圆周角定理及推论

合集下载

24.1.4.1圆周角定理及其推论教案

24.1.4.1圆周角定理及其推论教案
在理论讲授环节,我注意到学生们对于圆周角定理的理解程度不一。有的学生能迅速抓住定理的核心,而有的学生则对圆周角与圆心角的关系感到困惑。针对这一点,我通过详细讲解和图示演示,尽量让每个学生都能跟上教学进度。同时,我意识到在今后的教学中,还需更加关注学生的个体差异,因材施教。
实践活动环节,学生们分组讨论和实验操作,整体表现积极。但也有个别小组在讨论过程中出现了偏离主题的现象,这可能是因为我对讨论主题的引导不够明确。在以后的教学中,我需要更明确地给出讨论要求和方向,以提高讨论的效率。
学生小组讨论环节,大家对于圆周角定理在实际生活中的应用提出了很多有趣的观点。但在分享成果时,我发现部分学生的表达能力和逻辑思维还有待提高。因此,我打算在后续的教学中,加强对学生表达能力的训练,鼓励他们多思考、多交流。
在总结回顾环节,学生对圆周角定理及其推论有了更深刻的认识,但仍有一些疑问。我会在课后及时解答这些问题,并关注学生在课后作业中的表现,以便了解他们对这一知识点的掌握情况。
a.圆周角定理的证明过程,使学生理解定理背后的原理。
b.圆周角定理推论的推导过程,特别是对圆内接四边形性质的理解。
c.通过典型例题,展示如何将圆周角定理及其推论应用于解题。
2.教学难点
本节课的难点内容如下:
(1)圆周角定理的理解:学生对圆周角与圆心角关系的理解可能存在困难,需要通过实例、图示等方式进行详细解释。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周角定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

3.4.1圆周角定理及其推论(教案)

3.4.1圆周角定理及其推论(教案)
3.4.1圆周角定理及其推论(教案)
一、教学内容
本节课我们将学习人教版八年级下册第十章《圆》中的3.4.1节:圆周角定理及其推论。教学内容主要包括以下两部分:
1.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
2.圆周角定理的推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆周角定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆周角定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-应用圆周角定理:学生需要学会将圆周角定理应用于解决实际问题,例如计算圆周角或圆心角,确定直径和弦的关系等。
-掌握推论的应用:学生应能熟练应用推论,如判断半圆或直径所对的圆周角是直角,以及90°的圆周角所对的弦是直径。
举例:在证明圆周角定理时,教师应重点讲解如何通过圆心角和弧的关系推导出圆周角,以及如何利用这个关系解决具体问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆周角定理的基本概念。圆周角定理是指在同一个圆或等圆中,同弧或等弧所对的圆周角是相等的,并且等于这条弧所对的圆心角的一半。这个定理在几何学中占有非常重要的地位,它可以帮助我们解决许多与圆有关的问题。
2.案例分析:接下来,我们来看一个具体的案例。通过这个案例,我们将展示圆周角定理在实际中的应用,以及它如何帮助我们解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

圆周角定理推论

圆周角定理推论

圆周角定理推论
中心角定理:如果一个三角形的三条边的长度都已知,则可以用这三条边到三角形的三个角的长度来求解出这个三角形的三个角的大小,这个定理又称为三角形钝角定理。

也可以称之为圆周角定理,它是圆周角的一种表示法,说明圆周角满足三角形的钝角定理。

即如果已知圆周角的三边长度,则可求出其三个内角。

例如,已知圆周角的三边长度分别为4,4,4,则可求出其三个内角分别为60°,60°,60°。

圆周角定理的公式是:若a、b、c分别为圆周角的三边长度,则有A = arccos((b2 + c2 - a2)/ 2bc),B = arccos((a2 + c2 - b2)/ 2bc),C = arccos((a2 + b2 - c2)/ 2bc)。

