新初中数学函数基础知识专项训练及答案
最新初中数学函数基础知识基础测试题及答案(1)
最新初中数学函数基础知识基础测试题及答案(1)一、选择题1.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个【答案】C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.2.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时【答案】D 【解析】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,符合题意.故选D.考点:函数的图象.3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是()A.以相同速度行驶相同路程,甲车消耗汽油最多B.以10km/h的速度行驶时,消耗1升汽油,甲车最少行驶5千米C.以低于80km/h的速度行驶时,行驶相同路程,丙车消耗汽油最少D.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油【答案】D【解析】【分析】根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题.【详解】解:由图可得:以相同速度行驶相同路程,甲车消耗汽油最少.故选项A错误.以10km/h的速度行驶时,消耗1升汽油,甲车最多行驶5千米.故选项B错误.以低于80km/h的速度行驶时,行驶相同路程,甲车消耗汽油最少.故选项C错误.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油.故选项正确.故选D.【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.4.如图,边长为 2 的正方形ABCD,点P从点A出发以每秒 1 个单位长度的速度沿A D C --的路径向点 C 运动,同时点 Q 从点B 出发以每秒 2 个单位长度的速度沿BCD A --- 的路径向点 A 运动,当点 Q 到达终点时,点P 停止运动,设PQC ∆ 的面积为 S ,运动时间为t 秒,则能大致反映S 与t 的函数关系的图象是( )A .B .C .D .【答案】C【解析】【分析】 分三种情况求出解析式,即可求解.【详解】当0≤t≤1时,即当点Q 在BC 上运动,点P 在AD 上运动时,()2222212S t t =⨯⨯-=-, ∴该图象y 随x 的增大而减小,当1<t≤2时,即当点Q 在CD 上运动时,点P 在AD 上运动时,()()21222322S t t t t =--=-+-, ∴该图象开口向下, 当2<t≤3,即当点Q 在AD 上运动时,点P 在DC 上运动时,()()21424682S t t t t =--=-+- ∴该图象开口向下,故选:C .【点睛】本题考查了动点问题的函数图象,求出分段函数解析式是本题的关键.5.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的( ) m1 2 3 4 v 0.01 2.9 8.03 15.1A .v=2m ﹣2B .v=m 2﹣1C .v=3m ﹣3D .v=m+1【答案】B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.解:当m=4时,A、v=2m﹣2=6;B、v=m2﹣1=15;C、v=3m﹣3=9;D、v=m+1=5.故选B.6.父亲节当天,学校“文苑”栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,下面与上述诗意大致相吻合的图像是()A.B.C.D.【答案】B【解析】【分析】正确理解函数图象即可得出答案.【详解】解:同辞家门赴车站,父亲和学子的函数图象在一开始的时候应该一样,当学子离开车站出发,离家的距离越来越远,父亲离开车站回家,离家越来越近.故选B.【点睛】首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.7.圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量【答案】B【解析】【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,可得答案.【详解】解:在圆周长公式C=2πR中,2、π是常量,C,R是变量.故选:B.【点睛】此题考查常量与变量,解题关键在于掌握变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,注意π是常量.8.在正方形ABCD中,点E为BC边的中点,点F在对角线AC上,连接FB、FE.当点F 在AC上运动时,设AF=x,△BEF的周长为y,下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【答案】B【解析】【分析】先根据正方形的对称性找到y的最小值,可知图象有最低点,再根据距离最低点x的值的大小(AM>MC)可判断正确的图形.【详解】如图,连接DE与AC交于点M,则当点F 运动到点M 处时,三角形△BEF 的周长y 最小,且AM >MC .过分析动点F 的运动轨迹可知,y 是x 的二次函数且有最低点,利用排除法可知图象大致为:故选B .【点睛】解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的变化关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.9.如图,矩形ABCD 中,6cm AB =,3cm BC =,动点P 从A 点出发以1cm /秒向终点B 运动,动点Q 同时从A 点出发以2cm /秒按A D C →→B →的方向在边AD ,DC ,CB 上运动,设运动时间为x (秒),那么APQ ∆的面积()2cm y 随着时间x (秒)变化的函数图象大致为( )A .B .C .D.【答案】A【解析】【分析】根据题意分三种情况讨论△APQ面积的变化,进而得出△APQ的面积y(cm2)随着时间x (秒)变化的函数图象大致情况.【详解】解:根据题意可知:AP=x,Q点运动路程为2x,①当点Q在AD上运动时,y=12AP•AQ=12x•2x=x2,图象为开口向上的二次函数;②当点Q在DC上运动时,y=12AP•DA=12x×3=32x,是一次函数;③当点Q在BC上运动时,y=12AP•BQ=12x•(12−2x)=−x2+6x,为开口向下的二次函数,结合图象可知A选项函数关系图正确,故选:A.【点睛】本题考查了动点问题的函数图象,解决本题的关键是分三种情况讨论三角形APQ的面积变化.10.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A.B.C .D .【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B .【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.11.若12x y -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠, 解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s与t的大致图象应为( )A.A B.B C.C D.D【答案】D【解析】根据题意,设小正方形运动的速度为v,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,D符合,故选D.【点睛】本题考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.13.下列图象中不是表示函数图象的是()A.B.C.D.【答案】C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;B选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;C选项:不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不是函数;D选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D是函数,故选:C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.14.如图,点P是等边△ABC的边上的一个做匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是()A.B.C.D.【答案】C【解析】【分析】设等边三角形的高为h,点P的运动速度为v,根据等边三角形的性质可得出点P在AB上运动时△ACP的面积为S,也可得出点P在BC上运动时的表达式,继而结合选项可得出答案.【详解】设等边三角形的高为h,点P的运动速度为v,①点P在AB上运动时,△ACP的面积为S=12hvt,是关于t的一次函数关系式;②当点P在BC上运动时,△ACP的面积为S=12h(AB+BC-vt)=-12hvt+12h(AB+BC),是关于t的一次函数关系式;故选C.【点睛】此题考查了动点问题的函数图象,根据题意求出两个阶段S与t的关系式,难度一般.15.如图1,点F从菱形ABCD的项点A出发,沿A-D-B以1cm/s的速度匀速运动到点B.图2是点F运动时,△FBC的面积y (m2)随时间x (s)变化的关系图象,则a的值为( )A .5B .2C .52D .25【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =,进而求出BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴==∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中,2222(5)21BE BD DE =-=-=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+-解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.16.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每天薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的()A.a=20B.b=4C.若工人甲一天获得薪金180元,则他共生产45件.D.人乙一天生产40(件),则他获得薪金140元【答案】C【解析】【分析】根据题意和函数图象可以求得a、b的值,从而可以判断选项A和B是否正确,根据C和D的数据可以分别计算出题目中对应的数据是否正确,从而可以解答本题.【详解】解:由题意和图象可得,a=60÷3=20,故选项A正确,b=(140−60)÷(40−20)=80÷20=4,故选项B正确,若工人甲一天获得薪金180元,则他共生产:20+180602030504-=+=(件),故选项C错误;由图象可知,工人乙一天生产40(件),他获得的薪金为:140元,故选项D正确,故选:C.【点睛】本题考查函数图象的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.下列图象中,表示y是x的函数的是()A.B.C.D.【答案】C【解析】【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义可知,每给定自变量x一个值都有唯一的函数值y相对应,所以A. B. D错误.故选C.【点睛】本题考查了函数的概念,牢牢掌握函数的概念是解答本题的关键.18.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大变化,其体温(C )与时间(小时)之间的关系如图1所示.小清同学根据图1绘制了图2,则图2中的变量有可能表示的是( ).A .骆驼在t 时刻的体温与0时体温的绝对差(即差的绝对值)B .骆驼从0时到t 时刻之间的最高体温与当日最低体温的差C .骆驼在t 时刻的体温与当日平均体温的绝对差D .骆驼从0时到t 时刻之间的体温最大值与最小值的差【答案】B【解析】【分析】根据时间和体温的变化,将时间分为3段:0-4,4-8,8-16,16-24,分别观察每段中的温差,由此即可求出答案.【详解】解:观察可得从0时到4时,温差随时间的增大而增大,在4时达到最大,是2℃;再到8时,这段时间的最高温度是37℃,最低是35℃,温差不变,从8时开始,最高温度变大,最低温度不变是35℃,温差变大,达到3℃,从16时开始体温下降,温差不变.则图2中的变量y 有可能表示的是骆驼从0时到t 时刻之间的最高体温与当日最低体温的差. 故选:B .【点睛】本题考查函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小以及理解本题中温差的含义是解决本题的关键.19.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为( )A .y=x+2B .y=x 2+2C .2x +D .y=12x + 【答案】C【解析】试题分析:A .2y x =+,x 为任意实数,故错误;B .22y x =+,x 为任意实数,故错误;C .2y x =+20x +≥,即2x ≥-,故正确;D .12y x =+,20x +≠,即2x ≠-,故错误; 故选C . 考点:1.函数自变量的取值范围;2.在数轴上表示不等式的解集.20.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 逆时针0°~90°的旋转,那么旋转时露出的△ABC 的面积(S )随着旋转角度(n )的变化而变化,下面表示S与n关系的图象大致是()A.B.C.D.【答案】B【解析】【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.。
初二数学函数基础练习题及答案
初二数学函数基础练习题及答案1. 题目:已知函数 f(x) 的定义域为实数集 R,当 x>0 时,f(x) = 2x+ 1,求函数 f(x) 的值域。
解答:由题可知,函数 f(x) 在定义域 x>0 的范围内,值为 2x + 1。
要求函数 f(x) 的值域,即求出所有可能的函数值。
由于定义域为实数集 R,函数 f(x) 的值域也应为实数集 R。
因此,函数 f(x) 的值域为实数集 R。
2. 题目:已知函数 g(x) 的定义域为实数集 R,当x≥0 时,g(x) = x^2 + 3x,求函数 g(x) 的零点。
解答:零点指的是函数的函数值等于零的点。
要求函数 g(x) 的零点,即求出满足 g(x) = 0 的 x 值。
由题可知,函数 g(x) 在定义域x≥0 的范围内,值为 x^2 + 3x。
所以可以得到以下方程:x^2 + 3x = 0化简方程可得:x(x + 3) = 0得到两个解:x = 0 或 x = -3所以函数 g(x) 的零点为 x = 0 或 x = -3。
3. 题目:已知函数 h(x) 的定义域为实数集 R,当 x<0 时,h(x) = |x|,求函数 h(x) 的对称轴。
解答:对称轴指的是函数图像关于某条直线对称。
要求函数 h(x) 的对称轴,可以观察绝对值函数的特点。
当 x<0 时,函数 h(x) 的值为 |x|,即取 x 的绝对值。
由于绝对值函数的图像关于 y 轴对称,所以函数 h(x) 的对称轴应为 y 轴,即 x=0。
所以函数 h(x) 的对称轴为 x = 0。
4. 题目:已知函数 k(x) 的定义域为实数集 R,当 x>0 时,k(x) = 2x,求函数 k(x) 的单调递增区间。
解答:单调递增区间指的是函数在该区间上函数值逐渐增加的区间。
要求函数 k(x) 的单调递增区间,可以观察函数的性质。
由题可知,函数 k(x) 在定义域 x>0 的范围内,值为 2x。
中考数学《函数基础知识》专项练习题(带答案)
