七年级上册数学整式的加减重点难点题型全覆盖试卷附详细答案
初一上册数学整式及其加减试题及答案
初一上册数学整式及其加减试题及答案学习整式及其加减的过程中,在平常要怎样做练习呢?店铺为大家推荐初一上册数学整式及其加减试题,希望对各位有帮助!初一上册数学整式及其加减试题一、选择题(每小题3分共30分)1.下列代数式中符合书写要求的是( )A. P*AB.n2C.a÷bD. 2C2.下列各式中是代数式的是( )A.a2﹣b2=0B.4>3C.aD.5x﹣2≠03.下列各组的两个代数式中,是同类项的是( )A. 与B. 与C. 与D. 与4.多项式中,下列说法错误的是( )A.这是一个二次三项式B.二次项系数是1C.一次项系数是D.常数项是5.下列运算正确的是( )A. B. C. D.6.如果 ,那么代数式的值为( ).A. B. C. D.7.如果单项式与是同类项,那么、的值分别为( )A. ,B. ,C. ,D. ,8.整式,0 ,,,,,中单项式的个数有 ( )A、3个B、4个C、5个D、6个9.如果和是同类项,则、的值是( )A. ,B. ,C. ,D. ,10.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第个图形需要黑色棋子的个数是 .二、填空题(每小题3分共24分)11.某商品标价是元,现按标价打9折出售,则售价是元.12.单项式的系数是,次数是 .13.若,则 ______________.14.若与是同类项,则m+n= .15.观察下面单项式:,-2 ,根据你发现的规律,第6个式子是 .16.观察下列各式:(1)42-12=3×5;(2)52-22=3×7;(3)62-32=3×9;………则第n(n是正整数)个等式为_____________________________.17.如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需根火柴棒,……,则第个图形需根火柴棒。
初一数学整式的加减试题答案及解析
初一数学整式的加减试题答案及解析1.因式分解:(1)x3-4x; (2)(3a-b)(x-y)+(a+3b)(y-x).【答案】(1) x(x+2)(x-2);(2) 2(x-y)(a-2b).【解析】(1)先提出公因式x,剩下的因式用平方差公式分解即可;(2)两次提取公因式即可得解.试题解析:(1)原式=x(x2-4)=x(x+2)(x-2);(2)原式=(3a-b)(x-y)-(a+3b)(x-y)=(x-y)(2a-4b)=2(x-y)(a-2b).【考点】1.因式分解——提公因式法;2.因式分解——公式法.2.已知代数式的值为,求代数式的值.【答案】-6【解析】解:.因为3,故上式.3.先化简,后求值:已知,求代数式的值.【答案】【解析】解:由得,,解得,.将代数式化简得.将,代入得原式.4.多项式3a2b2-5ab2+a2-6是___次项式,常数项是 .【答案】四次四项式、-6【解析】本题中未知数的最高次是4次,所以是四次,未知数有a,b两个,故是四次二项式;常数项是-6【考点】多项式点评:本题属于对多项式的基本常识的考查,需要考生在对多项式基本次数的基础上熟练把握5.下列计算正确的是()A.2x+3y=5xy B.-3x-x=-xC.-xy+6x y=5x y D.5ab-b a=ab【答案】D【解析】根据合并同类项的法则依次分析各选项即可作出判断.A、2x与3y不是同类项,无法合并,B、-3x-x=-x,C、-xy与6x y不是同类项,无法合并,故错误;D、5ab-b a=ab,本选项正确.【考点】合并同类项点评:解题的关键是熟练掌握合并同类项的法则:把同类项的系数相加,字母和字母的指数不变.6.若2x y与-3x y是同类项,则-m=【答案】3【解析】先根据同类项的定义求得m、n的值,再根据有理数的乘方法则计算即可.由题意得,解得,则-m【考点】同类项,有理数的乘方点评:解题的关键是熟记同类项的定义:所含字母相同,并且相同字母的指数也分别相同的项是同类项.7.已知:A=x+xy+y,B=-3xy-x求(1)B-A;(2)2A-3B;(3)若A-B-C=0,则C如何用含x,y的代数式表示?【答案】(1)-2x-4xy-y;(2)5x+11xy+2y;(3)2x+4xy+y【解析】先根据题意分别列出代数式,再去括号、合并同类项即可.(1)B-A=(-3xy-x)-(x+xy+y)=-3xy-x-x-xy-y=-2x-4xy-y;(2)2A-3B=2(x+xy+y)-3(-3xy-x)=2x+2xy+2y+9xy+3x=5x+11xy+2y ;(3)∵A-B-C=0∴C= A-B=(x+xy+y)-(-3xy-x)=x+xy+y+3xy+x= 2x+4xy+y.【考点】整式的加减点评:解题的关键是熟练掌握在去括号时,若括号前是“-”号,把括号和括号前的“-”号去掉后,括号里各项的符号均要改变.8.化简或求值:(1)化简:(2)已知,求的值。
七年级数学上册整式的加减难题
七年级数学上册整式的加减难题一、整式的加减难题20题。
1. 化简:3a + 2b - 5a - b- 解析:- 将同类项合并。
同类项是指所含字母相同,并且相同字母的指数也相同的项。
- 对于a的同类项有3a和-5a,合并得(3 - 5)a=-2a。
- 对于b的同类项有2b和-b,合并得(2 - 1)b = b。
- 所以,化简结果为-2a + b。
2. 计算:(2x^2-3x + 1)-( - 3x^2+5x - 7)- 解析:- 去括号时,括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。
- 原式=2x^2-3x + 1 + 3x^2-5x + 7。
- 然后合并同类项,x^2的同类项有2x^2和3x^2,合并得(2 + 3)x^2=5x^2。
- x的同类项有-3x和-5x,合并得(-3-5)x=-8x。
- 常数项有1和7,合并得1 + 7 = 8。
- 所以结果为5x^2-8x + 8。
3. 先化简,再求值:(4a^2-3a)-(2a^2+a - 1)+(2 - a^2+4a),其中a=-2- 解析:- 先化简式子:- 原式=4a^2-3a-2a^2-a + 1+2 - a^2+4a。
- 合并同类项,a^2的同类项有4a^2、-2a^2和-a^2,合并得(4 - 2-1)a^2=a^2。
- a的同类项有-3a、-a和4a,合并得(-3-1 + 4)a = 0。
- 常数项有1和2,合并得1+2 = 3。
- 化简结果为a^2+3。
- 当a = - 2时,代入a^2+3得(-2)^2+3=4 + 3=7。
4. 已知A = 3x^2-2x+1,B = 5x^2-3x + 2,求2A - 3B。
- 解析:- 将A = 3x^2-2x + 1,B = 5x^2-3x + 2代入2A-3B中。
- 2A=2(3x^2-2x + 1)=6x^2-4x + 2。
- 3B = 3(5x^2-3x + 2)=15x^2-9x+6。
七年级上册《数学》整式的加减练习题(含答案)
七年级上册《数学》整式的加减练习题2.1 第1课时单项式一、能力提升1.下列结论正确的是()A.a是单项式,它的次数是0,系数为1B.π不是单项式C.是一次单项式D.-是6次单项式,它的系数是-2.已知是8次单项式,则m的值是()A.4B.3C.2D.13.3×105xy的系数是,次数是.4.下列式子:①ab;②-;③;④-a2+a;⑤-1;⑥a-,其中是单项式的是.(填序号)5.写出一个含有字母x,y的五次单项式:.6.观察下面的单项式:a,2a2,4a3,8a4,…,根据你发现的规律,第8个式子是.7.某学校到文体商店买篮球,篮球单价为a元,买10个以上(包括10个)按8折优惠.用单项式填空:(1)购买9个篮球应付款元;(2)购买m(m≥10)个篮球应付款元.8.若单项式(k-3)x|k|y2是五次单项式,则k=.9.观察下列各数,用含n的单项式表示第n个数.-2,-4,-6,-8,-10,…,.二、创新应用10.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么吗?(4)请你根据猜想,写出第2020,2021个单项式.答案一、能力提升1.D a是单项式,次数、系数均为1,所以A错;因为π是单独的一个数,所以π是单项式,所以B错;的分母中含有字母,无法写成数字与字母的积,所以不是单项式,所以C错;对于D项,它的系数为-,次数为2+3+1=6,所以D正确.2.C由单项式的次数的定义,得2m+3+1=8,将A,B,C,D四选项分别代入验证知C为正确答案.3.3×105;2.4.①②⑤.5.-x4y(答案不唯一).6.128a8.7.(1)9a.(2)0.8ma.8.-3;由题意,得|k|+2=5,且k≠3,解得k=-3.9.-2n;-2,-4,-6,-8,-10,这些数都是负数,且都是偶数,因此第n个数为-2n.二、创新应用10.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1,故系数的规律是(-1)n(2n-1).(2)次数即x的指数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2020个单项式是4039x2020,第2021个单项式是-4041x2021.2.1 第2课时多项式一、能力提升1.下列说法正确的是()A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.-ab2,-x都是单项式,也都是整式D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项2.如果一个多项式是五次多项式,那么它任何一项的次数()A.都小于5B.都等于5C.都不小于5D.都不大于53.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,……其中第10个式子是()A.a10+b19B.a10-b19C.a10-b17D.a10-b214.若x n-2+x3+1是五次多项式,则n的值是()A.3B.5C.7D.05.-3x2y-2x2y2+xy-4的最高次项为.6.若一个关于a的二次三项式的二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.7.多项式的二次项系数是.8.如图(1)(2),某餐桌桌面可由圆形折叠成正方形(图中阴影部分表示可折叠部分).已知折叠前圆形桌面的直径为am,折叠成正方形后其边长为bm.如果一块正方形桌布的边长为am,并按图(3)所示把它铺在折叠前的圆形桌面上,那么桌布垂下部分的面积是多少?如果按图(4)方式把这块桌布铺在折叠后的正方形桌面上呢?并求当a=2,b=1.4时它们的面积大小(π取3.14).9.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.(1)请把游戏最后丁所报出的答案用整式的形式描述出来;(2)若甲取的数为19,则丁报出的答案是多少?二、创新应用10.如图,观察点阵图形和与之对应的等式,探究其中的规律:(1)请在④和⑤后面的横线上分别写出相应的等式:(2)通过猜想,写出与第n个图形相对应的等式.答案一、能力提升1.C.2.D;多项式的次数指的是次数最高项的次数,故一个五次多项式次数最高项的次数为5.3.B;根据多项式排列的规律,字母a的指数是按1,2,3,…的正整数排列,故第10个式子应为a10.字母b的指数是按1,3,5,7,…的奇数排列,故第10个式子应为b19.中间的符号第1个式子是正,第2个式子是负,这样正、负相间,故第10个式子应为a10-b19.4.C;由题意,得n-2=5,解得n=7.5.-2x2y2;6.2a2-3a-3.7.=-,二次项为,故二次项系数为.8.解:m2;(a2-b2)m2;2.04m2.当a=2,b=1.4时,a2-a2=22-×22=4-3.14=0.86(m2),a2-b2=22-1.42=2.04(m2).9.解:(1)由甲传给乙变为a+1;由乙传给丙变为(a+1)2;由丙传给丁变为(a+1)2-1.故丁所报出的答案为(a+1)2-1.(2)由(1)知,代入a=19,得399.二、创新应用10.解:(1)④4×3+1=4×4-3.⑤4×4+1=4×5-3.(2)4(n-1)+1=4n-3.2.2 第1课时合并同类项一、能力提升1.下列各组式子为同类项的是()A.x2y与-xy2B.0.5a2b与0.5a2cC.3b与3abcD.-0.1m2n与nm22.若-2a m b2m+n与5a n+2b2m+n可以合并成一项,则m-n的值是()A.2B.0C.-1D.13.若x a+2y4与-3x3y2b是同类项,则(a-b)2021的值是()A.-2021B.1C.-1D.20214.已知a=-2021,b=,则多项式3a2+2ab-a2-3ab-2a2的值为()A.1B.-1C.2021D.-5.若2x2y m与-3x n y3的和是一个单项式,则m+n=.6.若关于字母x的整式-3x2+mx+nx2-x+3的值与x的值无关,则m=,n=.7.把(x-y)和(x+y)各看作一个字母因式,合并同类项3(x+y)2-(x-y)+2(x+y)2+(x-y)-5(x+y)2=.8.合并下列各式的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy;(2)3x2y-4xy2-3+5x2y+2xy2+5.9.已知-2a m bc2与4a3b n c2是同类项,求多项式3m2n-2mn2-m2n+mn2的值.10.先合并同类项,再求值:(1)7x2-3+2x-6x2-5x+8,其中x=-2;(2)3x-4x3+7-3x+2x3+1,其中x=-2.二、创新应用11.有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”有一名同学指出,题目中给出的条件“a=0.35,b=-0.28”是多余的,他的说法有没有道理?为什么?答案一、能力提升1.D2.A;∵-2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m-n=2.故选A.3.C;由同类项的定义,得a+2=3,2b=4,解得a=1,b=2.所以(a-b)2021=(1-2)2021=(-1)2021=-1.4.A;把多项式合并同类项,得原式=-ab,当a=-2021,b=时,原式=1.5.5;2x2y m与-3x n y3的和是一个单项式,说明2x2y m与-3x n y3是同类项,即m=3,n=2,故m+n=5.6.1;3;算式的值与x的值无关,说明合并同类项后,所有含x项的系数均为0.-3x2+mx+nx2-x+3=(-3+n)x2+(m-1)x+3,则m=1,n=3.7.0.8.解:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy.(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2.9.解:由同类项定义,得m=3,n=1.3m2n-2mn2-m2n+mn2=(3-1)m2n+(-2+1)mn2=2m2n-mn2.当m=3,n=1时,原式=2×32×1-3×12=18-3=15.10.解:(1)原式=(7-6)x2+(2-5)x+(8-3)=x2-3x+5,当x=-2时,原式=(-2)2-3×(-2)+5=15.(2)原式=-2x3+8,当x=-2时,原式=-2×(-2)3+8=24.二、创新应用11.解:他的说法有道理.因为原式=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以原式的值与a,b的值无关.即题目中给出的条件“a=0.35,b=-0.28”是多余的.2.2 第2课时去括号一、能力提升1.三角形的第一条边长是(a+b),第二条边比第一条边长(a+2),第三条边比第二条边短3,这个三角形的周长为()A.5a+3bB.5a+3b+1C.5a-3b+1D.5a+3b-12.如果a-3b=-3,那么5-a+3b的值是()A.0B.2C.5D.83.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.【】处被钢笔水弄污了,则此处中的一项是()A.-7xyB.7xyC.-xyD.xy4.化简(3x2+4x-1)+(-3x2+9x)的结果为.5.若一个多项式加上(-2x-x2)得到(x2-1),则这个多项式是.6.已知a-b=3,c+d=2,则(b+c)-(a-d)的值为.7.某轮船顺水航行了5h,逆水航行了3h,已知船在静水中的速度为akm/h,水流速度为bkm/h,则轮船顺水航行的路程比逆水航行的路程多.8.先化简,再求值:(1)(x2-y2)-4(2x2-3y2),其中x=-3,y=2;(2)a-2[3a+b-2(a+b)],其中a=-21,b=1000.9.已知A=2x2+3xy-2x-1,B=-x2+kxy-1,且A+B的值与y无关,求k的值.10.观察下列各式:①-a+b=-(a-b);②2-3x=-(3x-2);③5x+30=5(x+6);④-x-6=-(x+6).探索以上四个式子内的括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.二、创新应用11.有理数a,b,c在数轴上的位置如图所示,试化简|a-b|-|c-a|+|b-c|-|a|.答案一、能力提升1.B;三角形的周长为a+b+(a+b+a+2)+(a+b+a+2-3)=a+b+a+b+a+2+a+b+a+2-3=5a+3b+1.2.D;由a-3b=-3,得-(a-3b)=3,即-a+3b=3.因此5-a+3b=5+3=8.3.C.4.13x-1;(3x2+4x-1)+(-3x2+9x)=3x2+4x-1-3x2+9x=13x-1.5.2x2+2x-1;(x2-1)-(-2x-x2)=x2-1+2x+x2=2x2+2x-1.6.-1;由a-b=3,可得a-b的相反数为-3,即-(a-b)=-3,即-a+b=-3,因此(b+c)-(a-d)=b+c-a+d=(-a+b)+(c+d)=-3+2=-1.7.