2.2对数函数及其性质

合集下载

人教A版高中数学必修1课件:2.2.2《对数函数及其性质》课件

人教A版高中数学必修1课件:2.2.2《对数函数及其性质》课件

练习:(1)y log a (9 x 2 ) (2)y log (2 x1) (3 x 2)
3y
log
7
1 1 3x
4y loga 4 x
小结: 1.对数函数的概念. 2.对数函数的定义域. 3.对数函数的图象及其性质,通过对a分类讨 论掌握其性质与图象.
练习:已知函数 f(x)=log2 (2x-1)
即已知y求x的问题。
yx=log2xy
对数函数:
一般地,我们把函数 y log a xa 叫0做且对a数函1
数,其中x是自变量,函数的定义域是(0,+∞).
注意:①对数函数的定义与指数函数类似,都是情势定义,
注意辨别.如:y 2 log 2 x,
能称其为对数型函数.
y l都og不2 是52 对x 数函数,而只
a>1
0<a<1

y
y

o (1, 0)
(1, 0) xo
x
(1) 定义域: (0,+∞)
性 (2) 值域:R
(3) 过点(1,0), 即x=1 时, y=0
(4) 0<x<1时, y<0;
(4) 0<x<1时, y>0;

x>1时, y>0
x>1时, y<0
(5) 在(0,+∞)上是增函数 (5)在(0,+∞)上是减函数
0 1 23 4
连 -1 线 -2
2 4… 1 2…
x
x … 1/4 1/2
列 表
y
y
log 2
log 1
x…
x…
2
-2 2

数学:2.2.2《对数函数及其性质》教案(新人教版A必修1)

数学:2.2.2《对数函数及其性质》教案(新人教版A必修1)

2.2.2对数函数及其性质一、教学内容分析《普通高中课程标准数学教科书·必修(1)》(人民教育出版社)高中一年级第二单元2.2.2《对数函数的图象和性质》第一课时。

函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。

必修(Ⅰ)2.2.2对数函数及其性质,按课标要求教学时间为3个学时,本节课为第1课时,本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。

为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。

二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。

学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。

最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。

三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。

通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。

高一数学:2.2.2《对数函数的性质》课件

高一数学:2.2.2《对数函数的性质》课件
关于抖音刷粉多少钱一直备受关注。通过抖音短视频挑选产品,让更多的关注者认识产品,同时通过自己的粉丝传播,形成良好的循环发展,这种广告方式成本低,交易率高,持续性和增长性的经济回 报。/
大家都知道,新手玩抖音缺乏经验和方法,拍摄的视频无看点、无内容,尤其没有人关注的新抖音,抖音视频靠前,无疑天荒夜谈。也就是说,不注重维持粉丝的亲密关系,就会慢慢失去粉丝,被对 方取消关注,那么就失去增粉的价值了。,俗话说,任何的成功,都不是一蹴而就的
2.2.2 对数函数及其性质 第二课时 对数函数的性质
问题提出
1.什么是对数函数?其大致图象如何?
2.由对数函数的图象可得到哪些基本性 质?
知识探究(一):函数y = loga x(a 1)的性质
y
思考1:函数图象分布
在哪些象限?与y轴的 相对位置关系如何?
1
0
1
x
思考2:由此可知函数的定义域、值域分别 是什么?
理论迁移
例1 比较下列各组数中的两个值的大小: (1)log23.4,log28.5 ; (2)log0.31.8,log0.32.7; (3)loga5.1,loga5.9(a>0,a≠1); (4)log75,log67.
例2 求下列函数的定义域、值域: (1) y= 1+ log3(x −1) ; (2) y=log2(x2+2x+5).
例3 溶液酸碱度的测量: 溶液酸碱度是通过pH刻画的. pH
的计算公式为pH=-lg[H+],其中[H+] 表示溶液中氢离子的浓度,单位是摩 尔/升. (1)根据对数函数性质及上述pH的计 算公式,说明溶液酸碱度与溶液中氢 离子的浓度之间的变化关系; (2)已知纯净水中氢离子的浓度为[H+ =10-7摩尔/升,计算纯净水的pH.

