浙江省金衢十二校2019年初三联考数学试卷及答案
浙江金丽衢十二校2019届高三第一次联考数学试题解析卷
cos∠ADE=
3 2
,
∴
∠ADE
=
π 6
故答案为π
6
【点睛】本题考查直线与平面所成角,线面垂直的应用,二面角的定义,考查空间想象能力,熟练作辅助线找角 是关键,是中档题
9.五人进行过关游戏,每人随机出现左路和右路两种选择.若选择同一条路的人数超过 2 人,则他们每人得 1 分; 若选择同一条路的人数小于 3 人,则他们每人得 0 分,记小强游戏得分为ξ,则 Eξ=( )
2π 4
B. BC ≥
2
C. ∠AMO + ∠MAO = 90° D. OM取值范围为0, 2 【答案】D
6
【解析】 【分析】
作出图形,对于
A,ΔAOC
为直角三角形,ON
为斜边
AC
上的中线,ON
=
1 2
AC
为定长,推理
NO
扫过的面积
为圆锥的侧面,即 A 正确;对于 B,由基本不等式求解即可;对于 C.∠AMO + ∠MAO = 90°,正确;对于 D, 由 A 可知,点 O 的轨迹是圆弧,即 D 正确;
对于 C.∵ AO⊥面 BCD,故∠AMO + ∠MAO = 90°,正确;
对于 D,OM < AM = 1, 故 D 错误 故选:D.
【点睛】本题命题真假判断,空间的线面位置关系,考查推理及空间想象能力,属于难题
二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)
11.已知 n ∈ N∗ ,x2 − 51x3n的展开式中存在常数项,则 n 的最小值为__________,此时常数项为__________.
4 3
【答案】C 【解析】
由题设中三视图提供的图形信息与数据信息可知该几何体是一个三棱柱与一个等高三棱锥的组合体,其中三棱柱
浙江省金丽衢十二校2019届高三数学上学期第二次联考试卷(含参考答案)
金丽衙十二校2018-2019学年高三第二次联考数学试题一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的).1、集合A={x|x 2-2x >0},B={x|-3<x<3},则( )A 、A ∩B =∅ B 、 A ∪B =RC 、B ⊆AD 、A ⊆B2、点F 1和F 2是双曲线223x y -=1的两个焦点,|F 1F 2|( )A B 、 2 C 、 D 、 4 3、复数122,3z i z i =-=+,则12||z z =( )A 、 5B 、 6C 、 7D 、4、某几何体的三视图如右图所示(图中单位:cm),则该几何体的表面积为( )A πcm 2B 、πcm 2C 、(1)πcm 2D 、(2)πcm 25.已知直线l ⊥平面α,直线m ∥平面β,则“α∥β”是“l ⊥m ”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要条件6、甲和乙两人独立的从五门选修课程中任选三门进行学习,记两人所选课程相同的门数为ξ,则E(ξ)为( )A 、1.2B 、1.5C 、1.8D 、2 7、函数()ln8xf x x=-的图象大致为( )8.已知a ,b ,c 和d 为空间中的4个单位向量,且a +b +c =0,则|a 一d |+|b 一d |+|c 一d |不可能等于( )A 、 3B 、C 、4D 、9.正三棱锥P -ABC 的底面边长为1 cm ,高为h cm ,它在六条棱处的六个二面角(侧面 与侧面或者侧面与底面)之和记为θ,则在h.从小到大的变化过程中,θ的变化情况 是( )A 、一直增大B 、一直减小C 、先增大后减小D 、先减小后增大, 10、数列{a n }满足:1111,n n na a a a +==+则a 2018的值所在区间为( ) A 、(0,100) B 、 (100,200) C 、 (200,300) D 、 (300, +∞) 二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11、《九章算术》第七章“盈不足”中第一题:“今有共买物,人出八,盈三钱;人出七,不足四,问人数物价各几何?”借用我们现在的说法可以表述为:有几个人合买一件物 品,每人出8元,则付完钱后还多3元;若每人出7元,则还差4元才够付款.问他们的人数和物品价格?答:一共有 人;所合买的物品价格为 元. 12、(1一2x)5展开式中x 3的系数为 ;所有项的系数和为 .13、若实数x ,y 满足约束条件1221x y x y x +≥⎧⎪+≤⎨⎪≤⎩,则目标函数Z =2x+3y 的最小值为 ;最大值为14、在△ABC 中,角A ,B 和C 所对的边长为a ,b 和c ,面积为2221()3a cb +-内,且∠C 为钝角,则tanB = ;ca的取值范围是 15、安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有 种(用数字作答)16、定义在R 上的偶函数()f x 满足:当x >0时有1(4)()3f x f x +=,且当0≤x ≤4时, f (x)=3|x -3|,若方程()0f x mx -=恰有三个实根,则m 的取值范围是17、过点P (1,1)的直线l 与椭圆22143x y +=交于点A 和B ,且AP PB λ= .点Q 满足 AQ QB λ=-,若O 为坐标原点,则|OQ |的最小值为三、解答题(本大题兵5小题,共.74分.解答应写出文字说明‘证明过程或演算步卿. 18、 (14分)己知函数2()sin sin()2f x x x x π=+(I )求()f x 的最小正周期;(II )求函数()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的取值范围·19、 (15分)在三棱柱ABC-A 1B 1C 1中,A B ⊥侧面BB 1C 1C ,己知BC =1,∠BCC 1=3π, AB =C 1 C =2.(I )求证:C 1B ⊥平面ABC ;(II) E 在棱C 1 C(不包含端点C 1,C)上,且EA ⊥EB 1,求A 1E 和平面AB 1 E 所成角的正弦值·20、 (15分)数列{}n a 的前n 项和为Sn ,a 1=1,对任意*n N ∈,有121n n a S +=+ (I )求数列{}n a 的通项公式;(II )若1n an n b a +=,求数列{3log n b }的前n 项和Tn.21、 (15分)已知抛物线E :2(0)y ax a =>内有一点P (1,3),过点P 的两条直线12,l l 分别与抛物线E 交于A 、C 和B 、D 两点,且满足AP PC λ= ,(0,1)BP PD λλλ=>≠。
2019届浙江省金丽衢十二校高三第一次联考数学试题Word版含解析
2019届浙江省金丽衢十二校高三第一次联考数学试题一、单选题1.若集合,,则()A.B.C.D.【答案】D【解析】根据补集和并集的定义进行求解即可.【详解】,故选:.【点睛】本题主要考查集合的基本运算,结合补集并集的定义是解决本题的关键.2.已知向量,,则与的夹角为()A.B.C.D.【答案】C【解析】利用夹角公式进行计算.【详解】由条件可知,,,所以,故与的夹角为.故选:.【点睛】本题考查了运用平面向量数量积运算求解向量夹角问题,熟记公式准确计算是关键,属于基础题.3.等比数列的前项和为,己知,,则()A.7 B.-9 C.7或-9 D.【答案】C【解析】等比数列{a n}的前n项和为S n,己知S2=3,S4=15,可求得公比,再分情况求首项,进而得到结果.【详解】等比数列{a n}的前n项和为S n,己知S2=3,S4=15,代入数值得到q=-2或2,当公比为2时,解得,S3=7;当公比为-2时,解得,S3=-9.故答案为:C.【点睛】本题考查等比数列的通项公式,是基础的计算题,对于等比等差数列的小题,常用到的方法,其一是化为基本量即首项和公比或者公差,其二是观察各项间的脚码关系,即利用数列的基本性质.4.双曲线的渐近线方程为()A.B.C.D.【答案】C【解析】根据题意,将双曲线的方程变形为标准方程,得、的值,由双曲线的渐近线方程分析可得答案.【详解】根据题意,双曲线的标准方程为,其焦点在轴上,且,,则其渐近线方程为;故选:.【点睛】本题考查双曲线的几何性质,涉及双曲线渐近线方程的计算,注意双曲线的焦点位置,是基础题5.已知一个几何体的三视图如图所示,则该几何体的体积为()A .323B .163C .83D .43【答案】C【解析】由题设中三视图提供的图形信息与数据信息可知该几何体是一个三棱柱与一个的等腰直角三角形,所以其体积221118223223V =⨯⨯⨯+⨯⨯=,应选答案C 。
金衢十二校联考2019届中考数学模拟试卷(3月份)含答案解析
2019年浙江省金衢十二校联考中考数学模拟试卷(3月份)一、选择题(本题有10小题,每小题3分,共30分)1.计算(﹣2)×3所得结果正确的是()A.5 B.6 C.﹣5 D.﹣62.二次根式中,字母a的取值范围是()A.a<1 B.a≤1 C.a≥1 D.a>13.直角坐标系中,点P(1,4)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°5.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣36.不等式2x﹣6>0的解集在数轴上表示正确的是()A.B.C.D.7.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是()A.1 B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a>0;②c>0;③b2﹣4ac>0,其中正确的个数是()A.0个B.1个C.2个D.3个9.一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是()A.B.C.D.10.大明因急事在运行中的自动扶梯上行走去二楼(如图1),图2中线段OA、OB分别表示大明在运行中的自动扶梯上行走去二楼和静止站在运行中的自动扶梯上去二楼时,距自动扶梯起点的距离与时间之间的关系.下面四个图中,虚线OC能大致表示大明在停止运行(即静止)的自动扶梯上行走去二楼时,距自动扶梯起点的距离与时间关系的是()A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.数的相反数是.12.分解因式:x2﹣9=.13.已知A=2x+y,B=2x﹣y,计算A2﹣B2=.14.如图是我市某景点6月份内1﹣10日每天的最高温度折线统计图,由图信息可知该景点这10天的最高气温度的中位数是℃.15.如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是.16.如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G 在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,CD=.(2)当∠CED由60°变为120°时,点A向左移动了cm(结果精确到0.1cm)(参考数据≈1.73).三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:.18.如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:.证明:.19.如图,在方格网中已知格点△ABC和点O.(1)画△A′B′C′和△ABC关于点O成中心对称;(2)请在方格网中标出所有使以点A、O、C′、D为顶点的四边形是平行四边形的D点.20.电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(2019•扬州)如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.(1)求证:DE∥BC;(2)若AF=CE,求线段BC的长度.22.我市某风景区门票价格如图所示,百姓旅行社有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为120人,乙团队人数不超过50人.设甲团队人数为x人,如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的函数关系式,并写出自变量x 的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可节约多少元.23.操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的纸片进行如下设计:说明:方案一:图形中的圆过点A、B、C;方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点纸片利用率=×100%发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.你认为小明的这个发现是否正确,请说明理由.(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.说明:方案三中的每条边均过其中两个正方形的顶点.24.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时,求线段OD的长;(3)在(2)的条件下:①连接DF,求tan∠FDE的值;②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.2019年浙江省金衢十二校联考中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.计算(﹣2)×3所得结果正确的是()A.5 B.6 C.﹣5 D.﹣6【考点】有理数的乘法.【分析】根据有理数乘法法则来计算.【解答】解:(﹣2)×3=﹣(2×3)=﹣6.故选D.【点评】有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.2.二次根式中,字母a的取值范围是()A.a<1 B.a≤1 C.a≥1 D.a>1【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,即可求a的取值范围.【解答】解:根据题意得:a﹣1≥0,解得a≥1.