(2a+8b)km轮船在顺水中航行了5(a+b)km,在逆水中航行了3(a-b)km,因此轮船顺水航行的路程比逆水航行的路程多5(a+b)-3(a-b)=5a+5b-3a+3b=(2a+8b)km.8.解:(1)原式=-x2+y2.当x=-3,y=2时,原式=-.(2)原式=2b-a.当a=-21,b=1000时,原式=2021.解:A+B=(2x2+3xy-2x-1)+(-x2+kxy-1)=2x2+3xy-2x-1-x2+kxy-1=x2+(3+k) xy-2x-2.因为A+B的值与y无关,所以3+k=0,解得k=-3.10.解:因为a2+b2=5,1-b=-2,所以-1+a2+b+b2=-(1-b)+(a2+b2)=-(-2)+5=7.二、创新应用11.解:由题意知a-b<0,c-a>0,b-c<0,a<0,因此原式=-(a-b)-(c-a)-(b-c)-(-a)=-a+b-c+a-b+c+a=a.2.3 第3课时整式的加减一、能力提升1.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1B.5x+1C.-13x-1D.13x+12.化简-3x-的结果是()A.-16x+B.-16x+C.-16x-D.10x+3.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()A.2a-3bB.4a-8bC.2a-4bD.4a-10b4.小明在复习课堂笔记时,发现一道题:=-x2-xy+y2,括号处被钢笔弄污了,则括号处的这一项是()A.y2B.3y2C.-y2D.-3y25.已知a3-a-1=0,则a3-a+2020=.6.多项式(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)的值与无关.(填“x”或“y”)7.若a2+ab=8,ab+b2=9,则a2-b2的值是.8.若2x-y=1,则(x2+2x)-(x2+y-1)=.9.先化简,再求值:2(a2b+ab2)-(2ab2-1+a2b)-2,其中a=-,b=-2.10.计算:(1)3(a2-4a+3)-5(5a2-a+2);(2)3x2-.11.规定一种新运算:a*b=a+b,求当a=5,b=3时,(a2b)*(3ab)+5a2b-4ab的值.二、创新应用12.扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是多少?并说明你的理由.13.小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.答案一、能力提升1.A;由题意,得(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.2.B.3.B;所得新长方形的长为a-b,宽为a-3b,则其周长为2[(a-b)+(a-3b)]=2(2a-4b)=4a-8b.4.C;=-x2+3xy-y2+x2-4xy-()=-x2-xy-y2-()=-x2-xy+y2,故括号处的这一项应是-y2.5.2021;由a3-a-1=0,得a3-a=1,整体代入得a3-a+2020=1+2020=2021.6.x;因为(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)=4xy-3x2-xy+x2+y2-3xy+2x2-2y2=-y2, 所以多项式的值与x无关.7.-1;a2+ab-(ab+b2)=a2+ab-ab-b2=a2-b2=8-9=-1.8.2;当2x-y=1时,(x2+2x)-(x2+y-1)=x2+2x-x2-y+1=2x-y+1=1+1=2.故答案为2.9.解:原式=2a2b+2ab2-2ab2+1-a2b-2=a2b-1,当a=-,b=-2时,原式=×(-2)-1=×(-2)-1=--1=-.10.解:(1)3(a2-4a+3)-5(5a2-a+2)=3a2-12a+9-25a2+5a-10=-22a2-7a-1.(2)3x2-=3x2-5x+x-3-2x2=x2-x-3.11.解:原式=a2b+3ab+5a2b-4ab=(1+5)a2b+(3-4)ab=6a2b-ab.当a=5,b=3时,原式=6×52×3-5×3=450-15=435.二、创新应用12.解:设第一步每堆各有x张牌;第二步左边有(x-2)张牌,中间有(x+2)张牌,右边有x张牌;第三步左边有(x-2)张牌,中间有x+2+1=x+3张牌,右边有(x-1)张牌;第四步中间有x+3-(x-2)=x+3-x+2=5张牌,因此中间一堆牌现有的张数是5.13.解:因为A+B=9x2-2x+7,B=x2+3x-2,所以A=9x2-2x+7-(x2+3x-2)=9x2-2x+7-x2-3x+2=8x2-5x+9,所以A-B=8x2-5x+9-(x2+3x-2) =8x2-5x+9-x2-3x+2=7x2-8x+11.。
(典型题)初中数学七年级数学上册第二单元《整式的加减》测试(含答案解析)
一、选择题1.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x--=,整理得36x = 2.某地为了打造千年古镇旅游景点,将修建一条长为3600m 的旅游大道.此项工程由A 、B 两个工程队接力完成,共用时20天.若A 、B 两个工程队每天分别能修建240m 、160m ,设A 工程队修建此项工程xm ,则可列方程为( )A .360020240160x x -+=B .360020160240x x -+=C .360020160240x x +-=D .360020160240x x--= 3.把方程10.58160.60.9x x -++=的分母化为整数,结果应为( ) A .1581669x x -++= B .10105801669x x -++= C .101058016069x x -+-= D .15816069x x -++= 4.解方程-3x=2时,应在方程两边( )A .同乘以-3B .同除以-3C .同乘以3D .同除以3 5.若三个连续偶数的和是24,则它们的积为( )A .48B .240C .480D .1206.关于y 的方程331y k +=与350y +=的解相同,则k 的值为( ) A .-2B .34C .2D .43-7.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( ) A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x +=8.“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A 、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x- = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅ 2m+ 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个 A .1B .2C .3D .49.整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( ) x-2 -1 0 1 2 mx n + -12-8-44A .1x =-B .0x =C .1x =D .2x =10.把方程112x =变形为2x =,其依据是( ) A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律11.一张试卷共有25道题,若做对1题得4分,做错1题扣1分,小明做了全部试题只得了70分,那么小明做对了( )道. A .17B .18C .19D .2012.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( ) A .2B .12C .-2D .1-2二、填空题13.对于实数a ,b ,c ,d ,规定一种运算a b c d=ad -bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x =_____.14.在方程431=-x 的两边同时_________,得x =___________.15.若方程()||110a a x --=是关于x 的一元一次方程,则a =____________.16.解方程:2(1)3x --=-.解:去括号,得__________;移项,得____________;合并同类项,得____________. 17.完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元; 每件服装的利润为____________元. 由此,列出方程_________________. 解这个方程,得x =______________. 因此每件服装的成本价是___________元.18.校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x 场,则可列方程为__________________.19.小亮用40元钱买了5千克苹果和2千克香蕉,找回4元.已知每千克香蕉的售价是每千克苹果售价的2倍,则每千克苹果的售价是________元.20.关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.三、解答题21.青岛市某实验学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天. (1)两个人合作需要多少天完成?(2)现由徒弟先做1天,再两人合作,问:还需几天可以完成这项工作?22.在我国明代数学家吴敬所著的《九章算法比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”(“倍加增”指从塔的顶层到底层,每层灯的数量是上一层的2倍)那么,塔的顶层有几盏灯?23.老师在黑板上写了一个等式(3)4(3)a x a +=+.王聪说4x =,刘敏说不一定,当4x ≠时,这个等式也可能成立.(1)你认为他们俩的说法正确吗?请说明理由; (2)你能求出当2a =时(3)4(3)a x a +=+中x 的值吗?24.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是购买10本以上,每本按标价的8折卖. (1)小明要买20本练习本,到哪个商店较省钱?(2)小明要买10本以上练习本,买多少本时到两个商店付的钱一样多? (3)小明现有32元钱,最多可买多少本练习本?25.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行. (1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离; (3)求两船从开始航行到两船相距12海里,需要多长时间?26.解下列方程: (1)15(x +15)=1231-(x -7).(2)2110121364x x x -++-=-1.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据解方程的步骤逐一对选项进行分析即可. 【详解】A . 方程3221x x -=+,移项,得3212x x -=+,故A 选项错误;B . 方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项错误;C . 方程2332t =,系数化为1,得94t =,故C 选项错误;D . 方程110.20.5x x--=,去分母得()5121--=x x ,去括号,移项,合并同类项得:36x =,故D 选项正确. 故选:D 【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键. 2.A解析:A 【分析】根据A 工程队修建此项工程xm ÷修建速度+B 工程队修建此项工程(3600-x )m÷修建速度= 20天.列出方程即可.设A 工程队修建此项工程xm ,则B 工程队修建此项工程(3600-x )m ,由题意,得360020240160x x -+= 故选:A . 【点睛】此题考查一元一次方程的应用,找出合适的等量关系是解题的关键.3.B解析:B 【分析】利用分数的基本性质,化简已知方程得到结果,即可做出判断. 【详解】 把方程10.58160.60.9x x -++=的分母化为整数,结果应为: 10105801669x x -++=. 故选:B . 【点睛】此题考查了解一元一次方程,其全部步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.4.B解析:B 【分析】利用等式的性质判断即可. 【详解】解:利用等式的性质解方程-3x=2时,应在方程的两边同除以-3, 故选:B . 【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.5.C解析:C 【分析】设出一个偶数,表示出另外两个数,列出方程解出这三个数,再计算它们的积. 【详解】解:设中间的偶数为m ,则 (m-2)+m+(m+2)=24, 解得m=8.故三个偶数分别为6,8,10. 故它们的积为:6×8×10=480.【点睛】本题考查了一元一次方程的应用.找到三个连续偶数间的数量关系是解题的关键.6.C解析:C 【分析】分别解出两方程的解,两解相等,就得到关于k 的方程,从而可以求出k 的值. 【详解】解第一个方程得:133ky -=, 解第二个方程得:53y =-,∴133k-=53-, 解得:k=2. 故选C . 【点睛】本题解决的关键是能够求解关于y 的方程,要正确理解方程解的含义.7.D解析:D 【分析】直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式. 【详解】解:设野鸭大雁与从北海和南海同时起飞,经过x 天相遇, 可列方程为:11()179x +=. 故选D . 【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.8.D解析:D 【分析】根据题意可知,A 型纸盒需要4个长方形纸板,1个正方形纸板,B 型纸盒需要3个长方形纸板和2个正方形纸板,设A 型盒子个数为x 个,可得A 型纸盒需要长方形纸板的数量和B 型纸盒需要长方形纸板的数量,可列出方程对①进行判断;设B 型盒中正方形纸板的个数为m 个,可得B 型纸盒需要长方形纸板的数量和A 型纸盒需要长方形纸板的数量,可列出方程对②进行判断;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y张,则可得A 型盒子x 个,B 型盒子y 个,根据长方形纸板360张,正方形纸板120张,可得出方程组,求出A 型纸盒和B 型纸盒的数量可对③④进行判断. 【详解】设A 型盒子个数为x 个,则A 型纸盒需要长方形纸板4x 张,正方形纸板x 张,由于制作一个B 型纸盒需要两张正方形纸板,因此可得B 型纸盒的数量为1202x-个,需要长方形纸板3×1202x -张,因此可得120433602xx -+=,故①正确; 设B 型盒中正方形纸板的个数为m 个,则B 型纸盒有2m 个,需要长方形纸板3×2m个,A 型纸盒有(120-m )个,则需长方形纸板4(120-m )个,所以可得方程3×2m+4(120-m )=120,故②正确;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则有,212043360x y x y +=⎧⎨+=⎩解得,7224x y =⎧⎨=⎩即,A 型纸盒有72个,B 型纸盒有24个,所以B 型盒中正方形纸板 48 个 故③④正确. 故选D. 【点睛】本题考查了列一元一次方程和二元一次方程组的应用,解答本题时注意无盖盒子中的长方形及正方形的个数之间的关系是解答的关键.9.A解析:A 【分析】根据题意得出方程组,求出m 、n 的值,再代入求出x 即可. 【详解】根据表格可知0x =时,4mx n +=-, 所以4n =-.2x =时,4mx n +=,所以244m -=, 移项得244m =+, 合并同类项,得28m = 系数化为1,得4m =.所以原方程为448x -+=,移项,得484x -=-.合并同类项,得44x -=系数化为1,得1x=-.故选A.【点睛】本题考查了解一元一次方程和二元一次方程的解,能求出m、n的值是解此题的关键.10.B解析:B【分析】根据等式的基本性质,对原式进行分析即可.【详解】将原方程两边都乘2,得2x=,这是依据等式的性质2.故选B.【点睛】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.11.C解析:C【分析】此题等量关系为:做对题所得分-做错题所扣分数=70分,设小明做对了x道,则做错了(25-x)道,根据题意列方程求解即可.【详解】解:设小明做对了x道,则做错了(25-x)道,根据题意得:4x-(25-x)×1=70,解得:x=19,故选:C.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.12.B解析:B【分析】根据题意列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:2x-6+3+4x=0移项合并得:6x=3,解得:x=12,故选:B.【点睛】本题考查解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.二、填空题13.22【分析】由题中的新定义可知此种运算为对角线乘积相减的运算化简所求的式子得到关于x 的方程然后解方程即可求出x 的值【详解】解:∵=27∴(x+1)(x-1)-(x+2)(x-3)=27∴x2-1-(解析:22 【分析】由题中的新定义可知,此种运算为对角线乘积相减的运算,化简所求的式子得到关于x 的方程,然后解方程即可求出x 的值. 