第五章北航 材料力学 全部课件 习题答案
材料力学课后答案
由平衡方程,解得:
FBy 5KN; M B 13KN m
微分法画弯矩图
( M B 13KN m; M C M C 3KN m; M D 0)
2.根据强度要求确定 b
max WZ 2 bh 2 3 WZ b 6 3 M
弯矩图
M
(+)
x
3.绘制挠曲轴略图并计算wmax, A , B 令 dw 0 得 x l (0 x l ) 2 dx 所以 wmax w x l
2
挠曲轴略图
w
5ql 4 384 EI
x0
(-)
B
ql 3 24 EI
x
由式(3)知 A
max
M max ymax 176MPa IZ
max
M WZ
K
M max yK 132MPa IZ
3
5-5.图示简支梁,由 NO18 工字钢制成,在集度为q的均匀载荷作用下测得横截 4 面C底边的纵向正应变 =3.0 10 ,试计算梁内的最大弯曲正应力,已知刚的弹 FAy FBy 性模量E=200GPa,a=1m。
M yA Wy 6 M yA M zA 6M zA Wz 2b b 2 b (2b) 2
由 max 解得 b 35.6mm 故
h 2b 71.2mm
14
2.截面为圆形,确定d 由分析图及叠加原理可知: 在1,3区边缘某点分别有最大拉应力,最大压应力 其值均为:
I Z I Z 1 2 I Z 2 1.02 104 m4
2.画弯矩图 由平衡方程得 微分法画弯矩图
FCy 10KN; M C 10KN m
第五章 习题解答(材料力学课件)-PPT文档资料
换后最大扭矩将由1.5kN m减小为1kN m
4. 解 :
AC
AB
3
BC
T1 l 1 T 2 l 2 G Ip G Ip
3
1.5 1 0 1.2 0 .5 1 0 0 .8 9 4 80 10 0 .0 5 32 0 .0 4 4 8 4 ra d A、 B两 轮 互 换 位 置 后 , 轴 两 端 的 相 对 扭 转 角 为 1.0 1 0 1.2 0 .5 1 0 0 .8 9 80 10 0 .0 5 4 32 0 .0 1 6 3 ra d
m
x
l
XT5TU1
1 0 .解 : 轴 的 扭 矩 图 如 下 图 , 最 大 扭 矩 T . k N m m a x 05 T m a x 由 强 度 条 件 m [] 得 轴 的 直 径 a x 3 d 1 6 1 6 T m a x 3 d 5 03 . m m []
m
A
B
m
C
D
mD
即
1 2m 解 得 m 05 . 5 7 m D 4 4 A 端 的 反 力 偶 m m .4 3m A m D 04
4
(m ) 4m D m D 2
m D 2 0
内、外层横截面上剪应力的计算公式分别为 T1 m T2 2m 1 , 2 I p1 I p1 2 I p 2 I p2 I p1 2 I p 2
1 9 .解 : 此 为 一 次 静 不 定 问 题 。 解 除端 D 约 束 , 代 之 以 反 力 偶 m D 由 变 形 协 调 条 件 A A 0 , 得 D B B C C D ( m ml )A m m D B Dl B C Dl C D 0 G IpA G IpB IpC B C G D
北航材料力学课后习题答案
σ max = 117MPa (在圆孔边缘处)
2-15 图示桁架,承受载荷 F 作用,已知杆的许用应力为[σ ]。若在节点 B 和 C 的
位置保持不变的条件下,试确定使结构重量最轻的α 值(即确定节点 A 的最佳位置)。
解:1.求各杆轴力
题 2-15 图
设杆 AB 和 BC 的轴力分别为 FN1 和 FN2 ,由节点 B 的平衡条件求得
分别为
FN
=
1 2
σmax A
=
1 2
× (100 ×106 Pa) × (0.100m × 0.040m)
=
2.00 ×105 N
=
200kN
Mz
=
FN
(
h 2
−
h )
3
=பைடு நூலகம்
1 6
FN h
=
1 × (200 ×103 N) × (0.100m) 6
= 3.33×103 N ⋅ m
=
3.33kN ⋅ m
2-5 .........................................................................................................................................................2
= 0.2 ×10−3 m 0.100m
= 2.00 ×10−3
rad
α AB
= 0.1×10−3 m = 1.00 ×10−3 0.100m
rad
得 A 点处直角 BAD 的切应变为
γ A = γ BAD = α AD − α AB = 1.00 ×10−3 rad
材料力学第五版课后习题答案
二、轴向拉伸和压缩2-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d)解:。
2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:返回2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:返回2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)返回2-7(2-9)一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:2-8(2-11)受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截面上的线应变相同因此返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
试求C点的水平位移和铅垂位移。
解:(1)受力图(a),。
(2)变形协调图(b)因,故=(向下)(向下)为保证,点A移至,由图中几何关系知;返回第三章扭转3-13-23-33-43-53-63-73-83-93-103-113-123-1 一传动轴作匀速转动,转速,轴上装有五个轮子,主动轮Ⅱ输入的功率为60kW,从动轮,Ⅰ,Ⅲ,Ⅳ,Ⅴ依次输出18kW,12kW,22kW和8kW。
《材料力学》课后题答案(第1-3章)
(2)CD和AB一样长时,计算总的伸长量(复合杆)
PL /(E1A1 E2 A2 )
4PL
/[E1πd12
E2π(d
2 2
d12
)]
1.7mm
(3)没有套管时,计算总的伸长量
' PL / E1A1 4PL / E1πd12
3.42mm
比较3种情况下的 变形,能得到什
么结论?