故选C.【点评】主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.3.直角坐标系中,点P(1,4)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】由平面直角坐标系中点的坐标的符号特点进行判断即可.【解答】解:由于P(1,4)的横坐标和纵坐标均为正数,所以P(1,4)在第一象限.故选A.【点评】此题主要考查平面直角坐标系中已知点的坐标确定点的位置,牢记四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°【考点】平行线的性质;余角和补角.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等及余角的定义作答.【解答】解:根据题意可知,∠2=∠3,∵∠1+∠2=90°,∴∠2=90°﹣∠1=58°.故选:B.【点评】主要考查了平行线的性质和互余的两个角的性质.互为余角的两角的和为90°.解此题的关键是能准确的从图中找出这两个角之间的数量关系,从而计算出结果.5.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.【解答】解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.【点评】本题考查了一元二次方程根与系数的关系,方程ax2+bx+c=0的两根为x1,x2,则x1+x2=﹣,x1•x2=.6.不等式2x﹣6>0的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】根据解不等式的方法,可得答案.【解答】解:2x﹣6>0,解得x>3,故选:A.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).7.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是()A.1 B.C.D.【考点】概率公式;完全平方式.【分析】此题考查完全平方公式与概率的综合应用,注意完全平方公式的形式.【解答】解:能够凑成完全平方公式,则4a前可是“﹣”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选B.【点评】用到的知识点为:概率=所求情况数与总情况数之比;a2±2ab+b2能构成完全平方式.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a>0;②c>0;③b2﹣4ac>0,其中正确的个数是()A.0个B.1个C.2个D.3个【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由抛物线的开口向下得到a<0,由此判定①错误;由抛物线与y轴的交点为在y轴的正半轴上得到c>0,由此判定②正确;由抛物线与x轴有两个交点得到b2﹣4ac>0,由此判定③正确.所以有2个正确的.【解答】解:①∵抛物线的开口向下,∴a<0,错误;②∵抛物线与y轴的交点为在y轴的正半轴上,∴c>0,正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,正确.∴有2个正确的.故选C.【点评】考查二次函数y=ax2+bx+c系数符号的确定.9.一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是()A.B.C.D.【考点】简单几何体的三视图.【分析】从左面看会看到该几何体的两个侧面.【解答】解:从左边看去,应该是两个并列并且大小相同的矩形,故选B.【点评】本题考查了几何体的三视图及空间想象能力.10.大明因急事在运行中的自动扶梯上行走去二楼(如图1),图2中线段OA、OB分别表示大明在运行中的自动扶梯上行走去二楼和静止站在运行中的自动扶梯上去二楼时,距自动扶梯起点的距离与时间之间的关系.下面四个图中,虚线OC能大致表示大明在停止运行(即静止)的自动扶梯上行走去二楼时,距自动扶梯起点的距离与时间关系的是()A.B.C.D.【考点】函数的图象.【分析】根据图象比较小明和扶梯的速度,判断选项的准确性.【解答】解:如图,可知EF略大于FG,即小明的速度略大于扶梯运行的速度,故选:B.【点评】本题考查的是函数的图象的认识,结合实际问题读懂函数图象的意义是解题的关键,解答时,注意比较小明和扶梯的速度,有助于问题的解决.二、填空题(本题有6小题,每小题4分,共24分)11.数的相反数是﹣.【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:的相反数是﹣,故答案为:﹣.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.12.分解因式:x2﹣9=(x+3)(x﹣3).【考点】因式分解-运用公式法.【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).【点评】主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.13.已知A=2x+y,B=2x﹣y,计算A2﹣B2=8xy.【考点】因式分解-运用公式法.【分析】首先利用平方差进行分解可得A2﹣B2=(A+B)(A﹣B),然后再代入A=2x+y,B=2x﹣y 即可.【解答】解:A2﹣B2=(A+B)(A﹣B)=[(2x+y)+(2x﹣y)][(2x+y)﹣(2x﹣y)]=4x•2y=8xy,故答案为:8xy.【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式a2﹣b2=(a+b)(a﹣b).14.如图是我市某景点6月份内1﹣10日每天的最高温度折线统计图,由图信息可知该景点这10天的最高气温度的中位数是26℃.【考点】中位数;折线统计图.【专题】图表型.【分析】通过折线统计图和中位数的知识求解.【解答】解:由图知10天的气温按从小到大排列为:22.3,24,24,26,26,26,26.5,28,30,30.由于有偶数个数,取最中间两个数的平均数,其中位数为=26,故其中位数为26.故填26.【点评】一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.15.如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是7.【考点】全等三角形的判定与性质;线段垂直平分线的性质;勾股定理;矩形的性质.【专题】几何图形问题.【分析】根据线段中点的定义可得CG=DG,然后利用“角边角”证明△DEG和△CFG全等,根据全等三角形对应边相等可得DE=CF,EG=FG,设DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得BF=EF,然后列出方程求出x 的值,从而求出AD,再根据矩形的对边相等可得BC=AD.【解答】解:∵矩形ABCD中,G是CD的中点,AB=8,∴CG=DG=×8=4,在△DEG和△CFG中,,∴△DEG≌△CFG(ASA),∴DE=CF,EG=FG,设DE=x,则BF=BC+CF=AD+CF=4+x+x=4+2x,在Rt△DEG中,EG==,∴EF=2,∵FH垂直平分BE,∴BF=EF,∴4+2x=2,解得x=3,∴AD=AE+DE=4+3=7,∴BC=AD=7.故答案为:7.【点评】本题考查了全等三角形的判定与性质,矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.16.如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G 在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,CD=20cm.(2)当∠CED由60°变为120°时,点A向左移动了43.8cm(结果精确到0.1cm)(参考数据≈1.73).【考点】解直角三角形的应用.【分析】(1)连接CD,由已知条件中CE=DE,∠CED=60°可知△CED为等边三角形,从而得出CD的长度;(2)由图可知AD=3CD,由(1)可得知∠CED=60°时AD的长度;当∠CED=120°时,过点E作EH⊥CD于H,在Rt△CEH中用特殊角的三角函数值可求出CH的长度,从而得出CD和AD的长度.【解答】解:(1)连接CD,如图1所示.∵CE=DE=20cm,∠CED=60°,∴△CED是等边三角形,∴CD=DE=20cm.故答案为:20cm.(2)过点E作EH⊥CD于点H,如图2所示.根据题意得:AB=BC=CD,当∠CED=60°时,AD=3CD=60cm;当∠CED=120°时,∠CEH=60°,CH=HD,在Rt△CEH中,sin∠CEH=,∴CH=20sin60°=20×=10(cm),∴CD=20(cm),∴AD=3×20=60≈103.8(cm),∴103.8﹣60=43.8(cm),即点A向左移动了43.8cm.故答案为:43.8cm.【点评】本题考查了等边三角形的判定及性质、解直角三角形以及特殊角的三角函数值,解题的关键:(1)找出△CED为等边三角形;(2)在Rt△CEH中利用特殊角的三角函数值求边的长度.本题属于中档题,难度不大,本题与现实生活联系紧密,是数学知识应用到实际的一个很好的案例.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:.【考点】特殊角的三角函数值;零指数幂;二次根式的混合运算.【专题】计算题.【分析】本题涉及绝对值、二次根式化简、零指数幂、特殊角的三角函数值四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:,=,=.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式、绝对值等考点的运算.18.如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC.证明:AC=BD.【考点】全等三角形的判定与性质.【分析】要使AC=BD,可以证明△ACB≌△BDA或者△ACO≌△BDO从而得到结论.【解答】解:添加条件例举:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明:(1)如果添加条件是AD=BC时,∵BC=AD,∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(2)如果添加条件是OC=OD时,∵∠1=∠2∴OA=OB∴OA+OD=OB+OD∴BC=AD又∵∠2=∠1,AB=BA在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(3)如果添加条件是∠C=∠D时,∵∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(4)如果添加条件是∠CAO=∠DBC时,∵∠1=∠2,∴∠CAO+∠1=∠DBC+∠2,∴∠CAB=∠DBA,又∵AB=BA,∠2=∠1,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD.故答案为:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC.【点评】本题考查了全等三角形的判定及性质;判定两个三角形全等的方法有:SSS,SAS,ASA,AAS,本题已知一边一角,所以可以寻找夹这个角的另外一边或者是另外两个角.19.如图,在方格网中已知格点△ABC和点O.(1)画△A′B′C′和△ABC关于点O成中心对称;(2)请在方格网中标出所有使以点A、O、C′、D为顶点的四边形是平行四边形的D点.【考点】作图-旋转变换;平行四边形的判定.【专题】作图题.【分析】(1)根据中心对称的作法,找出对称点,即可画出图形,(2)根据平行四边形的判定,画出使以点A、O、C′、D为顶点的四边形是平行四边形的点即可.【解答】解:(1)画△A′B′C′和△ABC关于点O成中心对称的图形如下:(2)根据题意画图如下:【点评】此题考查了作图﹣旋转变换,用到的知识点是旋转、中心对称、平行四边形的判定,关键是掌握中心对称的作法,作平行四边形时注意画出所有符合要求的图形.20.电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(2019•扬州)如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.(1)求证:DE∥BC;(2)若AF=CE,求线段BC的长度.【考点】切线的性质;弧长的计算.【专题】几何综合题.【分析】(1)要证明DE∥BC,可证明∠EDA=∠B,由弧DE的长度为4π,可以求得∠DOE的度数,再根据切线的性质可求得∠EDA的度数,即可证明结论.(2)根据90°的圆周角对的弦是直径,可以求得EF,的长度,借用勾股定理求得AE与CF的长度,即可得到答案.【解答】解:(1)证明:连接OD、OE,∵AD是⊙O的切线,∴OD⊥AB,∴∠ODA=90°,又∵弧DE的长度为4π,∴,∴n=60,∴△ODE是等边三角形,∴∠ODE=60°,∴∠EDA=30°,∴∠B=∠EDA,∴DE∥BC.(2)连接FD,∵DE∥BC,∴∠DEF=∠C=90°,∴FD是⊙0的直径,由(1)得:∠EFD=∠EOD=30°,FD=24,∴EF=,又∵∠EDA=30°,DE=12,∴AE=,又∵AF=CE,∴AE=CF,∴CA=AE+EF+CF=20,又∵,∴BC=60.【点评】本题考查了勾股定理以及圆的性质的综合应用,解答本题的关键在于90°的圆周角对的弦是直径这一性质的灵活运用.22.我市某风景区门票价格如图所示,百姓旅行社有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为120人,乙团队人数不超过50人.设甲团队人数为x人,如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的函数关系式,并写出自变量x 的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可节约多少元.