解一元一次方程40道练习题
七年级解一元一次方程经典50道练习题(带答案)
自我测试60分钟看看准确率牛刀小试相信自己一定行1、712=+x ;2、825=-x ;3、7233+=+x x ;4、735-=+x x ;解:(移项)(合并)(化系数为1)5、914211-=-x x ;6、2749+=-x x ;7、162=+x ;8、9310=-x ;解:(移项)(合并)(化系数为1)9、x x -=-324;10、4227-=+-x x ;11、8725+=-x x ;12、32141+=-x x 解:(移项)(合并)(化系数为 113、1623+=x x 14、253231+=-x x ;15、152+=--x x ;16、23312+=--xx 解:(移项)(合并)(化系数为1).17、475.0=)++(x x ;18、2-41)=-(x ;19、511)=-(x ;20、212)=---(x ;解:(去括号)(移项)(合并)(化系数为1)21、)12(5111+=+x x ;22、32034)=-(-x x .23、5058=)-+(x ;24、293)=-(x ;解:(去括号)(移项)(合并)(化系数为1)25、3-243)=+(x ;26、2-122)=-(x ;27、443212+)=-(x x ;28、323236)=+(-x ;解:(去括号)(移项)(合并)(化系数为1)29、x x 2570152002+)=-(;30、12123)=+(x .31、452x x =+;32、3423+=-x x ;解:(去分母)(去括号)(移项)(合并)(化系数为1)33、)-()=+(3271131x x ;34、)-()=+(131141x x ;35、142312-+=-x x ;解:(去分母)(去括号)(移项)(合并)(化系数为 136、)+(-)=-(2512121x x . 37、)+()=+(20411471x x ;38、)-(-)=+(731211551x x . 解:(去分母)(去括号)(移项)(合并)(化系数为 139、432141=-x ;40、83457=-x ;41、815612+=-x x ;42、629721-=-x x ;解:(去分母)(去括号)(移项)(合并)(化系数为 143、1232151)=-(-x x ;44、1615312=--+x x ;45、x x 2414271-)=+(;解:(去分母)(去括号)(移项)(合并)(化系数为 146、259300300102200103)=-()-+(x x . 47、307221159138)=-()--()--(x x x ;解:(去分母)(去括号)(移项)(合并)(化系数为 148、51413121-=+x x ;49、13.021.02.015.0=-+--x x ;50、3.01-x -5.02+x =12.解:(化整)(去分母)(去括号)(移项)(合并)(化系数为 1【参考答案】1、【答案】(1)3=x ;(2)2=x ;(3)4=x ;(4)6=x ;(5)37=x ;(6)12=-x ;(7)4=x ;(8)32=-x .1.1、【答案】(9)25=-x ;(10)56=x ;(11)5=-x ;(12)31=-x ;(13)1=x ;(14)32=x ;(15)35=-x ;(16)1=x .2、【答案】(17)1=x ;(18)1=-x ;(19)56=x ;(20)3=-x ;(21)4=x ;(22)9=x .2.1、【答案】(23)7=-x ;(24)23=-x ;(25)11=-x ;(26)4=-x ;(27)21=x ;(28)910=x ;(29)6=x ;(30)23=x .3、【答案】(31)8=x ;(32)51=x ;(33)16=-x ;(34)7=x ;(35)52=-x ;(36)3=x ;(37)28=-x ;(38)165=-x .3.1、【答案】(39)5=x ;(40)1413=x ;(41)1=-x ;(42)320=-x ;(43)1225=x ;(44)3=-x ;(45)87=x ;(46)216=x .4、【答案】(47)3=x ;(48)1532=-x ;(49)1364=x ;(50)229=x .。
一元一次方程专题训练经典练习题(含答案)
一元一次方程专题训练经典练习题一、解下列一元一次方程1、2x+2=3x+62、 3x-11=253、2(x-1)+3(1-x)=04、5x(2-3.140)=2(x-6)5、0.8x +2=1.6x-26、10%(x+2)=17、2(x+5)=3(x-6) 8、1-2(x-3)=3(x+2)9、3(x-1)=2(x+2)+(1-x) 10、4x-[2+(3x-6)]=111、2x-20%(x+3)=12÷10 12、7x+5(x-2)= 2(x+10)13、4x-4=2(2+x)-3(x+1) 14、1- 12x=215、3- 13x=2(x+1) 16、2(x-34)=8-x17、12(2x+1)+1=2(2-x) 18、x-13(x-5)=2319、-x= -3(x-4) 20、7x·(5 - 4·12)= 5+x21、0.1+x2=2 22、x-10.2=3(x-1)23、x-10.3+x+20.3=2 24 、12+13x =23+125、2x-10.5= 2-3x+20.326、错误! =3x27、错误! =3 28、错误! =错误!29、12{13[14(x+1)+1]+2} =2 30、25(300+x)-35(200+x)=400·110二、一元一次方程应用题1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
2、小华从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、小兵由A地到B地,若以每小时12千米的速度,他将比原计划的时间迟到20分,若以每小时15千米的速度前进,则比原计划的时间早4分钟到达B地,求A、B两地间的距离。
4、甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发的时间时已过了3小时。
解一元一次方程40题(一)含答案
解一元一次方程40题(一)一.解答题(共40小题)1.已知3x =是方程(1)3[(1)]234x m x -++=的解,求m 的值.2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.3.解方程(1)2(4)3(1)x x x --=- (2)313142x x-+-=4.某同学在解方程21233x x a-+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.5.解方程:(1)37322x x +=-; (2)43(20)40x x --+=; (3)352123x x +-=; (4)5415323412y y y +--+=-;6.解方程2191136x x ++-=7.解方程: (1)0.10.2130.020.5x x -+-= (2)312143x x -+-=-8.解方程: (1)132x x --= (2)0.6310.20.4x x--=9.解下列方程:(1)5379x x +=-+ (2)43(20)40x x --+= (3)3157146y y ---= (4)1213323x x x --+=-10.已知12x =是方程21423x m x m ---=的解,求式子211(428)(1)42m m m -+-+-的值.11.(1)计算:225(210)4-⨯--÷ (2)计算:2313()(24)(3)12468-+⨯-+-÷12.解方程:(1)2557x x +=- (2)3(2)25(2)x x -=-+ (3)14223x x +-+= (4)12311463x x x -++-=+13.解下列方程或方程组(1)219x x -=+ (2)52(1)x x +=- (3)43135x x --=- (4)3717245x x -+-=-14.若代数式33x +比344x -的值大4,求x 的值.15.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程. (1)判断934x -=是否是和解方程,说明理由;(2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.16.解方程(1)412(3)x x +=- (2)3157146y y ---=17.解方程.(1)8(35)20x x -+= (2)1:225%:0.753x = (3)2940%316x ÷=18.解方程 (1)23132x x --+= (2)2321{[1(1)]9}1320.32x xx +----=-19.解方程(1)0.50.7 6.5 1.3x x -=- (2)758143x x -+-=20.解下列方程:(1)3520x x x --=(2)3(56)320x x -=-(3)23[2(1)4]8x x x +--+=(4)2123134x x ---=21.解方程:851217x =22.m 为何值时,0.2m 的值比280.3m -的值大1?23.解方程:(1)34(25)4x x x -+=+; (2)12226x x x -+-=-.24.311(54)1535x -+= 22531277714x +-=25.解方程:(1)2343x x -=- (2)13(1)2x x --=(3)85(1)2x x +-= (4)4320.20.5x x +--=26.解方程:11(26)(8)134x x -=++.27.一元一次方程解答题:已知关于x 的方程23x m mx -=-与12(2)x x l -=-的解互为倒数,求m 的值.28.解方程(1)321x x -=-+ (2)18(1)32(21)x x x -+=-- (3)31571104y y ---=29.解方程:(1)2(100.5)(1.52)x x -=-+; (2)5415523412y y y +--+=-30.(1)将方程123126x x +--=去分母,得到33236x x +--=,错在 A .最简公分母找错 B .去分母时,漏掉乘数项C .去分母时,分子部分没有加括号D .去分母时,各项所乘的数不同(2)解方程:123126x x +--=31.0.1210.30.15x x-=+32.已知方程(21)32a x ax +=-有正整数解,求整数a 的值.33.解方程: (1)2121163x x +--= (2)2(1)35x x -=-34.解方程(1)2(21)(34)2x x +--= (2)1213323x x x --+=-35.先阅读下列解题过程,然后解答后面两个问题. 解方程:|3|2x -=.解:当30x -时,原方程可化为32x -=,解得5x =; 当30x -<时,原方程可化为32x -=-,解得1x =. 所以原方程的解是5x =或1x =. (1)解方程:|32|40x --=. (2)解关于x 的方程:|2|1x b -=+36.