中考数学《函数基础知识》专项练习题(带答案)一、单选题1.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5 y/cm1010.51111.51212.5A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm2.若矩形的面积为125,则矩形的长y 关于宽x(x >0)的函数关系式为( )A .y =125xB .y =512xC .y =12x 5D .y =5x 123.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度 ℎ 与时间 t 之间的关系的图象是( )A .B .C .D .4.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(m)与时间t(min)之间函数关系的图象大致是( )A .B .C.D.5.若代数式√x−1x−2有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠26.等腰三角形ABC中,AB=CB=5,AC=8,P为AC边上一动点,PQ⊥AC,PQ与△ABC的腰交于点Q,连结CQ,设AP为x,△CPQ的面积为y,则y关于x的函数关系的图象大致是()A.B.C.D.7.若直线y=kx上每一点都能在直线y=−6x上找到关于x轴对称的点,则它的解析式是()A.y=6x B.y=16x C.y=−6x D.y=−1 6x8.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.9.函数y=√2−x+1x+1中,自变量x的取值范围是()A.x⩽2B.x⩽2且x≠−1 C.x⩾2D.x⩾2且x≠−110.在下列四个图形中,能作为y是x的函数的图象的是()A.B.C.D.11.如图,小磊老师从甲地去往10千米的乙地,开始以一定的速度行驶,之后由于道路维修,速度变为原来的四分之一,过了维修道路后又变为原来的速度到达乙地.设小磊老师行驶的时间为x(分钟),行驶的路程为y(千米),图中的折线表示y与x之间的函数关系,则小磊老师从甲地到达乙地所用的时间是()A.15分钟B.20分钟C.25分钟D.30分钟12.下列图象中,y是x的函数的是()A.B.C.D.二、填空题13.如图1,在平面直角坐标系中,将▱ABCD(AB>AD)放置在第一象限,且AB∥x轴,直线y=−x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为.14.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地. 如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系式;折线B−C−D表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.下几种说法:①货车的速度为60千米/小时;②轿车与货车相遇时,货车恰好从甲地出发了3. 9小时;③若轿车到达乙地后,马上沿原路以CD段速度返回,则轿车从乙地出发317小时再次与货车相遇;其中正确的个数是. (填写序号)15.某商城为促进同一款衣服的销量,当同一个人购买件数达到一定数目的时候,超过的件数,每件打8折,现任意挑选5个顾客的消费情况制定表格,其中x表示购买件数,y表示消费金额,根据表格数据请写出一个y关于x的函数解析式是:.x(件)23456y(元)10015020024028016.函数y=2√x−1的自变量x的取值范围是.17.甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:(1)图中m的值是;(2)第天时,甲、乙两个车间加工零件总数相同.18.如图,△O的半径为5,点P在△O上,点A在△O内,且PA=3,过点A作AP的垂线交△O于点B,C.设PB= x ,PC=y,则y与x之间的函数解析式为三、综合题19.某旅客携带xkg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量xkg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量xkg的对应关系.行李的重量xkg快递费不超过1kg10元超过1kg但不超过5kg的部分3元/kg超过5kg但不超过15kg的部分5元/kg(1)如果旅客选择单托运,求可携带的免费行李的最大重量为多少kg?(2)如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量xkg之间的函数关系式;(3)某旅客携带25kg的行李,设托运mkg行李(10≤m<24,m为正整数),剩下的行李选择快递,当m为何值时,总费用y的值最小?并求出其最小值是多少元?20.小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶,若干小时后,途中在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系,如图所示,根据图象回答下列问题;(1)小汽车行驶小时后加油,中途加油升;(2)求加油前邮箱余油量Q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点300km,车速为80km/h,要到达目的地,油箱中的油是否够用请说明理由.21.一农民带了若干千克自产的萝卜进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出萝卜千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)降价前他每千克萝卜出售的价格是多少?(2)降价后他按每千克0.4元将剩余萝卜售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克萝卜?22.某景区今年对门票价格进行动态管理.节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折;非节假日期间全部打折.设游客为x人,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)求不打折的门票价格;(2)求y1、y2与x之间的函数关系式;(3)导游小王5月2日(五一假日)带A旅游团,5月8日(非节假日)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?(温馨提示:节假日的折扣与非节假日的折扣不同)23.在“世界读书日”这周的周末,小张同学上午8时从家里出发,步行到公园锻炼了一段时间后以相同的速度步行到图书馆看书,看完书后直接回到了家里,如图是他离家的距离s(米)与时间t(时)的函数关系,根据图象回答下列问题:(1)小张同学家离公园的距离是多少米?锻炼身体用了多少分钟?在图书馆看了多少分钟的书?从图书馆回到家里用了多少分钟?(2)图书馆离小张同学的家多少米?(3)小张同学从图书馆回到家里的速度是多少千米/时?24.甲、乙两车早上从A城车站出发匀速前往B城车站,在整个行程中,两车离开A城的距离s与时间t的对应关系如图所示.(1)A,B两城之间距离是多少?(2)求甲、乙两车的速度分别是多少?(3)乙车出发多长时间追上甲车?(4)从乙车出发后到甲车到达B城车站这一时间段,在何时间点两车相距40km?参考答案1.【答案】B 2.【答案】A 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】D 7.【答案】A 8.【答案】B 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】B 13.【答案】8 14.【答案】①②③15.【答案】{y =50x(0≤x ≤4)y =40x +40(x >4)16.【答案】x >1 17.【答案】(1)770(2)818.【答案】y =30x19.【答案】(1)解:设托运费y 1(元)与行李重量xkg 的函数关系式为y 1=kx+b将(30,300)、(50,900)代入y 1=kx+b , {30k +b =30050k +b =900 ,解得: {k =30b =−600 ∴托运费y 1(元)与行李质量xkg 的函数关系式为y 1=30x ﹣600. 当y 1=30x ﹣600=0时,x =20.答:可携带的免费行李的最大重量为20kg . (2)解:根据题意得:当0<x≤1时,y 2=10; 当1<x≤5时,y 2=10+3(x ﹣1)=3x+7;当5<x≤15时,y 2=10+3×(5﹣1)+5(x ﹣5)=5x ﹣3.综上所述:快递费y 2(元)与行李重量xkg 的函数关系式为y 2= {10(0<x ≤1)3x +7(1<x ≤5)5x −3(5<x ≤15) .(3)解:当10≤m <20时,5<25﹣m≤15∴y =y 1+y 2=0+5×(25﹣m)﹣3=﹣5m+122. ∵10≤m <20 ∴22<y≤72;当20≤m <24时,1<25﹣m≤5∴y =y 1+y 2=30m ﹣600+3×(25﹣m)+7=27m ﹣518. ∵20≤m <24 ∴22≤y <130.综上可知:当m =20时,总费用y 的值最小,最小值为22.答:当托运20kg 、快递5kg 行李时,总费用最少,最少费用为22元.20.【答案】(1)3;24(2)解:设直线解析式为Q=kt+b ,把(0,36)和(3,6)代入得: {3k +b =6b =36解得 {k =−10b =36 ∴Q=-10t+36,(0≤t≤3);(3)解:根据题意,每小时耗油量为10升 ∵加油站到景点用时间为:300÷80=3.75(小时) ∴需要的油量为:3.75×10=37.5升>30升 故不够用.21.【答案】(1)解:设降价前每千克萝卜价格为k 元则农民手中钱y 与所售萝卜千克数x 之间的函数关系式为:y=kx+5 ∵当x=30时,y=20 ∴20=30k+5 解得k=0.5.答:降价前每千克萝卜价格为0.5元. (2)解:(26-20)÷0.4=15 15+30=45kg.所以一共带了45kg 萝卜.22.【答案】(1)解: 800÷10=80 (元 / 人)答:不打折的门票价格是80元 / 人; (2)解:设 y 1=10k 解得: k =48 ∴y 1=48x当0⩽x⩽10时,设y2=80x 当x>10时,设y2=mx+b则{10m+b=80020m+b=1440解得:m=64∴y2=64x+160∴y2={80x(0⩽x⩽10)64x+160(x>10);(3)解:设A旅游团x人,则B旅游团(50−x)人若0⩽x⩽10,则80x+48(50−x)=3040解得:x=20,与x⩽10不相符若x>10,则64x+160+48(50−x)=3040解得:x=30,与x>10相符,50−30=20(人)答:A旅游团30人,B旅游团20人.23.【答案】(1)解:观察图象得:小张同学8时离开家,8:10到达公园,小张同学家离公园的距离是500米∵小张同学8:10到达公园,9:10离开公园∴小张同学锻炼身体用了60分钟∵小张同学9:30到达图书馆,11:40离开图书馆∴小张同学在图书馆看了130分钟的书∵小张同学11:40离开图书馆,12时回到家∴小张同学从图书馆回到家里用了20分钟∴小张同学家离公园的距离是500米,锻炼身体用了60分钟,在图书馆看了130分钟的书,从图书馆回到家里用了20分钟;(2)解:∵小张同学8时离开家,8:10到达公园,距离500米,用时10分钟∴小张同学从家到公园的速度为500÷10=50(米/分)∵步行到公园锻炼了一段时间后以相同的速度步行到图书馆着书∴小张同学从公园到图书馆的速度为50米/分∵小张同学9:10离开公园,9:30到达图书馆∴公园离图书馆的距离为:50×20=1000(米)∴图书馆离小张同学的家的距离为:1000+500=1500(米)∴图书馆离小张同学的家1500米;(3)解:∵小张同学从图书馆到家的距离为1500米,即1.5千米,从图书馆回到家里用了20分钟,即时13小时 ∴小张同学从图书馆回到家里的速度是:1.5÷13=4.5千米/时 ∴小张同学从图书馆回到家里的速度是4.5千米/时.24.【答案】(1)解:由图象可知A 、B 两城之间距离是300千米;(2)解:由图象可知,甲的速度= 3005=60(千米/小时) 乙的速度= 3003=100(千米/小时) ∴甲、乙两车的速度分别是60千米/小时和100千米/小时;(3)解:设乙车出发x 小时追上甲车由题意:60(x+1)=100x解得:x =1.5∴乙车出发1.5小时追上甲车;(4)解:设乙车出发后到甲车到达B 城车站这一段时间内,甲车与乙车相距40千米时甲车行驶了m 小时①当甲车在乙车前时得:60m ﹣100(m ﹣1)=40解得:m =1.5此时是上午6:30;②当甲车在乙车后面时100(m ﹣1)﹣60m =40解得:m =3.5此时是上午8:30;③当乙车到达B 城后300﹣60m =40解得:m = 133此时是上午9:20.∴分别在上午6:30,8:30,9:20这三个时间点两车相距40千米.。
初中函数练习题及答案
初中函数练习题及答案1. 函数的概念和性质函数是数学中非常重要且基础的概念。
下面是几个函数的定义和性质的练习题:练习题1:判断下列关系是否是函数,并说明理由。
a) {(1, 2), (2, 4), (3, 6), (4, 8)}b) {(1, 2), (2, 3), (2, 4), (3, 6)}c) {(1, 2), (2, 2), (3, 2), (4, 2)}练习题答案1:a) 是函数,因为每个x对应唯一的y值。
b) 不是函数,因为元素(2, 4)和(2, 3)违背了x对应唯一的y值的原则。
c) 是函数,因为每个x对应同样的y值2。
2. 函数的图象和性质函数的图象是函数概念的重要表现形式之一。
下面是几个与函数图象相关的练习题:练习题2:绘制函数y = 2x + 1的图象,并说明其性质。
练习题答案2:函数y = 2x + 1的图象是一条直线,斜率为2,经过点(0, 1)。
根据该函数的特点,我们可以得出以下性质:- 当x增加1个单位时,y增加2个单位。
- 当x减少1个单位时,y减少2个单位。
- 图象关于直线y = x对称。
3. 函数的实际应用函数在生活和实际问题中的应用非常广泛。
下面是一个与函数实际应用相关的练习题:练习题3:小明骑自行车从家里出发,他的速度与时间的关系可以用函数v(t) = 2t表示,其中t表示时间(分钟),v表示速度(m/s)。
已知小明骑行30分钟能骑行的路程为15km,求小明的平均速度。
练习题答案3:已知小明骑行30分钟能骑行的路程为15km,要计算平均速度,我们可以使用以下公式:平均速度 = 总路程 / 总时间平均速度 = 15km / 30分钟 = 0.5 km/min4. 函数的复合和反函数函数的复合和反函数是函数概念的深入扩展。
下面是一个与函数复合和反函数相关的练习题:练习题4:已知函数f(x) = 2x + 1和g(x) = x^2,求复合函数f(g(x))。
练习题答案4:将函数g(x)代入函数f(x)中,得到f(g(x)) = 2(x^2) + 1。
新初中数学函数基础知识基础测试题附答案解析
③由横纵坐标看出,乙比甲先到达终点,故③错误;
④由纵坐标看出,甲乙二人都跑了20千米,故④正确;
故选C.
13.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()
新初中数学函数基础知识基础测试题附答案解析
一、选择题
1.下列图形中的曲线不表示y是x的函数的是()
A. B. C. D.
【答案】C
【解析】
【分析】
函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.
【详解】
根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.
故选C
【详解】
甲在乙前面50m处,若两人同时起跑,经过50÷(6−4)=25秒,乙追上甲,则相距是0千米,故A、B错误;
相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是600÷6=100秒,故B.、D错误;
相遇以后两人之间的最大距离是:2×(100−25)=150米.
故选C.
【点睛】
本题主要考查函数的图象,理解函数图象上点的坐标的实际意义,掌握行程问题中的基本数量关系:速度×时间=距离,是解题的关键.
12.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()
【分析】
【详解】
解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;
【答案】A
【解析】
初中数学函数基础知识基础测试题及答案(1)
A. B.
C. D.
【答案】D
【解析】
【分析】
根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.
【详解】
解:A、距离越来越大,选项错误;
B、距离越来越小,但前后变化快慢一样,选项错误;
∵在△ABC中,AC=BC,∴AD=BD.
①点P在边AC上时,s随t的增大而减小.故A、B错误;
②当点P在边BC上时,s随t的增大而增大;
③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;
④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.
考点:等腰三角形的性质,函数的图象;分段函数.
【详解】
解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,
∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,
∴y2<y1<y3.
故选:B.
【点睛】
本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.
A. B.
C. D.
【答案】C
【解析】
【分析】
根据题意可对每个选项逐一分析判断图象得正误.
【详解】
解:A、从图象上看小亮的路程走平路不变是不正确的,故不是.
B、从图象上看小亮走的路程随时间有一段更少了,不正确,故不是.
C、小亮走的路程应随时间的增大而增大,两次平路的两条直线互相平行,此图象符合,故正确.
