式见《数学复习指南》(理工类)P.139.13. 【分析】本题为隐函数求导,可通过方程两边对x 求导(注意y 是x 的函数),一阶微分形式不变性和隐函数存在定理求解.【详解】 方法一:方程两边对x 求导,得e e y y y xy ''=--.又由原方程知,0,1x y ==时.代入上式得d e d x x yy x=='==-.方法二:方程两边微分,得d e d e d y y y x x y =--,代入0,1x y ==,得0d e d x yx==-.方法三:令(,)1e y F x y y x =-+,则()0,10,10,10,1ee,1e 1yy x y x y x y x y FF x xy========∂∂===+=∂∂,故0,10,1d e d x y x x y F y xF xy=====∂∂=-=-∂∂.【评注】 本题属基本题型.求方程确定的隐函数在某点处的导数或微分时,不必写出其导数或微分的一般式完全类似例题见文登暑期辅导班《高等数学》第2讲第2节【例14】,《数学复习指南》(理工类)P.50【例2.12】.14. 【分析】 将矩阵方程改写为AX B XA B AXB C ===或或的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有 ()2B A E E -= 于是有4B A E -=,而11211A E -==-,所以2B =.【评注】 本题关键是将其转化为用矩阵乘积形式表示.类似题2005年考过.完全类似例题见文登暑期辅导班线性代数第1讲例6,《数学复习指南》(理工类)P.378【例2.12】15.【分析】题设方程右边为关于x 的多项式,要联想到e x 的泰勒级数展开式,比较x 的同次项系数,可得,,A B C 的值.【详解】将e x 的泰勒级数展开式233e 1()26xx xx o x =++++代入题设等式得 233231()[1]1()26x x x o x Bx Cx Ax o x ⎡⎤++++++=++⎢⎥⎣⎦整理得233111(1)()1()226B B x B C x C o x Ax o x ⎛⎫⎛⎫+++++++++=++ ⎪ ⎪⎝⎭⎝⎭比较两边同次幂系数得11021026B AB C BC ⎧⎪+=⎪⎪++=⎨⎪⎪++=⎪⎩,解得 132316A B C ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩.【评注】题设条件中含有高阶无穷小形式的条件时,要想到用麦克劳林公式或泰勒公式求解.要熟练掌握常用函数的泰勒公式.相应公式见《数学复习指南》理工类P.124表格.16.【分析】题设积分中含反三角函数,利用分部积分法.【详解】arcsin e d arcsin e de e arcsin e e e x x x x x x xx x x --=-=-+⎰⎰⎰-e arcsin e x x x -=-+⎰.令t=221ln(1),d d 21t x t x t t=-=--, 所以21111d d 1211x t t t t t ⎛⎫==- ⎪--+⎝⎭⎰⎰111ln 212t C t -=+=+.【评注】被积函数中为两种不同类型函数乘积且无法用凑微分法求解时,要想到用分部积分法计算;对含根式的积分,要想到分式有理化及根式代换.本题为基本题型,完全相似例题见文登暑期辅导班《高等数学》第3讲第3节【例6】,《数学复习指南》理工类P.79【例3.21】.17. 【分析】 由于积分区域D 关于x 轴对称,故可先利用二重积分的对称性结论简化所求积分,又积分区域为圆域的一部分,则将其化为极坐标系下累次积分即可.【详解】 积分区域D 如右图所示.因为区域D 关于x 轴对称, 函数221(,)1f x y x y=++是变量y 的偶函数,函数22(,)1xyg x y x y =++是变量y 的奇函数.则112222220011ln 2d d 2d d 2d d 1112DD r x y x y r xy x y r ππθ===+++++⎰⎰⎰⎰⎰⎰22d d 01Dxyx y x y =++⎰⎰, 故22222211ln 2d d d d d d 1112D D Dxy xy x y x y x y x y x y x y π+=+=++++++⎰⎰⎰⎰⎰⎰. 【评注】只要见到积分区域具有对称性的二重积分计算问题,就要想到考查被积函数或其代数和的每一部分是否具有奇偶性,以便简化计算.完全类似例题见文登暑期辅导班《高等数学》第10讲第1节例1和例2,《数学复习指南》(理工类)P.284【例10.1】18. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在. (Ⅱ)的计算需利用(Ⅰ)的结果.【详解】 (Ⅰ)因为10x π<<,则210sin 1x x π<=≤<.