【详解】 解:∵(1)(2)(3)(1)x x x x ++--=27,∴(x +1)(x -1)-(x +2)(x -3)=27, ∴x 2-1-(x 2-x -6)=27, ∴x 2-1-x 2+x +6=27, ∴x =22; 故答案为:22. 【点睛】本题考查了新定义运算,及灵活运用新定义的能力,根据新定义把所给算式转化为一元一次方程是解答本题的关键.14.乘-12【解析】【分析】根据等式的性质2方程的两边乘即可【详解】方程的两边同时乘得:x =-1故答案为:乘;-12【点睛】本题考查了对等式的性质的应用主要检查学生对所学知识的掌握情况解析:乘3- -12 【解析】 【分析】根据等式的性质2,方程的两边乘3-即可. 【详解】方程431=-x 的两边同时乘3-得:x =-1, 故答案为:乘3-;-12.【点睛】本题考查了对等式的性质的应用,主要检查学生对所学知识的掌握情况.15.【解析】【分析】先根据一元一次方程的定义列出关于a 的不等式组求出a 的值即可【详解】∵是关于x 的一元一次方程∴且解得a=-1故答案为:-1【点睛】本题考查的是一元一次方程的定义熟知只含有一个未知数(元 解析:1-【解析】 【分析】先根据一元一次方程的定义列出关于a 的不等式组,求出a 的值即可. 【详解】∵()||110a a x --=是关于x 的一元一次方程,∴1=a 且10a -≠, 解得a=-1. 故答案为:-1 【点睛】本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.16.【解析】【分析】根据解方程的过程方程去括号移项合并把x 系数化为1即可求出解【详解】去括号得;移项得;合并同类项得【点睛】本题考查了解一元一次方程熟练掌握计算法则是解题关键解析:213x -+=-, 321x =--+, 4x =-. 【解析】 【分析】根据解方程的过程,方程去括号,移项合并,把x 系数化为1,即可求出解. 【详解】2(1)3x --=-.去括号,得213x -+=-; 移项,得321x =--+; 合并同类项,得4x =- 【点睛】本题考查了解一元一次方程,熟练掌握计算法则是解题关键.17.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x×80每件服装的利润为解析:(140%)x + (140%)80%x +⋅ (140%)80%x x +⋅-(140%)80%15x x +⋅-= 125 125【解析】 【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可. 【详解】每件服装的标价为:(1+40%)x , 每件服装的实际售价为:(1+40%)x×80%,每件服装的利润为:(1+40%)x×80%−x ,列出方程:(1+40%)x×80%−x=15,解方程得:x=125,因此每件服装的成本价是125元.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找出等量关系.18.3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可【详解】根据题意得:3x+(8-x )=18故答案为:3x+(8-x )=18【点睛】此题考查了由实际问题抽象出一元一次方程弄清题意是解本解析:3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可.【详解】根据题意得:3x+(8-x )=18,故答案为:3x+(8-x )=18,【点睛】此题考查了由实际问题抽象出一元一次方程,弄清题意是解本题的关键.19.4【解析】【分析】直接设每千克苹果的售价是x 元则每千克香蕉售价2x 元利用40元钱买了5千克苹果和2千克香蕉找回4元得出方程求出答案【详解】设每千克苹果的售价是x 元则每千克香蕉售价2x 元根据题意可得: 解析:4【解析】【分析】直接设每千克苹果的售价是x 元,则每千克香蕉售价2x 元,利用40元钱买了5千克苹果和2千克香蕉,找回4元得出方程求出答案.【详解】设每千克苹果的售价是x 元,则每千克香蕉售价2x 元,,根据题意可得:5×x+2×2x=40-4,解得:x=4.即:每千克香蕉售价4元.故答案为:4.【点睛】此题主要考查了一元一次方程的应用,正确表示出两种水果的价格是解题关键. 20.或或x=-3【分析】利用一元一次方程的定义判断即可【详解】解:关于的方程如果是一元一次方程(1)当即即解得:(2)当m=0时解得:(3)当2m-1=0即m=时方程为解得:x=-3故答案为x=2或x=解析:2x =或2x =-或x=-3.【分析】利用一元一次方程的定义判断即可.【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,(1)当2m 11﹣=,即m 1=, 即x 20﹣=解得:x 2=,(2)当m=0时,x 20--=,解得:x 2=-(3)当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3, 故答案为x=2或x=-2或x=-3.【点睛】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.三、解答题21.(1)2.4天(2)2天【分析】(1)完成工作的工作量为1,根据工作时间=工作总量÷工作效率和,列式即可求解. (2)设徒弟先做1天,再两人合作还需x 天完成,根据等量关系:完成工作的工作总量为1,列出方程即可求解.【详解】解:(1)11511=2.44612⎛⎫÷+=÷ ⎪⎝⎭(天). 答:两个人合作需要2.4天完成.(2)设还需x 天可以完成这项工作, 根据题意,得1164x x ++=. 解得=2x .答:还需2天可以完成这项工作.【点睛】本题考查一元一次方程的应用,根据题意列出方程并解答是解题关键22.3盏【分析】根据题意列出方程求解即可.【详解】解:设塔的顶层有x 盏灯.根据题意,得248163264381x x x x x x x ++++++=.解得3x =.答:塔的顶层有3盏灯.【点睛】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键. 23.(1)王聪的说法不正确,见解析;(2)4x =【分析】(1)根据等式的性质进行判断即可.(2)利用代入法求解即可.【详解】(1)王聪的说法不正确.理由:两边除以(3)a +不符合等式的性质2,因为当30a +=时,x 为任意实数. 刘敏的说法正确.理由:因为当30a +=时,x 为任意实数,所以当4x ≠时,这个等式也可能成立. (2)将2a =代入,得(23)4(23)x +=+,解得4x =.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的性质、等式的性质是解题的关键. 24.(1)到乙商店较省钱;(2)买30本;(3)最多可买41本练习本.【分析】(1)分别按照甲商店与乙商店给的优惠活动,计算出费用,哪个商店的费用更低,即更省钱,即可解决;(2)可设买x 本时到两个商店付的钱一样多,分别用x 表示到甲商店购买的钱与到乙商店购买的钱,令其相等,解出x ,即可解决本题;(3)设可买y 本练习本,分别算出到甲商店能买多少本,到乙商店能买多少本,取更多的即可解决.【详解】解:(1)∵甲商店:101(2010)170%17⨯+-⨯⨯=(元);乙商店:20180%16⨯⨯=(元).又∵17>16,∴小明要买20本练习本时,到乙商店较省钱.(2)设买x 本时到两个商店付的钱一样多.依题意,得10170%(10)80%x x ⨯+-=,解得30x =.∴买30本时到两个商店付的钱一样多.(3)设可买y 本练习本.在甲商店购买:1070%(10)32y +-=. 解得29034177y ==.∵y为正整数,∴在甲商店最多可购买41本练习本.在乙商店购买:80%32y=.解得40y=.∴在乙商店最多可购买40本练习本.∵41>40,∴最多可买41本练习本.【点睛】本题主要考查了一元一次方程的实际应用,能够找出等量关系,列出方程是解决本题的关键.25.(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时.【分析】(1)根据1h后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得;(2)根据2h后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得;(3)可分相遇前与相遇后两种情况讨论即可解答.【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h后甲、乙间的距离=60-25×1-15×1=20海里;(2)2h后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.26.(1)x=-516;(2)x=16.【分析】(1)直接根据解一元一次方程的步骤进行即可;(2)直接根据解一元一次方程的步骤进行即可.【详解】解:(1)15(x+15)=1231-(x-7).去分母,得6(x+15)=15-10(x-7).去括号,得6x+90=15-10x+70.移项及合并同类项,得16x=-5.系数化为1,得x=-5 16.(2)2110121 364x x x-++-=-1去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12.去括号,得8x-4-20x-2=6x+3-12.移项,得8x-20x-6x=3-12+4+2.合并同类项,得-18x=-3.系数化为1,得x=16.【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.。
人教版七年级数学上册 第二章整式的加减综合知识点测试题(含答案)
人教版七年级数学上册整式的加减综合知识点测试题知识点1 整式、单项式、多项式1.下列代数式中:1x ,2x +y ,13a 2b ,x -y 2,5y 4x,0,整式有( ) A .3个 B .4个C .5个D .6个2.单项式2a 3b 的次数是( )A .2B .3C .4D .53.单项式-2x 3y 的系数和次数分别是( )A .-2,4B .4,-2C .-2,3D .3,-24.5πx2y46的系数和次数分别为( )A .56,7B .5π6,6C .5π6,8D .5π,65.下列关于多项式5ab 2-2a 2bc -1的说法中,正确的是() A .它是三次三项式 B .它是四次两项式C .最高次项是-2a 2bcD .常数项是16.对于式子:x +2y 2,a 2b ,12,3x 2+5x -2,abc,0,x +y 2x ,m ,下列说法正确的是( )A .有5个单项式,1个多项式B .有3个单项式,2个多项式C .有4个单项式,2个多项式D .有7个整式7.-xy25的系数是 ,次数是 .8.-πx2y 6的系数是 ,次数是 . 9.要使关于x ,y 的多项式my 3+3nx 2y +2y 3-x 2y +y 不含三次项,求2m +3n 的值.知识点2 同类项1.下列各组代数式中,是同类项的是( )A .-3p 2与2p 3B .2xy 与2abC .a 3b 2与a 2b 3D .-5mn 与10mn2.若3a m +2b 与12ab n -1是同类项,则m +n =( ) A .-2 B .2C .1D .-13.下列计算中,正确的是( )A .3+2ab =5abB .5xy -y =5xC .-5m 2n +5nm 2=0D .x 3-x =x 24.已知4x 2m y m +n 与-3x 6y 2是同类项,则m -n = .5.若代数式mx 2+5y 2-2x 2+3的值与字母x 的取值无关,则m 的值是 .6.化简:x 2y -3xy 2+2yx 2-y 2x .7.化简:3x 2+2xy -4y 2-3xy +4y 2-3x 2.知识点3 整式的加减1.下面计算中,正确的是( )A .3x 2-x 2=3B .3a 2+2a 3=5a 5C .3+x =3xD .-0.25ab +14ba =0 2.一个多项式减去x 2-2y 2等于x 2+y 2,则这个多项式是( )A .-2x 2+y 2B .2x 2-y 2C .x 2-2y 2D .-x 2+2y 23.化简:-2a +(3a -1)-(a -5).4.化简:(1)x -2y +(2x -y );(2)(3a 2-b 2)-3(a 2-2b 2).5.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1,求3A +6B .6.有一道题目,是一个多项式减去x 2+14x -6,小强误当成了加法计算,结果得到2x 2-x +3,正确的结果应该是多少?知识点4 整式化简求值1.若a -b =5,则3a +7+5b -6a +13b =( ) A .-7 B .-8C .-9D .102.若a -b =1,则整式a -(b -2)的值是 .3.若x =1,y =-2,代数式5x -(2y -3x )的值是 .4.先化简,再求值:14(-4x 2+2x -8)-⎝ ⎛⎭⎪⎫12x -1,其中 x =12.5.先化简,再求值:-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =-1,b =-2.6.有这样一题:计算(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)的值,其中x =12,y =-1.甲同学把“x =12”错抄成了“x =-12”.但他计算的结果也是正确的,请你通过计算说明原因.知识点5 列代数式1.买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )A .(7m +4n )元B .28mn 元C .(4m +7n )元D .11mn 元2.一个两位数,个位上是x ,十位上是y ,用代数式表示这个两位数( )A .xyB .yxC .10x +yD .10y +x3.某工厂一月份的产值为a ,若二月份的产值比一月份的产值增长了x %,三月份的产值又比二月份的产值增长了x %,则三月份的产值是( )A .2x %aB .(1+2x %)aC .(1+x %)x %aD .(1+x %)2a4.今年,某校成功举办了“经典诵读”比赛,其中参加比赛的男同学有a 人,女同学比男同学的56少24人,则参加“经典诵读”比赛的学生一共有( )A .⎝ ⎛⎭⎪⎫56a -24人 B .65(a -24)人 C .65(a +24)人 D .⎝ ⎛⎭⎪⎫116a -24人 5.下列表达错误的是( )A .比a 的2倍大1的数是2a +1B .a 的相反数与b 的和是-a +bC .比a 的平方小1的数是a 2-1D .a 的2倍与b 的差的3倍是2a -3b6.x 表示一个两位数,y 表示一个三位数,如果把x 放在y 的左边组成一个五位数,那么表示这个五位数的代数式是( )A.xy B.x+yC.100x+y D.1 000x+y7.三个小伙伴各出资a元,共同购买了一个价格为b元的篮球,还剩下一点钱,则剩余金额为元.(用含a,b的代数式表示) 8.某种商品n千克的售价是m元,则这种商品8千克的售价是元.9.请列代数式表示“a的3倍与b的相反数的和”: . 10.每件m元的上衣,现按原价的7折出售,这件上衣现在的售价是元.11.如图,在一个长方形休闲广场的中央设计一个圆形的音乐喷泉,若圆形音乐喷泉的半径为r米,广场的长为a米,宽为b米,则广场空地的面积表示为平方米.12.一件童装每件的进价为a元(a>0),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为元.13.如图,将边长为2的小正方形和边长为x的大正方形放在一起.(1)用x表示阴影部分的面积;(2)计算当x=5时,阴影部分的面积.14.某公园准备修建一块长方形草坪,长为30米,宽为20米,并在草坪上修建如图所示的十字路,已知十字路宽为x米,回答下列问题:(1)修建的十字路面积是多少平方米?(2)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?知识点6 整式的加减应用1.已知2a+3b-1=0,则6a+9b的值为 .2.若2x2+3x+7的值是8,则9-4x2-6x的值为 .3.已知2y-x=3,则3(x-2y)2-5(x-2y)-4的值为 .4.如图,在一块长为a,宽为2b的长方形铁皮中,以2b为直径分别剪掉两个半圆.(1)求剩下铁皮的面积(用含a,b的式子表示);(2)当a=4,b=1时,求剩下铁皮的面积是多少(π取3.14)?5.小明用3天看完一本课外读物,第一天看了a页,第二天看的比第一天多50页,第三天看的比第二天少85页.(1)用含a的代数式表示这本书的页数;(2)当a=50时,这本书的页数是多少?6.笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记本,6支圆珠笔;小明买6本笔记本,3支圆珠笔.(1)买这些笔记本和圆珠笔小红和小明一共花费多少元钱?(2)若每本笔记本比每支圆珠笔贵2元,求小明比小红多花费了多少元钱?7.小芳房间的窗户如图所示,其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同).(1)装饰物所占的面积是多少?(2)窗户中能射进阳光的部分的面积是多少?(窗框面积忽略不计)(3)计算当a=6 dm,b=4 dm时,窗户中能射进阳光的部分的面积.(π取3.14)答案知识点1 整式、单项式、多项式1.B2. C3. A4. B5.C6. C7.-15 ,38. -π69.解:因为多项式my 3+3nx 2y +2y 3-x 2y +y =(m +2)y 3+(3n -1)x 2y +y 不含三次项,所以m +2=0,3n -1=0.所以m =-2,n =13. 所以2m +3n =2×(-2)+3×13=-3 知识点2 同类项1. D2. C3. C4. 