【考点】一次函数的应用.【分析】(1)由甲团队人数为x人,乙团队人数不超过50人,可得出关于x的一元一次不等式,解不等式可得出x的取值范围,结合门票价与人数的关系分段考虑,由总钱数=甲团队购票钱数+乙团队购票钱数得出函数关系式;(2)由甲团队人数不超过100人,选定所用W关于x的函数解析式,由一次函数的单调性结合x 的取值范围可得出W的最大值,用其减去甲乙团队合作购票所需钱数即可得出结论.【解答】解:(1)∵甲团队人数为x人,乙团队人数不超过50人,∴120﹣x≤50,解得:x≥70.①当70≤x≤100时,W=70x+80(120﹣x)=﹣10x+9600;②当100<x<120时,W=60x+80(120﹣x)=﹣20x+9600.综上所述,W=.(2)∵甲团队人数不超过100人,∴x≤100,W=﹣10x+9600,∵70≤x≤100,W随x的增大而减少,∴x=70时,W取最大值,最大值=﹣10×70+9600=8900(元),若两团联合购票需120×60=7200(元),∴最多可节约8900﹣7200=1700(元).答:甲、乙两团队联合购票比分别购票最多可节约1700元钱.【点评】本题考查了解一元一次不等式以及一次函数的性质,解题的关键:(1)根据x的取值范围结合门票价与人数的关系分段寻找函数的解析式;(2)利用一次函数的单调性求取最值.本题属于中档题,难度不大,(1)需根据已知条件寻找x的取值范围;(2)需根据一次函数的单调性求极值.23.操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的纸片进行如下设计:说明:方案一:图形中的圆过点A、B、C;方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点纸片利用率=×100%发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.你认为小明的这个发现是否正确,请说明理由.(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.说明:方案三中的每条边均过其中两个正方形的顶点.【考点】相似三角形的判定与性质;几何体的展开图;勾股定理;圆周角定理.【专题】几何综合题;压轴题;数形结合.【分析】(1)连接AC、BC、AB,由AC=BC=,AB=,根据勾股定理的逆定理,即可求得∠BAC=90°,又由90°的圆周角所对的弦是直径,则可证得AB为该圆的直径;(2)首先证得△ADE≌△EHF与△ADE∽△ACB,即可求得AD与BC的长,求得△ABC的面积,即可求得该方案纸片利用率;(3)利用方案(2)的方法,分析求解即可求得答案.【解答】解:发现:(1)小明的这个发现正确.理由:解法一:如图一:连接AC、BC、AB,∵AC=BC=,AB=2∴AC2+BC2=AB2,∴∠BCA=90°,∴AB为该圆的直径.解法二:如图二:连接AC、BC、AB.易证△AMC≌△BNC,∴∠ACM=∠CBN.又∵∠BCN+∠CBN=90°,∴∠BCN+∠ACM=90°,即∠BCA=90°,∴AB为该圆的直径.(2)如图三:∵DE=FH,DE∥FH,∴∠AED=∠EFH,∵∠ADE=∠EHF=90°,∴△ADE≌△EHF(ASA),∴AD=EH=1.∵DE∥BC,∴△ADE∽△ACB,∴=,∴=,∴BC=8,∴S△ACB=16.∴该方案纸片利用率=×100%=×100%=37.5%;探究:(3)过点C作CD⊥EF于D,过点G作GH∥AC,交BC于点H,设AP=a,∵PQ∥EK,易得△APQ∽△KQE,△CEF是等腰三角形,△GHL是等腰三角形,∴AP:AQ=QK:EK=1:2,∴AQ=2a,PQ=a,∴EQ=5a,∵EC:ED=QE:QK,∴EC=a,则PG=5a+a=a,GL=a,∴GH=a,∵,解得:GB=a,∴AB=a,AC=a,∴S△ABC=×AB×AC=a2,=6×5a2=30a2,S展开图面积∴该方案纸片利用率=×100%=×100%=49.86%.【点评】此题考查了圆周角的性质,相似三角形与全等三角形的判定与性质,勾股定理的逆定理等知识.此题综合性很强,难度较大,解题时要注意数形结合思想的应用.24.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时,求线段OD的长;(3)在(2)的条件下:①连接DF,求tan∠FDE的值;②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)利用待定系数法求得即可;(2)根据C的纵坐标求得F的坐标,然后通过△OCD≌△HDE,得出DH=OC=3,即可求得OD的长;(3)①先确定C、D、E、F四点共圆,根据圆周角定理求得∠ECF=∠EDF,由于tan∠ECF===,即可求得tan∠FDE=;②连接CE,得出△CDE是等腰直角三角形,得出∠CED=45°,过D点作DG1∥CE,交直线l于G1,过D点作DG2⊥CE,交直线l于G2,则∠EDG1=45°,∠EDG2=45°,求得直线CE的解析式为y=﹣x+3,即可设出直线DG1的解析式为y=﹣x+m,直线DG2的解析式为y=2x+n,把D的坐标代入即可求得m、n,从而求得解析式,进而求得G的坐标.【解答】解:(1)如图1,∵抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,∴,解得.∴抛物线解析式为y=﹣x2+x+3;(2)如图2,∵点F恰好在抛物线上,C(0,3),∴F的纵坐标为3,把y=3代入y=﹣x2+x+3得,3=﹣x2+x+3;解得x=0或x=4,∴F(4,3)∴OH=4,∵∠CDE=90°,∴∠ODC+∠EDH=90°,∴∠OCD=∠EDH,在△OCD和△HDE中,,∴△OCD≌△HDE(AAS),∴DH=OC=3,∴OD=4﹣3=1;(3)①如图3,连接CE,△OCD≌△HDE,∴HE=OD=1,∵BF=OC=3,∴EF=3﹣1=2,∵∠CDE=∠CFE=90°,∴C、D、E、F四点共圆,∴∠ECF=∠EDF,在RT△CEF中,∵CF=OH=4,∴tan∠ECF===,∴tan∠FDE=;②如图4连接CE,∵CD=DE,∠CDE=90°,∴∠CED=45°,过D点作DG1∥CE,交直线l于G1,过D点作DG2⊥CE,交直线l于G2,则∠EDG1=45°,∠EDG2=45°∵EH=1,OH=4,∴E(4,1),∵C(0,3),∴直线CE的解析式为y=﹣x+3,设直线DG1的解析式为y=﹣x+m,∵D(1,0),∴0=﹣×1+m,解得m=,∴直线DG1的解析式为y=﹣x+,当x=4时,y=﹣+=﹣,∴G1(4,﹣);设直线DG2的解析式为y=2x+n,∵D(1,0),∴0=2×1+n,解得n=﹣2,∴直线DG2的解析式为y=2x﹣2,当x=4时,y=2×4﹣2=6,∴G2(4,6);综上,在直线l上,是否存在点G,使∠EDG=45°,点G的坐标为(4,﹣)或(4,6).【点评】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,三角形全等的判定和性质,等腰直角三角形的性质,平行线的性质等,数形结合思想的应用是解题的关键.。
2019年浙江省衢州市中考数学第三次联合测评试卷附解析
2019年浙江省衢州市中考数学第三次联合测评试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30,测得岸边点D 的俯角为45,C D B ,,在同一水平线上,又知河宽CD 为50米,则山高AB 是( ) A .50米 B .25米 C .25(31)+米 D .75米2.物体的影子在正东方向,则太阳在物体的( ) A .正东方向B .正南方向C .正西方向D .正北方向3.在△ABC 与'''C B A ∆中,有下列条件:①''''C B BC B A AB =;⑵''''C A ACC B BC =;③∠A =∠'A ;④∠C =∠'C .如果从中任取两个条件组成一组,那么能判断△ABC ∽'''C B A ∆的共有( ) A .1组 B .2组 C .3组 D .4组4.正方形内有一点A ,到各边的距离从小到大依次是1、2、3、4,则正方形的周长是( ) A .10 B .20C .24D .255.顺次连结菱形的各边中点所得到的四边形是 ( ) A .平行四边形 B .菱形 C .矩形 D .正方形6.如果1x 与2x 的平均数是6,那么11x +与23x +的平均数是( ) A .4B .5C .6D .87.下列说法错误的是( )A .三个角都相等的三角形是等边三角形B .有两个角是60°的三角形是等边三角形C .有一个角是60°的等腰三角形是等边三角形D .有两个角相等的等腰三角形是等边三角形8. 如图所示,将△ABC 沿着XY 方向平移一定的距离就得到△MNL ,则下列结论中正确的是( )①AM ∥BN ;②AM=BN ;③BC=ML ;④∠ACB=∠MNL A .1个B .2个C .3个D .4个9.关于一条线段,下列判断正确的是( ) A .只有一个端点B .有两个端点C .有两个以上端点D .没有端点10.在样本12,8,14,6,10,13,15,9,11,16,8,12,14,9,13,5,8,11,7,10中,频率是0.3的组的范围是( )A .4.5~7.5B .7.5~10.5C .10.5~13.5D .13.5~16.5二、填空题11.已知二次函数222c x x y ++-=的对称轴和x 轴相交于点(0,m )则m 的值为__________.12.若y 是关于x 的反比例函数,当x=-3 时,y=4,则y 关于x 的函数解析式为 . 13.如图,已知点E 在面积为4的平行四边形ABCD 的边上运动,若ABE △的面积为1,则点E 的准确位置是 . 14.已知221y x x =--,则yx= . 15.正方体有 个顶点,经过每个顶点有 条棱,这些棱的位置关系是 ,数量关系是 .16.已知3a x-1b y+1与-12a 2-yb x是同类项,则x-y-1=______. 217.箱子中有6个红球和2个白球,它们除颜色外都相同.摇匀后,若随意摸出一球,摸到红球的概率是_____ _.18.3227xy z -的次数是 ,系数是 .19.观察下列等式9-1=8;16-4=12;25 -9= 16;36--16=20;…这些等式反映出自然数间的某种规律,设n(n ≥1)表示自然数,用关于 n 的等式表示 这个规律为 .20.根据“二十四点”游戏规则,3,4,—6,10每个数用且只能用一次,用有理数的混合运算方法(加、减、乖、除、乘方)写出一个算式:_______ ______________,使其结果等于24.三、解答题21.如图,P 为正比例函数x y 23=图象上的一个动点,⊙P 的半径为3,设点P 的坐标为(x ,y ).(1)求⊙P 与直线2=x 相切时点P 的坐标.(2)请直接写出⊙P 与直线2=x 相交、相离时x 的取值范围.22.为了解某初中学生的体能情况,•抽取若干名学生在单位时间内进行引体向上测试,将所得数据整理后,画出频数分布直方图(如图),•图中从左到右依次为第1,2,3,4,5组.(1)求抽取了多少名学生参加测试.(2)处于哪个次数段的学生数最多(答出是第几组即可)?(3)若次数在5次(含5次)以上为达标,求这次测试的达标率.23.某农技站为了研究某种玉米的产量,从地里抽取20株玉米,称得玉米的产量如下(单位:kg)0.25 0.14 0.15 0.16 0.16 0.19 0.20 0.13 0.17 0.25 0.24 0.21 0.20 0.18 0.21 0.17 0.14 0.21 0.16 0.20(1)这个样本的平均产量为 kg.(2)列出样本的频数分布表,画出频数分布直方图.=+(k、b为常数,且k≠0)的图象经过点A(3,-2)和点B,其中点`B是直24.一次函数) y kx b线21y x =+和4y x =-+的交点,求这个一次函数的解析式,并画出其函数图象.25.在一次数学活动课中组织同学测量旗杆的高度,第一组l0名同学测得旗杆的高度如下(单位:m):20.0,19.9,19.8,20.0,21.1,20.2,20.0,20.0,24.6,35.6. 求旗杆高度的平均数,中位数,众数各是多少?26.一枚质量均匀的正方体骰子,六个面分别标有 1、2、3、4、5、6,连续投掷两次. 用列表法或画树状图法表示出朝上的面上的数字所有可能出现的结果.27.化简: (1)21211x x x ++- (2)1)111(-÷--x xx28.计算: (1)(13x-54xy )·(-15xy ) (2))7()5(22222x y x x xy x ---29.用一块小镜子,放在图中的虚线处,镜面对着图案,再向镜子里面看,你会发现什么?请画出虚线另一边的图案,要求画出的图像应当与你看到的镜子里的图案一样.30.如图①表示某地区2003年12个月中每月的平均气温,图②表示该地区某家庭这年12个月中每月的用电量.根据统计图,请你说出该家庭用电量与气温之间的关系(只要求写出一条信息即可):【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.C4.B5.C6.D7.D8.B9.B10.C二、填空题11. 112.12y x=-13. AD 的中点或CB 的中点14.2115. 8,3,垂直,相等16.17.4318. 4,87-19.22(2)4(1)n n n +-=+20.3×(4-6+10)(答案不惟一)三、解答题 21.(1)过点P 作直线2x =的垂线,垂足为A .当点P 在直线2x =的右侧时,5x =,P (5,152). 当点P 在直线2x =的左侧时,1x =-,P (1-,32-).∴当⊙P 与直线2x =相切时,点P 的坐标为(5,152)或(1-,32-).(2)当15x -<<时,⊙P 与直线2x =相交.当1x <-或5x >时,⊙P 与直线2x =相离.22.(1)100名,(2)第3组,(3)达标率为65%23.(1)0.186;(2)略24.由214y xy x=+⎧⎨=-+⎩,得13xy=⎧⎨=⎩,∴点B(1,3),∴233k bk b-=+⎧⎨=+⎩,解得52112kb⎧=-⎪⎪⎨⎪=⎪⎩,∴这个一次函数的解析式为51122y x=-+.图象略.25.平均数:22.12 m,中位数:20.0 m,众数:20.0 m26.列表法:27.(1)11x-,(2)1.28.(1)-5x2y+12x2y2,(2)-11x3y2+7x2 29.略.30.不唯一,如:气温高或低的月份用电量最大。