初中数学函数专项训练
初中数学函数练习大全(一)1反比例函数、一次函数基础题(1)下列函数,① 1)2(=+y x ②. 11+=x y ③21x y =④.x y 21-=⑤2x y =-⑥13y x = ;其中是y 关于x 的反比例函数的有:_________________。
(2)如图,正比例函数(0)y kx k =>与反比例函数2y x=的图象相交于A 、C 两点,过点A 作AB ⊥x 轴于点B ,连结BC .则ΔABC 的面积等于( ) A .1 B .2 C .4 D .随k 的取值改变而改变.(3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( )A .反比例函数B .正比例函数C .一次函数D .反比例或正比例函数 (4)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( )(5)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (6)反比例函数(0ky k x=≠)的图象经过(—2,5)和(2, n ), 求①n 的值;②判断点B (24,2-)是否在这个函数图象上,并说明理由(7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:①求y 关于x 的函数解析式;②当x =2时,y 的值.(8)若反比例函数22)12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于12的任意实数; C 、-1; D、不能确定(9)已知0k >,函数y kx k =+和函数ky x=在同一坐标系内的图象大致是( )(10)正比例函数2x y =和反比例函数2y x=的图象有 个交点.(11)正比例函数5y x =-的图象与反比例函数(0)ky k x=≠的图象相交于点A (1,a ), 则a = .(12)下列函数中,当0x <时,y 随x 的增大而增大的是( )A .34y x =-+B .123y x =-- yxOA CBC .4y x=-D .12y x =.(13)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质:甲:函数的图象经过第二象限; 乙:函数的图象经过第四象限; 丙:在每个象限内,y 随x 的增大而增大请你根据他们的叙述构造满足上述性质的一个函数: .(14)矩形的面积为6cm 2,那么它的长y (cm )与宽x(cm )之间的函数关系用图象表示为( )C D (15)反比例函数y=kx(k>0)在第一象限内的图象如图,点M(x,y)是图象上一点,MP 垂直x 轴于点P, MQ 垂直y 轴于点Q ;① 如果矩形OPMQ 的面积为2,则k=______; ② 如果△MOP 的面积=________.(一)2反比例函数、一次函数提高题1、函数2xy =-和函数2y x =的图象有 个交点;2、反比例函数k y x =的图象经过(-32,5)点、(,3a -)及(10,b )点,则k = ,a = ,b = ;3、已知y -2与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ;4、已知正比例函数y kx =与反比例函数3y x=的图象都过A (m ,1),则m = ,正比例函数与反比例函数的解析式分别是 、 ; 6、()7225---=m m x m y 是y 关于x 的反比例函数,且图象在第二、四象限,则m 的值为 ; 7、若y 与-3x 成反比例,x 与4z成正比例,则y 是z 的( )A 、 正比例函数B 、 反比例函数C 、 一次函数D 、 不能确定 8、若反比例函数22)12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1 B 、小于12的任意实数 C 、 -1 D、 不能确定10、在同一直角坐标平面内,如果直线1y x k =与双曲线2k y x=没有交点,那么1k 和2k 的关系一定是( )A 、1k <0, 2k >0B 、1k >0, 2k <0C 、1k 、2k 同号D 、1k 、2k 异号11、已知反比例函数()0ky k x=<的图象上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是( )A 、正数B 、负数C 、非正数D 、 不能确定 12、在同一坐标系中,函数ky x=和3y kx =+的图象大致是 ( )13、已知直线2y kx =+与反比例函数my x=的图象交于AB 两点,且点A 的纵坐标为-1,点B 的横坐标为2,求这两个函数的解析式. o y xy xoOyx第7题y xo yxoAB② ②x 取什么时,y >0。
初中数学函数复习题及答案
初中数学函数复习题及答案初中数学函数是数学学习中的一个重要部分,涉及到变量之间的关系和表达。
下面是一些函数的复习题及答案,供同学们参考。
一、选择题1. 下列哪个是一次函数的表达式?- A. \( y = x^2 \)- B. \( y = 3x + 2 \)- C. \( y = \frac{1}{x} \)- D. \( y = 2 \)答案:B2. 函数 \( y = 2x + 3 \) 与 \( x \) 轴的交点坐标是什么?- A. (0, 2)- B. (1, 5)- C. (-1, 1)- D. (0, 3)答案:D3. 如果函数 \( y = kx + b \) 经过点 (1, 5) 和 (2, 8),那么\( k \) 和 \( b \) 的值分别是多少?- A. \( k = 3, b = 2 \)- B. \( k = 2, b = 3 \)- C. \( k = 1, b = 5 \)- D. \( k = 4, b = 1 \)答案:B二、填空题1. 函数 \( y = ax^2 + bx + c \) 是二次函数,其中 \( a \)、\( b \)、\( c \) 是常数,且 \( a \neq 0 \)。
如果 \( a > 0 \),则该函数的图像开口方向是________。
答案:向上2. 已知函数 \( f(x) = x^2 - 4x + 3 \),求 \( f(5) \) 的值。
答案:\( f(5) = 5^2 - 4 \times 5 + 3 = 25 - 20 + 3 = 8 \)三、解答题1. 已知函数 \( y = 2x - 1 \),求当 \( x = 3 \) 时的函数值。
答案:将 \( x = 3 \) 代入函数 \( y = 2x - 1 \) 中,得到\( y = 2 \times 3 - 1 = 6 - 1 = 5 \)。
2. 某工厂生产某种商品,其成本函数为 \( C(x) = 100 + 50x \),其中 \( x \) 表示生产数量。
初中中考数学函数基础28典型题(含答案和解析)
初中中考数学函数基础28道典型题(含答案和解析)1.已知关于x 的方程 mx+3=4的解为 x=1,则直线 y=(m−2)x−3一定不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵关于x的方程mx+3=4的解为x=1.∴m+3=4.∴m=1.∴直线y=(m−2)x−3为直线y=−x−3.∴直线y=(m−2)x−3一定不经过第一象限.考点:函数——一次函数——一次函数与一元一次方程.2.如图,把直线y=−2x向上平移后得到直线AB,直线AB经过点(a,b),且2a+b=6,则直线AB解析式是().A. y=−2x−3B. y=−2x−6C. y=−2x+3D. y=−2x+6答案:D.解析:∵直线AB经过点(a,b),且2a+b=6.∴直线AB经过点(a,6−2a).∵直线AB与直线y=−2x平行.∴设直线AB的解析式是:y=−2x+b1.把(a,6−2a)代入函数解析式得:6−2a=−2a+b1.则b1=6.∴直线AB的解析式是y=−2x+6.考点:函数——一次函数——一次函数图象与几何变换——一次函数平移变换.3.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.答案:x>23.解析:∵函数y=2x过点A(m,3).∴2m=3.解得:m=23.∴A(32,3).∴不等式2x>ax+4的解集为x>23.考点:函数——一次函数——一次函数与一元一次不等式——两条直线相交或平行问题.4.若函数y=x−a(a为常数)与函数y=−2x+b(b为常数)的图象的交点坐标是(2,1),则关于x、y的二元一次方程组{x−y=a2x+y=b的解是.答案:{x=2y=1.解析:因为函数y=x−a(a为常数)与函数y=−2x+b(b为常数)的图象的交点坐标是(2,1).所以方程组{x−y=a2x+y=b的解是{x=2y=1.考点:函数——一次函数——一次函数与二元一次方程——一次函数与二元一次方程(组)的关系.5.一次函数y=2x−3的图象与y轴交于A,另一个一次函数y=kx+b与y轴交于B,两条直线交于C,C点的纵坐标是1,且S△ABC=5,求k、b的值.答案:(2,1).解析:由题意知C(2,1).过C作CD⊥y轴,CD=2.·AB·CD=5.S△ABC=12∴AB=5.∴B(0,2)或(0,−8).x+2.当B(0,2)时,y=−12x−8.当B(0,−8)时,y=−92考点:函数——一次函数——求一次函数解析式——两条直线相交或平行问题.6.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),求关于x的不等式a(x−1)−b>0的解集.答案:x<−1.解析:∵一次函数y=ax+b的图象过第一、二、四象限.∴b>0,a<0.把(2,0)代入解析式y=ax+b得:0=2a+b.解得:2a=−b.b=−2.a∵a(x−1)−b>0.∴a(x−1)>b.∵a<0..∴x−1<ba∴x<−1.考点:函数——一次函数——一次函数与一元一次不等式.7.如果一次函数y=−x+1的图象与x轴、y轴分别交于A点、B点,点M在x轴上,并且使以点A、B、M为顶点的三角形是等腰三角形,那么这样的点M有().A. 3个B. 4个C. 5个D. 7个答案:B.解析:一次函数y=−x+1中令x=0,解得y=1.令y=0,解得x=1.∴A(1,0),B(0,1),即OA=OB=1.在直角三角形AOB中,根据勾股定理得:AB=√2.分四种情况考虑,如图所示:当BM1=BA时,由BO⊥AM1,根据三线合一得到O为M1A的中点,此时M1(−1,0).当AB=AM2时,由AB=√2,得到OM2=AM2−OA=√2−1,此时M2(1−√2,0).当BA=AM3时,由AB=√2,得到AM3=√2,则OM3=OA+AM3=1+√2,此时M3(1+√2,0).当M4A=M4B时,此时M4与原点重合,此时M4(0,0).综上,这样的M点有4个.故选B.考点:函数——一次函数——一次函数综合题——一次函数与等腰三角形结合.8.如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/S的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).答案:4+2√3.解析:由图②可知,t在2到4秒时,△PAD的面积不发生变化.∴在AB上运动的时间是2秒,在BC上运动的时间是4−2=2秒.∵动点P的运动速度是1cm/s.∴AB=2cm,BC=2cm.过点B作BE⊥AD于点E,过点C作CF⊥AD于点F.则四边形BCFE是矩形.∴BE=CF,BC=EF=2cm.∵∠A=60°.∴BE=ABsin60°=2×√3=√3.2AE=ABcos60°=2×1=1.2∴1×AD×BE=3√3.2×AD×√3=3√3.即12解得AD=6cm.∴DF=AD−AE−EF=6−1−2=3.在Rt△CDF中,CD=√CF2+DF2=√√32+32=2√3.所以,动点P运动的总路程为AB+BC+CD=2+2+2√3=4+2√3.∵动点P的运动速度是1cm/s.∴点P从开始移动到停止移动一共用了(4+2√3)÷1=4+2√3(秒).故答案为:4+2√3.考点:函数——一次函数——一次函数的应用.四边形——梯形.的图像上,OA长为2且∠1=60°。
初中函数专题试题及答案
初中函数专题试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是一次函数?A. \( y = x^2 \)B. \( y = 2x + 3 \)C. \( y = \frac{1}{x} \)D. \( y = x^3 - 2x \)答案:B2. 函数 \( y = 3x - 5 \) 的图象与x轴的交点坐标是:A. \( (0, -5) \)B. \( (5, 0) \)C. \( (-5, 0) \)D. \( (0, 5) \)答案:C3. 如果函数 \( y = 2x + 1 \) 在 \( x = 2 \) 时的值为5,那么\( x = 1 \) 时的值是:A. 3B. 4C. 2D. 1答案:A4. 函数 \( y = -\frac{1}{2}x + 3 \) 的斜率是:A. \( \frac{1}{2} \)B. \( -\frac{1}{2} \)C. \( \frac{3}{2} \)D. \( -3 \)答案:B5. 函数 \( y = 4x^2 \) 的顶点坐标是:A. \( (0, 0) \)B. \( (0, 4) \)C. \( (2, 0) \)D. \( (0, -4) \)答案:A6. 函数 \( y = x^2 - 6x + 9 \) 可以写成完全平方的形式:A. \( (x - 3)^2 \)B. \( (x + 3)^2 \)C. \( (x - 3)^2 + 3 \)D. \( (x + 3)^2 - 3 \)答案:A7. 函数 \( y = 2x^2 - 8x + 7 \) 的最小值是:A. 1B. 3C. 7D. 无法确定答案:A8. 函数 \( y = \frac{1}{x} \) 的图象是:A. 一条直线B. 两条直线C. 一个双曲线D. 一个抛物线答案:C9. 函数 \( y = 3x^2 + 2x - 5 \) 的对称轴是:A. \( x = -\frac{2}{3} \)B. \( x = \frac{2}{3} \)C. \( x = -1 \)D. \( x = 1 \)答案:B10. 函数 \( y = 2x + 3 \) 和 \( y = -x + 1 \) 的交点坐标是:A. \( (-2, -1) \)B. \( (2, 5) \)C. \( (-1, 1) \)D. \( (1, 3) \)答案:C二、填空题(每题4分,共20分)11. 函数 \( y = 2x + 1 \) 在 \( x = -1 \) 时的值为 _______。
2024年数学八年级上册函数基础练习题(含答案)
2024年数学八年级上册函数基础练习题(含答案)试题部分一、选择题:1. 下列哪个图形表示的是函数关系?()A. 一个圆B. 一条直线C. 一个点D. 一组平行线2. 下列哪个式子表示的是正比例函数?()A. y = 3x + 2B. y = x^2C. y = 5D. y = 2x3. 若函数y = (3/2)x + 1的图象经过点(2, y),则y的值为()A. 4B. 5C. 6D. 74. 下列哪个函数是增函数?()A. y = xB. y = x^2C. y = 1/xD. y = 2x5. 一次函数y = kx + b的图象是一条直线,若k > 0,b < 0,则该直线必经过()A. 第一、二、三象限B. 第一、三、四象限C. 第二、三、四象限D. 第一、二、四象限6. 下列哪个函数是反比例函数?()A. y = xB. y = 2/xC. y = x^2D. y = 3x + 17. 若函数y = (1/2)x + 3的图象向下平移2个单位,则新函数的表达式为()A. y = (1/2)x + 1B. y = (1/2)x + 5C. y = (1/2)x 1D. y = (1/2)x 38. 下列哪个函数的图象经过原点?()A. y = 2x + 1B. y = 3/xC. y = x^2D. y = x9. 若函数y = 2x 1的图象向右平移3个单位,则新函数的表达式为()A. y = 2x 4B. y = 2x 1 3C. y = 2(x 3) 1D. y = 2(x + 3) 110. 下列哪个函数是减函数?()A. y = xB. y = xC. y = x^2D. y = 1/x二、判断题:1. 函数的图象一定是一条直线。