其中A,B,C分别为圆周角的三角形的三个内角。

圆周角定理的推论

圆周角定理的推论

圆周角定理的推论
一、什么是圆周角定理:
圆周角定理是一种几何定理,它指出了一个三角形与它所多接的弧线之间满足的某种关系,即:圆周上相邻的弧线之间的集合所形成的内角之和等于180度。

即可简写为:当三条线接触同一个圆的时候,它们共组成的内角之和是180度。

二、圆周角定理的推论
(1)中点定理:在任意一个多边形内,任意一边都和多边形内心连接构成一个角,这个角的度数相加一定为180度。

三、圆周角定理的适用范围
圆周角定理可用于描述任意一个多边形关于圆周角的位置关系,主要用于计算圆周角的大小,以及计算多边形中不同角的大小。

圆周角定理在平面几何中有着重要的应用,即它是描述多边形的重要定理,熟练的掌握和复习这个定理有助于更
好的理解多边形的内容。

圆周角定理及其推论

圆周角定理及其推论
合肥市第三十中学 李国松
在圆中,画一个角使其顶点在圆上, 并且两边都与圆还有另一个交点。
A A
A
A
你能仿照圆心角的定义给这个角起个名并下个定
义吗?
圆周角:顶 角点 叫在 圆圆 周上角,。两边都与圆还有另一个公共点的
圆中BC所对的圆周角与圆心角有几种位置关系?
A
O.
B
C
A
.OO
B
C
B
C
A
O.
C B
例.如图,AB是⊙O的直径,弦CD交AB于点P, ∠ACD=60°,∠ADC=70°。求∠APC的度数.
解 :连接BC, ∵ AB是⊙O的直径 ∴ ∠ACB= 90 ° ∵∠ACD=60° ∴ ∠DCB =30°.
又 ∵ ∠BAD= ∠DCB=30° Nhomakorabea ∠APC=∠BAD+∠ADC =30°+70° =100°.
C A OP B
D
直径条件常构造:90°的圆周角
知识内容:
圆周角定义 圆周角定理
推论1 推论2
数学思想方法: 类比思想、分类思想、划归方法等
1、习题24.3第2题、第3题. 2、《同步练习》24.3同步一
3、试找出下图中所有相等的圆周角
D
∠1=∠5
A1
87
3
2
6
54
B
C
∠2=∠6
∠3=∠7 ∠4=∠8
4、如图,AB是⊙O的直径,请问:
① ∠C1、∠C2、∠C3的度数是 90° 。
② 若∠C1、∠C2、∠C3是直角,则 ∠AOB= 180°。
C2 C1
C3
A
O
B
推论2:半圆(或直径)所对的圆周角是直角; 90°的圆周角所对的弦是直径。

初三数学圆周角知识点

初三数学圆周角知识点

初三数学圆周角知识点初三数学圆周角知识点初三数学圆周角知识点11、定义:顶点在圆上,角的两边都与圆相交的角。

(两条件缺一不可)2、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

3、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

2)直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。

(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)4、圆内接四边形的性质定理:圆内接四边形的对角互补。

(任意一个外角等于它的内对角)补充:1、两条平行弦所夹的弧相等。

2、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。

2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

3、同弧所对的(在弧的同侧)圆内部角最大其次是圆周角,最小的是圆外角。

初三数学圆周角知识点2一、圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

①定理有三方面的意义:a.圆心角和圆周角在同一个圆或等圆中;(相关知识点如何证明四点共圆 )b.它们对着同一条弧或者对的两条弧是等弧c.具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半.②因为圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半.二、圆周角定理的推论推论1:同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等推论2:半圆(或直径)所对的`圆周角等于90°;90°的圆周角所对的弦是直径推论3:如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形三、推论解释说明圆周角定理在九年级数学知识点中属于几何部分的重要内容。