2019金衢十二校联考数学参考答案
参考答案一、选择题1-5、CCBBA 6-10、 CACDB二、填空题11、(2)(2)x x x +- 12、80° 13、23 14、(31)n + 15、154 16、(1)1 (2)135,,244 三、解答题17、518、1a a - 0,1a ≠± 19、解:(1)∵∠ABC=∠DEB=45°,∴△BDE 为等腰直角三角形,∴DE=BE=×6=3.答:最短的斜拉索DE 的长为3m ;(2)作AH ⊥BC 于H ,如图2,∵BD=DE=3,∴AB=3BD=5×3=15, 在Rt △ABH 中,∵∠B=45°,∴BH=AH=AB=×15=15,在Rt △ACH 中,∵∠C=30°,∴AC=2AH=30.答:最长的斜拉索AC 的长为30m .20、解:(1)本次调查的学生总人数为24÷40%=60人,扇形统计图中C 所对应扇形的圆心角度数是360°×=90°.故答案为:60、90°;(2)D 类型人数为60×5%=3,则B 类型人数为60﹣(24+15+3)=18,补全条形图如下:(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;(4)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为=.21、解:(1)如图,连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)如图,作OG⊥AE于点G,连接BD,则AG=CG=AC=2,∠OGE=∠E=∠ODE=90°,∴四边形ODEG是矩形,∴OA=OB=OD=CG+CE=2+2=4,∠DOG=90°,∵∠DAE=∠BAD,∠AED=∠ADB=90°,∴△ADE∽△ABD,∴=,即=,∴AD2=48,在Rt△ABD中,BD==4,在Rt△ABD中,∵AB=2BD,∴∠BAD=30°,∴∠BOD=60°,则的长度为=.22、解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,﹣10(46﹣50)2+4000=3840,∴x=46时,w大=答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.23、(1)①证明:如图1中,∵CA=CB,BN=AM,∴CB﹣BN=CA﹣AM即CN=CM,∵∠ACN=∠BCM∴△BCM≌△ACN.②解:如图1中,∵△BCM≌△ACN,∴∠MBC=∠NAC,∵EA=ED,∴∠EAD=∠EDA,∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°﹣90°=90°,∴∠BDE=90°.(2)解:如图2中,当点E在AN的延长线上时,易证:∠CBM=∠ADB=∠CAN,∠ACB=∠CAD,∵EA=ED,∴∠EAD=∠EDA,∴∠CAN+∠CAD=∠BDE+∠ADB,∴∠BDE=∠ACB=α.如图3中,当点E 在NA 的延长线上时, 易证:∠1+∠2=∠CAN +∠DAC , ∵∠2=∠ADM =∠CBD =∠CAN , ∴∠1=∠CAD =∠ACB =α,∴∠BDE =180°﹣α.综上所述,∠BDE =α或180°﹣α. 故答案为α或180°﹣α.(3)解:如图4中,当BN =BC =时,作AK ⊥BC于K .∵AD ∥BC ,∴==,∴AD =,AC =3,易证△ADC 是直角三角形,则四边形ADCK 是矩形,△AKN ≌△DCF , ∴CF =NK =BK ﹣BN =﹣=. 如图5中,当CN =BC =时,作AK ⊥BC 于K ,DH ⊥BC 于H .∵AD ∥BC ,∴==2,∴AD =6,易证△ACD 是直角三角形,由△ACK ∽△CDH ,可得CH =AK =, 由△AKN ≌△DHF ,可得KN =FH =, ∴CF =CH ﹣FH =4.综上所述,CF 的长为或4.24、(1)A ()3,0- B ()1,0 C ((2)14,05O ⎛⎫- ⎪⎝⎭+-(322。
2019金衢十二校联考数学试卷
2019金衢十二校联考数学试题卷(2019.5)考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用开卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑.5.本次考试不得使用计算器.卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分)1.2019的倒数是( ▲ )A . 2019B .2019-C .12019D . 12019- 2.下列运算正确的是( ▲ )A .2233a a -=B .235()a a =C .3a 69a a =D .222(2)4a a = 3.下列图案中,既是中心对称图形又是轴对称图形的是( ▲ )4.已知12x y =⎧⎨=⎩是关于x y ,的二元一次方程3x ay -=的一个解,则a 的值为( ▲ )A .1B .1-C .2D .2-5.把不等式组240,63x x -⎧⎨->≥的解集表示在数轴上,正确的是( ▲ )6.将抛物线y =3x 2的图象先向上平移3个单位,再向右平移4个单位所得的解析式为(▲ )A .y =3(x -3)2+4 B . y =3(x +4)2-3 C .y =3(x -4)2+3 D . y =3(x -4)2-37.如右图,点A ,B ,C 在⊙O 上,已知∠ABC =130°,则∠AOC =( ▲ )A .100°B .110°C .120°D .130°8.设x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两根,则x 12+x 22=( ▲ )A .6B .8C .10D .12 A . B . C . D . B . A . C . D .9.如图,在平行四边形ABCD 中,AB =6,AD =9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG =24 ,则△EFC 的周长为( ▲ )A .11B .10C .9D .810.如图,边长为2的正△ABC 的边BC 在直线l 上,两条距离为1的平行直线a 和b 垂直于直线l ,a 和b 同时向右移动(a 的起始位置在B 点),速度均为每秒1个单位,运动时间为t (秒),直到b 到达C 点停止,在a 和b 向右移动的过程中,记△ABC 夹在a 和b 之间的部分的面积为s ,则s 关于t 的函数图象大致为( ▲ ) A .B . C .D .卷 Ⅱ说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.二、填空题(本题有6小题,每小题4分,共24分)11.分解因式 ▲ .12.如图,直线a ∥b ,∠l=60°,∠2=40°,则∠3= ▲ .13.若一组数据2,-1,0,2,-1,a 的众数为2,则这组数据的平均数为 ▲ .14.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n (n 为正整数)个图案由 ▲ 个▲组成.15.如图,菱形ABCD 的边AD ⊥y 轴,垂足为点E ,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数y =(k ≠0,x >0)的图象同时经过顶点C ,D .若点C 的横坐标为5,BE =3DE ,则k 的值为▲.16.如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =4,动点P 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.过点P 作PD ⊥AC 于点D (点P 不与点A.B 重合),作∠DPQ =60°,边PQ 交射线DC 于点Q .设点P 的运动时间为t 秒.(1)当点Q 与点C 重合时,则t 的值为 ▲ ;(2)当线段PQ 的垂直平分线经过△ABC 一边中点时,则t 的值为 ▲ .=-x x 43三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:2 012cos3022π-⎛⎫+︒-- ⎪⎝⎭;18.先化简:2221121a aa a a a-⎛⎫-÷⎪+++⎝⎭,再选取一个合适的a的值代入.19.某桥(如图1)的设计灵感来源于兰花,采用蝴蝶兰斜拉桥方案,该斜拉桥的部分截面图如图2所示,索塔AB和斜拉索(图中只画出最短的斜拉索DE和最长的斜拉索AC)均在同一水平面内,BC在水平桥面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.(1)求最短的斜拉索DE的长;(2)求最长的斜拉索AC的长.20.“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.21.如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求的长度.(结果保留π)22.“东阳木雕”名扬天下,某网店专门销售某种品牌的木雕笔筒,成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天木雕笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该木雕笔筒销售单价的范围(直接写出答案......). 23.已知:△ABC 是等腰三角形,CA =CB ,0°<∠ACB ≤90°.点M 在边AC 上,点N 在边BC 上(点M 、点N 不与所在线段端点重合),BN =AM ,连接AN ,BM ,射线AG ∥BC ,延长BM 交射线AG 于点D ,点E 在直线AN 上,且AE =DE .(1)如图,当∠ACB =90°时①求证:△BCM ≌△ACN ;②求∠BDE 的度数;(2)当∠ACB =α,其它条件不变时,∠BDE 的度数是(用含α的代数式表示)(3)若△ABC 是等边三角形,AB =3,点N 是BC 边上的三等分点,直线ED 与直线BC 交于点F , 请求出线段CF 的长.24.抛物线2y x x =+x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C ,点D 是该抛物线的顶点.(1)求A 、B 、C 三点的坐标;(2)如图2,点P 是直线AC 上方抛物线上一点,PF ⊥x 轴于点F ,PF 与线段AC 交于点E ;将线段OB 沿x 轴左右平移,线段OB 的对应线段是O 1B 1,当PE 的值最大时,求四边形PO 1B 1C 周长取最小值时对应的点O 1的坐标;(3)如图3,点H 是线段AB 的中点,连接CH ,将△OBC 沿直线CH 翻折至△O 2B 2C 的位置,再将△O 2B 2C 绕点B 2旋转一周,在旋转过程中,点O 2,C 的对应点分别是点O 3,C 1,直线O 3C 1分别与直线AC ,x 轴交于点M ,N .那么,在△O 2B 2C 的整个旋转过程中,是否存在恰当的位置,使△AMN 是以MN 为腰的等腰三角形?若存在,请求出所有符合条件的线段O 2M 的长;若不存在,请说明理由.。
金华市十二校联考数学试题卷(含评分标准)
2019金衢十二校联考数学试题卷(2019.5)考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用开卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑.5.本次考试不得使用计算器.卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分) 1.2019的倒数是( ▲ )A . 2019B .2019-C .12019D . 12019-2.下列运算正确的是( ▲ )A .2233a a -=B .235()a a = C .3a 69a a = D .222(2)4a a =3.下列图案中,既是中心对称图形又是轴对称图形的是( ▲ ) 4.已知12x y =⎧⎨=⎩是关于x y ,的二元一次方程3x ay -=的一个解,则a 的值为( ▲ ) A .1 B .1- C .2 D .2- 5.把不等式组240,63x x -⎧⎨->≥的解集表示在数轴上,正确的是( ▲ )6.将抛物线y =3x 2的图象先向上平移3个单位,再向右平移4个单位所得的解析式为(▲ ) A .y =3(x -3)2+4 B . y =3(x +4)2-3 C .y =3(x -4)2+3 D . y =3(x -4)2-3 7.如右图,点A ,B ,C 在⊙O 上,已知∠ABC =130°,则∠AOC =( ▲ ) A .100° B .110° C .120° D .130° 8.设x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两根,则x 12+x 22=( ▲ )A .6B .8C .10D .12A .B .C .D .B .A .C .D .9.如图,在平行四边形ABCD 中,AB =6,AD =9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG =24 ,则△EFC 的周长为( ▲ ) A .11 B .10 C .9 D .8 10.如图,边长为2的正△ABC 的边BC 在直线l 上,两条距离为1的平行直线a 和b 垂直于直线l ,a 和b 同时向右移动(a 的起始位置在B 点),速度均为每秒1个单位,运动时间为t (秒),直到b 到达C 点停止,在a 和b 向右移动的过程中,记△ABC 夹在a 和b 之间的部分的面积为s ,则s 关于t 的函数图象大致为( ▲ )A .B .C .D .卷 Ⅱ说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.二、填空题(本题有6小题,每小题4分,共24分) 11.分解因式 ▲ .12.如图,直线a ∥b ,∠l=60°,∠2=40°,则∠3= ▲ .13.若一组数据2,-1,0,2,-1,a 的众数为2,则这组数据的平均数为 ▲ .14.