解:(1)由已知条件得,
应变 0.001
由胡克定律,得
铜 E铜 100GPa 0.001 100MPa 铝 E铝 72GPa 0.001 72MPa
计算轴力
FN,铝 铝 A铝
FN,铜 铜 A铜
72MPa 100MPa
π 4π 4
[(40mm)2 (25mm)2 (25mm)2 49.1kN
0
则可得: 29.1
如图所示总长L0=1.25m的柔性弦线栓在A、B两个支座上,A、 B高度不同,A比B高。弦线上放置无摩擦滚轮,滚轮上承受 力P。图中C点为平衡后滚轮停留的位置。设A、B间水平距离 L=1.0m,弦线拉断力为200N,设计安全因数为3.0,试确定许
用载荷P。
解:对C处进行受力分析, 列出平衡方程:
ε l / l (1mm)/(5103 mm) 2 104
(2)计算横截面上的正应力
c FN / A 6 106 N / m2 6MPa
(3)计算混凝土的弹性模量
E c / 6MPa / 2 104 30GPa
如图所示构件上一点 A处的两个线段AB和 AC,变形前夹角为 60°,变形后夹角为 59°。试计算A点处的 切应变。
解:(1)计算AC段与BC段的伸长量
AC BD Pb / E1A1 4Pb / E1πd12 0.685mm
材料力学第五版课后习题答案
二、轴向拉伸和压缩之马矢奏春创作创作时间:二零二一年六月三十日2-1 试求图示各杆1-1和2-2横截面上的轴力, 并作轴力图.(a)解:;;(b)解:;;(c)解:;. (d)解:.2-2 试求图示等直杆横截面1-1, 2-2和3-3上的轴力, 并作轴力图.若横截面面积, 试求各横截面上的应力.解:2-3 试求图示阶梯状直杆横截面1-1, 2-2和3-3上的轴力, 并作轴力图.若横截面面积, , , 并求各横截面上的应力.解:2-4 图示一混合屋架结构的计算简图.屋架的上弦用钢筋混凝土制成.下面的拉杆和中间竖向撑杆用角钢构成, 其截面均为两个75mm×8mm的等边角钢.已知屋面接受集度为的竖直均布荷载.试求拉杆AE和EG横截面上的应力.解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6) 图示拉杆接受轴向拉力, 杆的横截面面积.如以暗示斜截面与横截面的夹角, 试求当, 30, 45, 60, 90时各斜截面上的正应力和切应力, 并用图暗示其方向.解:2-6(2-8) 一木桩柱受力如图所示.柱的横截面为边长200mm的正方形, 资料可认为符合胡克定律, 其弹性模量E=10 GPa.如不计柱的自重, 试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形.解:(压)(压)2-7(2-9) 一根直径、长的圆截面杆, 接受轴向拉力, 其伸长为.试求杆横截面上的应力与资料的弹性模量E.解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示.已知该杆资料的弹性常数为E, , 试求C与D两点间的距离改变量.解:横截面上的线应变相同因此2-9(2-12) 图示结构中, AB为水平放置的刚性杆, 杆1, 2, 3资料相同, 其弹性模量E=210GPa, 已知, , , .试求C点的水平位移和铅垂位移.解:(1)受力图(a), .(2)变形协调图(b)因, 故=(向下)(向下)为保证, 点A移至, 由图中几何关系知;第三章扭转3-1 一传动轴作匀速转动, 转速, 轴上装有五个轮子, 主动轮Ⅱ输入的功率为60kW, 从动轮, Ⅰ, Ⅲ, Ⅳ, Ⅴ依次输出18kW, 12kW,22kW和8kW.试作轴的扭矩图.解:kNkNkNkN3-2(3-3) 圆轴的直径, 转速为.若该轴横截面上的最年夜切应力即是, 试问所传递的功率为多年夜?解:故即又故3-3(3-5) 实心圆轴的直径mm, 长m, 其两端所受外力偶矩, 资料的切变模量.试求:(1)最年夜切应力及两端截面间的相对扭转角;(2)图示截面上A, B, C三点处切应力的数值及方向;(3)C点处的切应变.解:=3-4(3-6) 图示一等直圆杆, 已知, ,, .试求:(1)最年夜切应力;(2)截面A相对截面C的扭转角.解:(1)由已知得扭矩图(a)(2)3-5(3-12) 长度相等的两根受扭圆轴, 一为空心圆轴, 一为实心圆轴, 两者资料相同, 受力情况也一样.实心轴直径为d;空心轴外径为D, 内径为, 且.试求当空心轴与实心轴的最年夜切应力均到达资料的许用切应力), 扭矩T相等时的重量比和刚度比.解:重量比=因为即故故刚度比==3-6(3-15) 图示等直圆杆, 已知外力偶矩,, 许用切应力, 许可单元长度扭转角, 切变模量.试确定该轴的直径d.