(1)684(1)x x -=-+ (2)20.30.410.50.3x x -+-=37.解下列方程:(1)2(2)3(41)9(1)x x x ---=-; (2)2152122362x x x-+--=-38.解方程:(1)432(1)1x x +=-+; (2)23(37)272x x +=-;(3)32[(21)2]223x x ---=; (4)218269x xx --=+.39.解下列方程:(1)369x --= (2)5467x x -=-+ (3)2(1)246x x -+=- (4)223123x x---=.40.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x =-,试求a 的值.解一元一次方程40题(一)参考答案与试题解析一.解答题(共40小题)1.已知3x =是方程(1)3[(1)]234x m x -++=的解,求m 的值.【分析】把3x =代入方程,即可得出一个关于m 的方程,求出方程的解即可. 【解答】解:3x =是方程(1)3[(1)]234x m x -++=的解,∴代入得:3(31)3[(1)]234m -++=, 解得:83m =-.【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的一元一次方程是解此题的关键. 2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.【分析】分别求出两个方程的解,然后根据解相同,列出关于m 的方程,求出m 的值,再将m 的值代入200920103(2)()2m m ---,计算即可求解.【解答】解:解方程13(23)322x x +-=,得:2363x x +-=, 0x ∴=,方程13(23)322x x +-=和3261x m x +=+的解相同,21m ∴=解得:12m =, 所以202020193(2)()2m m ---20202019113(2)()222=-⨯--1(1)=--2=.【点评】本题考查了同解方程的知识,解答本题的关键是能够求解关于x 的方程,要正确理解方程解的含义. 3.解方程(1)2(4)3(1)x x x --=- (2)313142x x-+-=【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解; (2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 【解答】解:(1)去括号得:2833x x x -+=-, 移项合并得:25x =-, 解得: 2.5x =-;(2)去分母得:43162x x -+=+, 移项合并得:51x -=, 解得:0.2x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键. 4.某同学在解方程21233x x a-+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.【分析】由题意可知2x =是方程212x x a -=+-的解,然后可求得a 的值,然后将a 的值代入方程求解即可.【解答】解:将1x =代入212x x a -=+-得:112a =+-. 解得:2a =,将2a =代入216x x a -=+-得:2126x x -=+-. 解得:3x =-.【点评】本题主要考查的是一元一次方程的解,明确2x =是方程2(21)3()2x x a -=+-的解是解题的关键. 5.解方程:(1)37322x x +=-; (2)43(20)40x x --+=; (3)352123x x +-=; (4)5415323412y y y +--+=-;【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)37322x x+=-,32327x x+=-,525x=,5x=;(2)43(20)40x x--+=,460340x x-++=,43604x x+=-,756x=,8x=;(3)去分母得:3(35)2(21)x x+=-,91542x x+=-,94215x x-=--,517x=-,3.4x=-;(4)去分母得:4(54)3(1)24(53)y y y++-=--,2016332453y y y++-=-+,2035243163y y y++=+-+,2814y=,12y=.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.6.解方程21911 36x x++-=【分析】根据去分母、去括号、移项、合并同类项、系数化为1解答即可.【解答】解:21911 36x x++-=2(21)(91)6x x+-+=42916x x+--=49612x x-=+-55x-=1x=-【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.7.解方程:(1)0.10.213 0.020.5x x-+-=(2)3121 43x x-+-=-【分析】(1)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程整理得:510223x x---=,移项合并得:315x=,解得:5x=;(2)去分母得:934812x x---=-,移项合并得:51x=-,解得:15x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.解方程:(1)132xx--=(2)0.6310.20.4 x x--=【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:216x x-+=,解得:5x=;(2)方程整理得:315512xx--=,去分母得:102315x x-=-,移项合并得:255x=,解得:0.2x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.解下列方程:(1)5379x x+=-+(2)43(20)40x x--+=(3)3157146 y y---=(4)121 3323x xx--+=-【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:126x=,解得:0.5x=;(2)去括号得:460340x x-++=,移项合并得:756x=,解得:8x=;(3)去分母得:93121014y y--=-,移项合并得:1y-=,解得:1y=-;(4)去分母得:18331842x x x+-=-+,移项合并得:2523x=,解得:2325x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.已知12x=是方程21423x m x m---=的解,求式子211(428)(1)42m m m-+-+-的值.【分析】把12x =代入方程,求出m 的值,再把代数式进行化简,最后代入求出即可. 【解答】解:把12x =代入方程21423x m x m ---=得:1112423m m ---=, 解得:5m =,211(428)(1)42m m m -+-+- 21112222m m m =-+-+- 2122m =-- 21522=-- 1272=-. 【点评】本题考查了解一元一次方程,一元一次方程的解,整式的混合运算和求值等知识点,能求出m 的值是解此题的关键.11.(1)计算:225(210)4-⨯--÷(2)计算:2313()(24)(3)12468-+⨯-+-÷ 【分析】(1)根据有理数的混合计算解答即可;(2)根据有理数的混合计算解答即可;(3)根据去分母、去括号、移项、合并同类项、系数化为1解答.【解答】解:(1)225(210)4-⨯--÷45(8)4=-⨯--÷202=-+18=-;(2)2313()(24)(3)12468-+⨯-+-÷ 1849912=-+-+÷318494=-+-+ 1224=-; 【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.12.解方程:(1)2557x x +=-(2)3(2)25(2)x x -=-+(3)14223x x +-+= (4)12311463x x x -++-=+ 【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2557x x +=-,2575x x -=--,312x -=-,4x =;(2)3(2)25(2)x x -=-+,362510x x -=--,352106x x +=-+,82x =-,0.25x =-;(3)14223x x +-+=, 3(1)2(4)12x x ++-=,332812x x ++-=,321238x x +=-+,517x =,5.4x =;(4)去分母得:3(1)122(23)4(1)x x x --=+++,33124644x x x --=+++,34464312x x x--=+++,525x-=,5x=-.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.13.解下列方程或方程组(1)219x x-=+(2)52(1)x x+=-(3)431 35x x--=-(4)3717 245x x-+ -=-【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:10x=;(2)去括号得:522x x+=-,移项合并得:7x-=-,解得:7x=;(3)去分母得:2053915x x-=--,移项合并得:844x-=-,解得: 5.5x=;(4)去分母得:401535468x x-+=--,移项合并得:11143x-=-,解得:13x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.若代数式33x+比344x-的值大4,求x的值.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:3344 34x x+--=,去分母得:41291248x x+-+=,移项合并得:524x -=,解得: 4.8x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.15.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程.(1)判断934x -=是否是和解方程,说明理由; (2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.【分析】(1)求出方程的解,再根据和解方程的意义得出即可;(2)根据和解方程得出关于m 的方程,求出方程的解即可.【解答】解:(1)934x -=, 34x ∴=-, 93344-=-, 934x ∴-=是和解方程;(2)关于x 的一元一次方程52x m =-是和解方程,2255m m -∴-+=, 解得:174m =-. 