①推论1是圆中证明角相等最常用的方法,若将推论1中的“同弧或等弧”改为“同弦或等弦”结论就不成立.因为一条弦所对的圆周角有两个.②推论2中“相等的圆周角所对的弧也相等”的前提条件是“在同圆或等圆中”③圆周角定理的推论2的应用非常广泛,要把直径与90°圆周角联系起来,一般来说,当条件中有直径时,通常会作出直径所对的圆周角,从而得到直角三角形,为进一步解题创造条件④推论3实质是直角三角形的斜边上的中线等于斜边的一半的逆定理.。

24.1.4圆周角圆周角定理及推论(教案)

24.1.4圆周角圆周角定理及推论(教案)
最后,我觉得自己在课堂上的引导和启发作用还可以进一步加强。在接下来的教学中,我会更加关注学生的需求,适时调整教学策略,提高课堂互动性,使学生们在轻松愉快的氛围中学习几何知识。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周角定理及推论在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-举例:解释圆周角,说明只有当两个圆周角都在同一个圆内时,它们对应的弧才相等。
-难点2:圆周角推论的应用。学生可能难以理解圆周角与其所对圆心角之间的具体关系,不知道如何在实际问题中应用这一推论。
-举例:通过构造具体的图形,如圆心角为120度的圆弧,让学生找出对应的圆周角,并验证确实等于60度,从而加深理解。
另外,小组讨论环节,我觉得学生的参与度很高,但在分享讨论成果时,有些学生表达得不够清晰。为了提高学生的表达能力和逻辑思维,我打算在后续的教学中,多设置一些类似的活动,并给予他们更多的指导和鼓励。
在课程总结时,我注意到部分学生对圆周角定理在实际问题中的应用仍然感到困惑。为了解决这个问题,我想在下一节课引入一些更具挑战性的问题,让学生在实际问题中运用所学知识,从而加深他们对圆周角定理及推论的理解。
-难点3:在复杂的几何图形中识别和运用圆周角定理及推论。学生在面对复杂的图形时,可能无法正确识别圆周角,或者不知道如何应用已知的定理和推论。
-举例:给出包含多个圆周角和圆心角的复合图形,指导学生如何一步步识别出关键的圆周角,并利用定理和推论来解决问题。

一 圆周角定理

一 圆周角定理
F B E O O H D G C
是半圆的直径,P是半圆上的 例3,如图,BC是半圆的直径 是半圆上的 如图, 是半圆的直径 一点,过 的中点A, AD⊥BC,垂足 A,作 一点 过 BP 的中点A,作AD⊥BC,垂足 D,BP交AD于E,交AC于F,求证 求证: 为D,BP交AD于E,交AC于F,求证: BE=AE=EF A
圆周角定理
圆周角的定义: 圆周角的定义:顶点在圆周上且两边都 与圆相交的角。 与圆相交的角。 圆周角定理: 圆周角定理:圆周角的度数等于其所对 弧的度数的一半。 弧的度数的一半。 推论1:同弧(或等弧) 推论 :同弧(或等弧)上的圆周角相 等。 同圆或等圆中, 同圆或等圆中,相等的圆周角所对的弧 相等。 相等。 推论2:半圆(或直径) 推论 :半圆(或直径)上的圆周角等 于90度。 度 反之, 度的圆周角所对的弦为直径 度的圆周角所对的弦为直径。 反之, 90度的圆周角所对的弦为直径。
2 1 3

4
Bபைடு நூலகம்
EF D

内接于⊙ 例4,如图, ΔABC内接于⊙O, 如图, ABC内接于 AH⊥BC于点H,求证 于点H,求证: AH⊥BC于点H,求证: OAB=∠ (1)∠OAB=∠HAC )OAAH=1 AB (2)OAAH=1/2ABAC
A B D . O H C
例1,如图,ΔABC中,AB=AC, ΔABC ,如图, ABC中 AB=AC, 外接圆⊙O的弦AE BC于点 求证: ⊙O的弦AE交 于点D 外接圆⊙O的弦AE交BC于点D,求证:
AB = AD × AE
2
A
B E
D
C
的两条高, 例2,如图,设AD,CF是ΔABC的两条高, ,如图, 是 ABC的两条高 AD,CF的延长线交 ABC的外接圆 的延长线交Δ 的外接圆O AD,CF的延长线交ΔABC的外接圆O于G,AE ⊙O的直径 求证: 的直径, 是⊙O的直径,求证: (1)ABAC=ADAE (2)DG=DH A