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n (n 为正整数)个图案由 ▲ 个▲组成.15.如图,菱形ABCD 的边AD ⊥y 轴,垂足为点E ,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数y =(k ≠0,x >0)的图象同时经过顶点C ,D .若点C 的横坐标为5,BE =3DE ,则k 的值为▲.16.如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =4,动点P 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.过点P 作PD ⊥AC 于点D (点P 不与点A.B 重合),作∠DPQ =60°,边PQ 交射线DC 于点Q .设点P 的运动时间为t 秒.(1)当点Q 与点C 重合时,则t 的值为 ▲ ; (2)当线段PQ 的垂直平分线经过△ABC 一边中点时,则t 的 值为 ▲ .=-x x 43三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:2 012cos3022π-⎛⎫+︒-- ⎪⎝⎭;18.先化简:2221121a aa a a a-⎛⎫-÷⎪+++⎝⎭,再选取一个合适的a的值代入.19.某桥(如图1)的设计灵感来源于兰花,采用蝴蝶兰斜拉桥方案,该斜拉桥的部分截面图如图2所示,索塔AB和斜拉索(图中只画出最短的斜拉索DE和最长的斜拉索AC)均在同一水平面内,BC在水平桥面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.(1)求最短的斜拉索DE的长;(2)求最长的斜拉索AC的长.20.“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.21.如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求的长度.(结果保留π)22.“东阳木雕”名扬天下,某网店专门销售某种品牌的木雕笔筒,成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天木雕笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该木雕笔筒销售单价的范围(直接写出答案......). 23.已知:△ABC 是等腰三角形,CA =CB ,0°<∠ACB ≤90°.点M 在边AC 上,点N 在边BC 上(点M 、点N 不与所在线段端点重合),BN =AM ,连接AN ,BM ,射线AG ∥BC ,延长BM 交射线AG 于点D ,点E 在直线AN 上,且AE =DE .(1)如图,当∠ACB =90°时 ①求证:△BCM ≌△ACN ; ②求∠BDE 的度数;(2)当∠ACB =α,其它条件不 变时,∠BDE 的度数是 (用含α的代数式表示)(3)若△ABC 是等边三角形,AB =3,点N 是BC 边上的三等分点,直线ED 与直线BC 交于点F ,请求出线段CF 的长.24.抛物线2y x x =+x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C ,点D 是该抛物线的顶点.(1)求A 、B 、C 三点的坐标;(2)如图2,点P 是直线AC 上方抛物线上一点,PF ⊥x 轴于点F ,PF 与线段AC 交于点E ;将线段OB 沿x 轴左右平移,线段OB 的对应线段是O 1B 1,当PE 的值最大时,求四边形PO 1B 1C 周长取最小值时对应的点O 1的坐标;(3)如图3,点H 是线段AB 的中点,连接CH ,将△OBC 沿直线CH 翻折至△O 2B 2C 的位置,再将△O 2B 2C 绕点B 2旋转一周,在旋转过程中,点O 2,C 的对应点分别是点O 3,C 1,直线O 3C 1分别与直线AC ,x 轴交于点M ,N .那么,在△O 2B 2C 的整个旋转过程中,是否存在恰当的位置,使△AMN 是以MN 为腰的等腰三角形?若存在,请求出所有符合条件的线段O 2M 的长;若不存在,请说明理由.参考答案一、选择题1-5、CCBBA 6-10、 CACDB 二、填空题11、(2)(2)x x x +- 12、80° 13、23 14、(31)n + 15、15416、(1)1 (2)135,,244三、解答题17、5 18、1aa - 0,1a ≠± 19、解:(1)∵∠ABC=∠DEB=45°,∴△BDE 为等腰直角三角形, ∴DE=BE=×6=3.答:最短的斜拉索DE 的长为3m ;(2)作AH ⊥BC 于H ,如图2, ∵BD=DE=3,∴AB=3BD=5×3=15,在Rt △ABH 中,∵∠B=45°, ∴BH=AH=AB=×15=15,在Rt △ACH 中,∵∠C=30°, ∴AC=2AH=30.答:最长的斜拉索AC 的长为30m .20、解:(1)本次调查的学生总人数为24÷40%=60人,扇形统计图中C 所对应扇形的圆心角度数是360°×=90°.故答案为:60、90°;(2)D 类型人数为60×5%=3,则B 类型人数为60﹣(24+15+3)=18,补全条形图如下:(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;(4)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为=.21、解:(1)如图,连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)如图,作OG⊥AE于点G,连接BD,则AG=CG=AC=2,∠OGE=∠E=∠ODE=90°,∴四边形ODEG是矩形,∴OA=OB=OD=CG+CE=2+2=4,∠DOG=90°,∵∠DAE=∠BAD,∠AED=∠ADB=90°,∴△ADE∽△ABD,∴=,即=,∴AD2=48,在Rt△ABD中,BD==4,在Rt△ABD中,∵AB=2BD,∴∠BAD=30°,∴∠BOD=60°,则的长度为=.22、解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,﹣10(46﹣50)2+4000=3840,∴x=46时,w大=答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.23、(1)①证明:如图1中,∵CA=CB,BN=AM,∴CB﹣BN=CA﹣AM即CN=CM,∵∠ACN=∠BCM∴△BCM≌△ACN.②解:如图1中,∵△BCM≌△ACN,∴∠MBC=∠NAC,∵EA=ED,∴∠EAD=∠EDA,∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°﹣90°=90°,∴∠BDE=90°.(2)解:如图2中,当点E在AN的延长线上时,易证:∠CBM=∠ADB=∠CAN,∠ACB=∠CAD,∵EA=ED,∴∠EAD=∠EDA,∴∠CAN+∠CAD=∠BDE+∠ADB,∴∠BDE=∠ACB=α.如图3中,当点E在NA的延长线上时,易证:∠1+∠2=∠CAN+∠DAC,∵∠2=∠ADM=∠CBD=∠CAN,∴∠1=∠CAD=∠ACB=α,∴∠BDE =180°﹣α.综上所述,∠BDE =α或180°﹣α. 故答案为α或180°﹣α.(3)解:如图4中,当BN =BC =时,作AK ⊥BC 于K .∵AD ∥BC , ∴==,∴AD =,AC =3,易证△ADC 是直角三角形,则四边形ADCK是矩形,△AKN ≌△DCF , ∴CF =NK =BK ﹣BN =﹣=.如图5中,当CN =BC =时,作AK ⊥BC 于K ,DH ⊥BC于H .∵AD ∥BC ,∴==2,∴AD =6,易证△ACD 是直角三角形,由△ACK ∽△CDH ,可得CH =AK =,由△AKN ≌△DHF ,可得KN =FH =,∴CF =CH ﹣FH =4.综上所述,CF 的长为或4.24、(1)A ()3,0- B ()1,0 C ( (2)14,05O ⎛⎫-⎪⎝⎭(322+-。
专题01二次函数背景下的动点问题探究(解析版)
备战2019年中考数学压轴题之二次函数专题1二次函数背景下的动点问题探究【方法综述】动点是常见的综合问题中的构成要件,通过点的运动命题者可以构造各种问题情景。
动点的呈现方式从动点个数往往有单动点或双动点,从运动呈现方式分为无速度动点和有速度动点,从动点的引起的变化分为单个动点变化和以动点驱动的图形运动。
【典例示范】类型一常规单动点问题例(广东省深圳市)己知二次函数+奸3的图象分别与x轴交于点A(3,0),C(-1,0),与y 轴交于点月.点Q为二次函数图象的顶点.(1)如图①所示,求此二次函数的关系式:(2)如图②所示,在x轴上取一动点P(m,0),且过点F作x轴的垂线分别交二次函数图象、线段.ID..4B于点。
、F.£.求证:EF=EP:(3)在图①中,若R'hy轴上的一个动点,连接.弑,则^BR-AR的最小值(直接写出结果).【答案】(1)尸x*x+3:(2)见解析:(3)气?【解析】解:(1)将A(3.0),C(・L0)代入y=ax2-bx+3.得:(9a+3b+3=0做徂(a=-1(a-h+3=O'解”.I Z>=2'..•此二次函数的关系式为y=-x?+2x+3.(2)证明:Vy=-x1 2 3+2x+3=- (x・l)2+4,..•点D的坐标为(1,4).设线段AB所在直线的函数关系式为y=kx-c(蜉0),将A(3,0),C(0-3)代入y=kx+c.得:件史;°’解得:{仁;线段AB所在直线的函数关系式为y-x+3.同理,凹得出:线段AD所在直线的函数关系式为『2x46•.•点P的坐标为(皿0),..•点E的坐标为(in,・m+3),点F的坐标为(m.-2m+6).(3)如图,③,连接BC.过点R作RQ1BC.垂足为Q.VOC=1.OB=3.ABC=V1O・(勾股定理)V ZCBO=ZCBO.ZBOC=ZBQR=90°,△BQRs/XAOB,•.竺=竺即栏=要BC OC v^lO1.\rq=^BR.「•AR+普BR=AR+RQ,..•当A,R.Q共线且垂直AB时,即AR-渔R=AQ时,其值最小. V ZACQ=ZBCO t匕BOC=NAQC,「•△CQAs^COB,.••港BRKR的最小值为譬.故答案为:例2:(2019年广西)如图.抛物线)K.2x.3与x轴交于8两点,与),轴交于点G其对称轴与抛物线相交于点M,与x轴相交于点N,点P是线段MVE的一个动点,连接CF,过点F作PE±CP交x轴于点E.(1)求抛物线的顶点X的坐标:(2)当点E与原点。
2019年浙江省衢州市中考数学试卷(原卷+解析)
浙江省衢州市2019年中考数学试卷(解析版)一、选择题(本题有10小题,每小题3分,共30分)1.在,0,1,-9四个数中,负数是()A. B. 0 C. 1 D. -9 【答案】D【解析】【解答】解:∵-9<0<<1,∴负数是-9.故答案为:D.2.浙江省陆域面积为101800平方千米,其中数据101800用科学记数法表示为()A. 0.1018×105B. 1.018×105C. 0.1018×105D. 1.018×106【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:∵101800=1.018×105.故答案为:B.3.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A B C D【答案】A【考点】简单组合体的三视图【解析】【解答】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为:A.4.下列计算正确的是()A. a6+a6=a12B. a6×a2=a8C. a6÷a2=a3D. (a6)2=a8【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A.∵a6+a6=2a6,故错误,A不符合题意;B.∵a6×a2=a6+2=a8,故正确,B符合题意;C.∵a6÷a2=a6-2=a4,故错误,C不符合题意;D.∵(a6)2=a2×6=a12,故错误,D不符合题意;故答案为:B.5.在一个箱子里放有1个自球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是()A. 1B.C.D.【答案】C【考点】等可能事件的概率【解析】【解答】解:依题可得,箱子中一共有球:1+2=3(个),∴从箱子中任意摸出一个球,是白球的概率P= .故答案为:C.6.二次函数y=(x-1)2+3图象的顶点坐标是()A. (1,3)B. (1,-3)C. (-1,3)D. (-1,-3)【答案】A【考点】二次函数y=a(x-h)^2+k的性质【解析】【解答】解:∵y=(x-1)2+3,∴二次函数图像顶点坐标为:(1,3).故答案为:A.7.“三等分角”大约是在公元前五世纪由古希腊人提出来的。
浙江省金衢十二校2019年联考中考数学二模试卷含答案解析