()2. 一次函数的图象可以是一条斜线,也可以是一条水平线或垂直线。
()3. 当k > 0时,一次函数y = kx + b的图象一定经过第一、三象限。
初一数学函数基础知识试题答案及解析
初一数学函数基础知识试题答案及解析1.若点M(2,a+3)与点N(2,2a-15)关于x轴对称,则a2+3=【答案】19.【解析】根据纵坐标互为相反数列式求得a的值,代入所给代数式求值即可.试题解析:∵点M(2,a+3)与点N(2,2a-15)关于x轴对称,∴a+3+2a-15=0,解得a=4,∴a2+3=19.【考点】1.关于x轴、y轴对称的点的坐标;2.代数式求值.2.如图是某市一天的温度随时间变化的图象,通过观察可知,下列说法中错误的是()A.这天15时的温度最高B.这天3时的温度最低C.这天最高温度与最低温度的差是13℃D.这天21时的温度是30℃【答案】C.【解析】横轴表示时间,纵轴表示温度.温度最高应找到函数图象的最高点所对应的x值与y值:为15时,38℃,A正确;温度最低应找到函数图象的最低点所对应的x值与y值:为3时,22℃,B正确;这天最高温度与最低温度的差应让前面的两个y值相减,即38﹣22=16℃,C错误;从图象看出,这天21时的温度是30℃,D正确.故选C.【考点】函数的图象.3.点P(x,y)在第二象限,且,则P点的坐标为﹒【答案】(﹣5,6).【解析】∵点P(x,y)在第二象限,∴x<0,y>0;∵|x|=5,|y|=6,∴x=﹣5,y=6;故P点的坐标为(﹣5,6).故答案是(﹣5,6).【考点】1.点的坐标2.绝对值.4.函数中自变量x的取值范围是.【答案】x≥2【解析】平方根的被开方数必须≥0,所以,解得x≥2.本题涉及了被开方数的取值范围以及解不等式,该题较为简单,是常考题,主要考查学生对被开方数的理解和取值要求的应用。
5.在平面直角坐标系中,点(2,﹣4)在第___象限.【解析】根据各象限内点的坐标特征解答.解答:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)6.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE 在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()【答案】A【解析】设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时,即0≤x≤2时,当A从D点运动到E点时,即2<x≤4时,∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选A.【考点】动点问题的函数图象.7.下面的折线图描述了某地某日的气温变化情况,根据图形提供的信息,下列结论错误的是()A.这一天的温差是10℃B.在0:00--4:00时气温在逐渐下降C.在4:00--14:00时气温都在上升D.14:00时气温最高[【解析】A、这一天的最高温度为32℃,最低温度为22℃,所以这一天的温差为10℃,故选项正确;B、在0:00--4:00时气温在逐渐下降,故选项正确;C、在4:00--6:00气温上升,6:00--8:00气温没有变化,8:00--14:00时气温在上升,故选项错误;D、14:00时气温最高,故选项正确.故选C.【考点】函数的图象.8.一辆汽车以40千米/时的速度行驶,则行驶的路程S(千米)与行驶的时间t(时)两变量之间的关系式是。
(完整版)初中数学函数专题练习及答案
对称轴、顶点、平移:1.抛物线()213y x =--+的顶点坐标为 . 2.抛物线21y x =-的顶点坐标是( ) A .(01),B .(01)-,C .(10),D .(10)-,3.抛物线226y x x c =++与x 轴的一个交点为(10),,则这个抛物线 的顶点坐标是.4.二次函数2)1(2+-=x y 的最小值是( )A. 2-B . 2C. 1-D. 15.已知二次函数222y x x c =-++的对称轴和x 轴相交于点()0m ,,则m 的值为________. 6.抛物线322+-=x x y 的对称轴是直线( )A. 2-=xB. 2=xC. 1-=xD . 1=x7.将抛物2(1)y x =--向左平移1个单位后,得到的抛物线的解析式是 .8.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( )A . 3=b ,7=cB. 9-=b ,15-=cC. 3=b ,3=cD. 9-=b ,21=c图像交点、判别式:9..已知抛物线2(1)(2)y x m x m =+-+-与x 轴相交于A B ,两点,且线段2AB =,则m的值为 .10.已知二次函数不经过第一象限,且与x 轴相交于不同的两点,请写出一个满足上述条件的二次函数解析式 .11.若抛物线22y x x a =++的顶点在x 轴的下方,则a 的取值范围是( )A.1a >B.1a <C.1a ≥D.1a ≤12.已知二次函数c bx ax y ++=2,且0<a ,0>+-c b a ,则一定有( )A . 042>-ac bB. 042=-ac bC. 042<-ac bD. ac b 42-≤01.若直线y =m (m 为常数)与函数y =⎩⎪⎨⎪⎧x 2(x ≤2)4x(x >2)的图像恒有三个不同的交点,则常数m的取值范围是___________。
新初中数学函数基础知识专项训练及答案
新初中数学函数基础知识专项训练及答案一、选择题1.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100 千米/小时,特快车的速度为150 千米 / 小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大概表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象是A .B .C .D .【答案】 C【分析】分三段议论:① 两车从开始到相遇,这段时间两车距快速减小;② 相遇后向相反方向行驶至特快抵达甲地,这段时间两车距快速增添;③ 特快抵达甲地至快车抵达乙地,这段时间两车距迟缓增大;联合图象可得 C 选项切合题意.应选 C .2.如图,在直角三角形ABC 中,B 90 ,AB4, BC3,动点 E 从点 B 开始沿 BC以 2cm/s的速度运动至C点停止;动点 F从点 B同时出发沿 B A以1cm/s的速度运动至 A 点停止,连结 EF .设运动时间为 x (单位: s ), ABC 去掉 BEF 后剩余部分的面积为 y (单位: cm 2 ),则能大概反应y 与 x 的函数关系的图象是()A .B .C .D .【答案】 B【分析】【剖析】依据已知题意写出函数关系,y 为ABC 去掉 BEF 后节余部分的面积,注意1. 5 秒时点 E 运动到 C 点,而点 F 则持续运动,所以 y 的变化应分为两个阶段.【详解】解: S ABC1 436,2当 0 x3 时, S BEF 1 2x x x 2 . yS22当3x 4时, S BEF1 3 x 3x , y S222ABCABCSSBEF 6 x 2 ; BEF63x ,2由此可知当 0 x3 3 时,函数为二次函数,当x 4 时,函数为一次函数.22应选 B .【点睛】本题主要考察了动点问题与函数图像相联合,解题的重点在于依据运动过程写出函数关系,要注意自变量的取值范围,以及能否为分段函数.3.如图,边长为 2 的等边 ABC 和边长为 1的等边 A B C ,它们的边 BC , B C 位于同 一条直线 l 上,开始时,点 C 与点 B 重合, ABC 固定不动,而后把A B C 自左向右沿直线 l 平移,移出ABC 外(点 B 与点 C 重合)停止,设A B C 平移的距离为 x ,两个三角形重合部分的面积为 y ,则 y 对于 x 的函数图象是()A .B .C .D .【答案】 C【分析】分为 0≤x≤1、1< x≤2、2< x≤3三种状况画出图形,而后依照等边三角形的性质和三角形的面积公式可求得y 与 x 的函数关系式,于是可求得问题的答案.【详解】解:如图 1 所示:当0≤x≤1时,过点 D 作 DE⊥ BC′.∵△ ABC和△A′B′C′均为等边三角形,△DBC′为等边三角形.∴D E= 3BC′=3x,2 2∴y= 1BC′ ?DE=3x2.24当 x=1 时, y=3,且抛物线的张口向上.4如图 2 所示: 1< x≤2时,过点A′作 A′E⊥ B′C′,垂足为E.11=3.∵y=B′ C′ ?A′×E=1×32224∴函数图象是一条平行与x 轴的线段.如图 3 所示: 2< x≤3时,过点 D 作 DE⊥ B′C,垂足为E.y= 1B′ C?DE=3( x-3)2,函数图象为抛物线的一部分,且抛物线张口向上.24【点睛】本题主要考察的是动点问题的函数图象,求得函数的分析式是解题的重点.4.如图,在 ABC 中, ∠ C 90o , B 30o , AB 10cm , P 、Q 两点同时从点A 分别出发,点 P 以 2cm / s 的速度,沿 AB C 运动,点 Q 以 1cm/ s 的速度,沿A CB 运动,相遇后停止,这一过程中,若P 、 Q 两点之间的距离 PQy ,则 y与时间 t 的关系大概图像是( )A .B .C .D .【答案】 A 【分析】 【剖析】依据题意分当 0 t 5 、 t 5 时两种状况,分别表示出PQ 的长 y 与 t 的关系式,从而得出答案. 【详解】解:在 ABC 中, ∠ C 90o , B 30o ,AB=10,∴AC=5,AC1 ,AB2I. 当 0 t5 时, P 在 AB 上, Q 在 AC 上,由题意可得: AP 2t , AQ t ,依题意得:AQ1 ,AP2又∵A A∴VAPQ: VABC,∴AQP C 90则 PQ3t ,II.当t 5 ,P、Q在BC上,由题意可得:P 走过的行程是2t ,Q走过的行程是t,∴PQ 15 5 3 3t ,应选: A.【点睛】本题主要考察了动点问题的函数图象,正确理解 PQ长与时间是一次函数关系,并得出函数关系式是解题重点.5.如图,边长为2 的正方形ABCD,点P从点A出发以每秒 1 个单位长度的速度沿A DC 的路径向点C运动,同时点Q从点B出发以每秒2个单位长度的速度沿B C D A 的路径向点A运动,当点Q抵达终点时,点P停止运动,设PQC的面积为 S ,运动时间为 t 秒,则能大概反应 S 与 t 的函数关系的图象是()A.B.C.D.【答案】 C【分析】【剖析】分三种状况求出分析式,即可求解.【详解】当 0≤t ≤1时,即当点Q在 BC 上运动,点P 在 AD 上运动时,S 1222t22t ,2∴该图象 y 随 x 的增大而减小,当1< t ≤2时,即当点 Q 在 CD上运动时,点P 在 AD 上运动时,S12 t 2t 2t23t 2 ,2∴该图象张口向下,当 2< t ≤3,即当点 Q 在 AD 上运动时,点P 在 DC上运动时,S14 t2t4t26t 82∴该图象张口向下,应选: C.【点睛】本题考察了动点问题的函数图象,求出分段函数分析式是本题的重点.6.小明和小华是同班同学,也是街坊,某日清晨,小明 7:40 先出发去学校,走了一段后,在途中停下吃了早饭,以后发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的行程s(米)和所用时间t(分钟)的关系图.则以下说法中正确的选项是() . ①小明家和学校距离 1200 米;②小华乘坐公共汽车的速度是 240 米 / 分;③小华乘坐公共汽车后 7: 50 与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变成跑步,且跑步的速度是 100 米 / 分时,他们能够同时抵达学校.A.①③④B.①②③C.①②④D.①②③④【答案】 D【分析】【剖析】依据题意和函数图象中的数据能够判断各个小题中的结论能否正确,本题得以解决.【详解】解:由图象可得,小明家和学校距离为1200米,故① 正确,小华乘坐公共汽车的速度是1200÷( 13﹣ 8)= 240 米 / 分,故②正确,480 ÷ 240= 2(分),8+2= 10(分),则小华乘坐公共汽车后7: 50 与小明相遇,故③ 正确,小华的出发时间不变,当小华由乘公共汽车变成跑步,且跑步的速度是100 米 / 分时,小华从家到学校的所用时间为:1200÷100= 12(分),则小华到校时间为8: 00,小明到校时间为 8: 00,故④正确,应选: D.【点睛】本题考察函数图象,解答本题的重点是明确题意,利用数形联合的思想解答.7.若A(3y1)、B(0y2)、C(2 y3)为二次函数y=(x+12+1的图象上的三点,则y1、﹣,,,)y2、 y3的大小关系是()A. y1< y2< y3B. y2< y1< y3C. y3<y1< y2D. y1< y3< y2【答案】 B【分析】【剖析】把三个点的坐标代入二次函数分析式分别计算出则y1、 y2、 y3的值,而后进行大小比较.【详解】解:∵ A(﹣ 3, y1)、 B(0, y2)、 C(2, y3)为二次函数y=( x+1)2+1 的图象上的三点,∴y1=(﹣ 3+1)2+1=5 ,y2=( 0+1)2+1= 2, y3=( 2+1)2+1= 10,∴y2< y1< y3.应选: B.【点睛】本题考察了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的重点.8.小丽清晨步行去车站而后坐车去学校,以下能近似的刻画她离学校的距离随时间变化的大概图象是 ()A.B.C.D.【答案】 D【分析】【剖析】依据上学,可得离学校的距离愈来愈小,依据开始步行,可得距离变化慢,以后坐车,可得距离变化快.【详解】解: A、距离愈来愈大,选项错误;B、距离愈来愈小,但前后变化快慢同样,选项错误;C、距离愈来愈大,选项错误;D、距离愈来愈小,且距离先变化慢,后变化快,选项正确;【点睛】本题考察了函数图象,察看距离随时间的变化是解题重点.9.如图运动到点1,在矩形ABCD中,动点P 从点A 处停止.设点P 运动的行程为A 出发,以同样的速度,沿x,△PAB的面积为 y,假如A→ B→ C→ D→A方向y 与 x 的函数图象如图 2 所示,则矩形ABCD的面积为()A.24B. 40C. 56D. 60【答案】 A【分析】【剖析】由点 P 的运动路径可得△PAB面积的变化,依据图 2 得出 AB、 BC 的长,从而求出矩形ABCD的面积即可得答案.【详解】∵点 P 在 AB 边运动时,△PAB的面积为0,在 BC 边运动时,△PAB的面积渐渐增大,∴由图 2 可知: AB=4,BC=10-4=6,∴矩形 ABCD的面积为AB·BC=24,应选: A.【点睛】本题考察分段函数的图象,依据△PAB面积的变化,正确从图象中得出所需信息是解题重点.10.在函数y x 3中,自变量 x 的取值范围是( )uuuv uuuv A.x 3B.x 3C.x 3D.OA8,OB 5【答案】 C【分析】【剖析】求函数自变量的取值范围,就是求函数分析式存心义的条件,二次根式存心义的条件是:被开方数为非负数.【详解】依题意,得x-3≥0,解得 x≥3.应选 C.本题考察了二次根式的性质:二次根式的被开方数是非负数.11.若y 1 2x存心义,则 x 的取值范围是() x1且 x 0B.x 1x1A.x C.D.x 0 222【答案】 A【分析】【剖析】依据二次根式存心义的条件和分式存心义的条件即可求出答案.【详解】1 2x 0由题意可知:x0 ,解得: x 10,且 x2应选 A.【点睛】本题考察了分式存心义的条件、二次根式存心义的条件,娴熟掌握分式的分母不为0、二次根式的被开方数为非负数是解题的重点.12.如图,两块完整重合的正方形纸片,假如上边的一块绕正方形的中心O 逆时针 0°~90°的旋转,那么旋转时露出的△ABC的面积(S)跟着旋转角度(n)的变化而变化,下边表示 S 与 n 关系的图象大概是()A.B.C.D.【答案】 B【分析】【剖析】注意剖析 y 随 x 的变化而变化的趋向,而不必定要经过求分析式来解决.【详解】旋转时露出的△ABC的面积( S)跟着旋转角度(n)的变化由小到大再变小.应选 B.【点睛】考察动点问题的函数图象问题,重点要认真察看.13.“同辞家门赴车站,别时叮嘱语千万,学子满载信心去,老父怀抱希望还.”