圆周角的定理及推论的应用

圆周角的定理及推论的应用

圆周角的定理及推论的应用圆周角是数学中的一个重要概念,掌握圆周角的定理及其推论,对于解决许多几何问题非常有帮助。

本文将围绕圆周角的定理及推论的应用展开阐述。

一、圆周角的定义圆周角是指落在圆周上的两条弧所对的角,即两个弧之间的角度量。

一般用大写字母表示圆周角,如∠ABC。

二、圆周角的定理1、相等圆周角定理:在同一个圆周上,所对的圆周角相等。

证明:作弦AB、CD相交于点E,则∠AEB=∠CED。

由于AE、BE、CE、DE均是从一个圆心O引出的弦,故∠AEB=∠CEB,∠CED=∠BED,又因为OE=OE,故OEB≌OED,由此可得∠OEB=∠OED,即∠AEB=∠CED。

2、圆心角的定理:在同一个圆中,所对的圆心角相等。

证明:连接圆心O到AB的中垂线OH,H为AB的中点。

则OH垂直于AB,因此∠AOH、∠BOH均为直角,所以∠AOB=2∠AOH=2∠BOH。

3、正弦定理:在任意三角形ABC中,设a、b、c分别为三角形BC、AC、AB 的边长,R为外接圆半径,则有:sinA=a/2R,sinB=b/2R,sinC=c/2R证明:如下图所示,以AB、BC、CA为边作三角形ABC的外接圆,设圆心为O。

连接AO、BO、CO,过O点作弦AD、BE、CF,则OD=OE=OF=R,所以AOD、BOE、COF都是等边三角形。

因此,∠OAB=∠CFO、∠OBA=∠CEO、∠OBC=∠AEO、∠OCB=∠AFO。

设∠BAC=x,∠ABC=y,∠ACB=z,由三角形内角和公式得:x+y+z=180又由圆周角定理得:∠BOC=2y,∠AOC=2z,∠AOB=2x于是:∠AOB+∠BOC+∠AOC=3602x+2y+2z=360,即x+y+z=180。

将sinA、sinB、sinC带入上述公式中,可得:sinA/BC=sinB/CA=sinC/AB=1/2R即sinA=a/2R,sinB=b/2R,sinC=c/2R。

4、余弦定理:在任意三角形ABC中,设a、b、c分别为三角形BC、AC、AB 的边长,R为外接圆半径,则有:cosA=(b²+c²-a²)/2bc,cosB=(a²+c²-b²)/2ac,cosC=(a²+b²-c²)/2ab证明:将ABC的外接圆的半径延长到BC、AC和AB上分别交于点D、E、F。