浙江省金衢十二校2019年联考中考数学二模试卷(解析版)一、选择题(本题有10小题,每小题3分,共30分)1.的倒数等于()A.3 B.﹣3 C.D.2.下列运算中,正确的是()A.x2+x2=x4B.x2÷x=x2C.x•x2=x3D.(﹣2x2)2=﹣4x43.神州7号运行1小时的行程约28 600 000m,用科学记数法可表示为()A.0.286×108m B.2.86×107m C.28.6×106m D.2.86×105m4.下列手机软件图标中,属于中心对称的是()A.B.C.D.5.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为()A.10°B.15°C.20°D.25°6.已知三角形的一边长是3,三角形的另两条边长分别是关于x的方程x2﹣4x+2=0的两个根,则此三角形的周长为()A.10 B.8 C.7 D.57.若点(x0,y0)在函数y=(x<0)的图象上,且x0y0=﹣2,则它的图象大致是()A.B.C.D.8.利用平方根去根号可以构造一个整系数方程.例如:x=+1时,移项得x﹣1=,两边平方得(x﹣1)2=()2,所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述构造方法,当x=时,可以构造出一个整系数方程是()A.4x2+4x+5=0 B.4x2+4x﹣5=0 C.x2+x+1=0 D.x2+x﹣1=09.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km、从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.4km B.(2+)km C.2km D.(4﹣)km10.如图,已知菱形ABCD,AC=8,BD=6,将此菱形绕点A逆时针旋转180°,则该菱形扫过的面积为()A.32πB.32π+24 C.32π+48 D.8π+24二、填空题(本题有6小题,每小题4分,共24分)11.若x+y=﹣2,x﹣y=4,则x2﹣y2=.12.李老师要从包括小明在内的四名班委中,随机抽取1名学生参加比赛,抽取小明的概率是.13.下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2019个梅花图案中,共有个“”图案.14.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,若△PEF 的面积S1=1,则▱ABCD的面积S=.15.如图,正方形ABCD的顶点A,B与正方形EFGH的顶点G,H同在一段抛物线上,且抛物线的顶点同时落在CD和y轴上,正方形边AB与EF同时落在x轴上,若正方形ABCD 的边长为4,则正方形EFGH的边长为.16.如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=4cm,AD=4cm.若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,则移动时间t=.(2)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm).当d<2时,求t的取值范围.三、计算题(本题有8小题,共66分)17.计算:﹣|﹣2|+(1﹣)0﹣9tan30°.18.解不等式组,并写出符合不等式组的整数解.19.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.20.某商场对A、B两款运动鞋的销售情况进行了为期5天的统计,得到了这两款运动鞋每天的销售量及总销售额统计图(如图所示).已知第4天B款运动鞋的销售量是A款的.(1)求第4天B款运动鞋的销售量.(2)这5天期间,B款运动鞋每天销售量的平均数和中位数分别是多少?(3)若在这5天期间两款运动鞋的销售单价保持不变,求第3天的总销售额(销售额=销售单价×销售量).21.已知菱形ABCD,AB=4,∠B=60°,以点D为圆心作⊙D与直线AB相切于点G,连接DG.(1)求证:⊙D与BC所在的直线也相切;(2)若⊙D与CD相交于E,过E作EF⊥AD于H,交⊙D于F,求EF的长.22.某厂家生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD,线段CD 分别表示该产品每千克生产成本y1(单位:元),销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的实际意义.(2)求线段CD所表示的y2与x之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?23.定义:对角线互相垂直的凸四边形叫做“垂直四边形”.(1)理解:如图1,已知四边形ABCD是“垂直四边形”,对角线AC,BD交于点O,AC=8,BD=7,求四边形ABCD的面积.(2)探究:小明对“垂直四边形”ABCD(如图1)进行了深入探究,发现其一组对边的平方和等于另一组对边的平方和.即AB2+CD2=AD2+BC2.你认为他的发现正确吗?试说明理由.(3)应用:①如图2,在△ABC中,∠ACB=90°,AC=6,BC=8,动点P从点A出发沿AB方向以每秒5个单位的速度向点B匀速运动,同时动点Q从点C出发沿CA方向以每秒6个单位的速度向点A匀速运动,运动时间为t秒(0<t<1),连结CP,BQ,PQ.当四边形BCQP 是“垂直四边形”时,求t的值.②如图3,在△ABC中,∠ACB=90°,AB=3AC,分别以AB,AC为边向外作正方形ABDE 和正方形ACFG,连结EG.请直接写出线段EG与BC之间的数量关系.24.在平面直角坐标系中,已知抛物线y=﹣x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),直角顶点B的坐标为(4,﹣1),三角形另一个顶点C在第一象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.①在滑动过程中,线段PQ的长度是否发生变化,若不变,请直接写出PQ的长度,若改变,请说明理由;②若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;③取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.2019年浙江省金衢十二校联考中考数学二模试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.的倒数等于()A.3 B.﹣3 C.D.【分析】根据倒数的定义求解.【解答】解:∵3×=1,∴的倒数等于3.故选A.【点评】主要考查了倒数的定义:两个乘积为1的数互为倒数,0没有倒数.2.下列运算中,正确的是()A.x2+x2=x4B.x2÷x=x2C.x•x2=x3D.(﹣2x2)2=﹣4x4【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂的除法,底数不变指数相减;同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【解答】解:A、应为x2+x2=(1+1)x2=2x2,故本选项错误;B、应为x2÷x=x2﹣1=x,故本选项错误;C、x•x2=x1+2=x3,正确;D、应为(﹣2x2)2=(﹣2)2x2×2=4x4,故本选项错误.故选C.【点评】本题主要考查合并同类项,同底数幂的除法,同底数幂的乘法,积的乘方,熟练掌握运算性质是解题的关键.3.神州7号运行1小时的行程约28 600 000m,用科学记数法可表示为()A.0.286×108m B.2.86×107m C.28.6×106m D.2.86×105m【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:28 600 000m=2.86×107m.故选B.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.4.下列手机软件图标中,属于中心对称的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的定义解答.【解答】解:A、不是中心对称,故此选项错误;B、是轴对称图形,不是中心对称,故此选项错误;C、是中心对称,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:C.【点评】此题主要考查了中心对称图形与轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为()A.10°B.15°C.20°D.25°【分析】根据两直线平行,内错角相等求出∠BCE=∠E=30°,然后求出∠ACE的度数.【解答】解:∵BC∥DE,∴∠BCE=∠E=30°,∴∠ACE=∠ACB﹣∠BCE=45°﹣30°=15°,故选:B.【点评】本题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.6.已知三角形的一边长是3,三角形的另两条边长分别是关于x的方程x2﹣4x+2=0的两个根,则此三角形的周长为()A.10 B.8 C.7 D.5【分析】根据根与系数的关系求出两边的和,即可求出答案.【解答】解:设x2﹣4x+2=0的两个根为x1,x2,则x1+x2=4,∵三角形的一边长是3,三角形的另两条边长分别是关于x的方程x2﹣4x+2=0的两个根,∴此三角形的周长为4+3=7,故选C.【点评】本题考查了解一元二次方程,根与系数的关系的应用,能求出两边的和是解此题的关键.7.若点(x0,y0)在函数y=(x<0)的图象上,且x0y0=﹣2,则它的图象大致是()A.B.C.D.【分析】首先由x0y0=﹣2,得出k的值,然后根据x<0及反比例函数y=的图象性质作答.【解答】解:因为(x0,y0)在函数y=(x<0)的图象上,所以k=x0y0=﹣2<0;又因为x<0,所以图象只在第二象限.故选B.【点评】反比例函数y=的图象是双曲线.当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.解答本题时要注意,x<0时图象只有一个分支.8.利用平方根去根号可以构造一个整系数方程.例如:x=+1时,移项得x﹣1=,两边平方得(x﹣1)2=()2,所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述构造方法,当x=时,可以构造出一个整系数方程是()A.4x2+4x+5=0 B.4x2+4x﹣5=0 C.x2+x+1=0 D.x2+x﹣1=0【分析】利用已知将原式变形,结合完全平方公式得出答案.【解答】解:由题意可得:x=,可变形为:2x=﹣1,则(2x+1)=,故(2x+1)2=6,则可以构造出一个整系数方程是:4x2+4x﹣5=0.故选:B.【点评】此题主要考查了一元二次方程的定义,正确应用完全平方公式是解题关键.9.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km、从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.4km B.(2+)km C.2km D.(4﹣)km【分析】根据题意在CD上取一点E,使BD=DE,进而得出EC=BE=2,再利用勾股定理得出DE的长,即可得出答案.【解答】解:在CD上取一点E,使BD=DE,可得:∠EBD=45°,AD=DC,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC,∵AB=2,∴EC=BE=2,∴BD=ED=,∴DC=2+.故选:B.【点评】此题主要考查了解直角三角形的应用,得出BE=EC=2是解题关键.10.如图,已知菱形ABCD,AC=8,BD=6,将此菱形绕点A逆时针旋转180°,则该菱形扫过的面积为()A.32πB.32π+24 C.32π+48 D.8π+24【分析】根据将此菱形绕点A逆时针旋转180°,则该菱形扫过的面积=以A为圆心AC为半径的半圆面积+菱形面积,由此即可计算.【解答】解:将此菱形绕点A逆时针旋转180°,则该菱形扫过的面积=以A为圆心AC为半径的半圆面积+菱形面积=π82+68=32π+24.故选B.【点评】本题考查扇形面积、菱形的性质、旋转等知识,解题的关键是理解此菱形绕点A 逆时针旋转180°,则该菱形扫过的面积=以A为圆心AC为半径的半圆面积+菱形面积,学会转化的思想,属于中考常考题型.二、填空题(本题有6小题,每小题4分,共24分)11.若x+y=﹣2,x﹣y=4,则x2﹣y2=﹣8.【分析】利用平方差公式对所求代数式进行因式分解,然后把已知条件代入求值即可.【解答】解:∵x+y=﹣2,x﹣y=4,∴x2﹣y2=(x+y)(x﹣y)=﹣2×4=﹣8.故答案为:﹣8.【点评】本题主要考查平方差公式:(1)两个两项式相乘;(2)有一项相同,另一项互为相反数,熟记公式结构是解题的关键.12.李老师要从包括小明在内的四名班委中,随机抽取1名学生参加比赛,抽取小明的概率是.【分析】总共有四种情况,抽到小明是其中之一,利用概率公式进行计算即可.【解答】解:李老师要从包括小明在内的四名班委中,随机抽取1名学生参加比赛,抽取小明的概率是.故答案为.【点评】本题考查了概率计算公式.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2019个梅花图案中,共有504个“”图案.【分析】观察图形可知,这组图案的排列规律是:四个图案一个循环周期,每个周期都有一个,由此计算出第2019个图案经历了几个周期即可解答.【解答】解:∵2019÷4=504,∴有504个,故答案为:504.【点评】此题考查了图形的变化规律,理解题意,得出图案的排列周期规律是解决本题的关键.14.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,若△PEF 的面积S1=1,则▱ABCD的面积S=8.【分析】利用三角形中位线定理得出EF∥BC,EF=BC,再利用相似三角形的判定与性质得出=,进而利用平行四边形的面积求法得出答案.【解答】解:∵E,F分别为PB,PC的中点,∴EF∥BC,EF=BC,∴△PEF∽△PBC,∴=,∴=,∵S1=1,∴S△PBC=4,∵四边形ABCD是平行四边形,∴S▱ABCD=2×4=8.故答案为:8.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质以及三角形中位线定理等知识,得出=是解题关键.15.如图,正方形ABCD的顶点A,B与正方形EFGH的顶点G,H同在一段抛物线上,且抛物线的顶点同时落在CD和y轴上,正方形边AB与EF同时落在x轴上,若正方形ABCD的边长为4,则正方形EFGH的边长为2﹣2.【分析】根据题意得出抛物线解析式,进而表示出G点坐标,再利用2OF=FG,进而求出即可.【解答】解:∵正方形ABCD边长为4,∴顶点坐标为:(0,4),B(2,0),设抛物线解析式为:y=ax2+4,将B点代入得,0=4a+4,解得a=﹣1,∴抛物线解析式为:y=﹣x2+4设G点坐标为:(m,﹣m2+4),则2m=﹣m2+4,整理的:m2+2m﹣4=0,解得:m1=﹣1+,a2=﹣1﹣(不合题意舍去),∴正方形EFGH的边长FG=2m=2﹣2.故答案为:2﹣2.【点评】此题主要考查了二次函数的综合应用以及一元二次方程的解法,根据正方形的性质以及抛物线上点的坐标性质得出等式是解题关键.16.