解:扭矩图如图(a)(1)考虑强度, 最年夜扭矩在BC段, 且(1)(2)考虑变形(2)比力式(1)、(2), 取3-7(3-16) 阶梯形圆杆, AE段为空心, 外径D=140mm, 内径d=100mm;BC段为实心, 直径d=100mm.外力偶矩, , .已知:, , .试校核该轴的强度和刚度.解:扭矩图如图(a)(1)强度=, BC段强度基本满足=故强度满足.(2)刚度BC段:BC段刚度基本满足.AE段:AE段刚度满足, 显然EB段刚度也满足.3-8(3-17) 习题3-1中所示的轴, 资料为钢, 其许用切应力, 切变模量, 许可单元长度扭转角.试按强度及刚度条件选择圆轴的直径.解:由3-1题得:故选用.3-9(3-18) 一直径为d的实心圆杆如图, 在接受扭转力偶矩后, 测得圆杆概况与纵向线成方向上的线应酿成.试导出以, d和暗示的切变模量G的表达式.解:圆杆概况贴应变片处的切应力为圆杆扭转时处于纯剪切状态, 图(a).切应变(1)对角线方向线应变:(2)式(2)代入(1):3-10(3-19) 有一壁厚为25mm、内径为250mm的空心薄壁圆管, 其长度为1m, 作用在轴两端面内的外力偶矩为180.试确定管中的最年夜切应力, 并求管内的应变能.已知资料的切变模量.解:3-11(3-21) 簧杆直径mm的圆柱形密圈螺旋弹簧, 受拉力作用, 弹簧的平均直径为mm, 资料的切变模量.试求:(1)簧杆内的最年夜切应力;(2)为使其伸长量即是6mm所需的弹簧有效圈数.解:,故因为故圈3-12(3-23) 图示矩形截面钢杆接受一对外力偶矩.已知资料的切变模量, 试求:(1)杆内最年夜切应力的年夜小、位置和方向;(2)横截面矩边中点处的切应力;(3)杆的单元长度扭转角.解:, ,由表得MPa第四章弯曲应力4-1(4-1) 试求图示各梁中指定截面上的剪力和弯矩.解:(a)(b)(c)(d)=(e)(f)(g)(h)=4-2(4-2) 试写出下列各梁的剪力方程和弯矩方程, 并作剪力图和弯矩图.解:(a)(b)时时(c)时时(d)(e)时,时,AB段:(f)BC段:(g)AB段内:BC段内:(h)AB段内:BC段内:CD段内:4-3(4-3) 试利用荷载集度、剪力和弯矩间的微分关系作下列各梁的剪力图和弯矩图.4-4(4-4) 试作下列具有中间铰的梁的剪力图和弯矩图.4-5(4-6) 已知简支梁的剪力图如图所示.试作梁的弯矩图和荷载图.已知梁上没有集中力偶作用.返回4-6(4-7) 试根据图示简支梁的弯矩图作出梁的剪力图与荷载图. 4-7(4-15) 试作图示刚架的剪力图、弯矩图和轴力图.4-8(4-18) 圆弧形曲杆受力如图所示.已知曲杆轴线的半径为R, 试写出任意横截面C上剪力、弯矩和轴力的表达式(暗示成角的函数), 并作曲杆的剪力图、弯矩图和轴力图.解:(a)(b)4-9(4-19) 图示吊车梁, 吊车的每个轮子对梁的作用力都是F, 试问:(1)吊车在什么位置时, 梁内的弯矩最年夜?最年夜弯矩即是几多?(2)吊车在什么位置时, 梁的支座反力最年夜?最年夜支反力和最年夜剪力各即是几多?解:梁的弯矩最年夜值发生在某一集中荷载作用处., 得:那时,当M极年夜时:,则, 故,故为梁内发生最年夜弯矩的截面故:=4-10(4-21) 长度为250mm、截面尺寸为的薄钢尺, 由于两端外力偶的作用而弯成中心角为的圆弧.已知弹性模量.试求钢尺横截面上的最年夜正应力.解:由中性层的曲率公式及横截面上最年夜弯曲正应力公式得:由几何关系得:于是钢尺横截面上的最年夜正应力为:第五章梁弯曲时的位移5-1(5-13) 试按迭加原理并利用附录IV求解习题5-4.解:(向下)(向上)(逆)(逆)5-2(5-14) 试按迭加原理并利用附录IV求解习题5-5.解:分析梁的结构形式, 而引起BD段变形的外力则如图(a)所示, 即弯矩与弯矩.由附录(Ⅳ)知, 跨长l的简支梁的梁一端受一集中力偶M作用时, 跨中点挠度为.用到此处再利用迭加原理得截面C的挠度(向上)5-3(5-15) 试按迭加原理并利用附录IV求解习题5-10.解:5-4(5-16) 试按迭加原理并利用附录IV求解习题5-7中的.解:原梁可分解成图5-16a和图5-16d迭加, 而图5-16a又可分解成图5-16b和5-16c.由附录Ⅳ得5-5(5-18) 试按迭加原理求图示梁中间铰C处的挠度, 并描出梁挠曲线的年夜致形状.已知EI为常量.解:(a)由图5-18a-1(b)由图5-18b-1=5-6(5-19) 试按迭加原理求图示平面折杆自由端截面C的铅垂位移和水平位移.已知杆各段的横截面面积均为A, 弯曲刚度均为EI.解:5-7(5-25) 松木桁条的横截面为圆形, 跨长为4m, 两端可视为简支, 全跨上作用有集度为的均布荷载.