圆周角定理及推论

圆周角定理及推论

圆周角定理及推论圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角。

圆周角的性质:圆周角等于它所对的弧所对的圆心角的一半。

圆周角的推论:①同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等。

②900的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角。

③如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

④圆内接四边形的对角互补;外角等于它的内对角例1:如图,点A、B 、C都在圆O上,如果∠AOB+∠ACB=840,那么∠ACB的大小是例2:如图,平行四边形ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=360,则∠ADC的度数是()A.44°B.54°C.72°D.53°例3:如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD,(1)证明:C B∥P D;(2)若B C=3,,求⊙O的直径.1、(北京四中模拟)如图,弧BC与弧AD的度数相等,弦AB与弦CD交于点E,︒=∠80CEB,则CAB∠等于()A.︒30B.︒40C.︒45D.︒602.(2011年北京四中中考全真模拟16)已知一弧长为L的弧所对的圆心角为120°那么它所对的弦长为( )A、3 34ΠL B、3 24ΠL C、3 32ΠL D、3 22ΠL(第3题图)3.(2011浙江杭州模拟7)如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A=75o ,∠C=45o ,那么∠AEB 度数为( )A. 30o B . 45o C. 60o D. 75o4.(2011浙江省杭州市10模) 如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )A .1B .22C .2D .25.(浙江省杭州市党山镇中2011年中考数学模拟试卷)如图,两圆相交于A ,B 两点,小圆经过大圆的圆心O ,点C ,D 分别在两圆上,若100ADB ∠=︒,则ACB ∠的度数为 ( )A .35︒B .40︒C .50︒D .80︒C ABD (第5题) O(第4题图)。

圆周角定理及其推论

圆周角定理及其推论

圆周角定理及其推论一、圆周角定理圆周角定理是几何学的重要定理,它源于古希腊数学家弥尔顿(Archimedes)的研究。

圆周角定理规定:任何两个正夹角的正弦之积等于它们之间的乘积,也就是学术上说的“正夹角全乘积等于余弦。

”以上是圆周角定理的文字表示,而在数学上,圆周角定理又有如下式子体现:Sin(α+β)= Sinα×Cosβ+Cosα×Sinβ二、圆周角定理的推论1、正弦定理:一个三角形角α,β,γ的正弦值分别为Sinα,Sinβ,Sinγ,那么有Sinα:Sinβ:Sinγ=a:b:c;2、余弦定理:每个三角形角α,β,γ的余弦值分别为Cosα,Cosβ,Cosγ,那么有a2+b2=c2-2abCosγ;3、正切定理:任一三角形角α,β,γ的正切值分别为tanα,tanβ,tanγ,那么有tanα×tanβ=tanγ/1-tanαtanβ;4、正割定理:一个三角形角α,β,γ的正割值分别为cotα,cotβ,cotγ,那么有cotα+cotβ=cotγ/1+cotα cotβ;5、互补定理:任一角α,它的余角β满足Cosα=Sinβ;Cosβ=Sinα;6、倒数定理:对一角α,其余角β均有Secα=1/Cosα;Secβ=1/Cosβ;7、士角定理:一角α,其余角β乘积等于正弦定理,那么Sinα×Sinβ=Cos角γ/2;8、三边定理:任一三角形角α,β,γ的边长分别为a,b,c,那么有a/(Sinα)=b/(Sinβ)=c/(Sinγ);9、兰勃托定理:一个等腰三角形,其底边和对边相较于当前对角之正弦的比值之和等于1,也就是说:Sinα/(a/2)+Sinβ/(a/2)=1;10、马克斯定理:一个三角形边长abc,那么有cosA+cosB+cosC=4cosA/2cosB/2cosC/2=3/2。

圆周角定理及其推论

圆周角定理及其推论
(3)当圆心 O 在∠BAC 的外部时,过点 A 作直径 AD,则
由(1)得
1
∠DAC= 2
1
∠DOC, ∠DAB= 2 ∠DOB
1
∴ ∠DAC-∠DAB= 2 (∠DOC - ∠DOB)
1
即:∠BAC= 2 ∠BOC.
D
2.圆周角定理
圆周角的度数等于它所对弧上的圆心
角度数的一半.
3.圆周角定理的推论
2
2
领悟:要求
弧的度数,
由圆周角定理,得BD2∠BAD=2×25°=50°,
只需求得该
LJ
弧所对的圆
DE 2∠CAD=2×25°=50°,AE 2∠ABE=2Hale Waihona Puke 40°=80°.周角的度数.LJ
LJ
随堂演练
1.如图所示的四个图中,∠α是圆周角的是( C )
2.如图,已知圆周角∠ACB=130°,则圆心角
以腰AB为直径作半圆,交BC于点D,交AC于点E.
求图中劣弧的度数.