2.2.2 对数函数及其性质 第1课时 对数函数的图象及性质

2.2.2 对数函数及其性质 第1课时  对数函数的图象及性质

探究1:对数函数的定义 一般地,我们把函数_y_=_l_o_g_a_x_(_a_>_0_,_且__a_≠_1_)_叫
做对数函数,其中x是自变量,函数的定义域是 _〔__0_,__+_∞__〕__.__ 注意:〔1〕对数函数定义的严格形式;
〔2〕对数函数对底数的限制条件:
a 0且a 1.
思考1.对数函数的解析式具有什么样的结构特征呢? 提示:对数函数的解析式具有以下三个特征: (1)底数a为大于0且不等于1的常数; (2)真数位置是自变量x,且x的系数是1; (3)logax的系数是1.
1
2
4
……
y=2x
反过来,1个细胞经过多少次分裂,大约可以 等于1万个、10万个细胞?细胞个数y,如何求细 胞分裂次数x?得到怎样一个新的函数?
1
2
4 ……
y=2x
x=? x log2 y y 2x
现在就让我们一起进入本节的学习来解决这些 问题吧!
1.理解对数函数的概念,掌握对数函数的图像与 性质.〔重点〕 2.知道对数函数是一类重要的函数模型; 3.了解指数函数y=ax与对数函数y=logax互为反函 数〔a>0,且a≠1).〔难点〕
4,
1 2
.
①求f(x)的解析式; ②解方程f(x)=2. 分析:(1)根据对数函数的形式定义确定参数m所满足的条件求解 即可;(2)根据设出函数解析式,代入点的坐标求出对数函数的底数; 然后利用指对互化解方程.
变式训练1(1)假设函数f(x)=log(a+1)x+(a2-2a-8)是对数函数,那么 a= .
所以函数 y 1 的定义域为{x|x>0,且x≠1}. log2 x
〔3〕因为

2.2.2 对数函数及其性质

2.2.2   对数函数及其性质

3 y x ( x R) 的反函数,并且画出原来的函数和它 例13:求函数
的反函数的图象。
解:由y x 3,得 x 3 y ∴函数 y x 的反函数是: y 3 x ( x R)
3 3 y x ( x R)和它的反函数 y 3 x ( x R) 的图象如图所示: 函数
(2)在定义域上是增函数
注:函数 y log a x(a 0且a 1) 的图象与 y log 1 x(a 0且a 1) 的 a 图象关于 x轴对称。 练习: 1. 函数 y log 4.3 x 的值域是( D )
A.(0,) C义:
一般地,我们把函数 y log a x(a 0, 且a 1) 叫做对数函数, 其中 x 是自变量,函数的定义域是(0,) 。
注:
x y a 1.由于指数函数 中的底数a满足a 0且a 1 ,则对数函数 y log a x 中的底数 a 也必须满足 a 0且a 1。
二、对数函数的图象和性质:
例2:函数 y log2 x 和 y log1 x 的图象。
2
一般地,对数函数y log a x(a 0,且a 1)的图象和性质 如下表所示:
0 a 1
图象
a 1
定义域 值域 性质 (2)在定义域上是减函数
(0,)
R
(1)过定点(1,0),即x=1时,y=0
x f 1 ( y)
y 注:在函数 x f 1 ( y)中,表示自变量,表示函数。但在习惯上, x 我们一般用 x 表示自变量,用 y表示函数,为此我们常常对调函数 x f 1 ( y)中的字母 x, y,把它改写为 y f 1 ( x)。
2.如果函数 y f ( x)有反函数 f 1 ( x) ,那么函数 y f 1 ( x) 的反函 数就是y f ( x) 。

2.2.2对数函数及其性质运算(1)课件

2.2.2对数函数及其性质运算(1)课件
注: 例2是利用对数函数的增减性比较两个对数的大 小的,对底数与1的大小关系未明确指出时,要分情况 对底数进行讨论来比较两个对数的大小.
练习1:
比较下列各题中两个值的大小:
⑴ log106 ⑵ log0.56 < log108 log0.54 < ⑶ log0.10.5 > log0.10.6 ⑷ log1.51.6 > log1.51.4
y log 1 x
y log 1 x
2
x
3
对数函数的图象与性质:
函数 底数
y
y = log a x ( a>0 且 a≠1 ) a>1
y 1
0<a<1
图象 定义域
o
1
x
o
x
(0,+∞)
(0,+∞)
值域 定点
值分布
R (1,0)
当 x>1 时,y>0 当 0<x <1 时, y<0
R (1,0)
⑵因为函数y=log0.3x在(0,+∞)上是减函数, 且1.8<2.7,所以log 0.31.8>log 0.32.7.
小结:对于同底不同真数的对数大小比较,应利 用对数函数的单调性判断大小。
⑶ loga5.1 , loga5.9 ( a>0 , a≠1 )
解:①当a>1时,函数y=log ax在(0,+∞)上是增函 数,于是log a5.1<log a5.9; ②当0<a<1时,函数y=log ax在(0,+∞)上是 减函数,于是log a5.1>log a5.9.
例2.比较下列各组数中两个值的大小: (1) log23.4 , log28.5; ⑵ log0.31.8, log0.32.7; ⑶ loga5.1 , loga5.9 (a>0,a≠1 ).