已知松木的许用应力, 弹性模量.桁条的许可相对挠度为.试求桁条横截面所需的直径.(桁条可视为等直圆木梁计算, 直径以跨中为准.)解:均布荷载简支梁, 其危险截面位于跨中点, 最年夜弯矩为, 根据强度条件有从满足强度条件, 得梁的直径为对圆木直径的均布荷载, 简支梁的最年夜挠度为而相对挠度为由梁的刚度条件有为满足梁的刚度条件, 梁的直径有由上可见, 为保证满足梁的强度条件和刚度条件, 圆木直径需年夜于.5-8(5-26) 图示木梁的右端由钢拉杆支承.已知梁的横截面为边长即是0.20m的正方形, , ;钢拉杆的横截面面积.试求拉杆的伸长及梁中点沿铅垂方向的位移.解:从木梁的静力平衡, 易知钢拉杆受轴向拉力40于是拉杆的伸长为=木梁由于均布荷载发生的跨中挠度为梁中点的铅垂位移即是因拉杆伸长引起梁中点的刚性位移与中点挠度的和, 即第六章简单超静定问题6-1 试作图示等直杆的轴力图.解:取消A真个过剩约束, 以代之, 则(伸长), 在外力作用下杆发生缩短变形.因为固定端不能移动, 故变形协调条件为:故故6-2 图示支架接受荷载各杆由同一资料制成, 其横截面面积分别为, 和.试求各杆的轴力.解:设想在荷载F作用下由于各杆的变形, 节点A移至.此时各杆的变形及如图所示.现求它们之间的几何关系表达式以便建立求内力的弥补方程.即:亦即:将, , 代入, 得:即:亦即:(1)此即弥补方程.与上述变形对应的内力如图所示.根据节点A的平衡条件有:;亦即:(2);,亦即:(3)联解(1)、(2)、(3)三式得:(拉)(拉)(压)6-3 一刚性板由四根支柱支撑, 四根支柱的长度和截面都相同, 如图所示.如果荷载F作用在A点, 试求这四根支柱各受力几多.解:因为2, 4两根支柱对称, 所以, 在F力作用下:变形协调条件:弥补方程:求解上述三个方程得:6-4 刚性杆AB的左端铰支, 两根长度相等、横截面面积相同的钢杆CD和EF使该刚性杆处于水平位置, 如图所示.如已知, 两根钢杆的横截面面积, 试求两杆的轴力和应力.解:,(1)又由变形几何关系得知:,(2)联解式(1), (2), 得,故,6-5(6-7) 横截面为250mm×250mm的短木柱, 用四根40mm×40mm×5mm的等边角钢加固, 并接受压力F, 如图所示.已知角钢的许用应力, 弹性模量;木材的许用应力, 弹性模量.试求短木柱的许可荷载.创作时间:二零二一年六月三十日。
材料力学第5章答案
材料力学(柴国钟、梁利华)第5章答案本页仅作为文档封面,使用时可以删除This document is for reference only-rai'21 year.March宓 lOxlO 6 “ ““小a. = 一― y. = ----------- x65 = 26. \MPa ; a 11/: 1 24907500 2=_如1= — _ xl 15 = -46.2MP" 3L5 249075005.2如图所示,圆截面梁的外伸部分系空心圆截面,轴承人和D 可视为狡支座。
试求该轴横截面上的最大正应力。
竺竺 =l ()xl ()x35 = 14. IMA//. • 2249075003kND3kN400 解:剪力图和弯矩图如下:试确定图示梁的危险截面,分别计•算图示三种截面上1、2、3点处的正应力。
12z.x z 120x180' c 45x120'川4 (b) /. = ---------------- — 2x ----------- = 45360000"〃”' 12 12_一x90 = l9.8MP" ; 6 = --” =」("⑴-x60 = l3.2MP“1L 453600002I - 45360000咕一整儿"踪歸9。
"9•林, 30x150 + 120x301. =+30xl50x(115-75)2+ 口;字)-+ 120x30x(165-115)2 = 24907500””/5.1 解:(a )叮一¥^=册®心5.W 612y 2 =10xl06120x180’ ~~12-x60 = 10・3MP“ 6=一 10xl06>,3=" 120x180sx90 = -15.4MPt/ (、30x150x75 + 120x30x165 11C \C) >\ = -------------------------------------------------------- = 11 jmmnux(c)800 200 300M R _32M 〃 _ 32X 1.344X 1()6苗 /rx60‘%=63.4MP"b/xnux w=常32:09x"62.1M&Q (1_Q 4) /rx60-X (1-0.754)故,= 63 AMPa5.3图示简支梁受均布载荷作用。