可推得10sin 1,1,2,n n x x n π+<=≤<=,则数列{}n x 有界.于是1sin 1n nn nx x x x +=<,(因当0sin x x x ><时,), 则有1n n x x +<,可见数列{}n x 单调减少,故由单调减少有下界数列必有极限知极限lim n n x →∞存在.设lim n n x l →∞=,在1sin n n x x +=两边令n →∞,得 sin l l =,解得0l =,即l i m 0n n x →∞=.(Ⅱ) 因 22111sin lim lim nn x x n n n n n n x x x x +→∞→∞⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,由(Ⅰ)知该极限为1∞型, 令n tx =,则,0n t →∞→,而222sin 111111sin 1000sin sin sin lim lim 11lim 11tt t t t t t t t t t t t t t t -⋅-→→→⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=+-=+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,又 33233000()1sin sin 13!lim 1lim lim 6t t t t t o t tt t t t t t t →→→-+--⎛⎫-===- ⎪⎝⎭. (利用了sin x 的麦克劳林展开式)故 2211116sin lim lim e nn x x n n n n n n x x x x -+→∞→∞⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭.19. 【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<,则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,s i n 0x x x π<<>时), 故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即sin 2cos sin 2cos b b b b a a a a ππ++>++.20利用复合函数偏导数计算方法求出2222,z z x y ∂∂∂∂代入22220z zx y∂∂+=∂∂即可得(I ).按常规方法解(II )即可.【详解】 (I )设u =((z z f u f u x y ∂∂''==∂∂.22()()zf u f ux∂'''=∂()22322222()()x yf u f ux yx y'''=⋅+⋅++,()2223222222()()z y xf u f uy x yx y∂'''=⋅+⋅∂++.将2222,z zx y∂∂∂∂代入2222z zx y∂∂+=∂∂得()()0f uf uu'''+=.(II)令()f u p'=,则d dp p upu p u'+=⇒=-,两边积分得1ln ln lnp u C=-+,即1Cpu=,亦即1()Cf uu'=.由(1)1f'=可得11C=.所以有1()f uu'=,两边积分得2()lnf u u C=+,由(1)0f=可得20C=,故()lnf u u=.【评注】本题为基础题型,着重考查多元复合函数的偏导数的计算及可降阶方程的求解.完全类似例题见文登暑期辅导班《高等数学》第8讲第1节【例8】,《数学复习指南》(理工类)P.336【例12.14】,P.337【例12.15】21. 【分析】(I)利用曲线凹凸的定义来判定;(II)先写出切线方程,然后利用(1,0)-在切线上;(III)利用定积分计算平面图形的面积.【详解】(I)因为dd d d422d2,421dd d d2dyx y y ttt txt t x t tt-==-⇒===-2223d d d12110,(0)dd d d2dy ytxx t x t t tt⎛⎫⎛⎫=⋅=-⋅=-<>⎪ ⎪⎝⎭⎝⎭故曲线L当0t≥时是凸的.(II)由(I)知,切线方程为201(1)y xt⎛⎫-=-+⎪⎝⎭,设2001x t=+,20004y t t=-,则220000241(2)t t t t ⎛⎫-=-+⎪⎝⎭,即23200004(2)(2)t t t t -=-+ 整理得 20000020(1)(2)01,2(t t t t t +-=⇒-+=⇒=-舍去).将01t =代入参数方程,得切点为(2,3),故切线方程为231(2)1y x ⎛⎫-=-- ⎪⎝⎭,即1y x =+.