故m 的值为174-. 【点评】本题考查了一元一次方程的解的应用,能理解和解方程的意义是解此题的关键.16.解方程(1)412(3)x x +=-(2)3157146y y ---= 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解.【解答】解:(1)去括号得:4162x x +=-,移项合并得:65x =,解得:56x=;(2)去分母得:93121014y y--=-,移项合并得:1y-=,解得:1y=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.17.解方程.(1)8(35)20x x-+=(2)1:225%:0.75 3x=(3)29 40%316x÷=【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)利用比例的性质化简,计算即可求出x的值;(3)方程整理后,把x系数化为1,即可求出解.【解答】解:(1)去括号得:83520x x--=,移项合并得:525x=,解得:5x=;(2)整理得:1132434x⨯=⨯,整理得:21x=,解得:12x=;(3)方程整理得:9240%163x=⨯,即340%8x=,解得:1516x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.解方程(1)231 32x x--+=(2)2321{[1(1)]9}1 320.32x x x+----=-【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,去分母,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:42396x x-+-=,移项合并得:11x=;(2)去括号得:2010116132x xx+--+-=-,去分母得:66402063663x x x---+-=-,移项合并得:3162x-=,解得:2x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.解方程(1)0.50.7 6.5 1.3x x-=-(2)7581 43x x-+-=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:1.87.2x=,解得:4x=-;(2)去分母得:321203212x x---=,移项合并得:1765x-=,解得:6517x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.解下列方程:(1)3520x x x--=(2)3(56)320x x-=-(3)23[2(1)4]8x x x+--+=(4)21231 34x x---=【分析】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求出每个方程的解即可.【解答】解:(1)3520x x x--=合并同类项,可得:40x-=,系数互为1,可得:0x=;(2)3(56)320x x -=-去括号,可得:1518320x x -=-,移项,可得:1520318x x +=+,合并同类项,可得:3521x =,系数互为1,可得:0.6x =;(3)23[2(1)4]8x x x +--+=,去括号,可得:2366128x x x +-++=移项,可得:2366128x x x +-=--+,合并同类项,可得:10x -=-,系数互为1,可得:10x =;(4)2123134x x ---=, 去分母,可得,4(21)3(23)12x x ---=,去括号,可得:846912x x --+=,移项,可得:864912x x -=-+,合并同类项,可得:27x =,系数互为1,可得:72x =. 【点评】此题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.21.解方程:851217x = 【分析】方程x 系数化为1,即可求出解.【解答】解:方程x 系数化为1得:122178x =⨯, 解得:92x =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.m 为何值时,0.2m 的值比280.3m -的值大1? 【分析】根据题意列出方程,求出方程的解即可得到m 的值.【解答】解:根据题意得:281 0.20.3m m--=,整理得:2080513mm--=,去分母得:1520803m m-+=,移项合并得:577m-=-,解得:775m=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.解方程:(1)34(25)4x x x-+=+;(2)12226x xx-+-=-.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:38204x x x--=+,移项合并得:624x-=,解得:4x=-;(2)去分母得:633122x x x-+=--,移项合并得:47x=,解得:74x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.24.311(54)1 535 x-+=22531277714x+-=【分析】方程移项合并,把x系数化为1,即可求出解;方程去分母,移项合并,把x系数化为1,即可求出解.【解答】解:移项得:3158 515x=,解得:1589x=;去分母得:418383x+-=,移项合并得:423x=,解得:234x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.25.解方程:(1)2343x x-=-(2)1 3(1)2xx--=(3)85(1)2x x+-=(4)432 0.20.5x x+--=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)原式去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:2343x x+=+,合并得:57x=,解得:75x=;(2)去分母得:6(1)1x x-=-,去括号得:661x x-=-,移项合并得:55x=,解得:1x=;(3)去括号得:8552x x+-=,移项合并得:33x=-,解得:1x=-;(4)方程整理得:520262x x+-+=,移项合并得:324x=-,解得:8x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.26.解方程:11(26)(8)1 34x x-=++.【分析】去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:去分母得:4(26)3(8)12x x-=++,82432412x x -=++,83241224x x -=++,560x =,12x =.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.27.一元一次方程解答题:已知关于x 的方程23x m m x -=-与12(2)x x l -=-的解互为倒数,求m 的值.【分析】求出第二个方程的解,确定出第一个方程的解,代入计算即可求出m 的值.【解答】解:方程12(21)x x -=-,去括号得:142x x -=-, 解得:13x =, 将3x =代入方程23x m m x -=-得,3323m m -=-, 去分母得:93182m m -=-,解得:9m =-.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.28.解方程(1)321x x -=-+(2)18(1)32(21)x x x -+=--(3)31571104y y ---= 【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去括号,移项合并,把x 系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解.【解答】解:(1)方程移项合并得:34x =, 解得:43x =; (2)去括号得:1818342x x x -+=-+,移项合并得:2520x =, 解得:45x =;(3)去分母得:62202535y y--=-,移项合并得:1913y-=-,解得:1319y=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.29.解方程:(1)2(100.5)(1.52)x x-=-+;(2)5415523412 y y y+--+=-【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)去括号得:20 1.52x x-=--,移项合并得:0.522x=-,解得:44x=-;(2)去分母得:2016332455y y y++-=-+,移项合并得:2816y=,解得:47y=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.30.(1)将方程123126x x+--=去分母,得到33236x x+--=,错在CA.最简公分母找错B.去分母时,漏掉乘数项C.去分母时,分子部分没有加括号D.去分母时,各项所乘的数不同(2)解方程:1231 26x x+--=【分析】(1)方程左右两边乘以6得到结果,即可作出判断;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程去分母得:3(1)(23)6x x+--=,去括号得:33236x x+-+=,故答案为:C;(2)去分母得:33(23)6x x+--=,去括号得:33236x x+-+=,解得:0x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.31.0.1210.30.15x x-=+【分析】方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:方程整理得:12020133x x-=+,去分母得:120320x x-=+,移项合并得:402x=-,解得:120x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.32.已知方程(21)32a x ax+=-有正整数解,求整数a的值.【分析】将原方程整理移项,合并同类项,根据该方程有解,得到关于a得方程的解,结合方程的解为正整数,a为整数,得到两个关于a的一元一次方程,解之即可.【解答】解:(21)32a x ax+=-,移项,合并同类项得:(1)2a x-+=-,因为方程有解,所以(1)0a-+≠,即21xa=-,因为方程有正整数解,且a取整数,所以11a-=或12a-=,解得:2a=或3a=,答:整数a的值为2或3.