《材料力学》第五章课后习题参考答案
错误原因及避免方法
错误原因
1. 对材料力学的基本原理理解不深入,导致选择错误的公式或方法进行 计算。
2. 计算过程中出现数值错误或单位不统一等问题,导致结果偏差较大。
错误原因及避免方法
• 对计算结果缺乏分析和讨论,无法判断其 合理性和准确性。
错误原因及避免方法
01
避免方法
02
03
04
1. 加强对材料力学基本原理 的学习和理解,掌握各种公式 和方法的适用范围和条件。
题目一
分析并比较不同材料在拉伸过程中的力学行为差异。
题目二
讨论材料疲劳破坏的机理及影响因素。
要求
掌握材料在拉伸过程中的应力-应变曲线,理解弹性模量 、屈服强度、抗拉强度等概念,能够运用所学知识分析不 同材料的力学行为。
要求
了解材料疲劳破坏的基本概念,掌握疲劳破坏的机理和影 响因素,能够运用所学知识分析实际工程中的疲劳破坏问 题。
知识点综合运用
弹性力学基础
运用弹性力学的基本原理,分析 材料在弹性阶段的力学行为,计
算弹性模量等参数。
塑性力学基础
运用塑性力学的基本原理,分析材 料在塑性阶段的力学行为,理解屈 服强度、抗拉强度等概念。
疲劳破坏理论
运用疲劳破坏的基本理论,分析材 料在交变应力作用下的力学行为, 讨论疲劳破坏的机理和影响因素。
加强实践应用
除了理论学习外,我还计划通过 实践应用来加深对材料力学的理 解。例如,可以尝试利用所学知 识解决实际工程问题,或者参加 相关的实验和课程设计等。
拓展相关学科领域
材料力学是一门基础学科,与其他学 科领域有着密切的联系。因此,我计 划拓展相关学科领域的学习,如结构 力学、弹性力学等,以便更全面地了 解材料的力学性能和工程应用。
材料力学练习册5-6详细答案
第五章弯曲应力5-1 直径为d的金属丝,环绕在直径为D的轮缘上。
试求金属丝内的最大正应变与最大正应力。
已知材料的弹性模量为E。
解:5-2 图示直径为d的圆木,现需从中切取一矩形截面梁。
试问:(1) 如欲使所切矩形梁的弯曲强度最高,h和b应分别为何值;(2) 如欲使所切矩形梁的弯曲刚度最高,h和b应分别为何值;解:(1) 欲使梁的弯曲强度最高,只要抗弯截面系数取极大值,为此令(2) 欲使梁的弯曲刚度最高,只要惯性矩取极大值,为此令5-3 图示简支梁,由№18工字钢制成,在外载荷作用下,测得横截面A 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力。
已知钢的弹性模量E =200GPa ,a =1m 。
解:梁的剪力图及弯矩图如图所示,从弯矩图可见:5-4 No.20a 工字钢梁的支承和受力情况如图所示。
若[]MPa 160=σ,试求许可载荷F 。
5-5 图示结构中,AB 梁和CD 梁的矩形截面宽度均为b 。
如已知AB 梁高为1h ,CD 梁高为2h 。
欲使AB 梁CD 梁的最大弯曲正应力相等,则二梁的跨度1l 和2l 之间应满足什么样的关系?若材料的许用应力为[σ],此时许用载荷F 为多大?5-6 某吊钩横轴,受到载荷kN 130F =作用,尺寸如图所示。
已知mm 300=l ,mm 110h =,mm 160b =,mm 75d 0=,材料的[]MPa 100=σ,试校核该轴的强度。
5-7 矩形截面梁AB,以固定铰支座A及拉杆CD支承,C点可视为铰支,有关尺寸如图所示。
设拉杆及横梁的[]MPaσ,试求作用于梁B端的许可载荷F。
=1605-8 图示槽形截面铸铁梁,F=10kN,M e=70kN·m,许用拉应力[σt]=35MPa,许用压应力[σc]=120MPa。
试校核梁的强度。
解:先求形心坐标,将图示截面看成一大矩形减去一小矩形惯性矩弯矩图如图所示,C截面的左、右截面为危险截面。
工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案
工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第五章习题5-1一矩形截面梁如图所示,试计算I-I截面A、B、C、D各点的正应力,并指明是拉应力还是压应力。
5-2一外伸梁如图所示,梁为16a号槽刚所支撑,试求梁的最大拉应力和最大压应力,并指明其所作用的界面和位置。
5-3一矩形截面梁如图所示,已知P=2KN,横截面的高宽比h/b=3;材料为松木,其许用应力为。
试选择横截面的尺寸。
5-4一圆轴如图所示,其外伸部分为空心管状,试做弯矩图,并求轴内的最大正应力。
5-5 一矿车车轴如图所示。
已知 a=,p=5KN,材料的许用应力,试选择车轴轴径。
5-6 一受均布载荷的外伸刚梁,已知q=12KN/m,材料的许用用力。