假如用纵轴 y 表示父亲和学子在前进中离家的距离,横t 表示离家的时间,下边与上述诗意大概相符合的图象是 ()A.B.C.D.【答案】 B【分析】【剖析】第一正确理解小诗的含义,而后再依据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应当同样,别时叮嘱语千万,时间在加长,行程不变,学子满载信心去,学子离家愈来愈远,老父怀抱希望还,父亲回家离家愈来愈近,应选: B.【点睛】本题主要考察了函数图象,第一应理解函数图象的横轴和纵轴表示的量,再依据实质状况来判断函数图象.14.如图,描绘了林老师某日夜晚的一段生活过程:他晚餐后,从家里漫步走到商场,在商场逗留了一会儿,立刻又去书店,看了一会儿书,而后快步走回家,图象中的平面直角坐标系中x 表示时间, y 表示林老师离家的距离,请你认真研读这个图象,依据图象供给的信息,以下说法错误的选项是( )A.林老师家距商场 1.5 千米B.林老师在书店逗留了30 分钟C.林老师从家里到商场的均匀速度与从商场到书店的均匀速度是相等的D.林老师从书店到家的均匀速度是10 千米/时【答案】 D【分析】剖析:依据图象中的数据信息进行剖析判断即可.详解:A 选项中,由图象可知:“林老师家距离商场 1.5km ”,所以 A 中说法正确;B 选项中,由图象可知:林老师在书店逗留的时间为;80-50=30(分钟),所以 B 中说法正确;C 选项中,由图象可知:林老师从家里到商场的均匀速度为:1500 ÷ 30=50(米 / 分钟),林老师从商场到书店的均匀速度为:(2000-1500)÷( 50-40)=50(米 / 分钟),所以 C 中说法正确;D 选项中,由图象可知:林老师从书店到家的均匀速度为:2000 ÷( 100-80)=100(米 / 分钟) =6(千米 / 时),所以 D 中说法错误 .应选 D.点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实质意义”是解答本题的重点.15.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)以下图 .有以下说法:①起跑后 1 小时内,甲在乙的前方;②第 1 小时两人都跑了 10千米;③甲比乙先抵达终点;④两人都跑了 20 千米 .此中正确的说法有()A.1 个B.2 个C.3 个D.4 个【答案】 C【分析】【剖析】【详解】解:①由纵坐标看出,起跑后 1 小时内,甲在乙的前方,故① 正确;②由横纵坐标看出,第一小时两人都跑了10 千米,故②正确;③ 由横纵坐标看出,乙比甲先抵达终点,故③ 错误;④由纵坐标看出,甲乙二人都跑了20 千米,故④正确;应选 C.16.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录获得相应的数据以下表:砝码的质量 x/g050100150200250300400500指针地点 y/cm2345677.57.57.5则以下图象中,能表示y 与 x 的函数关系的图象大概是( )A.B.C.D.【答案】 B【分析】【剖析】经过( 0, 2)和( 100, 4)利用待定系数法求出一次函数的分析式,再对照图象中的折点即可选出答案 .【详解】解:由题干内容可得,一次函数过点(0, 2)和( 100, 4) .设一次函数分析式为y=kx+b,代入点( 0,2)和点( 100,4)可解得, k=0.02, b=2.则一次函数分析式为y=0.02x+2.明显当y=7.5 时, x=275,应选 B.【点睛】本题主要考察函数的图象和性质,利用待定系数法求一次函数分析式.17.均匀地向一个容器灌水,最后把容器注满,在灌水过程中,水面高度h 随时间 t 的变化规律以下图(图中OABC为折线),这个容器的形状能够是()A.B.C.D.【答案】 D【分析】试题剖析:灌水量必定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细相关.则相应的摆列次序就为D.应选 D.考点:函数的图象.18.以下图象中,表示y 是 x 的函数的是()A.B.C.D.【答案】 C【分析】【剖析】函数就是在一个变化过程中有两个变量x, y,当给 x 一个值时, y 有独一的值与其对应,就说 y 是 x 的函数, x 是自变量.注意“y有独一的值与其对应”对图象的影响.【详解】解:依据函数的定义可知,每给定自变量x 一个值都有独一的函数值y 相对应,所以 A. B. D 错误.应选 C.【点睛】本题考察了函数的观点,紧紧掌握函数的观点是解答本题的重点.19.如图,在△ABC中, AC= BC,有一动点P 从点 A 出发,沿 A→C→B→A 匀速运动.则CP的长度 s 与时间 t 之间的函数关系用图象描绘大概是()A.B.C.D.【答案】 D【分析】试题剖析:如图,过点 C 作 CD⊥AB 于点 D.∵在△ABC 中, AC=BC,∴ AD=BD.①点 P 在边 AC上时, s 随 t 的增大而减小.故A、 B 错误;②当点 P 在边 BC上时, s 随 t 的增大而增大;③当点 P 在线段 BD 上时, s 随 t 的增大而减小,点P 与点 D 重合时, s 最小,可是不等于零.故 C 错误;④当点 P 在线段 AD 上时, s 随 t 的增大而增大.故 D 正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.20.某天小明骑自行车上学,途中因自行车发生故障,修车耽搁一段时间后持续骑行,按时赶到了学校.如图描绘了他上学情形,以下说法中错误的选项是()A.用了 5 分钟来修车B.自行车发生故障时离家距离为1000 米C.学校离家的距离为2000 米D.抵达学校时骑行时间为20 分钟【答案】 D【分析】【剖析】.察看图象,明确每一段小明行驶的行程,时间,作出判断即可【详解】由图可知,修车时间为15-10=5 分钟,可知 A 正确;自行车发生故障时离家距离为1000 米,可知 B 正确;学校离家的距离为2000 米,可知 C 正确;抵达学校时骑行时间为20-5=15 分钟,可知 D 错误,应选 D.【点睛】本题考察了函数图象,读懂图象,能从图象中读取实用信息的数形、剖析此中的“重点点”、剖析各图象的变化趋向是解题的重点.。
2024年数学九年级上册函数基础练习题(含答案)
2024年数学九年级上册函数基础练习题(含答案)试题部分一、选择题:1. 下列函数中,哪一个不是正比例函数?A. y = 2xB. y = 3x + 1C. y = 5x 2D. y = 4x2. 已知函数y = (2x + 3)²,则该函数的对称轴是:A. x = 3/2B. x = 3/2C. y = 3D. x = 03. 下列函数中,哪一个函数在x轴右侧是递增的?A. y = x²B. y = x²C. y = 2xD. y = 2x4. 若函数y = kx + b的图象经过一、二、四象限,则k和b的取值范围是:A. k > 0, b > 0B. k < 0, b > 0C. k > 0, b < 0D. k < 0, b < 05. 已知一次函数y = 3x 1,当x = 2时,y的值为:A. 5B. 6C. 7D. 86. 下列哪个函数是反比例函数?A. y = x²B. y = 1/xC. y = 2x + 3D. y = 3x² 2x7. 已知函数y = (1/2)x + 3,当x = 4时,y的值为:A. 5B. 6C. 7D. 88. 一次函数y = kx + b的图象与y轴的交点为(0,3),则b 的值为:A. 3B. 3C. 0D. 19. 已知反比例函数y = 6/x,当x = 2时,y的值为:A. 3B. 4C. 5D. 610. 下列哪个函数的图象是一个经过原点的直线?A. y = x²B. y = 2xC. y = 1/xD. y = 3x² 2x二、判断题:1. 一次函数的图象是一条直线。
()2. 反比例函数的图象是一个经过原点的直线。
()3. 一次函数y = kx + b中,k为斜率,b为截距。
()4. 两个一次函数的图象一定相交。
()5. 一次函数y = 2x的图象经过一、二、三象限。
初二初识函数练习题及答案
初二初识函数练习题及答案函数作为初中数学课程的一部分,是让我们初步了解代数概念和算法,掌握函数的应用和解题方法的重要内容。
在这篇文章中,我将为大家提供一些初二学生练习函数的题目和答案,帮助大家更好地理解和掌握函数的基本知识。
Exercise 1:已知函数y = 2x + 1,求x = 4时的y的值。
Answer 1:将x = 4代入函数中,得到y = 2 × 4 + 1 = 9。
所以当x = 4时,y的值为9。
Exercise 2:根据下列函数y = x² - 2x + 3,求x = 2时的y的值。
Answer 2:将x = 2代入函数中,得到y = (2)² - 2 × 2 + 3 = 3。
所以当x = 2时,y的值为3。
Exercise 3:已知函数y = 3x - 2和y = x + 1,求解方程组y = 3x - 2和y = x + 1。
Answer 3:将y = 3x - 2和y = x + 1联立,得到3x - 2 = x + 1。
移项后,得到2x = 3,然后解得x = 3/2。
将x = 3/2代入其中一个方程,得到y = 3 ×(3/2) - 2 = 7/2。
所以方程组的解为x = 3/2,y = 7/2。
Exercise 4:已知函数y = 2x - 1的图象上两点A(1, 1)和B(k, 9),求k的值。
Answer 4:将A(1, 1)代入函数中,得到1 = 2 × 1 - 1 = 1。
将B(k, 9)代入函数中,得到9 = 2k - 1。
解方程得到k = 5。
所以k的值为5。
Exercise 5:已知函数y = mx + b,且图象上两点A(3, 2)和B(k, 6)满足y坐标的比值为2:3,求k的值。
Answer 5:将A(3, 2)代入函数中,得到2 = 3m + b。
将B(k, 6)代入函数中,得到6 = km + b。
函数入门基础测试题及答案
函数入门基础测试题及答案一、选择题1. 函数(function)是数学中的一种关系,其中每个元素都有一个相对应的元素。
请问以下哪项不是函数的特性?A. 唯一性B. 有序性C. 多元性D. 唯一确定性答案:B2. 如果一个函数的定义域是实数集,那么这个函数被称为:A. 奇函数B. 偶函数C. 定义域函数D. 无限函数答案:C3. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0B. 1C. 4D. 6答案:C二、填空题4. 函数y = f(x)中,自变量是_________,因变量是_________。
答案:x;y5. 如果一个函数满足f(x) = f(-x),那么这个函数被称为_________函数。
答案:偶函数三、解答题6. 已知函数f(x) = 2x - 3,请找出f(5)的值。
答案:将x=5代入函数f(x) = 2x - 3,得到f(5) = 2*5 - 3 =10 - 3 = 7。
7. 判断函数f(x) = x^2是否为奇函数或偶函数,并说明理由。
答案:函数f(x) = x^2是偶函数。
理由是对于所有x属于其定义域,都有f(x) = f(-x),即x^2 = (-x)^2。
四、计算题8. 计算函数f(x) = x^3 - 6x^2 + 11x - 6在x=2, x=3, x=4时的值。
答案:- 当x=2时,f(2) = 2^3 - 6*2^2 + 11*2 - 6 = 8 - 24 + 22 -6 = 0。
- 当x=3时,f(3) = 3^3 - 6*3^2 + 11*3 - 6 = 27 - 54 + 33 - 6 = 0。
- 当x=4时,f(4) = 4^3 - 6*4^2 + 11*4 - 6 = 64 - 96 + 44 - 6 = 6。
五、证明题9. 证明函数f(x) = x^2 + 2x + 1是一个奇函数。
答案:要证明f(x)是奇函数,我们需要证明对于所有x属于其定义域,都有f(-x) = -f(x)。
初一数学函数基础知识试题答案及解析
初一数学函数基础知识试题答案及解析1.点P(a,b)在第四象限,则点P到x轴的距离是( )A.a B.b C.-a D.-b【答案】D【解析】点到x轴的距离为点的纵坐标的绝对值,该题中点P在第四象限内,b<0,所以点P到x轴的距离是|b|=-b.【考点】点的坐标2.通过平移把点A(1,–3)移到点A1(3,0),按同样的平移方式把点P(2,3)移到点P1,则点P1的坐标是﹒【答案】(4,6).【解析】从点A到A1点的横坐标从1到3,说明是向右移动了3﹣1=2,纵坐标从﹣3到0,说明是向上移动了0﹣(﹣3)=3,那点P的横坐标加2,纵坐标加3即可得到点P1.则点P1的坐标是(4,6).故答案是(4,6).【考点】坐标与图形变化-平移.3.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:下列说法不正确的是( )A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm【答案】B.【解析】由题意知:物体质量每增加1kg,弹簧长度y增加0.5cm,所以(A)正确;y随x的增加而增加,x是自变量,y是因变量(B)错误;弹簧不挂重物时的长度为10cmC、D也正确.故选B.【考点】函数的概念.4.下面的折线图描述了某地某日的气温变化情况,根据图形提供的信息,下列结论错误的是()A.这一天的温差是10℃B.在0:00--4:00时气温在逐渐下降C.在4:00--14:00时气温都在上升D.14:00时气温最高[【答案】C.【解析】A、这一天的最高温度为32℃,最低温度为22℃,所以这一天的温差为10℃,故选项正确;B、在0:00--4:00时气温在逐渐下降,故选项正确;C、在4:00--6:00气温上升,6:00--8:00气温没有变化,8:00--14:00时气温在上升,故选项错误;D、14:00时气温最高,故选项正确.故选C.【考点】函数的图象.5.日出日落,一天的气温随时间的变化而变化,在这一问题中,自变量是。
新初中数学函数基础知识全集汇编附答案