高一数学对数函数及其性质2

高一数学对数函数及其性质2

比较下列各组数的大小:
(1)log2π与log20.9;
(2)log20.3与log0.20.3; (3)3log45与2log23;
(4)log1/30.3,log20.8
【思路点拨】 由题目可获取以下主要信息: (1)中底数相同,真数不同;
(2)中底数不同,真数相同;
(3)(4)中底数与真数各不相同.解答本题可考虑利用对数函数的单 调性或图象求解.
①函数y=loga(2-ax)在[0,1]有意义,
②函数在[0,1]上是减函数. 解决本类问题应注意复合函数单调性的判定方法.
【解析】 设y=f(x)=loga(2-ax),因为f(x)在[0,1]上是减函数,
则f(0)>f(1),即loga2>loga(2-a).
因为 a 为对数的底数,则 a>0,且 a≠1,
(2)若底数为同一字母,则可按对数函数的单调性对底数进行分类讨
论; (3)若底数不同,真数相同,则可利用对数函数的图象或利用换底公
式化为同底,再作比较.
(4)若底数、真数均不相同,则可借助中间值-1,0,1等作比较.
2.复合函数单调区间的求法 关于形如y=logaf(x)(a>0,且a≠1)一类函数的单调性:
而log2u1<log2u2 ∴函数y=log2(3+2x-x2)在(-1,1]上单调递增,
同理在[1,3)上单调递减.
已知y=loga(2-ax)在[0,1]上是关于x的减函数,则a的取值范围是( )
A.(0,1)
B.(1,2)
C.(0,2) D.(2,+∞) 【思路点拨】 由题目可以获取以下主要信息:
2a>a-1 即 ,解得 a>1.即实数 a 的取值范围是 a-1>0

2.2.2对数函数及其性质

2.2.2对数函数及其性质
2
y
x

1 2
1
2
4
8

y

1
0
-1
-2
-3

-1 -2 -3
3 2 1
y=log2x

0
这两个图象 又有何关系?

1 2 3 4 5
● ●
6 7
8
x
y = log 1 x

2
探索研究:
log 2 x (2)y log 1 x
(1) y
在同一坐标系中画出下列对数函数的图象; y
..........
反函数
复习引入
函数的定义
如果在某个变化过程中有两个变量X和Y,并且对
于X在某个范围内的每一个确定的值,按照某个对应
法则,Y都有唯一确定的值和它对应,那么Y就是X的函
数,X就叫做自变量,X的取值范围称为函数的定义域, 和X的值对应的Y的值叫做函数值,函数值的集合叫做 函数的值域。 记为: y=f(x)
(3)log0.50.4
log20.7 (4)loga0.4 loga0.7
同步练习
例2:比较下列各式中两个值的大小 (1)log3π
1 (2) log 2 2
log3e log2(a2+a+1)
(3)log2.11.7
(4)log67
log0.37
log76
(5)log35
(6)log56
log45
同步练习 1.若函数y=f(x)是函数y=ax(a>0,且a≠1)的反函 数,且f(2)=1,则f(x)=
对数函数的应用
例1 若函数f(x)=ax+loga(x+1)上的最大值和最小值 之和为a,则a=( ) ) )