试选择此量的工字钢的号码.5-7 图示的空气泵的操纵杆右端受力为,截面I-I和II-II位矩形,其高宽比为h/b=3,材料的许用应力。
试求此二截面的尺寸。
5-8 图示为以铸造用的钢水包。
试按其耳轴的正应力强度确定充满钢水所允许的总重量,已知材料的许用应力,d=200mm.5-9 求以下各图形对形心轴的z的惯性矩。
5-10 横梁受力如图所试。
已知P=97KN,许用应力。
校核其强度。
5-11 铸铁抽承架尺寸如图所示,受力P=16KN。
材料的许用拉应力。
许用压应力。
校核截面A-A的强度,并化出其正应力分布图。
5-12 铸铁T形截面如图所示。
设材料的许用应力与许用压应力之比为,试确定翼缘的合理跨度b.5-13 试求题5-1中截面I-I上A、B、C、D各点处的切应力。
5-14 制动装置的杠杆,在B处用直径d=30mm的销钉支承。
若杠杆的许用应力,销钉的,试求许可载荷和。
5-15 有工字钢制成的外伸梁如图所示。
设材料的弯曲许用应力,许用且应力,试选择工字钢的型号。
5-16 一单梁吊车由40a号工字钢制成,在梁中段的上下翼缘上各加焊一块的盖板,如图所示。
【材料力学】第五章 截面的几何性质习题答案
5-1 试用积分法确定图示平面图形的形心位置。
解:(1)建立极坐标极坐标(α,ρ),取微面积dA d d ραρ=⋅。
则cos yρα=,(2)求形心位置222322cos ()cos 43434r r AC d d d d ydA rrr y AA rππραρραρρααπππ⋅⋅⋅⋅=====⎰⎰⎰⎰⎰由对称性可知:43Cr z π=。
图形形心为(43r π,43r π)。
y700图题5-1b 图题5-2b5-2 确定图示平面图形力的形心位置。
解:(1)选取通过矩形I 的形心C 1,矩形II 形心C 2,矩形III 形心C 3 (2)求形心位置 由于截面左右对称,故:400m mCz=。
3131150400150150800200400150500150700222m m =305m m150800200400500150i C ii C ii A y y A ==⎛⎫⎛⎫⨯⨯+⨯⨯++⨯⨯- ⎪ ⎪⎝⎭⎝⎭==⨯+⨯++⨯∑∑图形形心为(305,400)。
5-4(a)题5-4图解:(1)矩形341212z bhaI ==(2)箱形箱形与方形面积,即:22226 5.4 5.4a a bt at t ==→=333322224(0.9)(1.8)(0.9)(1.8)()(2)()(2)5.45.45.45.4121212120.4567z a a a a a a a a b t b t b t b t I a++--++--=-=-=(3)工字形截,即:面23332 1.62 5.2a a at at t =⨯+→=工字形截面方形面积33333341.6(22)(1.6)81.6(22)(1.6)8 5.25.2121212120.8695z a aa a a aa a t a t aI a+⨯-+-=-=-=10.45670.869515.4810.4312z z z I I I ==工方箱::::::5-8图示矩形h=2b=200mm ,(1)试求矩形通过坐标原点O 1的主惯性轴的位置及主惯性矩。
材料力学习题的答案解析
:
即 ①
(2)变形协调方程:
即:
即: ②
由①②解得: kN, kN
MPa MPa
MPa MPa
3.当 且温度再上升20℃时,仍为一次超静定问题,此时静力平衡方程仍为①式,而变形协调方程为
即
即: ③
由①③解得: kN, kN
∴ MPa
MPa
第五章
5-1试用截面法求图示梁中 横截面上的剪力和弯矩。
解:
由 :
可以得到:
即AC杆比AB杆危险,故
kN
kN
由 :
可求得结构的许用载荷为 kN
3-4承受轴力 作用的等截面直杆,若任一截面上的切应力不超过 ,试求此杆的最小横截面面积。
解:
由切应力强度条件
≤
可以得到
≥ mm2 mm2
3-5试求图示等直杆AB各段内的轴力。
解:
为一次超静定问题。设支座反力分别为 和
解:
圆筒横截面上的轴力为
由胡克定律
可以得到此重物的重量为
第三章
拉压杆的强度计算
3-1图示水压机,若两根立柱材料的许用应力为 ,试校核立柱的强度。
解:
立柱横截面上的正应力为
所以立柱满足强度条件。
3-2图示油缸盖与缸体采用6个螺栓连接。已知油缸内径 ,油压 。若螺栓材料的许用应力 ,试求螺栓的内径。
解:
DB段, ,为向上凸的抛物线;
在距B端 截面处, ,M取极大值。
5-6图示起吊一根单位长度重量为q( )的等截面钢筋混凝土梁,要想在起吊中使梁内产生的最大正弯矩与最大负弯矩的绝对值相等,应将起吊点A、B放在何处(即 )?