45. 26.解:原式=(1+2)x 2y -(3+1)xy 2=3x 2y -4xy 2.7.解:原式=(3x 2-3x 2)+(2xy -3xy )+(4y 2-4y 2)=-xy. 知识点3 整式的加减1. D2. B3.解:原式=-2a +3a -1-a +5=4.4.(1)解:原式=x -2y +2x -y =3x -3y.(2)解:原式=3a 2-b 2-3a 2+6b 2=5b 2.5.解:3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.6.解:这个多项式为(2x 2-x +3)-(x 2+14x -6)=x 2-15x +9,所以(x 2-15x +9)-(x 2+14x -6)=-29x +15,所以正确的结果为-29x +15.知识点4 整式化简求值1. B2. 33. 124.解:原式=-x 2+12x -2-12x +1=-x 2-1,当x =12时,原式=-⎝ ⎛⎭⎪⎫122-1=-54.5.解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b =-ab 2, 当a =-1,b =-2时,原式=-(-1)×(-2)2=4.6.解:原式=2x 3-3x 2y -2xy 2-x 3+2xy 2-y 3-x 3+3x 2y -y 3=-2y 3, 此题的结果与x 的取值无关. 知识点5 列代数式1. C2. D3. D4. D5. D6. D7.(3a -b)8.8m n9. 3a -b 10.0.7m 11. (ab -πr2) 12. 0.8a 13.解:(1)阴影部分的面积为12×2(2+x )+12x 2=2+x +12x 2.(2)当x =5时,2+x +12x 2=2+5+12.5=19.5.14.(1)解:30x +20x -x 2=50x -x 2.答:修建十字路的面积是(50x -x 2)平方米.(2)解:600-(50x -x 2)=600-50x +x 2=600-50×2+2×2=504. 答:草坪(阴影部分)的面积是504平方米. 知识点6 整式的加减应用 1. 3 2. 7 3. 384.(1)解:长方形的面积为a ×2b =2ab , 两个半圆的面积为π×b 2=πb 2, 所以阴影部分面积为2ab -πb 2. (2)解:当a =4,b =1时,2ab -πb 2=2×4×1-3.14×1=4.86.5.解:(1)a +(a +50)+[(a +50)-85]=a +a +50+a -35=3a +15.(2)当a =50时,3a +15=3×50+15=165. 答:当a =50时,这本书的页数是165页. 6.解:(1)由题意,得3x +6y +6x +3y =9x +9y.答:买这些笔记本和圆珠笔小红和小明一共花费了(9x +9y )元. (2)由题意,得(6x +3y )-(3x +6y )=3x -3y. 因为每本笔记本比每支圆珠笔贵2元,即x -y =2, 所以小明比小红多花费3x -3y =3(x -y )=6(元). 答:小明比小红多花费了6元钱.7.(1)解:依题意,得装饰物的面积正好等于一个半径为b4的圆的面积,即π⎝ ⎛⎭⎪⎫b 42=116πb 2.(2)解:窗户中能射进阳光的部分的面积是ab -116πb 2.(3)解:当a =6 dm ,b =4 dm 时,ab -116πb 2=6×4-116×3.14×42=24-3.14=20.86(dm 2).答:窗户中能射进阳光的面积是20.86 dm 2.。
(常考题)人教版初中数学七年级数学上册第二单元《整式的加减》测试卷(含答案解析)
一、选择题1.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+2.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( )A .①②③④B .①③④C .②③④D .①② 3.下列解方程的过程中,移项正确的是( )A .由,得B .由,得C .由,得D .由,得4.如图,方格中的格子被填上了数,每一行、每一列以及两条对角线中所填的数字之和均相等,则的值为( )A .B .C .D .5.有两支同样长的蜡烛,一支能点燃小时,另一支能点燃小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( )A .小时B .小时C .小时D .小时 6.某人连续休假4天,这四天的日期之和是74,他休假第一天的日期是( ) A .17号 B .18号 C .19号 D .20号7.甲乙两人骑摩托车从相距170千米的A ,B 两地相向而行,2小时相遇,如果甲比乙每小时多行5千米,则乙每小时行( )A .30千米B .40千米C .50千米D .45千米 8.把方程10.58160.60.9x x -++=的分母化为整数,结果应为( ) A .1581669x x -++= B .10105801669x x -++= C .101058016069x x -+-= D .15816069x x -++= 9.如图,长方形ABCD 中,AB 3cm =,BC 2cm =,点P 从A 出发,以1cm/s 的速度沿A B C →→运动,最终到达点C ,在点P 运动了3秒后点Q 开始以2cm /s 的速度从D 运动到A ,在运动过程中,设点P 的运动时间为t ,则当APQ △的面积为22cm 时,t 的值为( )A .2或103B .2或113C .1或103D .1或13310.整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( )x -2 -1 0 1 2 mx n +-12 -8 -4 0 4A .1x =-B .0x =C .1x =D .2x = 11.把方程112x =变形为2x =,其依据是( ) A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律 12.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( )A .m>n>kB .n>k>mC .k>m>nD .m> k> n二、填空题13.一件衣服进价120元,按标价的八折出售仍能赚32元,则标价是__元.14.若关于x 的方程23360m x m --+=是一元一次方程,则这个方程的解是__________. 15.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 16.小明说小红的年龄比他大两岁,他们的年龄和为18岁,两人年龄各是多少岁?若设小明x 岁,则小红的年龄为__________岁.根据题意,列出的方程是______________________. 17.一个圆柱形铁块,底面半径是20cm ,高16cm .若将其锻造成为长、宽分别是20cm 、8cm 的长方体,如果设长方体的高为cm x .根据题意,列出方程为___________. 18.将一个底面直径是10cm 、高为40cm 的圆柱锻压成底面直径为16cm 的圆柱,则锻压后圆柱的高为________cm.19.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了______场,平了______场,负了______场.20.要使代数式154t +与15()4t -的值互为相反数,则t 的值是_________. 三、解答题21.大明共有4800元,他将一部分钱按活期存了一年,剩下的钱买了企业债券,一年后共获利24.8元,知活期储蓄的年利率是0.35%,企业债券的年利率是0.6%,则大明存活期和买债券各用了多少元?22.解方程:41(7)6(7)55x x -=--. 23.检验下列方程后面小括号内的数是否为相应方程的解.(1)2x+5=10x-3(x=1); (2)2(x-1)-12(x+1)=3(x+1)-13(x-1)(x=0). 24.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价为多少?25.解方程:(1)5(8)6(27)22m m m +--=-+(2)2(3)7636x x x --+=- 26.解下列方程:(1)2(x -1)=6;(2)4-x =3(2-x);(3)5(x +1)=3(3x +1)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.2.B解析:B【分析】①根据甲的工作量+乙的工作量+未完成的工作量=总的工作量,设x 小时后还有20个零件没有加工,据此列方程解答;②根据甲行驶的路程+乙行驶的路程=总路程+相遇后相距的路程,设x 小时后相遇后相距20km ,据此列方程解答;③依据甲乙行驶的路程和+甲先走的路程=总路程,设x 小时后相遇后,据此列方程解答; ④根据甲乙两人的距离+甲乙各自行驶的路程=总路程,设行驶x 小时,据此列方程解答即可.【详解】①设x 小时后还有20个零件没有加工,根据题意得,462060x x ++=,故①正确; ②设x 小时后相遇后相距20km ,根据题意得,466020x x +=+,故②错误; ③甲先走了20km 后,乙再出发,设乙出发后x 小时两人相遇,根据题意得,462060x x ++=,故③正确;④经过x 小时后两人相距60km ,根据题意得,462060x x ++=,故④正确. 因此,正确的是①③④.故选:B.【点睛】此题考查了一元一次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程. 3.D解析:D【解析】【分析】把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
(完整版)人教版七年级上册数学第二章整式的加减试题及答案(精华两份),推荐文档
13、下列等式中正确的是( )
建议收藏下载本文,以便随时学习! 一、填空题(每题 3 分,共 36 分)
A、 2x 5 (5 2x)
1、单项式 3x 2 减去单项式 4x 2 y,5x 2 ,2x 2 y 的和,列算式为
,
C、- a b (a b)
B、 7a 3 7(a 3) D、 2x 5 (2x 5)
A:1 个
B:2 个
C:3 个
D:4 个
12、下列说法正确的是( )
A: 2 xyz 与 2 xy 是同类项 B: 1 和 1 x 是同类项
3
3
x2
C:0.5 x3 y 2 和 7 x 2 y 3 是同类项 D:5 m2n 与-4 nm2 是同类项
13、已知 2x6 y2 和- 1 x3m yn 是同类项,则 9m2 5mn 17 的值是 (
第二章 整式的加减 试卷
()
一、选择题
A.12a 16b
B. 6a 8b
C. 3a 8b
D. 6a 4b
建议收藏下载本文,以便随时学习! 1.在代数式: 2 ,3 m 3 , 22 , m2 , 2b2 中,单项式的个数有(
)
10.已知 x2 3x 5 的值为 7,那么代数式 3x2 9x 2 的值是(
5
6(2a
a
1 )
3
24、 2a (5b a) b
五、解答题(31、32 题各 6 分,33、34 题各 7 分,共 20 分) 31、已知: m, x, y与与 (1) 2 ( x 5) 2 5 m 0;
3 (2) 2a2b y1与 7b3a2 是同类项,求代数式: 2x2 6 y 2 m(xy 9 y 2 ) (3x2 3xy 7 y 2 ) 的 值。
七年级数学(上)《整式的加减》测试题及答案
七年级数学(上)《整式的加减》测试题及答案(3)222232x y xy yx y x -+- (4))](32[52222b a ab ab b a ---(5)2222(2)3(2)4(32)ab a a ab a ab --+---3.先化简再求值(10分)(1)9y -{159-[4y -(11x -2y )-10x ]+2y },其中x =-3,y =2.(2) 2222222(23)(2)x y y x y x -+--+,其中1-=x ,2=y .4.一个四边形的周长是48厘米,已知第一条边长a 厘米,第二条边比第一条边的2倍长3厘米,第三条边等于第一、二两条边的和,写出表示第四条边长的整式.(6分)5.大客车上原有(3a -b )人,中途下去一半人,又上车若干人,使车上共有乘客(8a -5b )人,问中途上车乘客是多少人?当a =10,b =8时,上车乘客是多少人?(6分)6.若多项式24x -6xy+2x-3y 与2ax +bxy+3ax-2by 的和不含二次项,求a 、b 的值。
(5分)答案:一、选择题1.D 2.D 3.A 4.C 5.B 6.B 7.D二、填空题1.35-,六 2.五,五.432232,,5,,1a a b a b a --.23324152a a b a b a -+-++ 3.-12a 2b 2+2ab 4.(a+2b )cm <x <(3a +4b )cm 5.(6n +2) 6.22(2)44n n n +-=+ 7.x 2+3x +6三、解答题1.答:-ab 3c ,-ab 2c 2,-abc 3,-a 2b 2c ,-a 2bc 2,-a 3bc .2.解:(1)原式=2222523()a b ab ab a b -+-=22225233a b ab ab a b -+-=222a b ab +.(2)原式=2224263128ab a a ab a ab -++--+=24a ab -+.(1)9y -{159-[4y -(11x -2y )-10x ]+2y },其中x =-3,y =2.(2) 2222222(23)(2)x y y x y x -+--+,其中1-=x ,2=y .3.(1)原式=9y -{159-[6y -21x ]+2y }=9y -{159+21x -4y }=-21x +13y -159.当x =-3,y =2时,原式=-21×(-3)+13×2 -159=-70.(2)原式=2222222232x y y x y x -+---=222x y --.当1-=x ,2=y 时,原式=-2-4=-6.4.解:∵第一条边长a 厘米,第二条边长(2a +3)厘米,第三条边长[a +(2a +3)]=(3a +3)厘米,第四条边长[48-a -(2a +3)-(3a +3)]=48-a -2a -3-3a -3=(42-6a )厘米.∴第四条边长为(42-6a )厘米.5.解:(8a -5b )-12(3a -b )=8a -5b -3322a b +=13922a b -.当a =10,b =8时,上车乘客是29人.。
人教版初中数学七年级数学上册第二单元《整式的加减》测试卷(含答案解析)
一、选择题1.小丽买了20支铅笔,店主给她8折优惠(即按标价的80%出售),结果共便宜了1.6元,则每支铅笔的标价是( ) A .0.20元 B .0.40元 C .0.60元 D .0.80元 2.某人连续休假4天,这四天的日期之和是74,他休假第一天的日期是( ) A .17号B .18号C .19号D .20号3.下列方程变形一定正确的是( ) A .由x +3=-1,得x =-1+3 B .由7x =-2,得x =-74C .由12x =0,得x =2 D .由2=x -1,得x =1+24.方程6x+12x-9x=10-12-16的解为( ) A .x=2 B .x=1C .x=3D .x=-25.若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( ) A .8 B .﹣8 C .6 D .﹣6 6.若4a ﹣9与3a ﹣5互为相反数,则a 2﹣2a+1的值为( )A .1B .﹣1C .2D .07.将方程2152132x x -+=-去分母,得( ) A .()()211352x x -=-+ B .416152x x -=-+ C .416152x x -=-- D .()()2216352x x -=-+8.下列说法正确的是( ) A .若a c =bc,则a=b B .若-12x=4y ,则x=-2y C .若ax=bx ,则a=b D .若a 2=b 2,则a=b9.某商场的老板销售一种商品,标价为360元,可以获得80%的利润,则这种商品进价多少( ) A .80元B .200元C .120元D .160元10.商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( ) A .九折 B .八五折C .八折D .七五折11.下列判断错误的是 ( )A .若,则B .若,则C .若,则D .若,则12.四位同学解方程,去分母分别得到下面四个方程:①;②;③;④.其中错误的是( )A .②B .③C .②③D .①④二、填空题13.为了创建宜居城市,某单位积极响应植树活动,由一人植树要80小时完成.现由一部分人植树5小时,由于单位有紧急事情,再增加2人,4小时后完成植树任务.若这些人的工作效率相同,则先植树的有________人.14.若关于x 的方程1253n ax bx x x +-+=+是一元一次方程,则a n +=_________ ,b_________.15.在方程1322x -=-的两边同时_________,得x =__________. 16.(1)如果33x y -=,那么x =_________;(2)如果2m n =,那么3m=___________. 17.用5个同样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是_______,宽是________.18.关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.19.某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).20.若关于x 的方程3x m -2-m =0是一元一次方程,则m =________,方程的解为________.三、解答题21.