2.2.2《对数函数及其性质》课件

2.2.2《对数函数及其性质》课件

例2 比较下列各组中,两个值的大小: (1) log23.4与 log28.5 (2)log 0.3 1.8与 log 0.3 2.7
(2) 解法1:画图找点比高低
解法2:考察函数y=log 0.3 x , 解:∵0.3< 1,
∴函数y=log 0.3 x ,在区间(0,+∞)上是减函数;
∵1.8<2.7 ∴ log 0.3 1.8> log 0.3 2.7
2
作图步骤: ① 列表 ② 描点 ③ 连线
作y=log2x的图象

x
1/4 1/2 1 2
表 y=log2x -2 -1 0 1
y

2

1 11
42
0 1 23 4
x

-1
线
-2
4… 2…
y
认真观察函数
2
y=log2x 的图象填写下表
1 11 42
0 123 4 -1
x
-2
图象位于y轴右方
定义域 : ( 0,+∞)
1. 两个同底数的对数比较大小的一般步骤:
①确定所要考查的对数函数; ②根据对数底数判断对数函数增减性; ③比较真数大小,然后利用对数函数的增减性判断两 对数值的大小.
课后练习 课后习题
连 线
-1
-2
关于x轴对称
认真观察函数
y log 1 x
2
的图象填写下表
y 2
1 11
42
0 123 4
x
-1
-2
图象位于y轴右方
定义域 : ( 0,+∞)
图象向上、向下无限延伸 值 域 : R
自左向右看图象逐渐下降 在(0,+∞)上是: 减函数

对数函数及其性质

对数函数及其性质
2
与 y log1 x 的图象.
3
2. 对数函数的图象:
通过列表、描点、连线作 y log1 x
2
与 y log1 x 的图象.
3
y
O
y log 1 xx
y log 1 x 3
2
3. 对数函数的性质:
a>1
图 象
0<a<1
性 质
3. 对数函数的性质:
图y 象O
a>1
x
0<a<1

在(0,+∞)上是增函数 在(0,+∞)上是减函数
3. 对数函数的性质:
图y 象O
a>1
x
0<a<1
y
O
x
定义域:(0, +∞); 值域:R
性 过点(1, 0),即当x=1时,y=0.

x∈(0, 1)时,y<0; x∈(1, +∞)时,y>0.
在(0,+∞)上是增函数 在(0,+∞)上是减函数
性 质
3. 对数函数的性质:
图y 象O
a>1
x
0<a<1
y
O
x
性 质
3. 对数函数的性质:
图y
a>1
0<a<1
y
象O
x
O
x
定义域:(0, +∞); 值域:R
性 质
3. 对数函数的性质:
图y 象O
a>1
x
0<a<1
y
O
x
定义域:(0, +∞); 值域:R
性 过点(1, 0),即当x=1时,y=0.
3. 对数函数的性质:
图y 象O
a>1

2.2.2对数函数的图象及性质

2.2.2对数函数的图象及性质

比较大小应该注意: 比较大小应该注意:
1、若底数为同一常数,则可由对数函数的 若底数为同一常数, 单调性直接进行判断 (例1 (1),(2)) 例 2、若底数为同一字母,则按对数函数的单 若底数为同一字母, 调性对底数进行分类讨论 (例1(3)) 3、若底数、真数都不相同,则常借助 若底数、真数都不相同, 1、0、-1等中间量进行比较. ( 例2 ) 、-1等中间量进行比较.
1 y = 2
x
反之,设截取木棒次数为 , 反之,设截取木棒次数为y,木棒剩 余长度为x 的关系是: 余长度为 ,则y与x的关系是: 与 的关系是
y = log 1 x
2
一、对数函数的定义: 对数函数的定义:
函数y=log (a>0,且a≠1)叫做对数 函数y=logax (a>0,且a≠1)叫做对数 函数. 是自变量。 函数 其中 x是自变量。 是自变量 定义域是 函数的定义域 函数的定义域是( 0 , +∞) ) 思考: 为什么定义域为( 思考:(1)为什么定义域为( 0 , +∞)? )
练习3: 练习 :
将0.32,log20.5,log0.51.5由小到大 , 由小到大 log20.5< log0.51.5<0.32 排列,顺序是: 排列,顺序是:
课堂总结: 课堂总结:
1、对数函数的定义 、 2、对数函数的图象和性质 、 3、比较两个对数值的大小 、
图 象
指数函数y=ax (a>0,a≠1) y y=ax y=ax (0<a<1) (a>1) 1 x o (1)定义域:R 定义域: 定义域 (2)值域:(0,+∞) 值域: 值域
对数函数及其性质( 2.2.2 对数函数及其性质(一)

2.2.2对数函数及其性质(三课时)

2.2.2对数函数及其性质(三课时)
你能口答吗? 变一变还能口答吗?
< 1、 log0.56______log0.54
< 3、 若 log3m log3n,则m___n;
> > 2、 log1.51.6______log1.514. 4、 若 log0.7m log0.7n , 则m___n.
利用单调性比较大小
练习:比较下列各数的大
1 1
2
3
4
5
6
7
8
定义域: 值域:
(0,+∞) (,)