如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=4cm,AD=4cm.若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,则移动时间t=2+.(2)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围2﹣<t<2+2.【分析】(1)连接OO1,并延长交l2于点E,过点O1作O1F⊥l1于点F,当点O1,A1,C1恰好在同一直线上时,AA1﹣A1F=O1E;(2)当d=2时,⊙O与直线AC相切,且直线AC与⊙O相切有两种情况,①当直线AC 在⊙O的左边时,AA1+A1F=O1E;②当直线AC在⊙O的右边,AA1﹣A1F=O1E.【解答】解:(1)连接OO1,并延长交l2于点E,如图1,过点O1作O1F⊥l1于点F,∴由题意知:OO1=3t,AA1=4t,∵tan∠DAC=,∴∠DAC=60°,∴tan∠O1A1F=,∴A1F=,∵AA1﹣A1F=O1E,∴4t﹣=3t+2,∴t=2+;(2)当d=2时,此时⊙O与直线AC相切,当直线AC在⊙O的左边,如图2,由(1)可知,A1F=,∴AA1+A1F=O1E,∴4t+=3t+2,∴t=2﹣,当直线AC在⊙O的右边,如图3,此时,A1F=2∴AA1﹣A1F=O1E,∴4t﹣2=3t+2,∴t=2+2,综上所述,当d<2时,t的取值范围为:2﹣<t<2+2.故答案为:(1)2+;(2)2﹣<t<2+2.【点评】本题考查圆的综合问题,涉及切线的性质,锐角三角函数,解方程等知识,内容较为综合,考查学生灵活运用知识的能力.三、计算题(本题有8小题,共66分)17.计算:﹣|﹣2|+(1﹣)0﹣9tan30°.【分析】原式第一项化为最简二次根式,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣2+1﹣9×=﹣﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式组,并写出符合不等式组的整数解.【分析】分别解两个不等式得到x<4和x≥﹣1,利用大于小的小于大的取中间可确定不等式组的解集,然后写出不等式组的整数解即可.【解答】解:,解①得x<2,解②得x≥﹣1,所以不等式组的解集为﹣1≤x<2,所以不等式组的整数解为﹣1,0,1.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.19.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.【分析】(1)直接利用平移的性质得出平移后对应点位置进而得出答案;(2)利用轴对称图形的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;点B1坐标为:(﹣2,﹣1);(2)如图所示:△A2B2C2,即为所求,点C2的坐标为:(1,1).【点评】此题主要考查了轴对称变换以及平移变换,根据图形的性质得出对应点位置是解题关键.20.某商场对A、B两款运动鞋的销售情况进行了为期5天的统计,得到了这两款运动鞋每天的销售量及总销售额统计图(如图所示).已知第4天B款运动鞋的销售量是A款的.(1)求第4天B款运动鞋的销售量.(2)这5天期间,B款运动鞋每天销售量的平均数和中位数分别是多少?(3)若在这5天期间两款运动鞋的销售单价保持不变,求第3天的总销售额(销售额=销售单价×销售量).【分析】(1)由统计图可知第4天A款运动鞋销量是6双且B款运动鞋的销售量是A款的可得;(2)根据平均数与中位数定义求解可得;(3)设A款运动鞋的销售单价为x元/双,B款运动鞋的销售单价为x元/双,根据第1天和第5天的总销售额列方程组求出A、B款运动鞋单价,即可得解.【解答】解:(1)6×=4(双).答:第4天B款运动鞋的销售量是4双;(2)B款运动鞋每天销售量的平均数为:=5.8(双),销售量从小到大排列为:3,4,6,7,9,故中位数为6(双);(3)根据题意,设A款运动鞋的销售单价为x元/双,B款运动鞋的销售单价为x元/双,则:,解得:.故第3天的总销售额为11×100+9×200=2900(元).【点评】本题主要考查条形统计图和折线统计图的应用能力及平均数、中位数的计算,根据题意从不同的统计图中获取解题所需的数据是关键.21.已知菱形ABCD,AB=4,∠B=60°,以点D为圆心作⊙D与直线AB相切于点G,连接DG.(1)求证:⊙D与BC所在的直线也相切;(2)若⊙D与CD相交于E,过E作EF⊥AD于H,交⊙D于F,求EF的长.【分析】(1)作DK⊥BC于K,如图,根据切线的性质得DG⊥AB,再根据菱形的性质得BD平分∠ADC,则根据角平分线的性质得DG=DK,然后根据切线的判断定理即可得到⊙D与边BC也相切;(2)根据菱形的性质和垂径定理解答即可.【解答】(1)(1)证明:作DK⊥BC于K,连结BD,如图,∵AB与⊙D相切于点G,∴DG⊥AB,∵四边形ABCD为菱形,∴BD平分∠ADC,而DG⊥AB,DK⊥BC,∴DG=DK,即DK为⊙D的半径∴⊙D与边BC也相切.(2)解:∵在菱形四边形中,CD=AB=4,CD∥AB,∴∠DCK=∠ABC=60°.又∵∠DKC=90°,∴DK=CD=2,∴DE=DK=2.又∵∠ADC=∠ABC=60°,EF⊥AD,∴EH=DE=3,∴EF=2EH=6.【点评】本题主要考查了菱形的性质,切线的判定与性质:圆的切线垂直于经过切点的半径;经过半径的外端且垂直于这条半径的直线是圆的切线,作出恰当的辅助线是解答此题的关键.22.某厂家生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD,线段CD 分别表示该产品每千克生产成本y1(单位:元),销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的实际意义.(2)求线段CD所表示的y2与x之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【分析】(1)点D的横坐标、纵坐标的实际意义:当产量为140kg时,该产品每千克生产成本与销售价相等,都为40元;(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)先求出销售价y2与产量x之间的函数关系,利用:总利润=每千克利润×产量列出有关x的二次函数,求得最值即可.【解答】解:(1)点D的实际意义:当产量为140kg时,该产品每千克生产成本与销售价相等,都为40元.(2)设线段CD所表示的y2与x之间的函数表达式为y2=k1x+b1,∵点(0,124),(140,40)在函数y2=k1x+b1的图象上∴,解得:,∴y2与x之间的函数表达式为y2=﹣x+124(0≤x≤140);(3)设线段AB所表示的y1与x之间的函数表达式为y1=k2x+b2,∵点(0,60),(100,40)在函数y1=k2x+b2的图象上∴,解得:,∴y1与x之间的函数表达式为y1=﹣x+60(0≤x≤100)设产量为x千克时,获得的利润为W元①当0≤x≤100时,W=[(﹣x+124)﹣(﹣x+60)]x=﹣(x﹣80)2+2560,∴当x=80时,W的值最大,最大值为2560元.②当100≤x≤140时,W=[(﹣x+124)﹣40]x=﹣(x﹣70)2+2940由﹣<0知,当x≥70时,W随x的增大而减小∴当x=100时,W的值最大,最大值为2400元.∵2560>2400,∴当该产品的质量为80kg时,获得的利润最大,最大利润为2560元.【点评】本题考查了待定系数法求函数解析式及二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型.23.定义:对角线互相垂直的凸四边形叫做“垂直四边形”.(1)理解:如图1,已知四边形ABCD是“垂直四边形”,对角线AC,BD交于点O,AC=8,BD=7,求四边形ABCD的面积.(2)探究:小明对“垂直四边形”ABCD(如图1)进行了深入探究,发现其一组对边的平方和等于另一组对边的平方和.即AB2+CD2=AD2+BC2.你认为他的发现正确吗?试说明理由.(3)应用:①如图2,在△ABC中,∠ACB=90°,AC=6,BC=8,动点P从点A出发沿AB方向以每秒5个单位的速度向点B匀速运动,同时动点Q从点C出发沿CA方向以每秒6个单位的速度向点A匀速运动,运动时间为t秒(0<t<1),连结CP,BQ,PQ.当四边形BCQP 是“垂直四边形”时,求t的值.②如图3,在△ABC中,∠ACB=90°,AB=3AC,分别以AB,AC为边向外作正方形ABDE 和正方形ACFG,连结EG.请直接写出线段EG与BC之间的数量关系.【分析】(1)由于对角线互相垂直,所以四边形ABCD的面积可化为+的和;(2)由于对角线互相垂直,由勾股定理分别表示出AB2、CD2、AD2、BC2;(3)①过点P作PD⊥AC于点D,构造△PAD∽△BAC后,利用BP2+CQ2=PQ2+BC2列出关于t的方程;②连接BE、CG、BG、CE,证明四边形BCGE是垂直四边形,然后利用其性质“一组对边的平方和等于另一组对边的平方和”,即可得出EG与BC的数量关系.【解答】解:(1)∵四边形ABCD是“垂直四边形”,∴AC⊥BD,∴△ABD的面积为:,△CBD的面积为:,∴四边形ABCD的面积: +=BD(AO+CO)=ACBD=×8×7=28;(2)∵四边形ABCD是“垂直四边形”,∴AC⊥BD.由勾股定理可知:AB2+CD2=(AO2+BO2)+(DO2+CO2),AD2+BC2=(AO2+DO2)+(BO2+CO2),∴AB2+CD2=AD2+BC2;(3)①如图2,过点P作PD⊥AC于点D,由题意知:AP=5t,CQ=6t,∵∠ACB=90°,∴AB==10∵PD∥BC.∴△PAD∽△BAC,∴==,∴==,∴AD=3t,PD=4t,∴DQ=AC﹣AD﹣CQ=6﹣9t,∵四边形BCQP是“垂直四边形”.∴BP2+CQ2=PQ2+BC2,∴(10﹣5t)2+(6t)2=(4t)2+(6﹣9t)2+82,∴解得t=或t=0(舍去),∴当四边形BCQP是“垂直四边形”时,t的值为;②如图3,连接CG、BG、BE、CE,CE与BG交于点O由题意知:EA=BA,AC=AG∠EAB=∠CAG=90°∴∠EAB+∠BAC=∠CAG+∠BAC∴∠EAC=∠BAG在△EAC与△BAG中,∴△EAC≌△BAG(SAS)∴∠CEA=∠GBA∴∠EAB=∠BOE=90°∴四边形BCGE是“垂直四边形”∴BC2+EG2=BE2+CG2,∵AB=3AC,∴EG2=BC2.【点评】本题考查新定义型问题,解题的关键是对新定义的理解,涉及到勾股定理,全等三角形的性质与判定,相似三角形的性质与判定等知识内容,题目较新颖和综合,需要学生将新旧知识联系起来.24.在平面直角坐标系中,已知抛物线y=﹣x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),直角顶点B的坐标为(4,﹣1),三角形另一个顶点C在第一象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.①在滑动过程中,线段PQ的长度是否发生变化,若不变,请直接写出PQ的长度,若改变,请说明理由;②若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;③取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.【分析】(1)把A、B两点坐标代入抛物线解析式解方程组即可解决问题.(2)①不变,直线AC与抛物线的交点就是抛物线顶点P,求出PA的长即可解决问题.②分两种情形:Ⅰ当PQ为直角边时:点M到PQ的距离为2(即为PQ的长),过点B作直线l1∥AC,交抛物线y=﹣x2+2x﹣1于点M,则M为符合条件的点.Ⅱ当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为,如答图1,取AB的中点F,则点F的坐标为(2,﹣1),过点F作直线l2∥AC,交抛物线y=﹣x2+2x﹣1于点M,则M为符合条件的点.③存在最大值,由①知PQ=2为定值,则当NP+BQ取最小值时,有最大值,如答图2,取点B关于AC的对称点B′,当B′、Q、F三点共线时,NP+BQ最小,求出这个最小值即可解决问题.【解答】解:(1)由题意,得点B的坐标为(4,﹣1).∵抛物线过A(0,﹣1),B(4,﹣1)两点,∴,解得:b=2,c=﹣1,∴抛物线的函数表达式为:y=﹣x2+2x﹣1.(2)①不变,PQ=2.②∵A(0,﹣1),C(4,3),∴直线AC的解析式为:y=x﹣1,设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上,∵点P在直线AC上滑动,∴有平移的性质可得,PQ=2=AP0.若△MPQ为等腰直角三角形,则可分为以下两种情况:Ⅰ当PQ为直角边时:点M到PQ的距离为2(即为PQ的长),由A(0,﹣1),B(4,﹣1),P0(2,1)可知,△ABP0为等腰直角三角形,且BP0⊥AC,BP0=2,如答图1,过点B作直线l1∥AC,交抛物线y=﹣x2+2x﹣1于点M,则M为符合条件的点,∴可设直线l1的解析式为:y=x+b1,∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5,∴直线l1的解析式为:y=x﹣5,解方程组,得:,,∴M1(4,﹣1),M2(﹣2,﹣7).Ⅱ当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为,如答图1,取AB的中点F,则点F的坐标为(2,﹣1),由A(0,﹣1),F(2,﹣1),P0(2,1)可知:△AFP0为等腰直角三角形,且点F到直线AC的距离为,过点F作直线l2∥AC,交抛物线y=﹣x2+2x﹣1于点M,则M为符合条件的点,∴可设直线l2的解析式为:y=x+b2,∵F(2,﹣1),∴﹣1=2+b2,解得b1=﹣3,∴直线l2的解析式为:y=x﹣3,解方程组,得:,,∴M3(1+,﹣2+),M4(1﹣,﹣2﹣).综上所述,所有符合条件的点M的坐标为:M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).③存在最大值.理由如下:由①知PQ=2为定值,则当NP+BQ取最小值时,有最大值.如答图2,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q,连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,∴四边形PQFN为平行四边形,∴NP=FQ,∴NP+BQ=FQ+B′P≥FB′==2,∴当B′、Q、F三点共线时,NP+BQ最小,最小值为2,∴的最大值为=.【点评】本题考查二次函数综合题、一次函数、等腰直角三角形的判定和性质、勾股定理、最值问题等知识,解题的关键是把求交点坐标转化为解方程组,构建一次函数是解题的关键,学会把问题转化为我们熟悉的问题,体现了转化的思想,是中考压轴题.。