新初中数学函数基础知识全集汇编附答案一、选择题1.函数y=中,自变量x的取值范围是()1xA.x≠1B.x>0 C.x≥1D.x>1【答案】D【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,x-1≥0且x-1≠0,解得x>1.故选D.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.如图1,在矩形ABCD中,动点P从点A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB的面积为y,如果y与x的函数图象如图2所示,则矩形ABCD的面积为()A.24 B.40 C.56 D.60【答案】A【解析】【分析】由点P的运动路径可得△PAB面积的变化,根据图2得出AB、BC的长,进而求出矩形ABCD的面积即可得答案.【详解】∵点P在AB边运动时,△PAB的面积为0,在BC边运动时,△PAB的面积逐渐增大,∴由图2可知:AB=4,BC=10-4=6,∴矩形ABCD的面积为AB·BC=24,故选:A.【点睛】本题考查分段函数的图象,根据△PAB 面积的变化,正确从图象中得出所需信息是解题关键.3.如图,在直角三角形ABC ∆中,90B ∠=︒,4AB =,3BC =,动点E 从点B 开始沿B C →以2cm/s 的速度运动至C 点停止;动点F 从点B 同时出发沿B A →以1cm/s 的速度运动至A 点停止,连接EF .设运动时间为x (单位:s ),ABC ∆去掉BEF ∆后剩余部分的面积为y (单位:2cm ),则能大致反映y 与x 的函数关系的图象是( )A .B .C .D .【答案】B【解析】【分析】根据已知题意写出函数关系,y 为ABC ∆去掉BEF ∆后剩余部分的面积,注意1.5秒时点E 运动到C 点,而点F 则继续运动,因此y 的变化应分为两个阶段.【详解】 解:14362ABC S ∆=⨯⨯=, 当302x ≤≤时,2122BEF S x x x ∆=⋅⋅=.26ABC BEF y S S x ∆∆=-=-; 当342x <≤时,13322BEF S x x ∆=⋅⋅=,362ABC BEF y S S x ∆∆=-=-, 由此可知当302x ≤≤时,函数为二次函数,当342x <≤时,函数为一次函数. 故选B .【点睛】 本题主要考查了动点问题与函数图像相结合,解题的关键在于根据运动过程写出函数关系,要注意自变量的取值范围,以及是否为分段函数.4.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .【答案】D【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确. 故选D .5.如图,边长为 2 的正方形ABCD ,点P 从点A 出发以每秒 1 个单位长度的速度沿A D C --的路径向点 C 运动,同时点 Q 从点 B 出发以每秒 2 个单位长度的速度沿B C D A --- 的路径向点 A 运动,当点 Q 到达终点时,点P 停止运动,设PQC ∆ 的面积为 S ,运动时间为t 秒,则能大致反映S 与t 的函数关系的图象是( )A .B .C .D .【答案】C【解析】【分析】 分三种情况求出解析式,即可求解.【详解】当0≤t≤1时,即当点Q 在BC 上运动,点P 在AD 上运动时,()2222212S t t =⨯⨯-=-, ∴该图象y 随x 的增大而减小,当1<t≤2时,即当点Q 在CD 上运动时,点P 在AD 上运动时,()()21222322S t t t t =--=-+-, ∴该图象开口向下, 当2<t≤3,即当点Q 在AD 上运动时,点P 在DC 上运动时,()()21424682S t t t t =--=-+- ∴该图象开口向下,故选:C .【点睛】本题考查了动点问题的函数图象,求出分段函数解析式是本题的关键.6.如图,在边长为3的菱形ABCD 中,点P 从A 点出发,沿A→B→C→D 运动,速度为每秒3个单位;点Q 同时从A 点出发,沿A→D 运动,速度为每秒1个单位,则APQ ∆的面积S 关于时间t 的函数图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据动点的运动过程分三种情况进行讨论解答即可.【详解】解:根据题意可知:3AP t =,AQ t =,当03t <<时,2133sin sin 22S t t A t A =⋅⋅=⋅ 0sin 1A <<∴此函数图象是开口向上的抛物线;当36t <<时,133sin sin 22S t A t A =⋅⋅=⋅ ∴此时函数图象是过一、三象限的一次函数;当69t <<时,2139(93)sin ()sin 222S t t A t t A =⋅⋅-=-+. ∴此时函数图象是开口向下的抛物线.所以符号题意的图象大致为D .故选:D .【点睛】本题考查了动点问题的函数图象,解决本题的关键是根据动点运动过程表示出函数解析式.7.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的( ) m1 2 3 4 v 0.01 2.9 8.03 15.1A .v=2m ﹣2B .v=m 2﹣1C .v=3m ﹣3D .v=m+1【答案】B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式. 解:当m=4时,A 、v=2m ﹣2=6;B 、v=m 2﹣1=15;C 、v=3m ﹣3=9;D 、v=m+1=5.故选B .8.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM x =,BMD ∆的面积减去CNE ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】A【解析】【分析】设a =12BC ,∠B =∠C =α,求出CN 、DM 、EN 的长度,利用y =S △BMD −S △CNE ,即可求解. 【详解】 解:设a =12BC ,∠B =∠C =α,则MN =a , ∴CN =BC−MN−BM =2a−a−x =a−x ,DM =BM·tanB =x·tanα,EN =CN•tanC =(a−x )·tanα, ∴y =S △BMD −S △CNE =12(BM·DM−CN·EN )=()()221tan tan 222x a x a tan x a ααα⋅⎡⎤⋅-⋅=⎣⎦--, ∵2a tan α⋅为常数, ∴上述函数图象为一次函数图象的一部分,故选:A .【点睛】本题考查了动点问题的函数图象、等腰三角形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.9.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s 表示李明离家的距离,t 为时间.在下面给出的表示s 与t 的关系图中,符合上述情况的是( )A .B .C.D.【答案】C【解析】【分析】先弄清题意,再分析路程和时间的关系.【详解】∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.【点睛】考核知识点:函数的图象.理解题意看懂图是关键.10.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,∴y2<y1<y3.故选:B.【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.11.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.【答案】D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.12.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是()A.用了5分钟来修车B.自行车发生故障时离家距离为1000米C.学校离家的距离为2000米D.到达学校时骑行时间为20分钟【答案】D【解析】【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断即可.【详解】由图可知,修车时间为15-10=5分钟,可知A正确;自行车发生故障时离家距离为1000米,可知B正确;学校离家的距离为2000米,可知C正确;到达学校时骑行时间为20-5=15分钟,可知D错误,故选D.【点睛】本题考查了函数图象,读懂图象,能从图象中读取有用信息的数形、分析其中的“关键点”、分析各图象的变化趋势是解题的关键.13.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:物体质量x/千克0 1 2 3 4 5 …弹簧长度y/厘米10 10.5 11 11.5 12 12.5 …下列说法不正确的是()A.x与y都是变量,其中x是自变量,y是因变量B.弹簧不挂重物时的长度为0厘米C.在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米D.在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米【答案】B【解析】试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法.解:A、x与y都是变量,且x是自变量,y是因变量,正确,不符合题意;B、弹簧不挂重物时的长度为10cm,错误,符合题意;C、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意;D、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意.故选B.点评:本题考查了函数关系的确认,常量与变量的确定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是基础题,难度不大.14.如图,正方形ABCD的边长为2,动点P从点D出发,沿折线D→C→B作匀速运动,则△APD的面积S与点P运动的路程x之间的函数图象大致是()A.B.C.D.【答案】D【解析】【分析】分类讨论:当点D在DC上运动时,DP=x,根据三角形面积公式得到S△APD=x,自变量x的取值范围为0<x≤2;当点P在CB上运动时,S△APD为定值2,自变量x的取值范围为2<x≤4,然后根据两个解析式对各选项中的图象进行判断即可.【详解】解:当点D在DC上运动时,DP=x,所以S△APD=12AD•DP=12•2•x=x(0<x≤2);当点P在CB上运动时,如图,PC=x﹣4,所以S△APD=12AD•DC=12•2•2=2(2<x≤4).故选:D.【点睛】此题考查动点问题的函数图象,解题关键在于掌握分类讨论的思想、函数的知识、正方形的性质和三角形的面积公式.注意自变量的取值范围.15.如图甲,在四边形ABCD中,AD//BC,∠C=90°动点P从点C出发沿线段CD向点D运动.到达点D即停止,若E、F分别是AP、BP的中点,设CP=x,△PEF的面积为y,且y与x 之间的函数关系的图象如图乙所示,则线段AB长为()A.22B.23C.25D.26【答案】C【解析】【分析】根据三角形中位线定理,得到S△PEF=14S△ABP,由图像可以看出当x为最大值CD=4时,S△PEF=2,可求出AD=4,当x为0时,S△PEF=3,可求出BC=6;过点A作AG⊥BC于点G,根据勾股定理即可得解.【详解】解:∵E、F分别为AP、BP的中点,∴EF∥AB,EF=12 AB,∴S△PEF=14S△ABP,根据图像可以看出x的最大值为4,∴CD=4,∵当P在D点时,△PEF的面积为2,∴S△ABP=2×4=8,即S△ABD=8,∴AD=24ABDSV=284⨯=4,当点P在C点时,S△PEF=3,∴S△ABP=3×4=12,即S△ABC=12,∴BC=24ABCSV=2124⨯=6,过点A作AG⊥BC于点G,∴∠AGC=90°,∵AD∥BC,∴∠ADC+∠BCD=180°,∵∠BCD=90°,∴∠ADC=180°-90°=90°,∴四边形AGCD 是矩形,∴CG=AD=4,AG=CD=4,∴BG=BC-CG=6-4=2,∴AB=2242+=25. 故选C.【点睛】本题主要考查了动点的函数问题,三角形中位线定理,勾股定理.16.在平面直角坐标系xoy 中,四边形0ABC 是矩形,且A ,C 在坐标轴上,满足3OA = ,OC=1.将矩形OABC 绕原点O 以每秒15°的速度逆时针旋转.设运动时间为t 秒()06t ≤≤ ,旋转过程中矩形在第二象限内的面积为S ,表示S 与t 的函数关系的图象大致如右图所示,则矩形OABC 的初始位置是( )A .B .C .D .【答案】D【解析】【分析】【详解】解:根据图形可知当t=0时,s=0,所以矩形OABC 的初始位置不可能在第二象限,所以A 、C 错误;因为1OC =,所以当t=2时,选项B 中的矩形在第二象限内的面积为S=13312⨯=,所以B 错误, 因为3OA =t=2时,选项D 中的矩形在第二象限内的面积为S=13132⨯=,故选D . 考点:1.图形旋转的性质;2.直角三角形的性质;3.函数的图象.17.如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为v,由于v分为三个阶段,①小正方形向右未完成穿入大正方形,=⨯-⨯=-≤.2214(1)S vt vt vt②小正方形穿入大正方形但未穿出大正方形,S=⨯-⨯=,22113③小正方形穿出大正方形,=⨯-⨯-=+≤,22(11)3(1)S vt vt vt∴符合变化趋势的是A和C,但C中面积减小太多不符合实际情况,∴只有A中的符合实际情况.故选A.18.下列图形中的曲线不表示y是x的函数的是()A.B.C.D.【答案】C【解析】【分析】函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.【详解】根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.故选C【点睛】考点:函数的定义19.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每天薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的()A.a=20B.b=4C.若工人甲一天获得薪金180元,则他共生产45件.D.人乙一天生产40(件),则他获得薪金140元【答案】C【解析】【分析】根据题意和函数图象可以求得a、b的值,从而可以判断选项A和B是否正确,根据C和D的数据可以分别计算出题目中对应的数据是否正确,从而可以解答本题.【详解】解:由题意和图象可得,a=60÷3=20,故选项A正确,b=(140−60)÷(40−20)=80÷20=4,故选项B正确,若工人甲一天获得薪金180元,则他共生产:20+180602030504-=+=(件),故选项C错误;由图象可知,工人乙一天生产40(件),他获得的薪金为:140元,故选项D正确,故选:C.【点睛】本题考查函数图象的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A.33元B.36元C.40元D.42元【答案】C【解析】分析:待定系数法求出当x≥12时y关于x的函数解析式,再求出x=22时y的值即可.详解:当行驶里程x⩾12时,设y=kx+b,将(8,12)、(11,18)代入,得:812 1118k bk b+=⎧⎨+=⎩,解得:24kb=⎧⎨=-⎩,∴y=2x−4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.。
新初中数学二次函数知识点训练附答案
新初中数学二次函数知识点训练附答案一、选择题1.小明从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①c >0,②abc <0,③a -b +c >0,④2b >4a c ,⑤2a =-2b ,其中正确结论是( ).A .①②④B .②③④C .③④⑤D .①③⑤【答案】C【解析】【分析】 由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①由抛物线交y 轴于负半轴,则c<0,故①错误;②由抛物线的开口方向向上可推出a>0;∵对称轴在y 轴右侧,对称轴为x=2b a ->0, 又∵a>0,∴b<0;由抛物线与y 轴的交点在y 轴的负半轴上,∴c<0,故abc>0,故②错误;③结合图象得出x=−1时,对应y 的值在x 轴上方,故y>0,即a−b+c>0,故③正确; ④由抛物线与x 轴有两个交点可以推出b 2−4ac>0,故④正确;⑤由图象可知:对称轴为x=2b a -=12则2a=−2b ,故⑤正确;故正确的有:③④⑤.故选:C【点睛】本题考查了二次函数图象与系数关系,观察图象判断图象开口方向、对称轴所在位置、与x 轴交点个数即可得出二次函数系数满足条件.2.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】 ∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC 长度2205OB C +=,∵O 点为AB 的中点,E 点为AD 的中点,∴OE 为△ABD 的中位线,即:OE=12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∴BD 的最小值为4,∴OE=12BD=2, 即OE 的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.3.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y >0,即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2b a=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ), ∴244ac b a-=n ,∴b 2=4ac-4an=4a (c-n ),所以③正确;∵抛物线与直线y=n 有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确.故选C .【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.4.