二元一次方程组与不等式组应用题市级联考题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组与不等式组应用题专题练习
(2007年中考)市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现
计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷
4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王
灿应选择哪种方案,使运输费最少?最少运费是多少?
解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得
⎩
⎨⎧≥-+≥-+12)8(220)8(24x x x x 解此不等式组, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4.
因此安排甲、乙两种货车有三种方案:
方案一,甲种货车2辆,乙种货车6辆
方案二,甲种货车3辆,乙种货车5辆
方案三,甲种货车4辆,乙种货车4辆
(2)方案一所需运费 204062402300=⨯+⨯元;
方案二所需运费 210052043300=⨯+⨯元;
方案三所需运费 216042404300=⨯+⨯元.
所以王灿应选择方案一运费最少,最少运费是2040元.
(2007年)某校准备组织290名学生进行野外考察活动,行共有100件.学校计划租用甲、
乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行,乙种汽车每辆
最多能载30人和20件行.
(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;
(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一
种租车方案.
解:(1)由租用甲种汽车x 辆,则租用乙种汽车(8)x -辆
由题意得:4030(8)2901020(8)100x x x x +-⎧⎨+-⎩
≥≥ 解得:56x ≤≤
即共有2种租车方案:
第一种是租用甲种汽车5辆,乙种汽车3辆;
第二种是租用甲种汽车6辆,乙种汽车2辆.
(2)第一种租车方案的费用为520003180015400⨯+⨯=元;
第二种租车方案的费用为620002180015600⨯+⨯=元
∴第一种租车方案更省费用.
(2007资阳)年老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买
了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元. ”
王老师算了一下,说:“你肯定搞错了. ”
⑴ 王老师为什么说他搞错了?试用方程的知识给予解释;
⑵ 老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本. 但笔记本的
单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?
(1) 设单价为8.0元的课外书为x 本,得:812(105)1500418x x +-=-
(2) 解之得:44.5x =(不符合题意)
(3) 所以王老师肯定搞错了.
⑵ 设单价为8.0元的课外书为y 本,
解法一:设笔记本的单价为a 元,依题意得:
812(105)1500418y y a +-=-- .
解之得:178+a =4y ,
∵ a 、y 都是整数,且178+a 应被4整除,∴ a 为偶数,
又∵a 为小于10元的整数,∴ a 可能为2、4、6、8 .
当a =2时,4x =180,x =45,符合题意;当a =4时,4x =182,x =45.5,不符合题意;
当a =6时,4x =184,x =46,符合题意;当a =8时,4x =186,x =46.5,不符合题意 .
∴ 笔记本的单价可能2元或6元 . ················· 8分
解法2:设笔记本的单价为b 元,依题意得:
[][]⎩
⎨⎧+-+-+-+-10418)105(1281500418)105(12815000<<x x x x 解得:475.44<<x
∴ x 应为45本或46本 .
当x =45本时,b =1500-[8×45+12(105-45)+418]=2,
当x =46本时,b =1500-[8×46+12(105-46)+418]=6,
(2012,6分)某商店准备购进甲、乙两种商品。已知甲种商品每件进价15元,售价20元;
乙种商品每件进价35元,售价45元。
(1)若该商品同时购进甲、乙两种商品共100件,恰好用去2700元,求购进的甲、乙两种
商品各多少件?
(2)若该商品准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出
后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润为多少?
(利润 = 售价 - 进价)
解:(1)设购进甲种商品x 件,购进乙种商品y 件,根据题意
⎩⎨⎧=+=+.
27003515,100y x y x
解这个方程组得,⎩⎨⎧==.
60,40y x
答:商店购进甲种商品40件,则购进乙种商品60件。
(2)设商店购进甲种商品x 件,则购进乙种商品(x -100)件,根据题意,得
()()⎩
⎨⎧≥-+≤-+.890100105,31001003515x x x x 解之得20≤x ≤22 方案一,甲种商品20件,乙种商品80件
方案二,甲种商品21件,乙种商品79件
方案三,甲种商品22件,乙种商品78件
方案一所得利润9008010205=⨯+⨯元;
方案二所得利润8957910215=⨯+⨯元
方案三所得利润8907810225=⨯+⨯元.
所以应选择方案一利润最大, 为2040元。
(2014•)在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分.
(1)小考了60分,那么小答对了多少道题?
(2)小王获得二等奖(75~85分),请你算算小王答对了几道题?
解:(1)设小答对了x 道题.
依题意得 5x ﹣3(20﹣x )=60.
解得x=15.
答:小答对了16道题.
(2)设小王答对了y 道题,依题意得:
,
解得:≤y≤,即
∵y 是正整数,
∴y=17或18,
答:小王答对了17道题或18道题.