【点评】本题考查了一元一次方程的解,正确掌握一元一次方程的解法是解题的关键.33.解方程:(1)21211 63x x+--=(2)2(1)35x x-=-【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:21426x x+-+=,移项合并得:23x-=,解得:32x =-; (2)去括号得:2235x x -=-,移项合并得:3x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.34.解方程(1)2(21)(34)2x x +--=(2)1213323x x x --+=- 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)去括号得:42342x x +-+=,移项合并得:4x =-;(2)去分母得:18331842x x x +-=-+,移项合并得:2523x =, 解得:2325x =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.35.先阅读下列解题过程,然后解答后面两个问题.解方程:|3|2x -=.解:当30x -时,原方程可化为32x -=,解得5x =;当30x -<时,原方程可化为32x -=-,解得1x =.所以原方程的解是5x =或1x =.(1)解方程:|32|40x --=.(2)解关于x 的方程:|2|1x b -=+【分析】(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.【解答】解:(1)当320x -时,原方程可化为3240x --=,解得2x =;当320x -<时,原方程可化为(32)40x ---=,解得23x =-. 所以原方程的解是2x =或23x =-.(2)①当10b +<,即1b <-时,原方程无解,②当10b +=,即1b =-时:原方程可化为:20x -=,解得2x =;③当10b +>,即1b >-时:当20x -时,原方程可化为21x b -=+,解得3x b =+;当20x -<时,原方程可化为2(1)x b -=-+,解得1x b =-+.【点评】本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.36.(1)684(1)x x -=-+(2)20.30.410.50.3x x -+-= 【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)原方程可整理得:203104153x x -+-=,依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:6844x x -=--,移项得:4846x x +=-+,合并同类项得:510x =,系数化为1得:2x =,(2)原方程可整理得:203104153x x -+-=, 方程两边同时乘以15得:3(203)5(104)15x x --+=,去括号得:609502015x x ---=,移项得:605015209x x -=++,合并同类项得:1044x =,系数化为1得: 4.4x =.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.37.解下列方程:(1)2(2)3(41)9(1)x x x ---=-;(2)2152122362x x x -+--=-.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:2412399x x x--+=-,移项得:2129943x x x-+=+-,合并同类项得:10x-=,系数化为1得:10x=-,(2)去分母得:2(21)(52)3(12)12x x x--+=--,去括号得:42523612x x x---=--,移项得:45631222x x x-+=-++,合并同类项得:55x=-,系数化为1得:1x=-.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.38.解方程:(1)432(1)1x x+=-+;(2)23 (37)272x x+=-;(3)32[(21)2]2 23x x---=;(4)218269x xx--=+.【分析】(1)先去括号,移项并合并同类项,再把系数化为1即可(2)可以先左右两边乘以14,去分母再去括号,移项并合并同类项,将系数化为1即可(3)先去括号,合并同类项,将系数化为1即可(4)可左右两边同时乘以18,去分母后,移项并合并同类项,将系数化为1即可【解答】解:(1)原式去括号得:4321x x+=-移项并合并同类项得,24x=-系数化为1得,2x=-(2)原式去分母得,4(37)2821x x+=-去括号得,12282821x x+=-移项合并同类项得,330x=系数化为1得,0x=(3)原式去括号得,42x-=移项得,6x=(4)原式去分母得,183(218)236x x x--=+去括号得,18654236x x x-+=+移项合并同类项得,7042x=系数化为1得,35 x=【点评】此题考查的是解一元一次方程,掌握解一元一次方程的步骤是解答此题的关键.解一元一次方程的步骤是:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(注意移项要改变运算的符号);4.合并同类项:把方程化成(0)ax b a=≠的形式;5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解.39.解下列方程:(1)369x--=(2)5467x x-=-+(3)2(1)246x x-+=-(4)2231 23x x---=.【分析】(1)依次移项,合并同类项,系数化为1,即可得到答案,(2)依次移项,合并同类项,系数化为1,即可得到答案,(3)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(4)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)移项得:396x-=+,合并同类项得:315x-=,系数化为1得:5x=-,(2)移项得:4675x x-+=-,合并同类项得:22x=,系数化为1得:1x=,(3)去括号得:22246x x-+=-,移项得:24622x x-=--+,合并同类项得:26x-=-,系数化为1得:3x=,(4)去分母得:3(2)2(23)6x x---=,去括号得:36466x x--+=,移项得:36664x x+=++,合并同类项得:916x=,系数化为1得:169x=.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.40.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x=-,试求a的值.【分析】根据一元一次方程的解法即可求出答案.【解答】解:由题意可知:2x=-是方程2110110 52x x a+-⨯+=⨯,(41)215(2)a∴-+⨯+=--,61105a∴-+=--,5105a∴-=--,5105a∴=-+,55a∴=-,1a∴=-;【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.。
一元一次方程常考练习题
一元一次方程常考练习题第一部分:基础题1. 解方程:3x 7 = 112. 解方程:5 2x = 33. 解方程:4x + 8 = 2x 44. 解方程:7x 15 = 2x + 185. 解方程:9 3x = 6x + 3第二部分:进阶题6. 解方程:2(x 3) = 3(x + 2)7. 解方程:5 2(x + 1) = 3x 18. 解方程:4(2x 3) + 7 = 3(3x + 2)9. 解方程:3(x 4) 2(x + 5) = 710. 解方程:6 2(3x 1) = 4(x + 2)第三部分:应用题11. 小明买了3本书和2支笔,共花费50元。
若每本书比每支笔贵5元,求每本书和每支笔的价格。
12. 甲、乙两地相距360公里,两辆汽车同时从甲、乙两地出发,相向而行,3小时后相遇。
若甲车速度比乙车速度快20公里/小时,求两车的速度。
13. 某商店举行打折活动,原价200元的商品打8折后,再减去20元。
求现价。
故障停留了1小时,然后以原速度继续行驶,又行驶了3小时。
求汽车总共行驶的路程。
15. 某班有男生和女生共60人,若男生人数是女生人数的2倍,求男生和女生各有多少人。
第四部分:挑战题16. 已知方程2x 3 = a(x + 1)的解为x = 3,求a的值。
17. 若方程3(x 2) + 4 = b(x + 1)的解为x = 4,求b的值。
18. 方程5 2(x 3) = c(2x + 1)的解为x = 2,求c的值。
19. 若方程4(x 1) 3 = 2(x + d)的解为x = 5,求d的值。
20. 方程k(x 3) + 7 = 2x的解为x = 4,求k的值。
第五部分:图形题21. 在直角坐标系中,点A(2, 3)和点B(x, 5)在同一直线上,求x的值。
22. 若直线y = 2x + b经过点(3, 8),求b的值。
23. 已知直线y = 4x 1与直线y = 2x + c平行,求c的值。
解一元一次方程专项训练(40道)(解析版)—2024-2025学年七年级数学上学期(人教版)