大明共有4800元,他将一部分钱按活期存了一年,剩下的钱买了企业债券,一年后共获利24.8元,知活期储蓄的年利率是0.35%,企业债券的年利率是0.6%,则大明存活期和买债券各用了多少元?22.一位商人来到一座新城市,想租一套房子,A 家房东的条件是先交2000元,每月租金1200元;B 家房东的条件是每月租金1400元.(1)这位商人想在这座城市住半年,则租哪家的房子划算? (2)如果这位商人想住一年,租哪家的房子划算? (3)这位商人住多长时间时,租两家的房子租金一样?23.一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,,则两队合作,几个月可以完工?24.对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(,)(,)a b c d bc ad =-★. 例如:(1,2)(3,4)23142=⨯-⨯=★. 根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 25.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a= ,若居民乙用电200千瓦时,交电费 元.(2)若某用户某月用电量超过300千瓦时,设用电量为x 千瓦时,请你用含x 的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元? 26.解方程:2x 13+=x 24+-1.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设未知数,根据题意中的等量关系列出方程,然后求解. 【详解】解:设每支铅笔的标价是x 元, 根据题意得:20×(1-80%)x=1.6 解得x=0.4 故选:B .【点睛】本题考查一元一次方程的实际应用,此题要注意联系生活,知道八折就是标价的80%.2.A解析:A【解析】【分析】设休假第一天日期为x号,则其余三天的日期为(x+1),(x+2),(x+3),根据四天的日期之和为74建立方程求出其解即可.【详解】解:设休假第一天日期为x号,由题意,得:x+(x+1)+(x+2)+(x+3)=74,解得:x=17,故选A.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用, 相邻两个整数之间相差1的关系的运用,解答时根据四天的日期之和为74建立方程是关键.3.D解析:D【分析】根据等式的性质,可得答案.【详解】解:由x+3=-1,得x=-1-3,所以A选项错误;由7x=-2,得x=-27,所以B选项错误;由12x=0,得x=0,所以C选项错误;由2=x-1,得x=1+2,所以D选项正确.故选D.【点睛】本题考查了等式的性质,熟记等式的性质是解题关键.4.D解析:D【分析】根据合并同类项,系数化为1可得方程的解.【详解】合并同类项,得9x=-18,系数化为1,得x=-2,故选D.【点睛】此题主要考查了解一元一次方程,熟练掌握运算法则解答此题的关键.5.D解析:D 【详解】因为xΔy =xy +x +y ,且2Δm =-16, 所以2m+2+m=-16, 解得m=- 6, 故选D.考点:1.新定义题2.一元一次方程.6.A解析:A 【解析】试题分析:∵4a-9与3a-5互为相反数,∴4a-9+3a-5=0,解得:a=2,∴=1,故选A .考点:1.解一元一次方程;2.相反数;3.代数式求值.7.D解析:D 【分析】方程两边每一项都乘以6即可得. 【详解】方程两边都乘以6,得:2(2x-1)=6-3(5x+2), 故选D . 【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.8.A解析:A 【分析】按照分式和整式的性质解答即可. 【详解】解:A .因为C 做分母,不能为0,所以a=b ; B .若-x=4y ,则x=-8y ;C .当x=0的时候,不论a ,b 为何数,00a b ⨯=⨯,但是a 不一定等于b ;D .a 和b 可以互为相反数. 故选 :A 【点睛】本题考查了整式和分式的性质,掌握整式和分式的性质是解答本题的关键.9.B解析:B 【分析】利用公式:标价=(1+利润率)×进价,列出方程,求解即可. 【详解】 设进价为x 元.标价=(1+利润率)×进价根据题意,列方程:(180%)360x += 解得200x = 故选B. 【点睛】本题考查了一元一次方程的应用,属于典型题,熟练掌握价格公式是解题关键.10.A解析:A 【分析】设该商品的打x 折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可. 【详解】设该商品的打x 折出售,根据题意得,32002400(120%)10x⨯=+ 解得:x=9.答:该商品的打9折出售。
部编数学七年级上册专题02整式的加减(解析版)含答案
专题02 整式的加减一、单选题1.下列代数式属于二次三项式的是( )A .2231x y x ++B .21x y x ++C .2x y xy ++D .22xy yx +-2.下列运算错误的是( )A .﹣5x 2+3x 2=﹣2x 2B .5x +(3x ﹣1)=8x ﹣1C .3x 2﹣3(y 2+1)=﹣3D .x ﹣y ﹣(x +y )=﹣2y 【答案】C【分析】根据整式的加减计算法则,进行逐一求解判断即可.【解析】解:A 、222532x x x -+=-,故此选项不符合题意;B 、5(31)53181x x x x x +-=+-=-,故此选项不符合题意;C 、222233(1)333x y x y -+=--,故此选项符合题意;D 、()2x y x y x y x y y --+=---=-,故此选项不符合题意;故选C .【点睛】本题主要考查了整式的加减运算,解题的关键在于能够熟练掌握相关计算法则.3.下列说法中正确的有( )个.①27xy -的系数是7;②2xy -与3x 没有系数;③23ab c 的次数是5;④3m -的系数是1-;⑤2323m n -的次数是232++;⑥213r h p 的系数是13.A .0B .1C .2D .34.下列各组中的两个单项式不是同类项的是( )A .32a b 与3ba-B .-3与0C .3212m n 与232m n -D .26m a 与29ma -5.已知23x y +=,则多项式241x y +-的值是( )A .7B .2C .1-D .5【答案】D【分析】根据已知23x y +=可得()22246x y x y +=+=,代入计算后即可求得结果.【解析】解:∵23x y +=,∴()2224236x y x y +=+=´=,∴241615x y +-=-=.故选:D .【点睛】此题考查了代数式求值,利用了整体代入的思想,能准确判断代数式之间的关系是解题的关键.6.黑板上有一道题,是一个多项式减去2351x x -+,某同学由于大意,将减号抄成加号,得出结果是2537x x +-,这道题的正确结果是( ).A .2826x x --B .214125x x --C .2288x x +-D .2139x x -+-【答案】D【分析】先利用加法的意义列式求解原来的多项式,再列式计算减法即可得到答案.【解析】解:()22537351x x x x +---+22=537351x x x x +--+-2288x x =+-所以的计算过程是:()22288351x x x x +---+22288351x x x x =+---+2139x x =-+-故选:.D 【点睛】本题考查的是加法的意义,整式的加减运算,熟悉利用加法的意义列式,合并同类项的法则是解题的关键.7.如果一个多项式是三次多项式,那么( )A .这个多项式至少有两项,并且最高次项的次数是3B .这个多项式一定是三次四项式C .这个多项式最多有四项D .这个多项式只能有一项次数是3【答案】A【分析】根据多项式次数和多项式的概念,逐一判断选项即可.【解析】解:如果一个多项式是三次多项式,那么这个多项式至少有两项,并且最高次项的次数是3,如果一个多项式是三次多项式,这个多项式不一定是三次四项式,如果一个多项式是三次多项式,这个多项式不一定有四项,如果一个多项式是三次多项式,这个多项式不一定只有一项次数是3,故选A .【点睛】本题主要考查多项式相关概念,掌握多项式次数和项数的定义是解题的关键.8.已知多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则C 为( )A .2225x y z --B .22235x y z --C .22233x y z --D .22235x y z +-【答案】B【分析】由题意得222222=()3)24(2C x y z z A y B x +--+-+=---,进行计算即可得.【解析】解:由于多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则222222=()3)24(2C x y z z A y B x +--+-+=---=2222222432x y z x y z ++----=22235x y z --,故选:B .【点睛】本题考查了整式的加减,解题的关键是掌握整式加减的步骤.9.若3223323M x x y xy y =-++,322325N x x y xy y =-+-,则322327514x x y xy y -++的值为( ).A .M N+B .M N -C .3M N -D .3N M -【答案】C【分析】分别计算:M N +,M N -,3M N -,3N M -化简后可得答案.【解析】解:32232532M N x x y xy y +=-+-,故A 不符合题意;2238M N x y xy y -=-++,故B 不符合题意;322332233396925M N x x y xy y x x y xy y -=-++-+-+3223=27514x x y xy y -++,故C 符合题意;322332233=36315323N M x x y xy y x x y xy y --+--+--3223=2318x x y xy y -+-,故D 不符合题意;故选:.C 【点睛】本题考查的是整式的加减运算,掌握合并同类项的法则与去括号的法则是解题的关键.10.在学校温暖课程数字兴趣课中,嘉淇同学将一个边长为a 的正方形纸片(如图1)剪去两个相同的小长方形,得到一个的图案(如图2),剪下的两个小长方形刚好拼成一个“T”字形(如图3),则“T”字形的外围周长(不包括虚线部分)可表示为( )A .35a b-B .58a b -C .57a b -D .46a b-二、填空题11.在下列各式①235a bc ,②0,③3x y -,④3p ,⑤2s r p =,⑥75x -+,⑦24b ac -,⑧m ,⑨11a +中,其中单项式是_______,多项式是_______,整式是_______.(填序号)【点睛】本题主要考查单项式、多项式、整式的定义,熟练掌握上述定义是解题的关键.12.多项式3251x x -+-是______次______项式,其中三次项是______,二次项系数是______,一次项系数是______,常数项是______.【答案】 三##3 三##3 32x - 0 5 1-【分析】根据多项式的次数、项、系数的定义写出即可.【解析】多项式3251x x -+-是三次三项式,其中三次项是32x -,二次项系数是0,一次项系数是5,常数项是1-.故答案为:三;三;32x -;0;5;1-.【点睛】本题考查了多项式的项数,系数,此时,掌握多项式的定义是解题的关键.多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数,一个多项式的项数就是合并同类项后用“+”或“-”号之间的多项式个数,次数就是次数和最高的那一项的次数; 一个多项式中,次数最高的项的次数,叫做这个多项式的次数;多项式的项数就是多项式中包含的单项式的个数.13.添括号:(1)22916a b -+=-();(2)23()b a a b -+-=-()23()a b +-.【答案】 22916a b - -a b【分析】(1)(2)利用添括号法则计算得出答案.【解析】解:(1)()2222916916a b a b -+=--,(2)()223()3()b a a b a b a b -+-=--+-,故答案为:(1)22916a b -;(2)-a b .【点睛】此题主要考查了添括号,正确把握运算法则是解题关键.14.若单项式2+7m n a b -与单项式443a b -的和仍是一个单项式,则m -n =_______.【答案】9【分析】直接利用合并同类项法则得出m ,n 的值,进而得出答案.【解析】由题意知:单项式2+7m n a b -与单项式443a b -是同类项,∴m -2=4,n +7=4,解得:m =6,n =-3,故m -n =6-(-3)=9.故答案为:9.【点睛】此题主要考查了合并同类项,正确得出m ,n 的值是解题关键.15.某超市搞促销活动,对一种软皮本的销售方式是买一赠一,即买一本软皮本赠送一支铅笔,这种软皮本每本定价2元,铅笔每支定价0.3元,若小明的爸爸买回软皮本x 本,铅笔y 支,则需要付______________元钱【答案】2x 或1.70.3x y+【分析】根据题意列式计算即可得.【解析】解:当x y ³时:2x (元);当x <y 时:[]20.3()(1.70.3)x y x x y +-=+(元),故答案为:2x 或1.70.3x y +.【点睛】本题考查了代数式,解题的关键是找出题意中的关系列出代数式.16.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如 ()2222153x x x x --+=-+-,则所捂住的多项式是_____.【答案】232+-x x 【分析】根据加减法互为逆运算移项,然后去括号、合并同类项即可.【解析】解: 捂住的多项式是:()2253221x x x x -+-+-+=2253221x x x x -+-+-+=232+-x x 故答案为: 232+-x x .【点睛】此题考查的是整式的加减法,掌握去括号法则和合并同类项法则是解决此题的关键.17.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.【答案】3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【解析】解:()221325x k xy y xy +----=()22335x k xy y +---,∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.18.已知22251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.三、解答题19.下列代数式中哪些是单项式?哪些是多项式?分别填入所属的圈中.指出其中各单项式的系数;多项式中哪个次数最高?次数是多少?222223315,,23,44,,2x a b x y a b ab b a x y xp ---+-+-20.已知多项式212336m x y xy x ++--是六次四项式,单项式256n m x y -的次数与这个多项式的次数相同,求m n +的值.【答案】5m n +=.【分析】根据多项式的次数和项数以及单项式的次数的定义求得,m n 的值,进而求得m n +的值.【解析】因为多项式212336m x y xy x ++--是六次四项式,所以216m ++=, 解得3m =.因为单项式256n m x y -的次数与这个多项式的次数相同,所以256n m +-=,所以2134n =+=,解得2n =.故325m n +=+=.【点睛】本题考查了多项式的次数和项数,掌握多项式的次数和项数是解题的关键.21.计算:(1)3323235912322ab a b a b ab a b a b -+----(2)()2246312x x x x éù----ëû(2)原式=()2246312x x x x --+-=2246312x x x x -+-+=2631x x --.【点睛】本题主要考查整式的加减运算,掌握去括号,再合并同类项是解题的关键.22.已知 A −B =7a 2−7ab +1,且B =−4a 2+6ab +5,(1)求A ;(2)若2|1|(2)0a b ++-=,求A B +的值.【答案】(1)3a 2−ab +6;(2)A +B =0.【分析】(1)根据A =A -B +B ,代入计算即可;(2)根据非负数的性质得到a 和b ,求出A +B ,代入计算即可.【解析】解:(1)∵A −B =7a 2−7ab +1,B =−4a 2+6ab +5,∴A =A -B +B=7a 2−7ab +1+(−4a 2+6ab +5)=7a 2−7ab +1−4a 2+6ab +5=3a 2−ab +6;(2)∵|a +1|+(b −2)2=0,∴a +1=0,b -2=0,∴a =-1,b =2,∴A +B=3a 2−ab +6−4a 2+6ab +5=−a 2+5ab +11=−(−1)2+5×(−1)×2+11=0.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.小刚在计算一个多项式A 减去多项式22b -3b-5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是2b 3b-2+.(1)求这个多项式A ;(2)求出这两个多项式运算的正确结果;(3)当b =﹣2时,求(2)中结果的值.【答案】(1)3b 2+6b +3;(2)b 2+9b +8;(3)-6.【分析】(1)依题意得A =(b 2+3b ﹣2)+(2b 2+3b +5)即可计算;(2)利用整式的加减运算即可求解;(3)把b =﹣2代入即可求解.【解析】(1)A =(b 2+3b ﹣2)+(2b 2+3b +5),=b 2+3b ﹣2+2b 2+3b +5,=3b 2+6b +3;(2)(3b 2+6b +3)﹣(2b 2﹣3b ﹣5)=3b 2+6b +3﹣2b 2+3b +5,=b 2+9b +8;(3)当b =﹣2时,原式=(﹣2)2+9×(﹣2)+8=4-18+8=-6.