如图,连结BE,AD.
∵AB是圆的直径,
∴∠AEB=∠ADB=90°(直径所对的圆周角是直角).
∴∠BAC=50°,∴∠ABE=90°-∠BAC=90°-50°=40°.
又∵△ABC是等腰三角形,
1
1
∴∠ABC=∠CAD= ∠BAC= ×50°=25°.
简单的几何问题.
获取新知
1.圆周角的定义
A
如图,∠BAC的顶点和边有哪些特点?
∠BAC的顶点在☉O上,角的两边分别交☉O于B、C两点.
顶点在圆上,并且两边都与圆相交的角叫做圆周角.
两个条件必须同时
具备,缺一不可
(1)量出圆周角∠BAC与它所对弧上的圆心角∠BOC的

圆周角定理及其推论的证明和应用

圆周角定理及其推论的证明和应用

圆周角定理及其推论的证明和应用《圆周角定理及其推论的证明和应用》
圆周角定理又被称为“角定律”,是不论圆弧大小都成立的一个数学公理,它指出圆形中任意大小的圆弧所对应的圆心角之和,都是 360 度。

这一定理被著名数学家费马正式地证明。

圆周角定理表明,圆心角累加360度,任意两个圆心角之间的圆弧相连,形成一个封闭的面。

根据其特点,学者们推导出了以下几个推论:全角相等推论、全边相等推论、定点外接圆内接圆推论、正多边形五边形内角之和推论、外角等于内角和推论、立体角之和推论等。

圆周角定理及其推论的证明和应用,主要是在几何中,这些定理及其推论也被广泛应用到绘图,比如构造一个正多角形及相关图形,解决正多角形有关问题,画出平行线,学习平面三角函数等。

例如利用圆周角定理及其推论,可以将人们自然认定的几何图形(如梯形、多边形等),实际转化为一组有效的数学公式,以绘制直观的几何图形,从而解决数学问题。

总之,圆周角定理与其相关的推论,是构成数学的一项重要基础,在几何中有着广泛的应用,在数学中起到至关重要的作用,是值得大家及早去学习和掌握的重要内容。

最新1、圆周角定理及推论

最新1、圆周角定理及推论

一、圆周角定理:一条弧所对圆周角等于它所对圆心角的一半已知在⊙O中,∠BOC与圆周角∠BAC对同弧BC,求证:∠BOC=2∠BAC。

以下分五种情况证明【证明】情况1:当圆心O在∠BAC的内部时:图1连接AO,并延长AO交⊙O于D解:OA=OB=OC(OA、OB、OC是半径)∴∠BAD=∠ABO,∠CAD=∠ACO(等腰三角形底角相等)∴∠BOD=∠BAD+∠ABO=2∠BAD∠COD=∠CAD+∠ACO=2∠CAD(∠BOD、∠COD分别是△AOB、△AOC的外角,而三角形的一个外角等于与它不相邻的两个内角和)∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC【证明】情况2:当圆心O在∠BAC的外部时:图2连接AO,并延长AO交⊙O于D,连接OB、OC。

解:OA=OB=OC(OA、OB、OC是半径)∴∠BAD=∠ABO,∠CAD=∠ACO(等腰三角形底角相等)∴∠BOD=∠BAD+∠ABO=2∠BAD∠COD=∠CAD+∠ACO=2∠CAD(∠BOD、∠COD分别是△AOB、△AOC的外角,而三角形的一个外角等于与它不相邻的两个内角和)∴∠BOC=∠COD-∠BOD=2(∠CAD-∠BAD)=2∠BAC【证明】情况3:当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:图3∵OA、OC是半径解:∴OA=OC∴∠BAC=∠OCA(等边对等角)∴∠BOC=∠BAC+∠OCA=2∠BAC(三角形的一个外角等于与它不相邻的两个内角和,由AB 为平角180°、三角形△AOC内角和为180°得到。