解一元一次方程专项训练(40道)目录【专项训练一、移项与合并同类项】 (1)【专项训练二、去括号】 (8)【专项训练三、去分母】 (11)【专项训练三、拓展】 (19)【专项训练一、移项与合并同类项】1.解方程.(1)124 2.4x-=(2)45258 x:=:2(3)()42:15x-=【答案】4x =-【分析】本题主要考查了解一元一次方程,按照移项,合并同类项,系数化为1的步骤解方程即可.【详解】解;3256x x -=+移项得:3562x x -=+,合并同类项得:28x -=,系数化为1得:4x =-.3.解方程:15%9%7%0.31x x -=+.【答案】5x =【分析】本题主要考查了解一元一次方程,根据解一元一次方程的步骤求解即可.【详解】解:15%9%7%0.31x x -=+,0.150.090.070.31x x -=+,移项得:0.150.070.310.09x x -=+,合并同类项得:0.080.4x =,系数化为1得:5x =.4.解下列方程:(1)6259x x -=-+;(2)0.4 2.8 3.6 1.6 1.7y y y+-=-(1)5278x x -=+;(2)1752x x -=+;(3)2.49.8 1.49x x -=-;(4)5671238x x x x -++=+-+.【答案】(1)5x =-(2)24x =-(3)0.8x =(4)1x =【分析】此题考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.(1)先移项、合并同类项,再将系数化为1即可得到方程的解;(2)先移项、合并同类项,再将系数化为1即可得到方程的解;(3)先移项、合并同类项,即可得到方程的解;(4)先移项、合并同类项,再将系数化为1即可得到方程的解【详解】(1)(1)36 57x+=;(2)61173x¸=;(3)218 1525x=;(4)319 112020x-=.(1)1154 x x-=(2)3136 712x¸=(3)83283 54x-´=(1)133 428x-=;(2)2.4 4.516 2.6x x+=-.(1)132354x x x -+=-+;(2)42147x x x -+-=-.(1)2.49.8 1.49y y -=-(2)3312x x -=+.【专项训练二、去括号】11.解方程:2(5)333(51)x x -=-+.【答案】=1x -【分析】此题考查了解一元一次方程,掌握去括号、移项、合并同类项、系数化为1解一元一次方程是解题的关键,根据去括号、移项、合并同类项、系数化为1求解即可;【详解】解:2(1)15(2)x x -=-+,221510x x -=--,251102x x +=-+,77x =-,=1x -.13.解方程:()()23531214x x x x -+-=.【答案】2x =-【分析】本题考查了一元一次方程的解法,解决本题的关键是先根据单项式乘以多项式去括号.先根据单项式乘以多项式去括号,再解一元一次方程,即可解答.【详解】解:2(35)3(12)14x x x x -+-=,去括号得:226103614x x x x -+-=,移项合并同类项得:714x -=,系数化为1得:2x =-.14.解方程:()()250%1831x x +=--【答案】4x =【分析】此题考查了解一元一次方程,掌握去括号、移项、合并同类项、系数化为1解一元一次方程是解题的关键.【详解】解:()()250%1831x x +=--去括号得211833x x +=-+移项得231813x x +=-+合并得520x =系数化为1得4x =.15.解方程:94(2)2(31)x x x -+=+.16.解方程:.解方程:.【答案】5x =-【分析】本题主要考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的基本步骤,先去括号,然后移项合并同类项,最后未知数系数化为1即可.根据解一元一次方程的步骤进行求解即可.【详解】解:()()7211335x x -=+-去括号得:71411915x x -=+-,移项,合并同类项:210x -=,系数化为1得:5x =-.18.解下列方程(1)()3124x =-+(2)()12113x x x+--=-(1)()46252x x -=-;(2)()214x x -+=-;【答案】(1)2x =;(2)2x =.【分析】(1)本题考查解一元一次方程,掌握解一元一次方程步骤“去括号,移项,合并同类项,系数化为1”即可解题;(2)本题考查解一元一次方程,掌握解一元一次方程步骤“去括号,移项,合并同类项,系数化为1”即可解题;【详解】(1)解:()46252x x -=-,46104x x -=-,44106x x +=+,816x =,2x =;(2)解:()214x x -+=-,224x x --=-,242x x -=-+,2x -=-,2x =.20.解方程:()()4253521x x -+=--.【专项训练三、去分母】21.解下列方程:(1)221146x x ---=;(2)155x x +-=.【答案】(1)16x =-22.解方程:213 5102x x x-+--=.23.解方程:5121163x x--=-.【答案】1x=24.解方程:5121123x x +-=-;(1)223312x x x +-=--.(2)10.10.220.30.05x x x ++-=.26.解方程:2131 52x x+--=.27.解方程:323 0.20.5-+-=x x.28.解方程:341123+--=x x 29.解方程:0.12230.30.6x x x -+-=30.解方程:3532142y y y ---=-.31.解方程:2121163x x+--=.(1)141 23x x+=+;(2)4352 27x x-+=-.33.解方程:(1)222123x x --+=;(2)253432x x +--=;(1)()()()2234191y y y +--=-;(2)322132x x x +--=-.(3)()3151x x +=-;(4)2121136x x -+=-.(1)()()1123222x x -=--(2)3157146x x ---=【专项训练三、拓展】36.解关于x 的方程()()222a x x +=-37.解关于x 的方程:55ax a x +=+.【答案】当1a ¹时,5x =-;当1a =时,x 一切实数.【分析】本题考查了解一元一次方程,将原方程化为()()151a x a -=-,分两种情况:当1a ¹时;当1a =时,分别求解即可得出答案.【详解】解:55ax a x +=+Q ,()()151a x a \-=-当1a ¹时,5x =-,当1a =时,x 一切实数.38.已知关于x 的一元一次方程320222022x x n +=+的解为2022x =,求关于y 的一元一次方程()5232022522022y y n --=--的解.39.已知关于x 的方程有无数多个解,求常数a 、b 的值.40.当整数k为何值时,方程9314-=+有正整数解?并求出正整数解.x kx。
七年级解一元一次方程经典50道练习题(带答案)-精选
自我测试 60 分钟看看准确率 牛刀小试 相信自己一定行1、2x +1=7;2、5x -2=8;3、3x +3=2x +7;4、x +5=3x -7 ;解:(移项)(合并) (化系数为 1)5、11x -2=14x -9;6、x -9=4x +27 ;7、 2x +6=1;8、10 x -3=9;解:(移项)(合并) (化系数为 1)1 1 9、4x -2=3-x ; 10、-7x +2=2x -4 ;11、5x -2=7x +8 ;12、 x =- x 3 42+解:(移项)(合并) (化系数为 1313、 x = x 1614、+ 23 5 21 x1- x =3x + ;15、1-xx + ; 16、 x2=-2 - =- +2253 3解:(移项)(合并)(化系数为 1).17、4(x +0 .5)+x =7 ; 18、-2(x -1)=4;19、5(x -1)=1; 20、 2-(1-x )=- 2 ;解:(去括号) (移项) (合并) (化系数为 1)21、11x +1=5(2x +1) ;22、4x -(3 2 0-x )=3.23、5(x +8)-5=0;24、2(3-x )=9 ;解:(去括号) (移项) (合并) (化系数为 1)25、-3(x +3)=24 ; 26、-2(x -2)=12 ; 27、1(2 2-3x )=4x +4 ; 28、2 26-(3 x + )= ;3 3解:(去括号)(移项) (合并) (化系数为 1)29、(2 200-15x )=70+25x ;30、(3 2x +1)=12 .31、解:(去分母)x +2x = 5 4; 32、3-xx +4 = 2 3;(去括号) (移项) (合并) (化系数为 1)1 1 1 1 2x-1 x 2+33、(x+1)=(2x-3);34、(x+1)=(x-1);35、 1=-;3 74 3 3 4解:(去分母)(去括号)(移项)(合并)(化系数为 11 1 1 1 1 1 136、(x-1)=2-(x+2). 37、(x+14)=(x+20);38、(x+15)=-(x-7).2 5 7 4 5 2 3解:(去分母)(去括号)(移项)(合并)(化系数为 139、1413x;40、-=247 x5-4=38;41、2x-1 5x+1=68;42、19x-2x-;7=26解:(去分母)(去括号)(移项)(合并)(化系数为 11 1 2x+1 5x 1-43、x- 3 2x 1;44、 1(-)=-=5 2 3 6解:(去分母)1;45、2x14 4 2x(+)=-;7(去括号)(移项)(合并)(化系数为 146、3 29(200 x 300 x 300 .47、(8 3x-1)-(9 5x-11)-(2 2x-7)=30;+)-(-)=10 1025解:(去分母)(去括号)(移项)(合并)(化系数为 148、121 1 1 0.5 x-1 0 .1x 2+x+x ;49、 1=--=-;50、3 4 5 0.2 0.3x 1-0.3-x+20.5=12 .解:(化整)(去分母)(去括号)(移项)(合并)(化系数为1【参考答案】 1、【答案】(1)x =3 ;(2)x =2; (3)x =4 ;(4)x =6;(5)7x ; (6) x =-12 ; (7) x =4 ; (8) x =- 32. = 31.1、【答案】 (9) 5 x ; (10) =- 2 6 x = ; (11) x =- 5; (12) 51x ;=- 3( 13) x =1; ( 14) 2 x ; ( 15) = 3 5x ; (16) x =1.=- 32、【答案】(17) x =1;(18) x =-1;(19)6x ; ( 20) x =-3 ; ( 21) x =4 ; (22) x =9.= 52.1、【答案】 (23) x =- 7 ;(24)3x =- ; (25) x =-11; (26) x =- 4 ; (27)2 1 x = ; (28) 2 10 x = ;9(29) x =6;(30)3x = .23、【答案】(31) x =8 ;(32)1x = ;(33) x =-16 ;(34) x =7 ;(35)52 x =- ;5(36) x =3 ; ( 37) x =- 28 ;(38)5x =-.163.1、【答案】 (39) x =5;(40)13x = ;(41) x =- 1;(42)1420 x ; (43) =- 325 x = ; 12(44) x =- 3;(45)7x = ; (46) x =216 .84、【答案】(47) x =3 ; (48)32x =- ; (49) 15 64 x = ; (50) 13 29x = .2。
七年级解一元一次方程经典50道练习题(带答案)