过点(1,0),即当x=1时,y=0
质 x (0,1)
y0
x (0,1) y 0
x (1,) y 0
在(0,+∞)上是 增 函数
x (1,) y 0
在(0,+∞)上是 减 函数
y

y=log 2x

y=log 3x
01
y log 1 x x

在第一象限按顺时针方向底 补充 数增大。
性质 二
指数函数、对数函数的图象有何关系呢? 先看y=2x 与y=log2x
y=2x
y=2x
y=log2x y=x
指数函数与对数函数
图 象 间 的 关 系
指数函数与对数函数
图 象 间 的 关 系
3、指数函数与对数函数的图象的关系:
对数函数 y loga x 与指数函数 y ax
3
y log 1 x
2
补充 底数互为倒数的两个对数
性质 函数的图象关于x轴对称。

在第一象限按顺时针方向底 补充 数增大。
性质 二
3、指数函数与对数函数的图像的关系:
对数函数 y loga x 与指数函数 y ax

对数函数及其性质

对数函数及其性质
5
1 (2) y log 2 x
1 (3) y log 7 ( ) 1 3x
【探究】在同一直角坐标系中用描点法画出函 数
y log 1 x y log 1 x y log2 x y log3 x
2
3
的图象。
2.对数函数y=logax (a>0且a≠1) 的图象和性质:
[问题提出] 1.什么是对数函数?其大致图象如何? 函数y=logax (a>0且a≠1)叫做对数函数,
定义域为(0,+∞) 例1 求下列函数的定义域:
(1) y log a x
2
{x|x≠0}
( 2) y log a (4 x ) {x|x<4}
变式练习 求下列函数的定义域: (1) y log (1 x)
0<x<1
y>0
y<0
2.对数函数y=logax (a>0且a≠1) 的图象和性质:
图象特征: 性质:
(1)都在y轴右方;
(2)图像不关于原点 和y轴不对称 (3)向y轴正负方向无限 延伸 (4)都过点(1,0) (5)当a>1时,从左向右看逐 渐上升;当0<a<1时,从左向 右看逐渐下降
(1)定义域:(0,+∞)
2.2.2 对数函数及其性质
(1)
P70
1.对数的定义P62 :
一般地,如果a(a>0, a≠1)的b次幂等于N, 就是ax=N ,那么数x叫做以a为底N的对数, 记作:logaN=x.
2.几个常用的结论(P63) :
(1)负数与零没有对数 (2) loga 1 0 (3) loga a 1 loga N (4)对数恒等式:a
用描点法画函数

2.2.2对数函数及其性质

2.2.2对数函数及其性质
y
当0<a<1时
y
1
5.1 5.9
o
1
5.1 5.9 x
o
x
loga5.1< loga5.9
loga5.1> loga5.9
(4) log0.37,log97.
log0.37<log0.31=0, log97>log91=0, ∴log0.37<log97.
5.
log 67 , log 7 6 ;
定义域 : 值 域 :
( 0,+∞) R
在(0,+∞)上是:减函数
(3)根据对称性(关于x轴对称)已知 f ( x) log3 x 的图象,你能画出 y 1
f ( x) log1 x 的图象吗?
3
o
1
x
(4)当 0<a<1时与a>1时的图象又怎么画呢?
对数函数y=logax
(a>0,且a≠1) 的图象与性质
下列是6个对数函数的图象,比较它们底数的 大小
规律:在 x=1的右边看图象,图 象越高底数越小.即图高底小
y loga1 x
y
y loga2 x y loga3 x
0 1
x
y loga4 x
y loga5 x y loga6 x
y
图 形
y=log
2
x
y=log
10
x
0
1
y=log
(2) log a2 a2 1.9 与 log a2 a2 1.7;
(2)∵a +a+2=a+2 +4≥4>1, ∴y= log a2 a2 x 是增函数. 又 1.9>1.7, ∴ log a2 a2 1.9> log a2 a2 1.7.