)【证明】情况4:圆心角等于180°:圆心角∠AOB=180°,圆周角是∠ACB,∵∠OCA=∠OAC=21∠BOC (BC弧)∠OCB=∠OBC=21∠AOC (AC弧)∴∠OCA+∠OCB=(∠BOC+∠AOC)/2=90度∴∠AOB2=∠ACB【证明】情况5:圆心角大于180°:图5圆心角是(360°-∠AOB),圆周角是∠ACB,延长CO交园于点E,∠CAE=∠CBE=90°(圆心角等于180°)∴∠ACB+∠AEB=180°,即∠ACB=180°-∠AEB∵∠AOB=2∠AEB∴360°-∠AOB=2(180°-∠AEB)=2∠ACB二、圆周角定理的推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

圆的圆周角定理及推论

圆的圆周角定理及推论

圆的圆周角定理及推论好啦,今天我们来聊聊圆的圆周角定理,说起来可能大家觉得“哎呀,数学又来了”,可其实呢,圆周角这东西并不神秘,反倒挺有趣的。

咱们不妨换个角度,想象一下你在和朋友们一起玩抛圈圈游戏,大家站成一圈,忽然之间有人跑到圆圈里头拿个棍子,一边转圈一边和你讨论“圆的圆周角定理”。

你可能会眨眨眼,觉得这不就是某种数学谜题?但仔细一想,你会发现,这个定理竟然和生活中的很多事儿有点儿相似。

圆周角定理就像你玩游戏时总能猜到最后那个“秘密”一样,既简单又有点“套路”。

圆周角定理说的是什么呢?其实很简单,就是圆上的一个角度——圆周角,它的大小是由圆心角来决定的。

而这个圆心角呢,指的是从圆心出发,连到圆上两个点的角度。

所以如果你在圆上随便选两个点,拉直线,假如你能测量一下这个角度,嘿,你就能发现,这个角的大小只和圆心角有关。

更好玩的事儿是,圆周角的大小,恰好是圆心角的一半!就这么简单。

举个例子吧,如果你在圆上找了两个点,这两个点连起来形成的圆心角是60度,那你会发现,跟它对应的圆周角只有30度。

这就像在和朋友聊着天,忽然某个话题比你想象的要简单,反倒让你松了口气。

那你可能会问了,这个圆周角定理到底有什么用呢?你肯定不想它只是个“纸上谈兵”的概念吧。

其实啊,生活中有很多地方都可以见到它的身影。

你想象一下,小时候你玩过很多那种圆形的游戏,比如用绳子跳大圈圈,或者玩那种圈套,能不能发现,每当你站在圆的一边,看到圆的另一边时,角度总是很相似?其实这就是圆周角定理在你生活中的“小小表现”了。

没错,数学不仅仅是死板的公式,它就像是生活中的一种暗号,随时都能让你意外地收获“惊喜”。

别急,我知道你可能还没完全get到,所以咱们再说一下圆的圆周角定理的几个小推论。

第一个就是圆周角相等的定理,意思是说,在同一圆上,若两个圆周角的“顶点”都在圆的同一条弧上,那么这两个圆周角的大小一定是一样的。

就像你和我站在同一个位置,看到的风景基本差不多,心情也是差不多的对吧?第二个推论就有点更酷了:任何一个圆上,连接圆心的直线都可以把圆分成两半,而这两半就像是你人生的两条路:无论你走哪条,结果都会是相同的。

24.3 第1课时 圆周角定理及其推论

24.3 第1课时 圆周角定理及其推论

圆周角定理推论1 在同圆或等圆中,同弧或等弧所对的圆周角相等,
相等的圆周角所对的弧也相等.
AB
几何语言
∠CAD 和∠CGD 均是 CD 所对的
圆周角
CAD CGD C
CD EF
CAD EBF
E O
F G D
思考:如图,AC 是⊙O 的直径, D
则∠ADC = 90 °, ∠ABC = 90 °. A
有什么特点?
A
像∠A 这样,顶点在圆上,并
且两边都与圆还有另一个公共点
的角叫做圆周角.
B
O C
判断下列各图中的∠BAC 是否为圆周角,并简述理由.
B
B
C
A
C
O· A
O ·
·O
C A