自我测试 60 分钟看看准确率 牛刀小试 相信自己一定行1、 2x +1=7 ;2、 5x -2=8 ;3、 3x +3=2x +7 ;4、 x +5=3x -7 ;解:(移项)(合并)(化系数为 1)5、 11x -2=14x -9 ;6、 x -9=4x +27 ;7、 2 x + 6=1;8、 10 x -3=9 ;解:(移项)(合并)(化系数为 1)9、 4x -2=3-x ; 10、 -7 x + 2=2x -4 ;11、 5x -2= 7x +8 ;12、 1 x =- 1 x +34 2解:(移项)(合并)(化系数为 113、 x = 3 x + 35 2 x + 1 x 21- x =3x + ; 15、 - x =- 2x - =- +16 14、 1; 16、 2 2 2 5 3 3解:(移项)(合并)(化系数为 1).( x +0.5)+ x =7 ( x -1)= 4 ( x -1)= 1 ; 20、 2-( 1- x )=- 217、 4 ; 18、-2 ; 19、 5 ;解:(去括号)(移项)(合并)(化系数为 1)11x +1=5(2x +1) 4x -(320- x )= 3 5( x +8)- 5=0 2 21、 ; 22、 . 23、 ; 24、 ;解:(去括号)(移项)(合并)(化系数为 1)25、 -3( x +3)= 24 ; 26、 - 2( x - 2)=12; 27、 12(2-3x )= 4x +4 ; 28、 6-(3 x + 2)= 2 ;3 3解:(去括号)(移项)(合并)(化系数为 1)29、 (2200-15x )= 70+25x ; + 2= x ; - x x30、 (32x +1)=12 .31、 x 32、 3 = +4 ;5 4 2 3解:(去分母)(去括号)(移项)(合并)(化系数为 1)1 1 1 12 x - x + 2 1 = -( x +1)= (2x -3) ( x +1)= ( x -1) 33、 3; 34、 4 ; 35、 3 4 ;7 3 解:(去分母) (去括号) (移项) (合并) (化系数为 1( x -1)= 2- ( x + 2) 37、 ( x +14)= ( x +20) ( x +15)= - ( x -7) 36、 1 1 . 1 1 ; 38、 1 1 1. 2 5 7 4 5 2 3解:(去分母)(去括号) (移项)(合并) (化系数为 11 1 3 7 x - 5 32 x - 5 x +1 1 9x -2 x -= = 1 = - =39、 ; 4 2 ; 40、 4 8; 41、 6 ; 42、 2 x 7 64 8解:(去分母)(去括号)(移项)(合并)(化系数为 11 12 x + 5 x - 1 x )= 1 - 143、 x - ( - 1 =1 (2 x +14)= 4-2x3 2 ; 44、 ; 45、 ;5 2 36 7解:(去分母)(去括号)(移项)(合并)(化系数为 146、 3( 200+ x )- 2(300- x )= 300 9 . 47、 (83x -1)-(95x -11)-(22x -7)=30 ;10 10 25解:(去分母)(去括号)(移项)(合并)(化系数为 148、 1 x + 1= 1 x - 1 ; 49、 0.5x -1- 0.1x +2=-1; 50、 x -1 - x + 2 =12 .2 3 4 5 0.2 0.3 0.3 0.5解:(化整)(去分母)(去括号)(移项)(合并)(化系数为 1【参考答案】1、【答案】 (1) x =3 ; (2) x = 2 ; (3) x =4 ; (4) x =6;( 5) x = 7 ; ( 6) x =-12 ; ( 7) x =4 ; (8) x =-32 . 31.1、【答案】 ( 9) x =- 5 ; ( 10) x = 6 ; ( 11) x =-5 ; ( 12) x =- 1 ; 2 5 3( 13) x =1; ( 14) x = 2 ; ( 15 ) x =- 5 ; ( ) x =1 . 3 3 162、【答案】( 17) x =1 ;(18) x =-1 ; (19) x = 6 ; ( 20 ) x =- 3 ; ( 21 ) x =4 ; ( ) x =9 .2252.1、【答案】(23) x =- 7 ; ( 24) x =- 3 ; (25) x =-11 ; (26) x =- 4 ; ( 27) x = 1 ;( 28) x = 10 ; 2 2 9 ( 29) x =6 ; ( ) x = 3 30 . 23、【答案】 ( 31) x =8 ; ( 32) x = 1 ; ( ) x =-16 ; ( 34) x =7 ; ( 35 ) x =- 2 ;5 33 5( 36) x =3 ; ( 37) x =- 28 ; (38) x =- 5 .163.1、【答案】 ( 39) x =5 ; ( 40) x = 13 ; ( ) x =-1 ;( ) x =- 20; ( 43) x = 25 ;14 41 42 3 12( 44) x =-3 ; ( 45) x = 7 ; ( 46) x =216 . 84、【答案】 ( 47) x =3 ; ( 48) x =- 32 ; ( 49) x =64 ; ( 50) x = 29 . 15 13 2。
解一元一次方程40题(二)含答案
解一元一次方程40题(二)含答案1.若关于x 的方程2m x x =-的解为整数,且m 为负整数,求代数式22225[(65)2(3)]m m m m m m -----的值.2.已知关于x 的方程3261x m x +=+与2(2)46x x +=-的解相同,求m 的值.3.解方程:(1)542(23)x x -=-(2)341125x x -+-=4.已知关于x 的方程4(2)x ax -=的解为正整数,求整数a 的所有可能取值.5.解方程:(1)2534x x -=+(2)341125x x -+-=6.解下列方程:(1)5278x x +=-.(2)10(1)5x -=.(3)7341125x x -+-=.7.解方程12334x x x -+-=-8.解方程13136x x x ---=-9.解方程:5(1)64(2)x x +-=--10.若a 、b 为定值,关于x 的一元一次方程2236kx a x bk +--=,无论k 为何值时,它的解总是1x =-,求23a b +的值.11.请阅读下列材料:让我们来规定一种运算:a bad bcc d=-,例如:2325341012245=⨯-⨯=-=-.按照这种运算的规定,请回答下列的问题:(1)求0.6475的值;(2)若132212x x-=,试用方程的知识求x的值.12.解关于未知数x的方程:2(3)1153(1)x x x--=-+ 13.解方程:2(1)3(2)5x x--+=14.解方程:382x x-=+.15.小华在解方程21132x x a-+=-,去分母时,方程的右边的1-没有乘6,因而求得的方程的解为2x=,求a的值,并正确地解方程.16.解方程:455x x=-17.解方程:11 (3)1 23xx-+=+18.解方程:(1)423x x-=-(2)24311 32x x+--=19.解方程:1211 23x x--+=.20.解方程:(1)4610x-=-;(2)1053x x=-.21.解方程:(1)263x += (2)3157146y y ---=22.解方程(1)52(4)6y y -+= (2)2121136x x -+-=-23.解一元一次方程:(1)5234x x +=- (2)222(1)x x -=-24.小明解方程121224x x +--=+的过程如图,请指出他解答过程中所有错误步骤的序号,并写出正确的解答过程.25.解方程:(1)53(1)x x -=+ (2)211123y y +--=26.解方程:3(2)12x -+=-27.阅读与理解:已知关于x 的方程5kx x =-有正整数解,求整数k 的值. 解:5kx x +=,(1)5k x +=,51x k =+因为关于x 的方程5kx x =-,有正整数解,所以51k +为正整数,因为k 为整数,所以11k +=或15k +=,所以0k =或4k =; 探究与应用:应用上边的解题方法,已知关于x 的方程6kx x =+有正整数解,求整数k 的值.28.解方程:(1)2(8)31x x +=- (2)132125x x -+=-29.解方程:(1)5634x x -=- (2)71132x x -+-=30.解方程24431324x x +--=31.解方程:21122323x x x -++=-32.若关于x 的方程1123x k k --=+与方程3(1)5x x x --=-的解互为相反数,求k 的值.33.解方程:4(1)5(3)11x x +--=.34.解方程:43(8)4x x --=.35.阅读以下例题:解方程:|3|2x -=.解:(1)当30x -…时,方程化为32x -=,所以5x =;(2)当30x -<时,方程化为32x -=-,所以1x =. 根据上述阅读材料,解方程:|21|7x +=.36.解下列方程(1)313x x -=+ (2)121135x x +--=37.解方程(1)2121136x x +--=. (2)1(35)2(5)2x x x --=+38.解方程(组12):223x x x -+-=-.39.解方程:(1)534x x =-; (2)16324x x +-=+40.(1)若关于x 的方程30x m +-=的解为2,则m = .(2)若关于x 的方程30x m +-=和2212x m x +=-的解的和为4,求m 的值.解一元一次方程(二)含答案参考答案与试题解析一.解答题(共40小题)1.若关于x 的方程2m x x =-的解为整数,且m 为负整数,求代数式22225[(65)2(3)]m m m m m m -----的值.【解答】解:解方程2mx x =-得:21x m=+, 关于x 的方程2mx x =-的解为整数,且m 为负整数, 12m ∴+=±或1±,解得:1m =或3-或0或2-,其中1m =和0m =舍去(不是负整数),即3m =-或2-;22225[(65)2(3)]m m m m m m -----22225[6526]m m m m m m =--+-+222256526m m m m m m =-+-+-2m =,当2m =-时,原式2(2)4=-=;当3m =-时,原式2(3)9=-=,所以代数式22225[(65)2(3)]m m m m m m -----的值是4或9.2.已知关于x 的方程3261x m x +=+与2(2)46x x +=-的解相同,求m 的值.【解答】解:由3261x m x +=+, 解得:213m x -=. 由2(2)46x x +=-,解得:5x =,两个方程的解相同, ∴2153m -=,解得:8m=.3.解方程:(1)542(23)x x-=-(2)3411 25x x-+-=【解答】解:(1)去括号得:5446x x-=-,移项合并得:2x=-;(2)去分母得:5158210x x---=,移项合并得:327x-=,解得:9x=-.4.已知关于x的方程4(2)x ax-=的解为正整数,求整数a的所有可能取值.【解答】解:去括号,得:48x ax-=,移项、合并同类项,得:(4)8a x-=,系数化成1得:84xa=-,x是正整数,48a∴-=或4或2或1,4a∴=-或0或2或3.即整数a的所有可能取值为4-或0或2或3.5.解方程:(1)2534x x-=+(2)3411 25x x-+-=【解答】解:(1)移项合并得:82x-=,解得:14x=-;(2)去分母得:5(3)2(41)10x x--+=,去括号得:5158210x x---=,移项合并得:327x-=,解得:9x=-.6.解下列方程:(1)5278x x+=-.(2)10(1)5x -=.(3)7341125x x -+-=. 