【点睛】此题主要考查整式的加减运算,解题的关键是熟知整式的加减运算法则.24.(1)已知2223,1A x x B x x =-=-+,求当1x =-时代数式3A B -的值.(2)已知,a b 为常数,且三个单项式234,,3b xy axy xy -相加得到的和仍然是单项式.那么a b +的值可能是多少?请你说明理由.【答案】(1)-4;(2)-3或-1【分析】(1)先把A 、B 代入得出(2x 2-3x )-3(x 2-x +1),去括号、合并同类项后得出-x 2-3,把x =-1代入求出即可.(2)根据已知得出4xy 2,axy 3-b ,3xy 是同类项,根据同类项定义得出a =-4,3-b =2或a =-3,3-b =1,代入求出即可.【解析】解:(1)∵A =2x 2-3x ,B =x 2-x +1,∴A -3B=(2x 2-3x )-3(x 2-x +1)=2x 2-3x -3x 2+3x -3=-x 2-3,当x =-1时,原式=-(-1)2-3=-4.(2)∵4xy 2,axy 3-b ,3xy 的和仍是一个单项式,∴a =-4,3-b =2,解得:b =1,则a +b =-4+1=-3;或a =-3,3-b =1,解得:b =2,则a +b =-3+2=-1.故a +b 的值可能是-3或-1.【点睛】本题考查了整式的加减,求代数式的值等知识点,解此题的关键是正确化简,题目具有一定的代表性,是一道比较好的题目.25.已知关于x 、y 的多项式mx2+4xy ﹣x ﹣3x2+2nxy ﹣4y 合并后不含有二次项,求n ﹣m 的值.【答案】-5【解析】试题分析:由于多项式mx 2+4xy ﹣x ﹣2x 2+2nxy ﹣4y 合并后不含有二次项,即二次项系数为0,在合并同类项时,可以得到二次项为0,由此得到故m 、n 的方程,即m ﹣3=0,4+2n=0,解方程即可求出m ,n ,然后把m 、n 的值代入n ﹣m ,即可求出代数式的值.试题解析:解:mx2+4xy ﹣x ﹣3x2+2nxy ﹣4y=(m ﹣3)x2+(4+2n )xy ﹣x ﹣4y ,∵合并后不含二次项,∴m ﹣3=0,4+2n=0,∴m=3,n=﹣2,∴n ﹣m=﹣2﹣3=﹣526.(1)先化简,再求值: 22225(3)4(3)a b ab ab a b ---+,其中2,3a b =-=.(2)已知226,2a b ab +==-,求代数式2222(43)(752)a ab b a ab b +---+的值.【答案】(1)3a 2b -ab 2,54;(2)-34【分析】(1)原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把已知等式代入计算即可求出值.【解析】解:(1)原式=15a 2b -5ab 2+4ab 2-12a 2b=3a 2b -ab 2,当a =-2,b =3时,原式=()()2232323´-´--´=54;(2)原式=4a 2+3ab -b 2-7a 2+5ab -2b 2=-3(a 2+b 2)+8ab ,当a 2+b 2=6,ab =-2时,原式=-18-16=-34.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.27.(1)某同学做一道数学题:“两个多项式A 、B ,其中2231B x x =--,试求2A B +”,这位同学把“2A B +”看成“2A B -”,结果求出答案是2571x x -++,那么2A B +的正确答案是多少?(2)已知781a b c +=+=-,求代数式222()()()b a c b c a -+-+-的值.【答案】(1)2353x x --;(2)146【分析】(1)先根据条件求出多项式A ,然后将A 和B 代入A +2B 中即可求出答案.(2)对所给的等式变形,分别求出b -a ,c -b ,c -a 的值,再整体代入所求代数式中,求值即可.【解析】解:(1)由题意可得:A =()225712231x x x x -+++--=22571462x x x x -+++--=21x x -+-∴A +2B =()2212231x x x x -+-+--=221462x x x x -+-+--=2353x x --;(2)∵781a b c +=+=-,∴b -a =-1,c -b =9,c -a =8,∴原式=(-1)2+92+82,=1+81+64,=146.【点睛】本题考查的是整式的加减,代数式求值,利用整体代入求代数式的值比较关键.28.定义:若a b ab +=,则称a 、b 是“白马湖数”例如:3 1.5315+=´.,因此3和1.5是一组“白马湖数”(1)1-与_____是一组“白马湖数”;(2)若m 、n 是一组“白马湖数”,112323622mn m n m mn éùæö-+-+-ç÷êúèø的值.29.小方家住房户型呈长方形,平面图如下(单位:米),现准备铺设地面,三间卧室铺设木地板,其它区域铺设地砖.(1)a的值为_______.(2)铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)?(3)已知卧室2的面积为21平方米,按市场价格,木地板单价为400元/平方米,地砖单价为10元/平方米,求铺设地面总费用.【答案】(1)3;(2)木地板(75-7x)平方米;地砖(7x+53)平方米;(3)25070元【分析】(1)根据长方形的对边相等可得a+5=4+4,即可求出a的值;(2)根据三间卧室铺设木地板,其它区域铺设地砖,可知将三间卧室的面积的和为木地板的面积,用长方形的面积-三间卧室的面积,所得的差为地砖的面积;(3)先根据卧室2的面积为21平方米求出x,再求出所需的费用即可.【解析】解:(1)根据题意得a+5=4+4,解得a=3;(2)铺设地面需要木地板:4×2x+a[10+6-(2x-1)-x-2x]+6×4=8x+3(17-5x)+24=(75-7x)平方米;铺设地面需要地砖:16×8-(75-7x)=128-75+7x=(7x+53)平方米;(3)∵卧室2的面积为21平方米,∴3[10+6-(2x-1)-x-2x]=21,∴3(17-5x)=21,∴x=2,∴铺设地面需要木地板:75-7x=75-7×2=61,铺设地面需要地砖:7x+53=7×2+53=67.铺设地面的总费用:61×400+67×10=25070(元).故铺设地面的总费用为25070元.【点睛】本题考查了列代数式,长方形的面积,分别求出铺设地面需要木地板与地砖的面积是解题的关键.30.如图,某校的“图书码”共有7位数字,它是由6位数字代码和校验码构成,其结构分别代表“种类代码、出版社代码、书序代码和校验码”.其中校验码是用来校验图书码中前6位数字代码的正确性.它的编制是按照特定的算法得来的.以上图为例,其算法为:a=++=;步骤1:计算前6位数字中偶数位数字的和a,即91313b=++=;步骤2:计算前6位数字中奇数位数字的和b,即6028c=´+=;步骤3:计算3a与b的和c,即313847d=;步骤4:取大于或等于c且为10的整数倍的最小数d,即50X=-=.步骤5:计算d与c的差就是校验码X,即50473请解答下列问题:(1)《数学故事》的图书码为978753Y,则“步骤3”中的c的值为______,校验码Y的值为______.(2)如图①,某图书码中的一位数字被墨水污染了,设这位数字为m,你能用只含有m的代数式表示上述步骤中的d吗?从而求出m的值吗?写出你的思考过程.(3)如图②,某图书码中被墨水污染的两个数字的差是4,这两个数字从左到右分别是多少?请直接写出结果.【答案】(1)73,7;(2)3,过程见解析;(3)4、0或9、5或2、6【分析】(1)根据特定的算法代入计算计算即可求解;(2)根据特定的算法依次求出a,b,c,d,再根据d为10的整数倍即可求解;(3)根据校验码为8结合两个数字的差是4即可求解.【解析】(1)∵《数学故事》的图书码为978753Y,∴a=7+7+3=17,b=9+8+5=22,则“步骤3”中的c的值为3×17+22=73,校验码Y的值为80-73=7.故答案为:73,7;(2)依题意有:a=m+1+2=m+3,b=6+0+0=6,c=3a+b=3(m+3)+6=3m+15,d=c+X=3m+15+6=3m+21,∵d为10的整数倍,∴3m的个位数字只能是9,∴m的值为3;(3)可设这两个数字从左到右分别是p,q,依题意有:a=p+9+2=p+11,b=6+1+q=q+7,c=3(p+11)+(q+7)=3p+q+40,∵校验码是8,则3p+q的个位是2,∵|p-q|=4,∴p=4,q=0或p=9,q=5或p=2,q=6.故这两个数字从左到右分别是4,0或9,5或2,6.【点睛】本题考查了列代数式以及整式的加减,正确理解题意,学会探究规律、利用规律是解题的关键.。
(必考题)初中数学七年级数学上册第二单元《整式的加减》测试(含答案解析)
一、选择题1.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( )A .()182812x x -=B .()1828212x x -=⨯C .()181412x x -=D .()2182812x x ⨯-= 2.下列方程中,解为x=-2的方程是( )A .2x+5=1-xB .3-2(x -1)=7-xC .x -5=5-xD .1-14x=34x 3.新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm ,那么一块渗水防滑地板的面积是( ).A .2450cmB .2600cmC .2900cmD .21350cm 4.如图,相同形状的物体的重量是相等的,其中最左边天平是平衡的,则右边三个天平中仍然平衡的是( )A .①②③B .①③C .①②D .②③ 5.下列变形中,正确的是( ) A .变形为 B .变形为 C .变形为 D .变形为6.一项工程,甲单独做需10天完成,乙单独做需6天完成.现由甲先做2天,乙再加入合做,完成这项工程共需多少天?若设完成这项工程共需x 天,依题意可得方程( )A .106x x +=1B .22106x x +-+=1C .2106x x -+=1D .222106x x x --++=17.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元 8.解方程32282323x x x ----=的步骤如下,错误的是( ) ①2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x );②6x ﹣4﹣3x ﹣6=16﹣4x ;③3x +4x =16+10;④x =267. A .① B .② C .③ D .④9.如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( ) A .ab+2x 2 B .ab ﹣2x 2 C .ab+4x 2 D .ab ﹣4x 2 10.宜宾某机械厂加工车间有34名工人,平均每名工人每天加工小齿轮20个或大齿轮15个.已知3个小齿轮和2个大齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天生产的齿轮刚好配套?若设加工小齿轮的工人有x 名,则可列方程为( ) A .2015(34)x x =-B .220315(34)x x ⨯=⨯-C .320215(34)x x ⨯=⨯-D .320(34)215x x ⨯-=⨯ 11.一张试卷共有25道题,若做对1题得4分,做错1题扣1分,小明做了全部试题只得了70分,那么小明做对了( )道.A .17B .18C .19D .2012.某个体商贩在一次买卖中同时卖出两件上衣,每件售价均为135元,若按成本计算,其中一件盈利25%,一件亏本25%,则在这次买卖中他( )A .不赚不赔B .赚9元C .赔18元D .赚18元 二、填空题13.小石在解关于x 的方程225a x x -=时,误将等号前的“2x -”看作“3x -”,得出解为1x =-,则a 的值是_________,原方程的解为__________ .14.某区民用电的计费方式为:白天时段的单价为m 元/度,晚间时段的单价为n 元/度.某户8月份白天时段用电量比晚间时段多50%,9月份白天时段用电量比8月份白天时段用电量少60%,结果9月份的总用电量虽比8月份的总用电量多20%,但9月份的总电费却比8月份的总电费少10%,则m n =______. 15.已知222a b c k b c a c a b===+++,则k =______.16.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券,也不得找零. 小明只购物买了单价别为60元,80元和120元的物品各一件,使用购物券后,他的实际花费为_________元.17.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 18.喜欢集邮的小惠共有中、外邮票145张,其中中国邮票的张数比外国邮票的张数的2倍少5张,问小惠有中国邮票______张,外国邮票_____张.19.要使代数式154t +与15()4t -的值互为相反数,则t 的值是_________. 20.关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.三、解答题21.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?22.解方程:41(7)6(7)55x x -=--. 23.解方程:111(3)(3)1236x x x x ⎡⎤---=-+⎢⎥⎣⎦. 24.公园门票价格规定如下表:50人.若两个班都以班为单位购票,则一共应付1240元,问:(1)如果两班联合起来,作为一个团体购票,可省多少元?(2)两班各有多少学生?(3)如果七(1)班单独组织去公园游玩,作为组织者的你将如何购票才最省钱? 25.青岛、大连两个城市各有机床12台和6台,现将这些机床运往海南10台和厦门8台,每台费用如表一:问题1:如表二,假设从青岛运往海南x台机床,并且从青岛、大连运往海南机床共花费36万元,求青岛运往海南机床台数.问题2:在问题1的基础上,问从青岛、大连运往海南、厦门的总费用为多少万元?26.江南生态食品加工厂收购了一批质量为10000kg的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多2000kg,求粗加工的这种山货的质量.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】若设需要x张硬纸板制作盒身,则(28-x)张硬纸板制作盒底,然后根据1个盒身与2个盒底配成一套列出方程即可.【详解】解:若设需要x张硬纸板制作盒身,则(28-x)张硬纸板制作盒底,由题意可得,18(28-x)=2×12x,故选:B.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.2.B解析:B【分析】将x=-2代入方程,使方程两边相等即是该方程的解.【详解】将x=-2代入,A.左边 右边,故不是该方程的解;B.左边=右边,故是该方程的解;C. .左边≠右边,故不是该方程的解;D. .左边≠右边,故不是该方程的解;故选:B.【点睛】此题考查一元一次方程的解使方程左右两边相等的未知数的值即是方程的解,熟记定义即可解答.3.A解析:A【分析】设小长方形的长为x,根据大的长方形对边相等得到小长方形的宽为2x,再根据长方形的周长列等量关系得到2(2x+2x+x)=150,再解方程求出x,然后计算小长方形的面积.【详解】解:设小长方形的长为x,则宽为2x,根据题意得2(2x+2x+x)=150,解得x=15,2x=30,所以x•2x=15×30=450.答:一块渗水防滑地板的面积为450cm2.故选A.【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.4.B解析:B【分析】根据等式的性质,可得答案.【详解】因为最左边天平是平衡的,所以2个球的重量=4个圆柱的重量;①中一个球的重量=两个圆柱的重量,根据等式的性质,此选项正确;②中,一个球的重量=1个圆柱的重量,错误;③中,2个球的重量=4个圆柱的重量,正确;故选B.【点睛】本题的实质是考查等式的性质,先根据①判断出2个球的重量=4个圆柱的重量,再据此解答.5.B解析:B【解析】【分析】利用等式的性质对每个等式进行变形即可找出答案.【详解】A. 根据等式性质1,2x+6=0两边同时减去6,即可得到2x=−6;故选项错误.B. 根据等式性质2, 两边同时乘以2,即可得到x+3=4+2x;故选项正确.C. 根据等式性质2, 两边都除以−2,应得到x−4=−1,故选项错误;D. 根据等式性质2, 两边同时乘以2,即可得到−x−1=1;故选项错误.故选B.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.6.C解析:C【分析】设总工作量为1,从而可得甲、乙的工作效率,再根据“甲完成的工作量+乙完成的工作量1=”建立方程即可得.【详解】设总工作量为1,则甲的工作效率为110,乙的工作效率为16,若设完成这项工程共需x天,则甲工作的天数为x天,乙工作的天数为(2)x-天,由题意得:21 106x x-+=,故选:C.【点睛】本题考查了列一元一次方程,读懂题意,正确找出等量关系是解题关键.7.C解析:C【详解】解:设该商品的进价为x元/件,依题意得:(x+20)÷510=200,解得:x=80.∴该商品的进价为80元/件.故选C.8.B解析:B【分析】根据解一元一次方程的基本步骤依次计算可得.【详解】①去分母,得:2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x );②6x ﹣4﹣3x+6=16﹣4x ,③6x ﹣3x+4x =16+4﹣6,④x =2,错误的步骤是第②步,故选:B .