解:
作梁的计算简图如图(b)所示,作梁的弯矩图,图(c)所示。
材料力学第五版课后习题答案修订版
材料力学第五版课后习题答案Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】二、轴向拉伸和压缩2-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d)解:。
2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)2-7(2-9)一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:2-8(2-11)受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截面上的线应变相同因此2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
北航材料力学-习题集解-【全答案】(52页)
— 61 —
F Nx
dx
C
M dM
FNx dFNx
(b)
M C 0 , M dM M pdx
h 0 2
∴
ph dM dx 2
2-7
| M | max 。
试作 2-6 题中梁的轴力图和弯矩图, 并确定 | FNx | max 和
FN
l
x
pl
解: | FNx | max pl (固定端)
习题 2-4 图
( ql )
C
A
B
M 5 4
Fy 0 , FRA
M C FRB
1 ql (↓) , 4
1 1 l ql l ql 2 (+) 4 4
(a-1)
(b-1)
M A ql 2
A
M 2
C
D
E
M 2
B
M 2
M
A
C
1 4
B
M
3
— 59 —
| M | max
(d) M B 0
3 2 ql 2 1 ql l 0 2
( gl)
D
l
(c)
(d)
FRA 2l q 3l
FRA
FQ
FQ
( gl)
1.25
5 ql (↑) 4
A
B
1
C
A
(c-1)
D
B
0.75
C
1
3 Fy 0 , FRB ql (↑) 4 q MB 0 , MB l2 2 25 2 ql MD 0, MD 32 5 | FQ | max ql 4 25 2 | M | max ql 32 (e) Fy 0 ,FRC = 0 3 l M C 0 , ql l ql M C 0 2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由此得
M ( x)
q0l x4 x3 x 2q0 3 6l 2 3l
根据上述方程,画剪力与弯矩图分别如图 b 与 c 所示,最大剪力与弯矩分别为
FS,max
q0l 3
M max
5q0l 2 48
5-13
在图示梁上,作用有集度为 m= m (x)的分布力偶。试建立力偶矩集度、剪力与
端时,梁支座内侧截面 A+ 或 B- 出现最大剪力,其绝对值为
d ) l
5-11
图。
图示各梁,承受分布载荷作用。试建立梁的剪力、弯矩方程,并画剪力、弯矩
题 5-11 图 (a)解:1.建立剪力、弯矩方程 设截面 x 处的载荷集度为 q( x ) ,由图 5-11(1)可知,
(b)
5-15
试绘制图示杆件的内力图, 并利用题 5-14 所述微分关系检查内力图的正确性。
题 5-15 图 解:题(a)的轴力图与题(b)的扭矩图,分别如图 5-15a 与 b 所示,最大轴力与最大扭矩分 别为
FN,max
ql 2
Tmax ml
11
图 5-15
5-16
图示杆件,承受平行于杆轴方向的均布载荷 q 作用。试画杆的内力图,并利
第五章 弯曲内力
5-3
试证明,在集中力 F 作用处(图 a) ,梁微段的内力满足下列关系:
FS右 FS左 F , M 右 M 左
而在矩为 Me 的集中力偶作用处(图 b) ,则恒有
FS右 FS左,
M右 M左 Me
题 5-3 图 证明:根据题图 a,由
Fy 0,FS左 F qdx FS右 0
图 5-6
5-8
最小。
图示外伸梁, 承受均布载荷 q 作用。 试问当 a 为何值时梁的最大弯矩值 (即 M
max
)
题 5-8 图 解:1.求支反力 由对称性可知,二支座的支反力相等(见图 5-8a) ,其值为
2
FCy FDy
ql () 2
图 5-8 2.画弯矩图 根据各梁段的端值及剪力、弯矩与载荷集度间的微分关系,画弯矩图如图 b 所示。 3.确定 a 值 由进一步分析可知,只有当梁中点处的弯矩值、C 与处弯矩的绝对值相等时,梁的最大弯 矩值才可能最小,由此得
M 1 (η) FAy η
由
F [(2l d )η 2η 2 ] l
dM 1 ( η) 0 dη
( 0ηl d )
(a)
得
η
此即左轮处 M 1 达最大值的左轮位置。 将式(b)代入式(a),得弯矩的最大值为
2l d 4
(b)
M max
F (2l d ) 2 8l
剪力方程为
FS ( x ) FSA q( )d
0
x
q0 l x 2 4q0 l2 l d 3 0
由此得
FS ( x )
弯矩方程为
q0l x3 x2 4q0 3 3l 2 2l
x x q l 3 2 M ( x ) M A FS ( )d 0 0 4q0 3l 2 2l d 0 0 3
(a)
F
得
y
0,FS dFS FS 0
dFS 0
或写成
dFS 0 dx
式(a)和(b)即为本题要求建立的微分关系。
(b)
5-14