【解答】解:(1)移项合并得:210x -=-,解得:5x =;(2)去括号得:10105x -=,移项合并得:1015x =,解得: 1.5x =;(3)去分母得:35158210x x ---=,移项合并得:2727x =,解得:1x =.7.解方程12334x x x -+-=- 【解答】解:去分母得:44123636x x x --=--,移项合并得:1326x -=,解得:2x =-.8.解方程13136x x x ---=- 【解答】解:去分母得:62236x x x -+=--,移项合并得:77x =-,解得:1x =-.9.解方程:5(1)64(2)x x +-=--【解答】解:去括号得:55648x x +-=-+,移项合并得:99x =,解得:1x =.10.若a 、b 为定值,关于x 的一元一次方程2236kx a x bk +--=,无论k 为何值时,它的解总是1x =-,求23a b +的值. 【解答】解:把1x =-代入方程2236kx a x bk +--=得:21236k a bk -+---=解:把1x =,0k =代入方程得:11236b --= 当1x =,1k =时,原式即:211236a b +--=,根据题意得:11236211236b a b -⎧-=⎪⎪⎨+-⎪-=⎪⎩,解得:0a =,11b =,2333a b +=.11.请阅读下列材料:让我们来规定一种运算:a b ad bc c d=-,例如: 2325341012245=⨯-⨯=-=-.按照这种运算的规定,请回答下列的问题: (1)求0.6475的值; (2)若132212xx -=,试用方程的知识求x 的值. 【解答】解:(1)根据题中的新定义得:原式32825=-=-;(2)根据题中的新定义化简得:13222x x +-=, 移项合并得:32x =, 解得:23x =. 12.解关于未知数x 的方程:2(3)1153(1)x x x --=-+【解答】解:2(3)1153(1)x x x --=-+2611533x x x --=--2113536x x x -+=-+68x -=43x =- 13.解方程:2(1)3(2)5x x --+=【解答】解:去括号得:22635x x ---=,移项合并得:13x -=,解得:13x =-.14.解方程:382x x -=+.【解答】解:移项合并得:210x =,解得:5x =.15.小华在解方程21132x x a -+=-,去分母时,方程的右边的1-没有乘6,因而求得的方程的解为2x =,求a 的值,并正确地解方程.【解答】解:把2x =代入2(21)3()1x x a -=+-中得:6631a =+-, 解得:13a =, 代入方程得:1213132x x +-=-,去分母得:42316x x -=+-,解得:3x =-.16.解方程:455x x =-【解答】解:移项合并得:5x -=-,解得:5x =.17.解方程:11(3)123x x -+=+ 【解答】解:去分母得:39226x x +=-+,移项合并得:5x =-.18.解方程:(1)423x x -=-(2)2431132x x +--= 【解答】解:(1)移项合并得:55x =,解得:1x =;(2)去分母得:48936x x +-+=,移项合并得:55x -=-,解得:1x =.19.解方程:121123x x --+=. 【解答】解:去分母得:33426x x -+-=,移项合并得:5x =.20.解方程:(1)4610x -=-;(2)1053x x =-.【解答】解:(1)移项合并得:44x =-,解得:1x =-;(2)移项合并得:53x =-, 解得:35x =-. 21.解方程:(1)263x +=(2)3157146y y ---= 【解答】解:(1)移项合并得:23x =-, 解得:32x =-; (2)去分母得:93101412y y --+=,移项合并得:1y -=,解得:1y =-.22.解方程(1)52(4)6y y -+=(2)2121136x x -+-=- 【解答】解:(1)去括号得:5286y y --=,移项合并得:314y =, 解得:143y =; (2)去分母得:42216x x ---=-,移项合并得:23x =-, 解得:32x =-. 23.解一元一次方程:(1)5234x x +=- (2)222(1)x x -=-【解答】解:(1)移项合并得:26x =-,解得:3x =-;(2)去括号得:2222x x -=-,移项合并得:44x -=-,解得:1x =.24.小明解方程121224x x +--=+的过程如图,请指出他解答过程中所有错误步骤的序号,并写出正确的解答过程.【解答】解:错误步骤的序号为:①、③.正确解答过程如下:121224x x +--=+ 2(1)14242x x +-⨯=⨯+-22482x x +-=+-28224x x +=+-+312x =4x =.故错误步骤为:①③.25.解方程:(1)53(1)x x -=+(2)211123y y +--= 【解答】解:(1)去括号得:533x x -=+,移项合并得:8x =-,解得:4x =-;(2)去分母得:63622y y +-=-,移项合并得:41y =, 解得:14y =. 26.解方程:3(2)12x -+=-【解答】解:3612x -+=-,352x -=-,33x =,1x =,27.阅读与理解:已知关于x 的方程5kx x =-有正整数解,求整数k 的值. 解:5kx x +=,(1)5k x +=,51x k =+因为关于x 的方程5kx x =-,有正整数解,所以51k +为正整数,因为k 为整数,所以11k +=或15k +=,所以0k =或4k =; 探究与应用:应用上边的解题方法,已知关于x 的方程6kx x =+有正整数解,求整数k 的值.【解答】解:6kx x =+,6kx x -=,(1)6k x -=,61x k =- 因为关于x 的方程6kx x =+有正整数解, 所以61k -为正整数, 因为k 为整数,所以16k -=或13k -=或12k -=或11k -=, 解得7k =或4k =或3k =或2k =. 故整数k 的值为7或4或3或2.28.解方程:(1)2(8)31x x +=-(2)132125x x -+=- 【解答】解:(1)去括号得:21631x x +=-, 移项合并得:17x =;(2)去分母得:551064x x -=--, 移项合并得:1111x =,解得:1x =.29.解方程:(1)5634x x -=-(2)711 32x x-+-=【解答】解:(1)移项合并得:22x=,解得:1x=;(2)去分母得:214336x x---=,移项合并得:23x-=,解得:23x=-.30.解方程24431 324 x x+--=【解答】解:去分母得:4(24)6(43)3x x+--=,去括号得:81624183x x+-+=,移项合并得:1631x-=-,解得:3116x=.31.解方程:21122 323 x xx-++=-【解答】解:去分母,得2(21)3(1)124x x x-++=-,去括号,得4233124x x x-++=-,移项并合并,得55x=,解得,1x=32.若关于x的方程1123x k k--=+与方程3(1)5x x x--=-的解互为相反数,求k的值.【解答】解:由3(1)5x x x--=-,可得:2x=-,所以方程1123x k k--=+的解为2x=,将2x=代入11 23x k k--=+,∴211 23k k--=+,解得:2k=-33.解方程:4(1)5(3)11x x+--=.【解答】解:去括号得:4451511x x+-+=,移项合并得:8x-=-,解得:8x=.34.解方程:43(8)4x x --=.【解答】解:去括号得:42434x x -+=, 移项得:43424x x +=+,合并得:728x =,解得:4x =.35.阅读以下例题:解方程:|3|2x -=.解:(1)当30x -…时,方程化为32x -=,所以5x =;(2)当30x -<时,方程化为32x -=-,所以1x =. 根据上述阅读材料,解方程:|21|7x +=.【解答】解:当210x +…时,方程化为217x +=,解得3x =; 当210x +<时,方程化为217x +=-,解得4x =-. 所以原方程的解为3x =或4x =-.36.解下列方程(1)313x x -=+(2)121135x x +--= 【解答】解:(1)移项得:331x x -=+, 合并同类项得:24x =,系数化为1得;2x =,(2)去分母得:5(1)3(21)15x x +--=, 去括号得:556315x x +-+=,移项得:561535x x -=--,合并同类项得:7x -=,系数化为1得:7x =-.37.解方程(1)2121136x x +--=. (2)1(35)2(5)2x x x --=+ 【解答】解:(1)去分母得:2(21)(21)6x x +--=, 去括号得:42216x x +-+=,移项得:42621x x -=--, 合并同类项得:23x =, 系数化为1得:32x =, (2)去分母得:2(35)4(5)x x x --=+, 去括号得:235204x x x -+=+, 移项得:234205x x x --=-, 合并同类项得:515x -=, 系数化为1得:3x =-.38.解方程(组12):223x x x -+-=-. 【解答】解:去分母得:6331224x x x -+=--, 移项合并得:55x =, 解得:1x =.39.解方程:(1)534x x =-;(2)16324x x +-=+. 【解答】解:(1)移项得:534x x -=-, 合并同类项得:24x =-, 系数化为1得:2x =-,(2)方程两边同时乘以4得:2(1)12(6)x x +=+-, 去括号得:22126x x +=+-, 移项得:21262x x -=--, 合并同类项得:4x =.40.(1)若关于x 的方程30x m +-=的解为2,则m = 1 .(2)若关于x 的方程30x m +-=和2212x m x +=-的解的和为4,求m 的值. 【解答】解:(1)把2x =代入方程得:230m +-=, 解得:1m =;故答案为:1;(2)方程30x m +-=的解为3x m =-,方程2212x m x +=-解为:2(21)3x m =+,根据题意得:23(21)43m m-++=,去分母得:932112m m-++=,移项合并得:2m-=,解得:2m=-.。
一元一次方程经典40题
一元一次方程经典40题一、选择题(1 - 10题)1. 下列方程是一元一次方程的是()A. x^2 - 2x + 3 = 0B. 2x - 5y = 4C. x = 0D. (1)/(x)=3解析:一元一次方程是只含有一个未知数,并且未知数的次数都是1,等号两边都是整式的方程。
A选项未知数的最高次数是2;B选项有两个未知数x和y;D选项(1)/(x)不是整式。
只有C选项符合一元一次方程的定义,所以答案是C。
2. 方程3x + 6 = 0的解是()A. x = 2B. x=-2C. x = 3D. x=-3解析:对于方程3x+6 = 0,首先移项得到3x=-6,然后两边同时除以3,解得x=-2,所以答案是B。