【点睛】本题主要考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.9.D解析:D【分析】用长方形的面积减去四周四个小正方形的面积列式即可.【详解】∵长方形的面积为ab ,4个小正方形的面积为4x 2,∴剩余部分的面积为:ab-4x 2,故选D.【点睛】本题考查了列代数式,根据题意用字母表示长长方形和正方形的面积是解题关键. 10.B解析:B【分析】设加工小齿轮的工人有x 名,则加工大齿轮的工人有(34)x -名,根据生产的小齿轮的数量:生产的大齿轮的数量=3:2即可列出方程,进而可得答案.【详解】解:设加工小齿轮的工人有x 名,则加工大齿轮的工人有(34)x -名.根据题意,得220315(34)x x ⨯=⨯-.故选:B .【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.11.C解析:C【分析】此题等量关系为:做对题所得分-做错题所扣分数=70分,设小明做对了x 道,则做错了(25-x)道,根据题意列方程求解即可.【详解】解:设小明做对了x 道,则做错了(25-x)道,根据题意得:4x-(25-x)×1=70,解得:x=19,故选:C .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.12.C解析:C【分析】要知道赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后根据题中的等量关系列方程求解.【详解】解:设在这次买卖中原价都是x ,则可列方程:(1+25%)x =135,解得:x =108,比较可知,第一件赚了27元;第二件可列方程:(1﹣25%)x =135,解得:x =180,比较可知亏了45元,两件相比则一共亏了45﹣27=18元.故选:C .【点睛】此题考查了一元一次方程的应用,解题的关键是明白盈利与亏本的含义,准确列出计算式,计算结果,难度一般.二、填空题13.-4;【分析】把x=-1代入中求出a 的值再求出原方程的解即可【详解】解:根据题意得:x=-1是的解∴把x=-1代入得:解得:∴原方程为:-8-2x=5x 解得:故答案为:-4;【点睛】本题考查了一元一解析:-4; 87-【分析】把x=-1代入235a x x -=中求出a 的值,再求出原方程的解即可【详解】解:根据题意,得:x=-1是235a x x -=的解,∴把x=-1代入235a x x -=得:23(1)5(1)a -⨯-=⨯-解得:4a =-∴原方程为:-8-2x=5x 解得:87x 故答案为:-4;87-【点睛】 本题考查了一元一次方程,熟练掌握运算法则是解题的关键14.2【分析】设8月份晚间用电量为a 度则:8月份白天用电量为(1+50)a=15a 度8月份电费为:15ma+na=(15m+n )a 元9月份白天用电量为:15a (1-60)=06a 度9月份晚间用电量为:(解析:2【分析】设8月份晚间用电量为a 度,则:8月份白天用电量为(1+50%)a=1.5a 度,8月份电费为:1.5ma+na=(1.5m+n )a 元,9月份白天用电量为:1.5a (1-60%)=0.6a 度,9月份晚间用电量为:(a+1.5a )(1+20%)-0.6a=2.4a 度,9月份电费为:0.6ma+2.4na=(0.6m+2.4n )a 元,然后根据题意即可列出方程,求出m 与n 的比值即可.【详解】解:白天的单价为每度m 元,晚间的单价为每度n 元,设8月份晚间用电量为a 度,则:8月份白天用电量为:(1+50%)a=1.5a 度,8月份电费为:1.5ma+na=(1.5m+n )a 元,9月份白天用电量为:1.5a (1-60%)=0.6a 度,9月份晚间用电量为:(a+1.5a )(1+20%)-0.6a=2.4a 度,9月份电费为:0.6ma+2.4na=(0.6m+2.4n )a 元,根据题意得:(0.6m+2.4n )a =(1.5m+n )(1-10%)a .整理得:0.75m=1.5n ,∴1.520.75m n ==. 故答案为:2.【点睛】 此题主要考查了一元一次方程的应用,分别表示出8,9月份的用电量是解决问题的关键. 15.1或-2【分析】分类讨论:①当时将等式变形即可求出k 的值;②当时则代入原等式即可求出k 的值【详解】解:①当时∵∴∴∴∴∴;②当时则∴故答案为:1或-2【点睛】此题考查的是等式的基本性质根据等式的基本 解析:1或-2【分析】分类讨论:①当0a b c ++≠时,将等式变形,即可求出k 的值;②当0a b c ++=时,则a b c +=-,代入原等式即可求出k 的值.【详解】解:①当0a b c ++≠时, ∵222a b c k b c a c a b===+++, ∴()()()2,2,2a k b c b k a c c k a b =+=+=+,∴()222a b c k b c a c a b ++=+++++,∴()()22a b c k a b c ++=++,∴22k =,∴1k =;②当0a b c ++=时,则a b c +=-. ∴222c c k a b c===-+- 故答案为:1或-2【点睛】 此题考查的是等式的基本性质,根据等式的基本性质将等式变形是解决此题的关键. 16.200元或210元【分析】根据购物顺序不同分类讨论即可【详解】①若先买单价为120元的物品赠送一张50元购物券再去买单价为60元和80元的物品实际花费为:120+60+80-50=210元;②若先买解析:200元或210元【分析】根据购物顺序不同分类讨论即可.【详解】①若先买单价为120元的物品,赠送一张50元购物券,再去买单价为60元和80元的物品,实际花费为:120+60+80-50=210元;②若先买60元和80元的物品,赠送一张50元购物券,再去买120元的物品,实际花费为:60+80+120-50=210元;③若先买60元和120元的物品,赠送一张50元购物券,再去买80元的物品,实际花费为:60+120+80-50=210元;④若先买80元和120元的物品,赠送两张50元购物券,再去买60元的物品,此时购物券可抵扣60元,实际花费为:120+80=200元;故答案为200元或210元.【点睛】此题考查的是分类讨论的数学思想.17.112cm2【分析】根据长方形的特征对边平行且相等长方形的周长=(长+宽)×2已知长是宽的3倍少10cm 也就是长=3宽-10再根据长方形的面积公式s=ab 列式解答【详解】解:设长方形的宽为xcm 则长解析:112cm 2.根据长方形的特征,对边平行且相等,长方形的周长=(长+宽)×2,已知长是宽的3倍少10cm,,也就是长=3宽-10,再根据长方形的面积公式s=ab,列式解答.【详解】解:设长方形的宽为xcm,则长为(3x-10)cm,依题意得:2x+2(3x-10)=44解得:x=8∴长方形的长=38⨯-10=14cm.∴这个长方形的面积=14⨯8=112cm2.故答案为112 cm2.【点睛】此题主要考查长方形的周长公式、面积公式的综合运用.18.50【解析】【分析】据题意可得到等量关系式:外国邮票的张数×2-5=中国邮票的张数设外国邮票x张把未知数和相关数据代入等量关系式进行解答即可得到答案【详解】解:设外国邮票x张2x-5=145-x3x解析:50【解析】【分析】据题意,可得到等量关系式:外国邮票的张数×2-5=中国邮票的张数,设外国邮票x张,把未知数和相关数据代入等量关系式进行解答即可得到答案.【详解】解:设外国邮票x张,2x-5=145-x3x=150x=50中国邮票:145-50=95答:中国邮票95张,外国邮票有50张.【点睛】解答此题的关键是确定等量关系式,然后再列方程解答即可.19.【解析】【分析】只有符号不同的两个数是互为相反数且互为相反数的两个数的和等于0根据相反数的性质可列方程求解【详解】因为代数式与的值互为相反数所以+=0解得:t=【点睛】本题主要考查列方程解方程解决本解析:1 10【解析】【分析】只有符号不同的两个数是互为相反数,且互为相反数的两个数的和等于0,根据相反数的性质可列方程求解.因为代数式154t +与15()4t -的值互为相反数, 所以154t ++15()4t -=0, 解得:t =110, 【点睛】本题主要考查列方程解方程,解决本题的关键是要熟练根据相反数的性质列出方程即可求解. 20.或或x=-3【分析】利用一元一次方程的定义判断即可【详解】解:关于的方程如果是一元一次方程(1)当即即解得:(2)当m=0时解得:(3)当2m-1=0即m=时方程为解得:x=-3故答案为x=2或x=解析:2x =或2x =-或x=-3.【分析】利用一元一次方程的定义判断即可.【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,(1)当2m 11﹣=,即m 1=, 即x 20﹣=解得:x 2=,(2)当m=0时,x 20--=,解得:x 2=-(3)当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3, 故答案为x=2或x=-2或x=-3.【点睛】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.三、解答题21.(1)商场购进甲种矿泉水300箱,购进乙种矿泉水200箱(2)该商场共获得利润6600元【详解】(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,由题意得:500{243313800x y x y +=+=,解得:300{200x y ==,答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱;(2)300×(36−24)+200×(48−33)=3600+3000=6600(元),答:该商场共获得利润6600元.22.13x =【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;【详解】 解:移项,得41(7)(7)655x x -+-=. 将(7)x -看作一个整体,合并同类项,得76x -=.移项及合并同类项,得13x =.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.23.2x =【分析】本题首先去括号,继而移项、合并同类项求解即可.【详解】 去括号得:111(3)(3)1266x x x x -+-=-+, 合并同类项得:112x =, 去分母得:2x =.【点睛】 本题考查一元一次方程的求解,计算时按照运算法则依次去括号、合并同类项,计算注意仔细即可.24.(1)304元;(2)七(1)班有48人,七(2)班有56人;(3)买51张门票可以更省钱.【分析】(1)利用算术方法即可解答;(2)若设初一(1)班有x 人,根据总价钱即可列方程;(3)应尽量设计的能够享受优惠.【详解】(1)12401049304-⨯=(元),所以可省304元.(2)设七(1)班有x 人,则七(2)班有(104)x -人.由题意得1311(104)1240x x +-=或139(104)1240x x +-=,解得48x =或76x =(不合题意,舍去).即七(1)班有48人,七(2)班有56人.(3)由(2)可知七(1)班共48人,若买48张门票,共需4813624⨯=(元),若买51张门票,共需5111561⨯=(元),所以买51张门票可以更省钱.【点睛】本题考查了一元一次方程的应用.在优惠类一类问题中,注意认真理解优惠政策,审题要细心.25.问题1:青岛运往海南机床台数是4台;问题2:从青岛、大连运往海南、厦门的总费用为94万元.【分析】(1)假设从青岛运往海南x 台机床,则从大连运往海南的就是10-x 台,根据等量关系:“运往海南机床共花费36万元”,即可列出方程解决问题;(2)根据问题1中求出的分别从青岛和大连运出的台数,则它们剩下的台数都要运到厦门,由此利用乘法和加法的意义即可解答问题.【详解】(1)设从青岛运往海南x 台机床,则从大连运往海南的就是10-x 台,根据题意可得方程:4x+3(10-x )=36,4x+30-3x=36,x=6,则从大连运往海南的有:10-6=4(台).答:从青岛运往海南6台,从大连运往海南4台.(2)根据上面计算结果可知:青岛剩下12-6=6(台);大连剩下6-4=2(台), 剩下的这些都要运往厦门,所以需要的费用是:6×8+2×5,=48+10,=58(万元),36+58=94(万元).答:从青岛、大连运往海南、厦门的总费用为94万元.【点睛】观察表格,找出已知条件,和要求的问题,根据题干中的等量关系即可,此题条件稍微复杂,需要学生认真审题进行解答.26.2000kg .【详解】解:设粗加工的该种山货质量为x kg ,根据题意,得()3200010000x x ++=,解得2000x =.答:粗加工的该种山货质量为2000kg .。
部编数学七年级上册专题06整式的加减(解析版)含答案
2022-2023学年人教版数学七年级上册压轴题专题精选汇编专题06 整式的加减考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022七上·城固期末)下列说法中,正确的是( )A .多项式 2223a a b ++ 是二次三项式B .单项式 2x y p - 的系数是 1-C .单项式 24m n 和 2nm - 是同类项D .3ab b + 是单项式【答案】C【完整解答】解:A 、多项式 2223a a b ++ 是三次三项式,故原说法错误;B 、单项式 2x y p - 的系数是 p - ,故原说法错误;C 、单项式 24m n 和 2nm - 是同类项,故原说法正确;D 、 3ab b + 是多项式,故原说法错误;故答案为:C.【思路引导】根据多项式的项与次数的概念可判断A ;单项式的系数:单项式中的数字因数叫做这个单项式的系数,据此判断B ;根据同类项是字母相同且相同字母的指数也相同的项可判断C ;根据数字与字母的乘积为单项式,单独的一个数或字母也是单项式,据此判断D.2.(2分)(2022七上·汇川期末)某商店在甲批发市场以每包a 元的价格进了50包茶叶,又在乙批发市场以每包b 元(a >b )的价格进了同样的70包茶叶,如果以每包2a b + 元价格全部卖出这种茶叶,那么这家商店( )A .盈利了B .亏损了C .不盈不亏D .盈亏不能确定【答案】A【完整解答】解:∵a >b ,∴(50+70)× 2a b + -(50a+70b )=60a+60b-50a-70b=10a-10b=10(a-b )>0,∴这家商店盈利了,故答案为:A.【思路引导】根据题意计算出售价与成本的差值,然后由a >b ,即可得解.3.(2分)(2021七上·洪山期末)已知数a ,b ,c 在数轴上的位置如图所示,化简|a + b| - |a - b| + |a + c|的结果为( )A .-a -cB .-a -b -cC .-a -2b -cD .a -2b +c【答案】C 【完整解答】解:通过数轴得到a <0,c >0,b >0,|a|>|c|>|b|,∴a+b <0,a -b <0,a +c <0∴|a +b| - |a -b| + |a +c|=-a-b +a -b ﹣a-c =-a -2b -c.故答案为:C.【思路引导】根据数轴可得:a<0<b<c 且|a|>|c|>|b|,然后判断出a+b 、a-b 、a+c 的正负,接下来根据绝对值的性质以及合并同类项法则进行化简.4.(2分)(2021七上·巢湖期末)把如图1的两张大小相同的长方形卡片放置在图2与图3中的两个相同大长方形中,已知这两个大长方形的长比宽长20cm ,若记图2中阴影部分的周长为C 1,图3中阴影部分的周长为C 2,那么C 1-C 2=( )A .10cmB .20cmC .30cmD .40cm【答案】D 【完整解答】解:设图2与图3中的大长方形的宽为acm ,则长为()20a +cm ,图1中的长方形长为xcm ,宽为ycm ,由图2可知:()1202440C a a a =++⨯=+;由图3可知:20x y a +=+,()()()222022C a a x a y =++-+-,()24042a a x y =++-+,6402(20)a a =+-+,4a =,则12440440C C a a -=+-=(cm ),故答案为:D .【思路引导】根据题意和图形,设图2与图3中的大长方形的宽为acm ,则长为()20a +cm ,图1中的长方形长为xcm ,宽为ycm ,再表示出阴影部分的周长()1202440C a a a =++⨯=+;图3可知:20x y a +=+,()()()222022C a a x a y =++-+-,再作差即可。
部编数学七年级上册专题05整式的加减重难点题型11个(解析版)含答案