(III )由题设可知,所求平面图形如下图所示,其中各点坐标为 (1,0),(2,0),(2,3),(1,0)A B C D -, 设L 的方程()x g y =, 则()30()(1)d Sg y y y =--⎡⎤⎣⎦⎰ 由参数方程可得2t =(221x =+.由于(2,3)在L 上,则(2()219x g y y ==+=--.于是(309(1)d S y y y ⎡⎤=----⎣⎦⎰300(102)d 4y y y =--⎰⎰()()3233208710433y yy =-+-=. 【评注】 本题为基本题型,第3问求平面图形的面积时,要将参数方程转化为直角坐标方程求解.完全类似例题和公式见《数学复习指南》(理工类)P.187【例6.40】.22. 【分析】 (I )根据系数矩阵的秩与基础解系的关系证明;(II )利用初等变换求矩阵A 的秩确定参数,a b ,然后解方程组.【详解】 (I ) 设123,,ααα是方程组Ax β=的3个线性无关的解,其中111114351,1131A a b β-⎛⎫⎛⎫ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.则有 1213()0,()0A A αααα-=-=.则1213,αααα--是对应齐次线性方程组0Ax =的解,且线性无关.(否则,易推出123,,ααα线性相关,矛盾).所以 ()2n r A -≥,即4()2()2r A r A -≥⇒≤. 又矩阵A 中有一个2阶子式111043=-≠,所以()2r A ≤.因此 ()2r A =. (II ) 因为11111111111143510115011513013004245A a b a a b a a b a ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----+-⎝⎭⎝⎭⎝⎭.又()2r A =,则42024503a ab a b -==⎧⎧⇒⎨⎨+-==-⎩⎩. 对原方程组的增广矩阵A 施行初等行变换,111111024243511011532133100000A --⎛⎫⎛⎫ ⎪ ⎪=--→-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,故原方程组与下面的方程组同解. 13423424253x x x x x x =-++⎧⎨=--⎩.选34,x x 为自由变量,则134234334424253x x x x x x x x x x =-++⎧⎪=--⎪⎨=⎪⎪=⎩. 故所求通解为12242153100010x k k -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12,k k 为任意常数.【评注】 本题综合考查矩阵的秩,初等变换,方程组系数矩阵的秩和基础解系的关系以及方程组求解等多个知识点,特别是第一部分比较新颖. 这是考查综合思维能力的一种重要表现形式,今后类似问题将会越来越多.完全类似例题见《数学复习指南》(理工类)P.427【例4.5】,P.431【例4.11】. 23. 解: 由矩阵A 的各行元素之和均为3及矩阵乘法可得矩阵A 的一个特征值和对应的特征向量;由齐次线性方程组0Ax =有非零解可知A 必有零特征值,其非零解是0特征值所对应的特征向量.将A 的线性无关的特征向量正交化可得正交矩阵Q .【详解】 (Ⅰ) 因为矩阵A 的各行元素之和均为3,所以1311331131A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由特征值和特征向量的定义知,3λ=是矩阵A 的特征值,T(1,1,1)α=是对应的特征向量.对应3λ=的全部特征向量为k α,其中k 为不为零的常数.又由题设知120,0A A αα==,即11220,0A A αααα=⋅=⋅,而且12,αα线性无关,所以0λ=是矩阵A 的二重特征值,12,αα是其对应的特征向量,对应0λ=的全部特征向量为1122k k αα+,其中12,k k 为不全为零的常数.(Ⅱ) 因为A 是实对称矩阵,所以α与12,αα正交,所以只需将12,αα正交.取11βα=,()()21221111012,3120,61112αββαβββ⎛⎫-⎪-⎛⎫⎛⎫ ⎪- ⎪ ⎪=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭. 再将12,,αββ单位化,得1212312,,0ββαηηηαββ⎛⎛⎪====== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭, 令[]123,,Q ηηη=,则1TQ Q -=,由A 是实对称矩阵必可相似对角化,得T300Q AQ ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档