3. 若x = 2是方程ax - 3 = 1的解,则a的值是()A. 2B. -2C. 1D. -1解析:因为x = 2是方程ax-3 = 1的解,将x = 2代入方程得2a-3 = 1,移项可得2a=1 + 3=4,两边同时除以2,解得a = 2,所以答案是A。
4. 方程2(x - 1)=x+2的解是()A. x = 4B. x=-4C. x = 0D. x = 1解析:先去括号得2x-2=x + 2,然后移项2x-x=2 + 2,即x = 4,所以答案是A。
5. 关于x的方程3x+2m = 5 - x的解为x = 1,则m的值为()A. (1)/(2)B. -(1)/(2)C. (3)/(2)D. -(3)/(2)解析:把x = 1代入方程3x+2m=5 - x,得到3×1+2m = 5-1,即3 + 2m=4,移项得2m=4 - 3 = 1,解得m=(1)/(2),所以答案是A。
6. 下列变形正确的是()A. 由3x+5 = 4x得3x - 4x=-5B. 由6x = 3得x = 2C. 由x-1 = 2x+3得x+2x = 3 - 1D. 由2x = 1得x = 2解析:A选项,移项正确,3x+5 = 4x移项后为3x-4x=-5;B选项,由6x = 3,两边同时除以6,得x=(1)/(2);C选项,x - 1=2x + 3移项应该是x-2x = 3+1;D选项,由2x = 1得x=(1)/(2)。
解一元一次方程50道练习题(带答案)
解一元一次方程50道练习题(带答案)解一元一次方程50道练习题(带答案)
1. 问题:解方程2x + 5 = 9
解答:将已知方程写成标准形式,得到2x = 9 - 5 = 4
将方程两边同时除以2,得到x = 2
答案:x = 2
2. 问题:解方程3(x - 4) = 5
解答:将已知方程通过分配律展开,得到3x - 12 = 5
将方程两边同时加上12,得到3x = 17
将方程两边同时除以3,得到x = 17/3
答案:x = 17/3
3. 问题:解方程4 - 2x = 6x - 8
解答:将已知方程进行整理,得到-2x - 6x = -8 - 4
将方程进行合并,得到-8x = -12
将方程两边同时除以-8,注意要将负号带到分子,得到x = -12/-8
答案:x = 3/2
4. 问题:解方程6(x + 3) = 4(x - 2)
解答:将已知方程展开,得到6x + 18 = 4x - 8
将方程两边同时减去4x,得到2x + 18 = -8
将方程两边同时减去18,得到2x = -8 - 18
将方程两边同时除以2,得到x = -26/2
答案:x = -13
5. 问题:解方程2(x + 1) - 3(x - 2) = 4 - 2x
解答:将已知方程进行整理,得到2x + 2 - 3x + 6 = 4 - 2x 将方程两边同时减去2x,得到-2x + 8 = 4 - 2x
将方程两边同时加上2x,得到8 = 4
答案:此方程无解
......依次类推,解答剩下的题目。
七年级解一元一次方程经典50道练习题(带答案)
解:(去括号)
(移项)
(合并)
(化系数为 1)
25、-3(x+3)=24 ; 26、-2(x-2)=12 ; 27、1(2 2-3x)=4x+4 ; 28、 6-(3 x+ 2)= 2 ; 33
解:(去括号)
(移项)
(合并)
(化系数为 1)
29、 (2 200-15x)=70+25x ;
解:(去分母)
30、(3 2x+1)=12 .31、 x+2= x ; 54
32、 3-x = x+4 ; 23
(去括号)
(移项)
(合并)
(化系数为 1)
33、 1(x+1)= 1(2x-3); 34、 1(x+1)=1(x-1);
3
7
4
3
解:(去分母)
35、 2x-1= x+2 -1;
3
4
(去括号)
(移项)
(合并)
解:(移项)
(合并)
(化系数为 1)
9、 4x-2=3-x ; 10、-7x+2=2x-4 ;11、 5x-2=7x+8 ;12、 1 x=- 1 x+3
4
2
解:(移项)
(合并)
(化系数为 1
13、 x= 3 x+16 14、1- 3 x=3x+ 5 ;15、-x=- 2 x+1 ; 16、 2x-1=- x +2
1
9x-2
41、
=
; 42、 x-7=
;
6
8
2
6
(去括号)
(移项)
(合并)
(化系数为 1
43、 1 x- 1(3-2x)=1; 52
解:(去分母)
44、 2x+1- 5x-1=1 ;
3
(完整版)七年级解一元一次方程经典50道练习题(带答案)
自我测试 60分钟看看准确率 牛刀小试 相信自己一定行1、712=+x ;2、825=-x ;3、7233+=+x x ;4、735-=+x x ;解:(移项)(合并)(化系数为1)5、914211-=-x x ;6、2749+=-x x ;7、162=+x ;8、9310=-x ;解:(移项)(合并)(化系数为1)9、x x -=-324; 10、4227-=+-x x ;11、8725+=-x x ;12、32141+=-x x 解:(移项)(合并)(化系数为113、1623+=x x 14、253231+=-x x ;15、152+=--x x ; 16、23312+=--x x 解:(移项)(合并)(化系数为1).17、 475.0=)++(x x ; 18、2-41)=-(x ; 19、511)=-(x ; 20、212)=---(x ; 解:(去括号)(移项)(合并)(化系数为1)21、)12(5111+=+x x ; 22、32034)=-(-x x . 23、5058=)-+(x ; 24、293)=-(x ; 解:(去括号)(移项)(合并)(化系数为1)25、3-243)=+(x ; 26、2-122)=-(x ; 27、443212+)=-(x x ; 28、323236)=+(-x ; 解:(去括号)(移项)(合并) (化系数为1)29、x x 2570152002+)=-(; 30、12123)=+(x .31、452x x =+; 32、3423+=-x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为1)33、)-()=+(3271131x x ; 34、)-()=+(131141x x ; 35、142312-+=-x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为136、)+(-)=-(2512121x x . 37、)+()=+(20411471x x ; 38、)-(-)=+(731211551x x . 解:(去分母)(去括号)(移项)(合并)(化系数为139、432141=-x ; 40、83457=-x ; 41、815612+=-x x ; 42、629721-=-x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为143、1232151)=-(-x x ; 44、1615312=--+x x ; 45、x x 2414271-)=+(; 解:(去分母)(去括号)(移项)(合并)(化系数为146、259300300102200103 )=-()-+(x x . 47、307221159138)=-()--()--(x x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为148、51413121-=+x x ; 49、13.021.02.015.0=-+--x x ; 50、3.01-x -5.02+x =12. 解:(化整)(去分母)(去括号)(移项)(合并)(化系数为1【参考答案】1、【答案】 (1)3=x ; (2)2=x ; (3)4=x ; (4)6=x ;(5)37=x ; (6)12=-x ; (7)4=x ; (8)32=-x . 1.1、【答案】 (9)25=-x ; (10)56=x ; (11)5=-x ; (12)31=-x ; (13)1=x ; (14)32=x ; (15)35=-x ; (16)1=x . 2、【答案】(17)1=x ;(18)1=-x ; (19)56=x ; (20)3=-x ; (21)4=x ; (22)9=x .2.1、【答案】(23)7=-x ; (24)23=-x ; (25)11=-x ; (26)4=-x ; (27)21=x ; (28)910=x ; (29)6=x ; (30)23=x . 3、【答案】 (31)8=x ; (32)51=x ; (33)16=-x ; (34)7=x ; (35)52=-x ; (36)3=x ; (37)28=-x ; (38)165=-x .3.1、【答案】 (39)5=x ; (40)1413=x ; (41)1=-x ; (42)320=-x ; (43)1225=x ; (44)3=-x ; (45)87=x ; (46)216=x .4、【答案】 (47)3=x ; (48)1532=-x ; (49)1364=x ; (50)229=x .。
一元一次方程专题训练经典练习题(含答案)
一元一次方程专题训练经典练习题(含答案)-CAL-FENGHAI.-(YICAI)-Company One1一元一次方程专题训练经典练习题一、解下列一元一次方程1、2x+2=3x+62、 3x-11=253、2(x-1)+3(1-x )=04、5x (2-3.140)=2(x-6)5、0.8x +2=1.6x-26、10%(x+2)=17、2(x+5)=3(x-6) 8、1-2(x-3)=3(x+2)9、3(x-1)=2(x+2)+(1-x ) 10、4x-[2+(3x-6)]=111、2x-20%(x+3)=12÷10 12、7x+5(x-2)= 2(x+10)13、4x-4=2(2+x )-3(x+1) 14、1- 12 x=215、3- 13 x=2(x+1) 16、2(x- 34)=8-x17、12 (2x+1)+1=2(2-x ) 18、x- 13(x-5)= 2319、-x= -3(x-4) 20、7x ·(5 - 4· 12)= 5+x21、0.1+x 2 =2 22、 x-10.2 =3(x-1)23、x-10.3 + x+20.3 =2 24 、12 + 13x = 23 +125、 2x-10.5 = 2- 3x+20.3 26、错误! =3x27、错误! =3 28、错误! =错误!29、12{13[14(x+1)+1]+2} =2 30、 25(300+x )- 35(200+x )=400·110二、一元一次方程应用题1、 一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
2、小华从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、小兵由A地到B地,若以每小时12千米的速度,他将比原计划的时间迟到20分,若以每小时15千米的速度前进,则比原计划的时间早4分钟到达B 地,求A、B两地间的距离。