对于图示杆件,试建立载荷集度(轴向载荷集度 q 或扭力偶矩集度 m)与相应
内力(轴力或扭矩)间的微分关系。
题 5-14 图 解:在横截面 x 处取微段 dx ,其受力如图 5-14a 和 b 所示。
dx
dx
M右 M左
足标 C 系指梁微段右端面的形心,对题图(b)亦同。 根据题图 b,由
Fy 0,FS左 qdx FS右 0
略去微量 qdx 后,得
FS右 FS左
仍据题图 b,由
1
M C 0,M 右 M e qdx( 2 ) FS左dx M 左 0
q0 a 3
图 5-11b 为研究方便,选取图 5-11b(2)所示左半跨梁 AC 为研究对象。 显然,截面 C 的剪力与弯矩分别为
FSC
还可以看出,横截面 x1 的载荷集度为
q0 a 6
,
q0 x1 a
MC 0
qx
于是得 AC 段的剪力与弯矩方程分别为
q0 a q x1 x1 qa q 2 0 0 x1 6 2 6 2a q x1 x1 x1 q0 a q0 a q 3 M ( x1 ) x1 x1 0 x1 6 2 3 6 6a 同理,以右半跨梁 CB 段为研究对象[图 5-11b(3)],得相应剪力与弯矩方程分别为 qa q 2 FS ( x2 ) 0 0 x2 6 2a FS ( x1 )
用相应载荷与内力间的微分关系检查内力图的正确性。
题 5-16 图 (a)解:坐标自左端向右取,内力 FN 0,Fs 0 ,其 M 图则如图 5-16a 所示。
l (0 x1 ) 2 l (0 x2 ) 2 l (0 x1 ) 2 l (0 x2 ) 2
(i) ( j) ( k) (l)
依据式 (i) 与 (j) 可绘剪力图,如图 5-11d(2) 所示;依据式 (k) 与 (l ) 可绘弯矩图,如图 5-11d(3)所示。注意在 x2 l / 4 处, FS2 0 , M 2 取极值,其绝对值为
M 2 max
7ql 2 96
5-12 图示简支梁,承受分布载荷作用,其集度表达式为
x2 x q 4q0 2 l l
8
式中,q0 代表载荷集度的最大绝对值。试建立梁的剪力、弯矩方程,并画剪力、弯矩图。
题 5-12 图 解:分布载荷的合力为
l x 2 x dx 4q l 3 l 2 2q0l FR 4q0 0 0 3 l2 l 3l 2 2l
1 2 1 1 ql qla qa2 8 2 2
解此方程,得
a
舍去增根,最后确定
1 2 l 2
a
2 1 l 0.207l 2
5-9
图示简支梁,梁上小车可沿梁轴移动,二轮对梁之压力均为 F。试问:
(1) 小车位于何位置时,梁的最大弯矩值最大,并确定该弯矩之值; (2) 小车位于何位置时,梁的最大剪力值最大,并确定该剪力之值。
5
算出 A 与 B 两端的 FS 与 M 值, 并考虑到上述曲线形状, 即可绘出 FS 与 M 图, 如图 5-11a (3)和(4)所示。 (b)解:由图 5-11b(1)可知,半跨梁上分布载荷的合力为
FR
q0 a 2
于是由平衡方程 M B 0 与 M A 0 ,得支反力为
FAy FBy
保留有限量,略去微量 qdx 后,得
FS右 FS左 F
为了更一般地反映 F 作用处剪力的突变情况(把向下的 F 也包括在内) ,可将上式改写为
FS右 FS左 F
仍据题图 a,由
M C 0,M 右 F ( 2 ) qdx( 2 ) FS左dx M 左 0
保留有限量,略去一阶和二阶微量后,得
q( x )
q0 x l
图 5-11a 由图 5-11a(2)可得,剪力与弯矩方程分别为
Fs
q x2 q( x ) x 0 2 2l q0 x 3 x x M [q( x ) ] 2 3 6l
(0 x l ) (0 x l )
(a) (b)
2.画剪力、弯矩图 由式(a)和(b)可知,二者均为简单的幂函数,其函数图依次为二次下凹曲线及三次下凹 曲线。
l (0 x1 ) 2 l (0 x 2 ) 2 l (0 x1 ) 2 l (0 x 2 ) 2
(e) (f) ( g) ( h)
7
3.画剪力、弯矩图 依据式(e)与(f)可绘剪力图,如图 5-11c(2)所示;依据式(g)与(h)可绘弯矩图,如图 5-11c(3)所示。注意在 x2 11l / 24 处, FS2 0 , M 2 有极大值,其值为
(c)
由对称性可知,当 η (2l 3d ) / 4 时,右轮处的 M 2 达到最大,其值同式(c)。 3.确定最大剪力值及小车位置 由剪力图不难判断,最大剪力只可能出现在左段或右段,其剪力方程依次为
F ( 2l 2η d ) ( 0ηl d ) l F FS2 FBy ( 2η d ) (0ηl d ) l 二者都是 η 的一次函数,容易判断,当 η 0 或 η (l d ) 时,即小车无限移近梁的左端或右 FS1 FAy
弯矩间的微分关系。
9
题 5-13 图 解:在截面 x 处取微段 dx ,其受力图如图 5-13 所示。
图 5-13 根据图示,由
M C 0,M dM M FSdx m( x)dx 0
得
dM FSdx m( x)dx
或写成
dM FS m dx
其中 C 为微段右端截面的形心。 又由
10
图 5-14 根据图 a,由
F
得
x
0,FN dF Nq( x )dx F N 0
dF N q( x)dx 0
或写成
dF N q dx
根据图 b,由
(a)
M x 0,T dT m( x)dx T 0
得
dT m( x)dx 0
或写成
dT m dx
M max M
(c)解:1.求支反力