必修1《2_2_2对数函数及其性质》

必修1《2_2_2对数函数及其性质》

必修1《2.2.2 对数函数及其性质》一、教材分析本小节选自《普通高中课程标准数学教科书-数学必修(一)》第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。

对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有很多类似之处。

与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,水平要求也更高。

学习对数函数是对指数函数知识和方法的巩固、深化和提升,也为解决函数综合问题及其在实际上的应用奠定良好的基础。

二、学生学习情况分析刚从初中升入高一的学生,仍保留着初中生很多学习特点,水平发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。

因为函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算水平有所下降,这双重问题增加了对数函数教学的难度。

教师必须理解到这个点,教学中要控制要求的拔高,注重学习过程。

三、设计理念本节课以建构主义基本理论为指导,以新课标基本理念为依据实行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。

四、教学目标1.通过具体实例,直观理解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2.能借助计算器或计算机画出具体对数函数的图象,探索并理解对数函数的单调性与特殊点;3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生使用函数的观点解决实际问题。

五、教学重点与难点重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.六、教学过程设计教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结(一)熟悉背景、引入课题1.让学生看材料:如图1材料(多媒体):某种细胞分裂时,由1个分裂成2个,2个分裂成4个……,假设要求这种细胞经过多少次分裂,大约能够得到细胞1万个,10万个……,不难发现:分裂次数y就是要得到的细胞个数x的函数,即;图12.引导学生观察这个函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:①对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:,都不是对数函数.②对数函数对底数的限制:,且.3.根据对数函数定义填空;例1 (1)函数y=log a x2的定义域是___________ (其中a>0,a≠1)(2) 函数y=log a(4-x) 的定义域是___________ (其中a>0,a≠1)说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理解,所以把教材中的解答题改为填空题,节省时间,点到为止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

= log 3 x
2
= log 1 x
3
...........
o
x
y = log1 x
2
y = log1 x
3
2.利用对称性画图 利用对称性画图. 利用对称性画图 因为指数函数y=ax (0<a≠1)与对数函数 因为指数函数 与对数函数 y=logax(0<a≠1)的图象关于直线 的图象关于直线y=x 的图象关于直线 对称. 对称
(4)因为 因为
4x-3>0
x>3/4 4x-3≤1 1
log0.5(4x-3)≥0 ≥ 定义域为 (3/4,1]
例2:比较大小
1、log 4 5和 log 4 8 3、 0.5 0.4和 log 2 0.7 log
log 2、 0.5 0.4和 log 0.5 0.7
4、 a 0.4和 log a 0.7 log
x
y = 3 lo g 2 + 5
对数函数的图象: 二.对数函数的图象 对数函数的图象 1.描点画图 描点画图. 描点画图 注意只要把指数函数y=ax (0<a≠1) 注意只要把指数函数 的变量x,y的对应值对调即可得到 的变量 的对应值对调即可得到 y=logax(0<a≠1)的变量对应值表如下 的变量对应值表如下. 的变量对应函数的图象与性质:
函数 底数
y
y = log a x ( a>0 且 a≠1 ) > a>1
y
0<a<1
1
图象
o
1
x
o
x
定义域 奇偶性 值域 定点 单调性 函数值 符号
( 0 , + ∞ ) 非奇非偶函数 R ( 1 , 0 ) 即 x = 1 时,y = 0 在 ( 0 , + ∞ ) 上是增函数 在 ( 0 , + ∞ ) 上是减函数 当 x>1 时,y>0 > > 当 0<x <1 时, y<0 < < 当 x>1 时,y<0 > < 当 0<x<1 时,y>0 < < > 非奇非偶函数
(-∞,0) ∪ (0,+∞) ∞,0) ∞) (-∞, ∞,4) ∞,
(2)因为 4-x>0,所以 因为 所以x<4,即函数 即函数y=loga(4-x)的定义域为 所以 即函数 的定义域为
(3)
因为
3-x>0 x-1>0 x-1≠1 1
所以 1<x<3,x≠2即函数 即函数 y=log(x-1)(3-x)的定义域 的定义域 为: (1,2)∪(2,3) ∪(2,3)
练习、比较大小: 练习、比较大小: 1)log3π,log3e
1 2) log 2 , log 2 (a 2 + a + 1) ( a ∈ R ) 2
3) )
log
1.7 2.1
, log 0.3 log 3
7,
5
2 − ax +1)的定义域为R, 想一想:函数f(x)=log2(x 求a的取值范围?
y
1
2
3 4 5
6
7
8
x
Y=log1/2x
探索研究:
在同一坐标系中画出下列对数函数的图象; 在同一坐标系中画出下列对数函数的图象; y (1)y = log x )
.......... ..........
2
(2)y ) (3) y ) (4) y )
= log 1 x
y = log3 x
y = log2 x
2.2对数函数及其性质
教材版本:人教版 A版 数学必修5 适用范围:高中一年级 讲课人: 大安二中 董秀峰
对数函数及其性质
复习对数的概念
定义: 定义: 一般地,如果 a(a > 0, a ≠ 1)
的b次幂等于N, 就是
a =N
b
,那么数 b叫做
对数,记作 log a N = b 以a为底 N的对数 对数 a叫做对数的底数 底数,N叫做真数 真数。 底数 真数
x
Y=log2x
… 1/8 1/4 1/2 1 …
-3 -2 -1 0
2 1
4 2
8 3
… …
… 1/8 1/4 1/2 1 2 4 8 … … Y=log1/2x … 3 2 1 0 -1 -2 -3 x
3 2 1 o -1 -2 -3
y Y=log2x
1
2
3 4 5
6
7
8
x
3 2 1 o -1 -2 -3
Y
b>a>d>c
Y=logax Y=logb x
O
1
y = logc X
Y=logdx 规律:在第一象限内,底数越 大,图像按顺时针方向旋转。
X
问题: 问题:你能类比前面讨论指数函数性质的 思路, 思路,提出研究对数函数性质的内容和方 法吗? 法吗? 研究内容:定义域、值域、特殊点、 研究内容:定义域、值域、特殊点、单调 最大( 奇偶性. 性、最大(小)值、奇偶性. 类比指数函数图象和性质的研究, 类比指数函数图象和性质的研究,研究对 数函数的性质并填写如下表格: 数函数的性质并填写如下表格:
Y 5 4 3 2 ● ● 1● ●
Y= ●
2
x
Y=X
● ●
Y=log2x
-1 O -1 -2
● ● ● 1 2
3
4
5
6
7 X
函数 :
y = log a , y = log b ,
x x
y = log c , y = log d
x
x
的图象如下,则a,b,c,d的大小关系为 ___________
y = log 2 x
这就是本节课要学习的:
对数函数
定义: 定义:函数 y = log a x(a > 0,且 a