专题05 整式的加减 重难点题型11个题型1. 代数式的书写规范问题【解题技巧】代数式书写规范:①数和字母相乘,可省略乘号,并把数字写在字母的前面;②字母和字母相乘,乘号可以省略不写或用“ · ” 表示. 一般情况下,按26个字母的顺序从左到右来写;③后面带单位的相加或相减的式子要用括号括起来;④除法运算写成分数形式,即除号改为分数线;⑤带分数与字母相乘时,带分数要写成假分数的形式;⑥当“1”与任何字母相乘时,“1”省略不写;当“-1”乘以字母时,只要在那个字母前加上“-”号.1.(2022·河南信阳·七年级期末)下列各式书写符合要求的是( )A .1a b-¸-B .132xy C .ab ×5D .22x y -2.(2022·湖南永州·七年级期中)下列代数式的书写格式正确的是( )A .112abB .3x ´C .23yD .3()a b ¸+【点睛】本题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.3.(2022·河南驻马店·七年级期末)下列各式符合代数式书写规范的是( )A .a8B .s tC .m ﹣1元D .125x4.(2022·河北石家庄·七年级期末)下列各式中,符合代数式书写规则的是( )A .273x B .14a ´C .126p -D .2y ÷z【点睛】本题考查代数式的书写规则,解决本题的关键是熟练掌握书写规则.5.(2022·山东潍坊·七年级期末)下列各式符合代数式书写规范的是( )A .18b ´B .114xC .2b a -D .m ÷2n6.(2022·河北保定·七年级期末)将下列各式按照列代数式的规范要求重新书写:(1)a ×5,应写成_______ ; (2)S ÷t 应写成_________;(3)123a a b ´´-´,应写成______;(4)413x , 应写成______.【点睛】本题考查代数式书写规范,熟知代数式的书写规范要求是解题关键.题型2. 根据要求列代数式【解题技巧】解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.1.(2022·山东烟台·期末)阿宜跟同学到西餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为12份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A.12-x-y B.12-y C.12-x+y D.12-x【答案】D【分析】根据点的饮料能确定在B和C餐中点了x份意大利面,根据题意可得点A餐12−x.【详解】解:x杯饮料则在B和C餐中点了x份意大利面,∴点A餐为12−x,故选D.【点睛】本题考查列代数式;能够根据题意,以意大利面为依据,准确列出代数式是解题的关键.2.(2022·贵州铜仁·七年级期末)m与n的和的3倍可以表示为__________.【答案】3(m+n)【分析】要明确给出文字语言中的运算关系,先表示出m与n的和,再表示出和的3倍即可.【详解】解:“m与n和的3倍”用代数式可以表示为:3(m+n).故答案为:3(m+n).【点睛】此题主要考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”、“平方”等,从而明确其中的运算关系,正确地列出代数式.3.(2022·江苏连云港·八年级阶段练习)一件商品售价x元,利润率为a%(a>0),则这件商品的成本为_____元.4.(2022·黑龙江大庆·期中)用代数式表示比a 的5倍小3的数是_________.【答案】53a -##35a-+【分析】根据题意列出代数式即可.【详解】解:比a 的5倍小3的数是53a -.故答案为:53a -.【点睛】本题主要考查了列代数式,认真分析题意,理解题意是解题的关键.5.(2022·河南南阳·七年级期中)“两个数的和与这两个数的差的乘积等于这两个数平方的差”.在学过用字母表示数后,请借助字母,用代数式表示为______.【答案】()()22a b a b a b+-=-【分析】根据“两个数的和与这两个数的差的乘积等于这两个数平方的差”,即可用含a 和b 的代数式表示即可.【详解】解:“两个数的和与这两个数的差的乘积等于这两个数平方的差”,用a 和b 表示这两个数,用符号语言描述这句话是:(a +b )(a ﹣b )=a 2﹣b 2,故答案为:(a +b )(a ﹣b )=a 2﹣b 2.【点睛】本题考查了列代数式,解决本题的关键是根据题意列出代数式.6.(2022·江苏扬州·八年级期中)如果面积为a 公顷、b 公顷的两块稻田分别产稻子m 千克、n 千克,那么这两块稻田平均每公顷产稻子______千克.题型3.整式的相关概念(1)代数式的概念:用运算符号把数字与字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式.(2)单项式及相关概念:数或字母的积叫单项式。
初中七年级数学上册第二章《整式的加减》测试卷3套含答案
A. 2(n 2) 3
B. 2(n 1)
C. 2n 3
D. 2(n 2)
6. 3x2 4x 2 2x2 x ,括号内应填( )
A. 5x2 3x 2
B. x2 3x
C. x2 3x 2
D. x2 3x 2
7.(衢州中考)如图,边长为(m 3)的正方形纸片剪出一个边长为 m 的正方形之后剩余部分又剪拼成一个
D. (x 1) x2 2 x 1 x2 2
7.若多项式 mx2 3 x 7 2 x2 4 的化简结果不含二次项,则 m 的值为( )
A.0
B.1
C. 2
D.2
8.某商品打七折后价格为 a 元,则原价为( )
A. a 元
B. 10 a 7
C. 30%a
9.若单项式 3a b m2 2 与 1 a3bn 的和仍是单项式,则 mn 的值是(
a
2
”错抄成
“ a 2 ”,乙同学没抄错题,但他们做出的结果一样,你知道是怎么回事吗?
25.我国出租车收费标准因地而异.甲市起步价为 6 元,3 千米后每千米收费为 1.5 元;乙市起步价为 10 元, 3 千米后每千米收费为 1.2 元. (1)试问在甲、乙两市乘坐出租车 s(s>3) 千米的费用差是多少元?
18.【答案】14 3n 1
三、
19.【答案】解:原式 3a2b 1 ab2 3 ab2 a2b 2a2b 1 ab2 .
4
4
2
(2)原式 3a2 b2 3a2 6b2 5b2
20.【答案】解: x3 2x2 3x 1 2x2 3x 2 x3 2x2 3x 1 2x2 3x 2 x3 3 .
24.【答案】解:原式 3a3b3 1 a2b b 4a3b3 1 a2b b2 a3b3 1 a2b 2b2 3 b2 b 3,可知次多
人教版七年级上册数学第二章整式的加减试题及答案(精华两份)
整式的加减试题(一)及答案一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。
5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。
6、计算:=-+-7533x x , )9()35(b a b a -+-= 。
7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。
8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。
9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。
10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。
11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。
12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。
二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x +是多项式D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:;)()(,,0553212=+-m x y x m 满足 2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学整式的加减重点难点题型全覆盖试卷附详细答案姓名:__________ 班级:__________考号:__________一、单选题(共21题;共42分)1.下列结论中,正确的是()A. 单项式的系数是3,次数是2.B. 单项式m的次数是1,没有系数.C. 单项式﹣xy2z的系数是﹣1,次数是4.D. 多项式5x2-xy+3是三次三项式.2.单项式﹣2πx2y的系数和次数分别是( )5A. ﹣π,3B. ,4C. π,4D. ﹣,43.多项式8x2-3x+5与多项式3x3+2mx2-5x+7相加后,不含二次项,则常数m的值是()A. 2B. -4C. -2D. -84.把多项式按的降幂排列是( )A. B.C. D.5.一个多项式与x2-2x+1的和是3x-2,则这个多项式为()A. x2-5x+3B. -x2+x-1C. -x2+5x-3D. x2-5x-136.已知代数式x2+ax-2y+7-(bx2-2x+9y-1)的值与x的取值无关,则a+b的值为( )A. -1B. 1C. -2D. 27.长方形的一边长等于3x+2y ,另一边长比它长x-y ,这个长方形的周长是()A. 4x+yB. 12x+2yC. 8x+2yD. 14x+6y8.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是()A. 0B. 3C. 4D. 89.下列说法正确的是()A. 单项式 −34xy 的系数是-3 B. 单项式 2πa 3 的次数是4 C. 多项式 x y 22−2x 2+3 是四次三项式 D. 多项式 x −22x +6 的项分别是 x2、2x 、310.给出下列式子:0,3a ,π,x−y2,1,3a 2+1,-xy11, 1x +y.其中单项式的个数是( )A. 5个B. 1个C. 2个D. 3个11.某商店在甲批发市场以每包m 元的价格进了20包茶叶,又在乙批发市场以每包n 元(m >n )的价格进了同样的40包茶叶,如果商家以每包 m+n2元的价格卖出这种茶叶,卖完后,这家商店( ).A. 盈利了B. 亏损了C. 不赢不亏D. 盈亏不能确定 12.观察下列等式 31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561… ,则 32015 的个位数字是( )A. 3B. 9C. 7D. 1 13.若代数式 2x 2-3x 的值为5,则代数式 -4x 2+6x +9 的值是( ). A. -1 B. 14 C. 5 D. 4 14.一组按规律排列的多项式: ,,,,…,其中第10个式子是( )A.B.C.D.15.在求 1+6+62+63+64+65+66+67+68+69 的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设: S =1+6+62+63+64+65+66+67+68+69 ……① 然后在①式的两边都乘以6,得: 6S =6+62+63+64+65+66+67+68+69+610 ……② ②-①得 6S −S =610−1 ,即 5S =610−1 ,所以 S =610−15.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出 1+a +a 2+a 3+a 4+...+a 2018 的值?你的答案是( )A. a 2018−1a−1B. a 2019−1a−1C. a 2018−1aD. a 2019−116.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是( )A. nB. 2nC. n(n+2)D. n(n 一1) 17.已知在线段上依次添加1个点,2个点,3个点,……,原线段上所成线段的总条数如下表:若在原线段上添加n个点,则原线段上所有线段总条数为( )A. n+2B. 1+2+3+…+n+n+1C. n+1D. n(n+1)2 18.下列式子中是单项式的个数为( )① -13x5y2,② 3y2x,③ 0,④ 23x2y7,⑤ -x7,⑥ 2x2−1,⑦ -5x2y46,⑧ -1.96,⑨ m−2,⑩ -mn2A. 5个B. 6个C. 7个D. 8个19.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳计算结果中的个位数字的规律,猜测32009+1的个位数字是()A. 0B. 2C. 4D. 820.代数式A和B都是5次多项式,则A+B一定是( ).A. 5次多项式B. 10次多项式C. 次数不高于5次的多项式D. 次数不低于5次的多项式21.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是()A. 82B. 86C. 88D. 120二、填空题(共6题;共8分)22.已知a+b=1, b+c=3, a+c=6,则a+b+c=________.23.按一定规律排列的一列数依次为:45,12,411,27,…,按此规律,这列数中的第10个数与第16个数的积是 ________.24.有一道题目是一个多项式减去x2+14x-6,小强误当成了加法计算,结果得到2x2-x+3,则原来的多项式是________.25.观察下列单项式:−2x,22x2,−23x3,24x4… −25x5,26x6…请观察它们的构成规律,写出第n个式子________.26.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由 ________个组成的,依此,第n个图案是由 ________个组成的.27.如图,将正偶数按照图中所示的规律排列下去,若用有序实数对(a,b)表示第a行的第b个数.如(3,2)表示偶数10.(1)图中(8,4)的位置表示的数是,偶数42对应的有序实数对是________ ;(2)第n行的最后一个数用含n的代数式表示为________ ,并简要说明理由.三、计算题(共10题;共80分)28.3(ab2+a2b)-2(ab2-2)-2a2b-4 ,其中a=-1,b= 12.29.先化简,在求值: 2x2−(2x−4y)−2(x2−y),其中x=−1,y=230.已知单项式2x3y m和单项式-23x n-1y2m-3的和是单项式,求这两个单项式的和.31.先化简,再求值:5(3a2b−ab2)−4(−ab2+3a2b),其中a=−12,b=13.32.先化简,再求值:2(x2y﹣xy)﹣3(x2y﹣2xy)+4x2y,其中x=﹣1,y=2.33.若A=﹣2a2+ab﹣2b3,B=a2﹣2ab+b3,求A+2B的值.34.先化简,后求值:(1)2x−y+3x−2y+1 ,其中x=1,y=2 .(2)(2ab+3b2−5)−(3ab+3b2−8) ,其中a=2,b=3 .(3)3a2+(4a2-2a+1)-2(3a2-a+1),其中a=-1 .(4)4a2b−[−3ab2−2(5a2b−1)]−2ab2,其中a=1,b=−1 .35.已知:A=8xy−x2+y2,B=x2−y2+8xy求:(1)A+B(2)2A-3B36. 合并同类项:(1)x-5y+3y-2x;(2)a3+3a2-5a-4+5a+a2;(3)12m2-3mn2+4n2+12m2+5mn2-4n2;(4)-2a3b-12a3b-ab2-12a2b-a3b.37.已知多项式A=2x2-xy+my-8,B=-nx2+xy+y+7,A-2B中不含有x2项和y项,求n m+mn的值.四、解答题(共8题;共43分)38.已知A=3x2-ax+6x-2,B=-3x2+4ax-7,若A+B的值不含x项,求a的值.39.已知A=a2-2ab+b2,B=-a2-3ab-b2,求:2A-3B。
40.若关于x的多项式-5x3-(2m-1)x2+(2-3n)x-1不含二次项和一次项,求m,n的值.41.如图,正方形ABCD和CEFG的边长分别为m、n,试用m、n的代数式表示三角形BDF 的面积S.42.定义新运算“※”:x※y=xy+x2﹣y2,化简(2a+3b)※(2a﹣3b),并求出当a=2,b=1时的值.43.把下列各代数式的序号填入相应集合的括号内:①2a2b+ 13ab2;② a−1b;③0;④ m2+n23;⑤﹣25mn;⑥2x﹣3y=5;⑦2a+6abc+3k单项式集合:{ };多项式集合:{ };二项式集合:{ }.44.有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中x=1 2,y=﹣1”,甲同学把x= 12错看成x=﹣12,但计算结果仍正确,你说是怎么一回事?45.观察下列等式:11×2=1﹣12,12×3= 12﹣13,13×4= 13﹣14,….将以上三个等式两边分别相加得:11×2+ 12×3+ 13×4=1﹣12+ 12﹣13+ 13﹣14=1﹣14= 34.(1)猜想并写出:1n(n+1)=________.(2)直接写出下列各式的计算结果:① 11×2+ 12×3+ 13×4+…+ 12016×2017=________;② 11×2+ 12×3+ 13×4+…+ 1n(n+1)=________.(3)探究并计算:12×4+ 14×6+ 16×8+…+ 12014×2016.五、综合题(共5题;共46分)46.(1)设A=2a2−a,B=a2+a,若a=−13,求A-2B的值;(2)某公司有甲、乙两类经营收入,去年甲类收入是乙类收入的2倍,预计今年甲类年收入减少9%,乙类收入将增加19%。
问今年该公司的年总收入比去年增加了吗?请说明理由。
47.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2,得2S=2+22+23+24+25+…+22013+22014.将下式减去上式,得2S﹣S=22014-1即S=22014-1,即1+2+22+23+24+…+22013=22014-1仿照此法计算:(1)1+3+32+33+…+3100(2)1+ 12+122+123+…+ 12100.48.你会求(a﹣1)(a2012+a2011+a2010+…+a2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:(a−1)(a+1)=a2−1(a−1)(a2+a+1)=a3−1(a−1)(a3+a3+a+1)=a4−1(1)由上面的规律我们可以大胆猜想,得到(a﹣1)(a2014+a2013+a2012+…+a2+a+1)=________利用上面的结论,求:(2)22014+22013+22012+…+22+2+1的值是________.(3)求52014+52013+52012+…+52+5+1的值.49.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P 运动多少秒后与点Q的距离为2个单位?(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.50.观察下列算式:①1×5+4=32,②2×6+4=42,③3×7+4=52,④4×8+4=62,…请你观察规律解决下列问题。