A
顶点
A 不在圆上
B

B
AC
没有和圆相交
O· CA
B
顶点 A 不在圆上
CC ·O
是B
·O A

圆周角定理及其推论
观察与思考
又∵∠BAD =∠DCB = 30°,
A
∴∠APC =∠BAD +∠ADC = 30° + 70°
O PBห้องสมุดไป่ตู้
= 100°.
D
方法总结:在圆中,如果有直径,可考虑找直径所对的
圆周角,构造直角三角形解题.
P29 练习5证明:如果三角形一边上的中线等于该边的 一半,那么这个三角形是直角三角形
C
A
D
B
课堂小结 定义
O
C
B 推论2:半圆或直径所对的圆周角是直角;90° 的
圆周角所对的弦是直径.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、圆周角定理:一条弧所对圆周角等于它所对圆心角的一半已知在⊙O中,∠BOC与圆周角∠BAC对同弧BC,求证:∠BOC=2∠BAC。

以下分五种情况证明
【证明】情况1:当圆心O在∠BAC的内部时:
图1
连接AO,并延长AO交⊙O于D
解:OA=OB=OC(OA、OB、OC是半径)
∴∠BAD=∠ABO,∠CAD=∠ACO(等腰三角形底角相等)
∴∠BOD=∠BAD+∠ABO=2∠BAD
∠COD=∠CAD+∠ACO=2∠CAD
(∠BOD、∠COD分别是△AOB、△AOC的外角,而三角形的一个外角等于与它不相邻的两个内角
和)
∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC
【证明】情况2:当圆心O在∠BAC的外部时:
图2
连接AO,并延长AO交⊙O于D,连接OB、OC。

解:OA=OB=OC(OA、OB、OC是半径)
∴∠BAD=∠ABO,∠CAD=∠ACO(等腰三角形底角相等)
∴∠BOD=∠BAD+∠ABO=2∠BAD
∠COD=∠CAD+∠ACO=2∠CAD
(∠BOD、∠COD分别是△AOB、△AOC的外角,而三角形的一个外角等于与它不相邻的两个内角
和)
∴∠BOC=∠COD-∠BOD=2(∠CAD-∠BAD)=2∠BAC
【证明】情况3:当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:
图3
∵OA、OC是半径
解:∴OA=OC
∴∠BAC=∠OCA()
∴∠BOC=∠BAC+∠OCA=2∠BAC
(三角形的一个外角等于与它不相邻的两个内角和,由AB为平角180°、三角形△AOC内角和为180°得到。


【证明】情况4:圆心角等于180°:
圆心角∠AOB=180°,圆周角是∠ACB,∵∠OCA=∠OAC=
2
1∠BOC(BC弧)
∠OCB=∠OBC=
2
1
∠AOC(AC弧)
∴∠OCA+∠OCB=(∠BOC+∠AOC)/2=90度∴∠AO B2=∠ACB
【证明】情况5:圆心角大于180°:
图5
圆心角是(360°-∠AOB),圆周角是∠ACB,延长CO交园于点E,
∠CAE=∠CBE=90°(圆心角等于180°)
∴∠ACB+∠AEB=180°,即∠ACB=180°-∠AEB ∵∠AOB=2∠AEB
∴360°-∠AOB=2(180°-∠AEB)=2∠ACB
二、圆周角定理的推论:
同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

其他推论?
①圆周角度数定理,圆周角的度数等于它所对的弧的度数的一半?。

E
②同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半?。

③同圆或等圆中,同弧或等弧所对的圆周角相等,相等圆周角所对的弧也相等?。

?。

④半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径
⑤圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

相关文档
最新文档