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .BC .32D .52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解.【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B , ∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.5.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( )A .0ac <B .3是关于x 的方程()210ax b x c +-+=的一个根; C .当1x >时,y 的值随x 值的增大而减小; D .当13x -<<时,()210.ax b x c +-+>【答案】C【解析】【分析】根据函数中的x 与y 的部分对应值表,可以求得a 、b 、c 的值 然后在根据函数解析式及其图象即可对各个选项做出判断.【详解】解:根据二次函数的x 与y 的部分对应值可知:当1x =-时,1y =-,即1a b c -+=-,当0x =时,3y =,即3c =,当1x =时,5y =,即5a b c ++=,联立以上方程:135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得:133a b c =-⎧⎪=⎨⎪=⎩,∴233y x x =-++;A 、1330=-⨯=-<ac ,故本选项正确;B 、方程()210ax b x c +-+=可化为2230x x -++=, 将3x =代入得:232339630-+⨯+=-++=,∴3是关于x 的方程()210ax b x c +-+=的一个根,故本选项正确; C 、233y x x =-++化为顶点式得:2321()24=--+y x , ∵10a =-<,则抛物线的开口向下, ∴当32x >时,y 的值随x 值的增大而减小;当32x <时,y 的值随x 值的增大而增大;故本选项错误; D 、不等式()210ax b x c +-+>可化为2230x x -++>,令2y x 2x 3=-++, 由二次函数的图象可得:当0y >时,13x -<<,故本选项正确;故选:C .【点睛】本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键.6.定义[a ,b ,c]为函数y=ax 2+bx+c 的特征数,下面给出特征数为[2m ,1-m ,-1-m]的函数的一些结论,其中不正确的是( )A .当m=-3时,函数图象的顶点坐标是(13,83) B .当m>0时,函数图象截x 轴所得的线段长度大于32 C .当m≠0时,函数图象经过同一个点D .当m<0时,函数在x>14时,y 随x 的增大而减小 【答案】D【解析】 分析:A 、把m=-3代入[2m ,1-m ,-1-m],求得[a ,b ,c],求得解析式,利用顶点坐标公式解答即可;B 、令函数值为0,求得与x 轴交点坐标,利用两点间距离公式解决问题;C 、首先求得对称轴,利用二次函数的性质解答即可;D 、根据特征数的特点,直接得出x 的值,进一步验证即可解答.详解:因为函数y=ax 2+bx+c 的特征数为[2m ,1﹣m ,﹣1﹣m];A 、当m=﹣3时,y=﹣6x 2+4x+2=﹣6(x ﹣13)2+83,顶点坐标是(13,83);此结论正确;B 、当m >0时,令y=0,有2mx 2+(1﹣m )x+(﹣1﹣m )=0,解得:x 1=1,x 2=﹣12﹣12m, |x 2﹣x 1|=32+12m >32,所以当m >0时,函数图象截x 轴所得的线段长度大于32,此结论正确; C 、当x=1时,y=2mx 2+(1﹣m )x+(﹣1﹣m )=2m+(1﹣m )+(﹣1﹣m )=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.7.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c <0;②a ﹣b +c >1;③abc >0;④9a ﹣3b +c <0;⑤c ﹣a >1.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D【解析】【分析】 根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可.【详解】由图象可知,a <0,c=1,对称轴:x=b12a-=-, ∴b=2a , ①由图可知:当x=1时,y <0,∴a+b+c <0,正确;②由图可知:当x=−1时,y >1,∴a −b+c >1,正确;③abc=2a 2>0,正确;④由图可知:当x=−3时,y <0,∴9a −3b+c <0,正确;⑤c−a=1−a >1,正确;∴①②③④⑤正确.故选:D .【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.8.若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,﹣2)都是“整点”.抛物线y =mx 2﹣4mx +4m ﹣2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( )A .12≤m <1B .12<m ≤1C .1<m ≤2D .1<m <2 【答案】B【解析】【分析】 画出图象,利用图象可得m 的取值范围【详解】 ∵y =mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2.由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2.由y =0得x 2﹣4x +2=0.解得12120.622 3.42x x ==-≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意. 则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】答案图1(m =1时) 答案图2( m =时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y =mx 2﹣4mx +4m ﹣2得到0=0﹣4m +0﹣2.解得m =12. 此时抛物线解析式为y =12x 2﹣2x . 当x =1时,得13121122y =⨯-⨯=-<-.∴点(1,﹣1)符合题意. 当x =3时,得13923122y =⨯-⨯=-<-.∴点(3,﹣1)符合题意.综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,∴m =12不符合题. ∴m >12. 综合①②可得:当12<m ≤1时,该函数的图象与x 轴所围成的区域(含边界)内有七个整点,故选:B .【点睛】考查二次函数图象与系数的关系,抛物线与x 轴的交点,画出图象,数形结合是解题的关键.9.如图,抛物线2y ax bx c =++ 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc >0;②3a +b <0;③﹣43≤a ≤﹣1;④a +b ≥am 2+bm (m 为任意实数);⑤一元二次方程2ax bx c n ++= 有两个不相等的实数根,其中正确的有( )A .2个B .3个C .4个D .5个【答案】B【解析】 解:∵抛物线开口向下,∴a <0,∵顶点坐标(1,n ),∴对称轴为直线x =1,∴2b a - =1,∴b =﹣2a >0,∵与y 轴的交点在(0,3),(0,4)之间(包含端点),∴3≤c ≤4,∴abc <0,故①错误;3a +b =3a +(﹣2a )=a <0,故②正确;∵与x 轴交于点A (﹣1,0),∴a ﹣b +c =0,∴a ﹣(﹣2a )+c =0,∴c =﹣3a ,∴3≤﹣3a ≤4,∴﹣43≤a ≤﹣1,故③正确; ∵顶点坐标为(1,n ),∴当x =1时,函数有最大值n ,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确;一元二次方程2ax bx c n ++=有两个相等的实数根x 1=x 2=1,故⑤错误.综上所述,结论正确的是②③④共3个.故选B .点睛:本题考查了抛物线与x 轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征,关键在于根据顶点横坐标表示出a 、b 的关系.10.如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于()A .5B .453C .3D .4【答案】A【解析】【分析】【详解】 过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA ,∴BF ∥DE ∥CM .∵OD=AD=3,DE ⊥OA ,∴OE=EA=12OA=2. 由勾股定理得:5设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE . ∴BF OF CM AM DE OE DE AE ==,,即x 2x 2255-==,,解得:()52x 5BF ?x CM 2-==,. ∴BF+CM=5.故选A .11.如图,已知()4,1A --,线段AB 与x 轴平行,且2AB =,抛物线2y x mx n =-++经过点()0,3C 和()3,0D ,若线段AB 以每秒2个单位长度的速度向下平移,设平移的时间为t (秒).若抛物线与线段AB 有公共点,则t 的取值范围是( )A .010t ≤≤B .210t ≤≤C .28t ≤≤D .210t <<【答案】B【解析】【分析】 直接利用待定系数法求出二次函数,得出B 点坐标,分别得出当抛物线l 经过点B 时,当抛物线l 经过点A 时,求出y 的值,进而得出t 的取值范围;【详解】解:(1)把点C (0,3)和D (3,0)的坐标代入y=-x 2+mx+n 中,得,23330n m n =⎧⎨-++=⎩解得32n m =⎧⎨=⎩∴抛物线l 解析式为y=-x 2+2x+3,设点B 的坐标为(-2,-1-2t ),点A 的坐标为(-4,-1-2t ),当抛物线l 经过点B 时,有y=-(-2)2+2×(-2)+3=-5,当抛物线l 经过点A 时,有y=-(-4)2+2×(-4)+3=-21,当抛物线l 与线段AB 总有公共点时,有-21≤-1-2t≤-5,解得:2≤t≤10.故应选B【点睛】此题主要考查了二次函数综合以及不等式组的解法等知识,正确利用数形结合分析得出关于t的不等式是解题关键.12.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5【答案】D【解析】【分析】根据题目中所给的运算法则列出不等式,解不等式即可判定选项A;根据题目中所给的运算法则求得函数解析式,由此即可判定选项B;根据题目中所给的运算法则可得a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+12)2+34>0,由此即可判定选项C;根据题目中所给的运算法则列出方程,解方程即可判定选项D.【详解】∵a*b=ab﹣a+b,∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,∵(﹣2)*(3﹣x)<2,∴x﹣1<2,解得x<3,故选项A正确;∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,∴当y=0时,x2+2x﹣2=0,解得,x1=﹣x2=﹣1B正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+12)2+34>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选D.【点睛】本题是阅读理解题,根据题目中所给的运算法则得到相应的运算式子是解决问题的关键.13.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A .t >﹣5B .﹣5<t <3C .3<t≤4D .﹣5<t≤4【答案】D【解析】【分析】 先根据对称轴x=2求得m 的值,然后求得x=1和x=5时y 的值,最后根据图形的特点,得出直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4.【详解】∵抛物线的对称轴为x =2, ∴22m -=-,m=4 如图,关于x 的一元二次方程﹣x 2+mx ﹣t=0的解就是抛物线y=﹣x 2+mx 与直线y=t 的交点的横坐标当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解, 则直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D .【点睛】本题考查二次函数与一元二次方程的关系,方程有解,反映在图象上即图象与x 轴(或某直线)有交点.14.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y =x 2+(2a +1)x +a 2﹣a 的顶点的横坐标为:x =﹣212a +=﹣a ﹣12, 纵坐标为:y =()()224214a a a --+=﹣2a ﹣14, ∴抛物线的顶点横坐标和纵坐标的关系式为:y =2x +34, ∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D .【点睛】 本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.15.已知二次函数y =ax 2+bx +c 的图象如图所示,那么下列结论中正确的是( )A .ac >0B .b >0C .a +c <0D .a +b +c =0【答案】D【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】A.由图象可知:a <0,c >0,∴ac <0,故A 错误;B.由对称轴可知:x =2b a -<0, ∴b <0,故B 错误;C.由对称轴可知:x =2b a-=﹣1, ∴b =2a ,∵x =1时,y =0,∴a +b +c =0,∴c =﹣3a ,∴a +c =a ﹣3a =﹣2a >0,故C 错误;故选D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.16.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论:(1)4a +2b +c <0;(2)方程ax 2+bx +c =0两根都大于零;(3)y 随x 的增大而增大;(4)一次函数y =x +bc 的图象一定不过第二象限.其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 由图可知,x=2时函数值小于0,故(1)正确,函数与x 轴的交点为x=1.x=3,都大于0,故(2)正确 ,由图像知(3)错误,由图象开口向上,a >0,与y 轴交于正半轴,c >0,对称轴x=﹣=1,故b <0,bc <0,即可判断一次函数y =x +bc 的图象. 【详解】①由x =2时,y =4a +2b +c ,由图象知:y =4a +2b +c <0,故正确;②方程ax 2+bx +c =0两根分别为1,3,都大于0,故正确;③当x <2时,由图象知:y 随x 的增大而减小,故错误;④由图象开口向上,a >0,与y 轴交于正半轴,c >0,x=﹣=1>0,∴b <0, ∴bc <0,∴一次函数y =x +bc 的图象一定过第一、三、四象限,故正确;故正确的共有3个,故选:C .【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.17.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或6【答案】B【解析】分析:分h <2、2≤h≤5和h >5三种情况考虑:当h <2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h >5时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h<2时,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选B.