≠ 1)
叫做对数函数,其中x是自变量, 叫做对数函数,其中x是自变量,函数的定 对数函数 义域是( +∞)。 义域是(0,+∞)。
判断: 判断:以下函数是对数函数的是 ( ) 4 1. y=log2(3x-2) 3. y=log1/3x2 5. 2. y=log(x-1)x 4.y=lnx
如果知道了细胞的个数y如何确定分裂的次数 如果知道了细胞的个数 如何确定分裂的次数x 如何确定分裂的次数 呢 由对数式与指数式的互化可知: 由对数式与指数式的互化可知:
y=2
x
x = log 2 y
上式可以看作以y自变量的函数表达式吗 上式可以看作以 自变量的函数表达式吗
对于每一个给定的y值都有惟一的 对于每一个给定的 值都有惟一的x 值都有惟一的 的值与之对应, 看作自变量, 的值与之对应,把y看作自变量,x 看作自变量 就是y的函数 但习惯上仍用x表示 的函数, 就是 的函数,但习惯上仍用 表示 自变量, 表示它的函数 表示它的函数: 自变量,y表示它的函数:即
底数 指数 幂
a b =N ↓↓ ↓
log a N=b ↓↓ ↓ 对数
底数 真数
由前面的学习我们知道:有一种细胞分裂时, 由前面的学习我们知道:有一种细胞分裂时,由1 个分裂成2个 个分裂成4个 个分裂成 个,2个分裂成 个,··· 1个这样的细胞分 个分裂成 个这样的细胞分 次会得到多少个细胞? 裂x次会得到多少个细胞? 次会得到多少个细胞
求下列函数的定义域: 例1:求下列函数的定义域 求下列函数的定义域 (1) y=logax2 (2) y=loga(4-x)
(3) y=log(x-1)(3-x) (4) y=√log0.5(4x-3) √
(1)因为 2>0,所以 0,即函数 因为x 所以x≠0 即函数 即函数y=logax2的定义域为 因为 所以 解:
小结
(1)本节要求掌握对数函数的概念、 本节要求掌握对数函数的概念、 图象和性质. 图象和性质. (2)在理解对数函数的定义的基础 上,掌握对数函数的图象和性质的 应用是本小节的重点. 应用是本小节的重点.
相关文档
最新文档