点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.18.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有() A.0B.1C.2D.3【答案】B【解析】【分析】根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数.【详解】若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限.故答案为:B.【点睛】本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.19.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.23D.43【答案】C【解析】【分析】点P、Q的速度比为3:3,根据x=2,y=63,确定P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC=3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q的速度为3a,故点P、Q的速度比为3:3,故设点P、Q的速度分别为:3v、3v,由图2知,当x=2时,y=63,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×3v=23v,y=12⨯AB×BQ=12⨯6v×23v=63,解得:v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC =6,则PH =PC sin C =6×12=3,同理CH =33,则HQ =CH ﹣CQ =33﹣23=3,PQ =22PH HQ +=39+=23,故选:C .【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.20.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于(-1,0),(3,0)两点,则下列说法:①abc <0;②a -b +c =0;③2a +b =0;④2a +c >0;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,其中正确的结论是( )A .①⑤B .②④C .②③④D .②③⑤【答案】D【解析】【分析】①abc <0,由图象知c <0,a 、b 异号,所以,①错误;②a -b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2b a=1,故正确;④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确.【详解】解:①abc <0,由图象知c <0,a 、b 异号,所以,①错误;②a -b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2b a=1,故正确;④2a+c>0,由②、③知:3a+c=0,而-a<0,∴2a+c<0,故错误;⑤若A(x1,y1),B(x2,y2),C(x3,y3)为抛物线上三点,且-1<x1<x2<1,x3>3,则y2<y1<y3,把A、B、C坐标大致在图上标出,可知正确;故选D.【点睛】考查图象与二次函数系数之间的关系,要会求对称轴、x=±1等特殊点y的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新初中数学函数基础知识专项训练及答案一、选择题1.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象是A .B .C .D .【答案】C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C 选项符合题意.故选C .2.如图,在直角三角形ABC ∆中,90B ∠=︒,4AB =,3BC =,动点E 从点B 开始沿B C →以2cm/s 的速度运动至C 点停止;动点F 从点B 同时出发沿B A →以1cm/s 的速度运动至A 点停止,连接EF .设运动时间为x (单位:s ),ABC ∆去掉BEF ∆后剩余部分的面积为y (单位:2cm ),则能大致反映y 与x 的函数关系的图象是( )A .B .C .D .【答案】B【解析】【分析】根据已知题意写出函数关系,y 为ABC ∆去掉BEF ∆后剩余部分的面积,注意1.5秒时点E 运动到C 点,而点F 则继续运动,因此y 的变化应分为两个阶段.【详解】 解:14362ABC S ∆=⨯⨯=, 当302x ≤≤时,2122BEF S x x x ∆=⋅⋅=.26ABC BEF y S S x ∆∆=-=-; 当342x <≤时,13322BEF S x x ∆=⋅⋅=,362ABC BEF y S S x ∆∆=-=-, 由此可知当302x ≤≤时,函数为二次函数,当342x <≤时,函数为一次函数. 故选B .【点睛】本题主要考查了动点问题与函数图像相结合,解题的关键在于根据运动过程写出函数关系,要注意自变量的取值范围,以及是否为分段函数.3.如图,边长为2的等边ABC ∆和边长为1的等边A B C '''∆,它们的边BC ,B C ''位于同一条直线l 上,开始时,点C '与点B 重合,ABC ∆固定不动,然后把A B C '''∆自左向右沿直线l 平移,移出ABC ∆外(点B '与点C 重合)停止,设A B C '''∆平移的距离为x ,两个三角形重合部分的面积为y ,则y 关于x 的函数图象是( )A .B .C .D .【答案】C【解析】分为0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.【详解】解:如图1所示:当0≤x≤1时,过点D作DE⊥BC′.∵△ABC和△A′B′C′均为等边三角形,△DBC′为等边三角形.∴DE=32BC′=32x,∴y=12BC′•DE=34x2.当x=1时,y=34,且抛物线的开口向上.如图2所示:1<x≤2时,过点A′作A′E⊥B′C′,垂足为E.∵y=12B′C′•A′E=12×1×3=3.∴函数图象是一条平行与x轴的线段.如图3所示:2<x≤3时,过点D作DE⊥B′C,垂足为E.y=123x-3)2,函数图象为抛物线的一部分,且抛物线开口向上.【点睛】本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.4.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,10AB cm =,P Q 、两点同时从点A 分别出发,点P 以2/cm s 的速度,沿A B C →→运动,点Q 以1/cm s 的速度,沿A C B →→运动,相遇后停止,这一过程中,若P Q 、两点之间的距离PQ y =,则y 与时间t 的关系大致图像是( )A .B .C .D .【答案】A【解析】【分析】根据题意分当05t ≤≤、5t >时两种情况,分别表示出PQ 的长y 与t 的关系式,进而得出答案.【详解】解:在ABC ∆中,90C =o ∠,30B ∠=o ,AB=10,∴AC=5, 12AC AB =, I. 当05t ≤≤时,P 在AB 上,Q 在AC 上,由题意可得:2AP t =,AQ t =, 依题意得:12AQ AP =,又∵A A ∠=∠∴APQ ABC V :V ,∴90AQP C ∠=∠=︒ 则3PQ t =, II.当5t >,P 、Q 在BC 上,由题意可得:P 走过的路程是2t ,Q 走过的路程是t , ∴15533PQ t =+-,故选:A .【点睛】此题主要考查了动点问题的函数图象,正确理解PQ 长与时间是一次函数关系,并得出函数关系式是解题关键.5.如图,边长为 2 的正方形ABCD ,点P 从点A 出发以每秒 1 个单位长度的速度沿A D C --的路径向点 C 运动,同时点 Q 从点 B 出发以每秒 2 个单位长度的速度沿B C D A --- 的路径向点 A 运动,当点 Q 到达终点时,点P 停止运动,设PQC ∆ 的面积为 S ,运动时间为t 秒,则能大致反映S 与t 的函数关系的图象是( )A .B .C .D .【答案】C【解析】【分析】 分三种情况求出解析式,即可求解.【详解】当0≤t≤1时,即当点Q 在BC 上运动,点P 在AD 上运动时,()2222212S t t =⨯⨯-=-, ∴该图象y 随x 的增大而减小,当1<t≤2时,即当点Q 在CD 上运动时,点P 在AD 上运动时,()()21222322S t t t t =--=-+-, ∴该图象开口向下, 当2<t≤3,即当点Q 在AD 上运动时,点P 在DC 上运动时,()()21424682S t t t t =--=-+- ∴该图象开口向下,故选:C.【点睛】本题考查了动点问题的函数图象,求出分段函数解析式是本题的关键.6.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中正确的是().①小明家和学校距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.A.①③④B.①②③C.①②④D.①②③④【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,小明家和学校距离为1200米,故①正确,小华乘坐公共汽车的速度是1200÷(13﹣8)=240米/分,故②正确,480÷240=2(分),8+2=10(分),则小华乘坐公共汽车后7:50与小明相遇,故③正确,小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,小华从家到学校的所用时间为:1200÷100=12(分),则小华到校时间为8:00,小明到校时间为8:00,故④正确,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,∴y2<y1<y3.故选:B.【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.8.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.【详解】解:A、距离越来越大,选项错误;B、距离越来越小,但前后变化快慢一样,选项错误;C、距离越来越大,选项错误;D、距离越来越小,且距离先变化慢,后变化快,选项正确;【点睛】本题考查了函数图象,观察距离随时间的变化是解题关键.9.如图1,在矩形ABCD 中,动点P 从点A 出发,以相同的速度,沿A→B→C→D→A 方向运动到点A 处停止.设点P 运动的路程为x ,△PAB 的面积为y ,如果y 与x 的函数图象如图2所示,则矩形ABCD 的面积为( )A .24B .40C .56D .60【答案】A【解析】【分析】 由点P 的运动路径可得△PAB 面积的变化,根据图2得出AB 、BC 的长,进而求出矩形ABCD 的面积即可得答案.【详解】∵点P 在AB 边运动时,△PAB 的面积为0,在BC 边运动时,△PAB 的面积逐渐增大, ∴由图2可知:AB=4,BC=10-4=6,∴矩形ABCD 的面积为AB·BC=24, 故选:A .【点睛】本题考查分段函数的图象,根据△PAB 面积的变化,正确从图象中得出所需信息是解题关键.10.在函数3y x =-中,自变量x 的取值范围是( ) A .3x <B .3x >C .3x ≥D .8,5OA OB ==u u u v u u u v【答案】C【解析】【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x-3≥0,解得x≥3.故选C .本题考查了二次根式的性质:二次根式的被开方数是非负数.11.若12x y x -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠,解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 逆时针0°~90°的旋转,那么旋转时露出的△ABC 的面积(S )随着旋转角度(n )的变化而变化,下面表示S 与n 关系的图象大致是( )A .B .C .D .【答案】B【解析】【分析】注意分析y 随x 的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.13.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A.B.C.D.【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.14.如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.林老师从书店到家的平均速度是10千米/时【答案】D【解析】分析:根据图象中的数据信息进行分析判断即可.详解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.15.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个【答案】C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.16.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:砝码的质量x/g050100150200250300400500指针位置y/cm2345677.57.57.5则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.【答案】B【解析】【分析】通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案.【详解】解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=k x+b,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x+2.显然当y=7.5时,x=275,故选B.【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.17.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B.C.D.【答案】D【解析】试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选D.考点:函数的图象.18.下列图象中,表示y是x的函数的是()A.B.C.D.【答案】C【解析】【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义可知,每给定自变量x一个值都有唯一的函数值y相对应,所以A. B. D错误.故选C.【点睛】本题考查了函数的概念,牢牢掌握函数的概念是解答本题的关键.19.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.【答案】D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.20.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是()A.用了5分钟来修车B.自行车发生故障时离家距离为1000米C.学校离家的距离为2000米D.到达学校时骑行时间为20分钟【答案】D【解析】【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断即可.【详解】由图可知,修车时间为15-10=5分钟,可知A正确;自行车发生故障时离家距离为1000米,可知B正确;学校离家的距离为2000米,可知C正确;到达学校时骑行时间为20-5=15分钟,可知D错误,故选D.【点睛】本题考查了函数图象,读懂图象,能从图象中读取有用信息的数形、分析其中的“关键点”、分析各图象的变化趋势是解题的关键.。