浙江省金丽衢十二校2018-2019学年高三数学第二次联考试卷
浙江省金丽衢十二校2018-2019学年高三数学第二次联考试卷一、单选题 (共10题;共10分)1.(1分)集合A={x|x2−2x>0},B={x}−3<x<3},则()A.B.C.D.2.(1分)点F1和F2是双曲线y2−x23=1的两个焦点,则|F1F2|=()A.B.2C.D.43.(1分)复数z1=2−i,z2=3+i,则|z1⋅z2|=()A.5B.6C.7D.4.(1分)某几何体的三视图如图所示(图中单位:cm),则该几何体的表面积为()A.B.C.D.5.(1分)已知直线l⊥平面α,直线m∥平面β,则“ α∥β”是“ l⊥m”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(1分)甲和乙两人独立的从五门选修课课程中任选三门进行学习,记两人所选课程相同的门数为ξ,则E(ξ)为()A.1.2B.1.5C.1.8D.27.(1分)函数f(x)=lnx8−x的图像大致为()A.B.C.D.8.(1分)已知a⇀,b⇀,c⇀和d⇀为空间中的4个单位向量,且a⇀+b⇀+c⇀=0,则|a⇀−d⇀|+|b⇀−d⇀|+|c⇀−d⇀|不可能等于()A.3B.C.4D.9.(1分)正三棱锥P−ABC的底面边长为1cm,高为ℎcm,它在六条棱处的六个二面角(侧面与侧面或者侧面与底面)之和记为θ,则在ℎ从小到大的变化过程中,θ的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大10.(1分)数列{a n}满足:a1=1,a n+1=a n+1an,则a2018的值所在区间为()A.B.C.D.二、填空题 (共7题;共11分)11.(2分)《九章算术》第七章“盈不足”中第一题:“今有共买物,人出八,盈三钱;人出七,不足四,问人数物价各几何?”借用我们现在的说法可以表述为:有几个人合买一件物品,每人出8元,则付完钱后还多3元;若每人出7元,则还差4元才够付款.问他们的人数和物品价格?答:一共有人;所合买的物品价格为元.12.(2分)(1−2x)5展开式中x3的系数为;所有项的系数和为.13.(2分)若实数x,y满足约束条件{x+y≥1,x+2y≤2,x≤1,则目标函数Z=2x+3y的最小值为;最大值为.14.(2分)在ΔABC中,角A,B和C所对的边长为a,b和c,面积为13(a2+c2−b2),且∠C为钝角,则tanB=;ca的取值范围是.15.(1分)安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有种.(用数字作答)16.(1分)定义在R上的偶函数f(x)满足:当x>0时有f(x+4)=13f(x),且当0≤x≤4时,f(x)=3|x−3|,若方程f(x)−mx=0恰有三个实根,则m的取值范围是.17.(1分)过点P(1,1)的直线l与椭圆x24+y23=1交于点A和B,且AP⇀=λPB⇀.点Q满足AQ⇀=−λQB⇀,若O为坐标原点,则|OQ|的最小值为.三、解答题 (共5题;共10分)18.(2分)已知函数f(x)=sin2x+√3sinxsin(x+π2 ).(1)(1分)求f(x)的最小正周期;(2)(1分)求函数f(x)在区间[0,23π]上的取值范围.19.(1分)在三棱拄ABC−A1B1C1中,AB⊥侧面BB1C1C,已知BC=1,∠BCC1=π3,AB=C1C=2.(Ⅰ)求证:C1B⊥平面ABC;(Ⅱ)试在棱C1C(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1;(Ⅲ)在(Ⅱ)的条件下,求AE和平面ABC所成角正弦值的大小.20.(2分)数列{a n}的前n项和为S n,a1=1,对任意n∈N∗,有a n+1=2S n+1.(1)(1分)求数列{a n}的通项公式;(2)(1分)若b n=a n+1a n,求数列{log3b n}的前n项和T n.21.(2分)已知抛物线E:y=ax2(a>0)内有一点P(1,3),过P的两条直线l1,l2分别与抛物线E交于A,C和B,D两点,且满足AP⇀=λPC⇀,BP⇀=λPD⇀(λ>0,λ≠1),已知线段AB的中点为M,直线AB的斜率为k.(1)(1分)求证:点M的横坐标为定值;(2)(1分)如果k=2,点M的纵坐标小于3,求ΔPAB的面积的最大值.n(n−lnx),其中n∈N∗,x∈(0,+∞).22.(3分)函数f(x)=√x(1)(1分)若n为定值,求f(x)的最大值;(2)(1分)求证:对任意m∈N∗,有ln1+ln2+ln3+⋯ln(m+1)>2(√m+1−1)2;(3)(1分)若n=2,lna≥1,求证:对任意k>0,直线y=−kx+a与曲线y= f(x)有唯一公共点.答案解析部分1.【答案】B【解析】【解答】解:A={x|x<0,或x>2},B={x|﹣3<x<3};∴A∩B={x|﹣3<x<0,或2<x<3},A∪B=R;∵A∩B≠A,且A∩B≠B,∴B⊈A,A⊈B;即B符合题意.故答案为:B.【分析】通过解不等式求出集合A,根据集合的关系逐一判断即可. 2.【答案】D【解析】【解答】由y2−x 23=1可知a2=1,b2=3所以c2=a2+b2=4,则c=2,2c=4,所以|F1F2|=2c=4.故答案为:D【分析】根据双曲线的标准方程,得到两个焦点坐标,即可求出线段的长度.3.【答案】D【解析】【解答】因为|z1|=|2−i|=√5,|z2|=|3+i|=√10,所以|z1⋅z2|=|z1|⋅|z2|=√5×√10=5√2故答案为:D.【分析】根据复数的乘法运算,得到z1·z2,结合复数的模运算即可求出相应的值.4.【答案】B【解析】【解答】由三视图可知,该几何体的直观图为一个竖立的圆锥和一个倒立的圆锥组成,其表面积为S=2πrl=2×π×1×√2=2√2π,故答案为:B.【分析】根据三视图确定几何体的结构特征,即可求出几何体的表面积.5.【答案】A【解析】【解答】根据已知题意,由于直线l⊥平面α,直线m∥平面β,如果两个平面平行α//β,则必然能满足l⊥m,但是反之,如果l⊥m,则对于平面可能是相交的,故条件能推出结论,但是结论不能推出条件,故答案为:A【分析】根据直线与平面的位置关系,即可确定充分、必要性.6.【答案】C【解析】【解答】由已知得ξ=1,2,3,P(ξ=1)=C53C31C53C53=310, P(ξ=2)=C53C32C21C53C53=35, P(ξ=3)=C53C53C53=110,所以E(ξ)=1×310+2×610+3×110=1.8,故答案为:C【分析】求出随机变量的可能取值及相应的概率,即可求出数学期望. 7.【答案】A【解析】【解答】函数定义域为(0,8),当x→0时,x8−x→0,lnx8−x→−∞,故排除B,D,当x→8时,x8−x→+∞,lnx8−x→+∞,故排除C,故答案为:A.【分析】根据函数的定义域及函数值的变化情况,逐一排除,即可确定函数的大致图象.8.【答案】A【解析】【解答】因为|a⇀−d⇀|+|b⇀−d⇀|+|c⇀−d⇀|≥|a⇀−d⇀+b⇀−d⇀+c⇀−d⇀|=|a⇀+b⇀+c⇀−3d⇀|而a⇀+b⇀+c⇀=0,所以|a⇀−d⇀|+|b⇀−d⇀|+|c⇀−d⇀|≥|−3d⇀|=3因为a⇀,b⇀,c⇀,d⇀是单位向量,且a⇀+b⇀+c⇀=0,所以a⇀−d⇀,b⇀−d⇀,c⇀−d⇀不共线,所以|a⇀−d⇀|+|b⇀−d⇀|+|c⇀−d⇀|>3,故答案为:A.【分析】根据向量的关系,求出|a⇀−d⇀|+|b⇀−d⇀|+|c⇀−d⇀|的最小值,即可确定|a⇀−d⇀|+|b⇀−d⇀|+ |c⇀−d⇀|不可能的取值.9.【答案】D【解析】【解答】当ℎ→0+(比0多一点点),有θ→θ1=3π;当ℎ→+∞,有θ→θ3=5π2;当ℎ刚好使得正三棱锥变为正四面体时,二面角之和记为θ2,则cosθ26=3+3−42×3=13,于是cos θ23=2×(13)2−1=−79>−√32,所以θ23<5π6,即θ2<5π2,所以与θ的变化情况相符合的只有选项D.故答案为:D【分析】根据几何体的结构特征,求出角的余弦值,即可得到角的变化情况. 10.【答案】A【解析】【解答】因为a1=1,所以a n+12=a n2+2+1a n2≤a n2+3an+12≤an2+3≤an−12+3+3…可得:a n+12<a12+3n所以a2018<√a12+3×2017<√10000=100.故答案为:A【分析】根据递推关系式得到数列项之间的关系,解不等式即可确定a2018的值所在区间.11.【答案】7;53【解析】【解答】设共有x人,由题意知8x−3=7x+4,解得x=7,可知商品价格为53元.即共有7人,商品价格为53元.【分析】设共有x人,通过解方程即可求出共有人数和商品价格.12.【答案】-80;-1【解析】【解答】因为T r+1=C5r(−2)r x r,令r=3,T4=−80x3,所以x3的系数为-80,设(1−2x)5=a0+a1x+⋯+a5x5,令x=1,则a0+a1…+a5=−1,所以所有项的系数和为-1.【分析】写出二项展开式的通项,即可求出特定项的系数及所有项的系数之和. 13.【答案】2;【解析】【解答】作出可行域如下:由Z=2x+3y可得y=−23x+z,作出直线y=−23x,平移直线过B(1,0)时,z有最小值z=2+0=2,平移直线过A(1,12)时,z有最大值z=2×1+3×12=72.【分析】作出可行域及目标函数相应的直线,平移该直线即可求出目标函数的最大值和最小值.14.【答案】;【解析】【解答】因为S=12acsinB=13(a2+c2−b2),所以34sinB=a2+c2−b22ac=cosB即tanB=43,因为∠C为钝角,所以sinB=45,cosB=35,由正弦定理知ca=sinCsinA=sin(B+A)sinA=cosB+sinBcosAsinA=35+45cotA因为∠C为钝角,所以A+B<π2,即A<π2−B所以cotA>cot(π2−B)=tanB=43所以ca>35+45×43=53,即ca的取值范围是(53,+∞).【分析】通过面积公式及正弦定理,确定三角形边和角的关系,即可求出相应的值和取值范围. 15.【答案】210【解析】【解答】分两类,(1)每校1人:A63=120;(2)1校1人,1校2人:C32A62=90,不同的分配方案共有120+90=210.故答案为:210【分析】根据加法原理和乘法原理,即可确定不同的分配方案种数.16.【答案】【解析】【解答】因为当0≤x≤4时,f(x)=3|x−3|,设4≤x≤8,则0≤x−4≤4,所以f(x−4)=3|x−4−3|=3|x−7|,又f(x+4)=13f(x),所以f(x)=13f(x−4)=|x−7|,可作出函数y=f(x)在x∈[0,8]上的图象,又函数为偶函数,可得函数在[−8,8]的图象,同时作出直线y=mx,如图:方程f(x)−mx=0恰有三个实根即y=f(x)与y=mx图象有三个交点,当m>0时,由图象可知,当直线y=mx过(8,1),即m=18时有4个交点,当直线y=mx过(4,3),即m=34时有2个交点,当18<m<34时有3个交点,同理可得当m<0时,满足−34<m<−18时,直线y=mx与y=f(x)有3个交点.故填(−34,−18)∪(18,34).【分析】通过函数的性质,作出函数的图象,数形结合即可求出实数m的取值范围. 17.【答案】【解析】【解答】设A(x1,y1),B(x2,y2),Q(m,n)则{x1+λx2=1+λ,x1−λx2=m(1−λ),于是x12−(λx2)2=m(1−λ2),同理y12−(λy2)2=n(1−λ2),于是我们可以得到(x124+y123)+λ2(x224+y223)=(1+λ2)(m4+n3).即m4+n3=1,所以Q点的轨迹是直线,|OQ|min即为原点到直线的距离,所以|OQ|min=1√116+19=125【分析】设出点A 和B 的坐标,根据向量的关系,确定Q 的轨迹是直线,即可求出线段长度的最小值.18.【答案】(1)解: f(x)=sin 2x +√3sinxsin(2x +π2)=1−cos2x 2+√32sin2x =sin(2x −π6)+12所以 T =π(2)解:由 −π2+2kπ≤2x −π6≤π2+2kπ 得 −π6+kπ≤x ≤π3+kπ,k ∈z 所以函数 f(x) 的单调递增区间是 [−π6+kπ,π3+kπ],k ∈z . 由 x ∈[0,2π3] 得 2x −π6∈[−π6,76π] ,所以 sin(2x −π6)∈[−12,1]所以 f(x)∈[0,32] .【解析】【分析】(1)根据正弦和余弦的二倍角公式,结合辅助角公式,得到函数的表达式,即可求出函数的最小正周期;(2)根据正弦函数的单调性,确定函数f (x )的单调区间,即可求出函数f (x )的取值范围.19.【答案】解:(Ⅰ)因为 BC =1 , ∠BCC 1=π3 , C 1C =2 ,所以 BC 1=√3 ,BC 2+BC 12=CC 12 ,所以 BC 1⊥BC 因为 AB ⊥ 侧面 BB 1C 1C , BC 1⊂ 平面 BB 1C 1C ,所以 BC 1⊥AB ,又 BC ∩AB =B , 所以, C 1B ⊥ 平面 ABC(Ⅱ)取 C 1C 的中点 E ,连接 BE , BC =CE =1 , ∠BCC 1=π3 ,等边 ΔBEB 1 中, ∠BEC =π3同理, B 1C 1=C 1E 1=1 , ∠B 1C E 1=2π3,所以 ∠B 1EC 1=π6 ,可得 ∠BEB 1=π2 ,所以EB 1⊥EB因为 AB ⊥ 侧面 BB 1C 1C , EB 1⊂ 平面 BB 1C 1C ,所以 EB 1⊥AB ,且 EB ∩AB =B ,所以 B 1E ⊥ 平面 ABE ,所以;(Ⅲ) AB ⊥ 侧面 BB 1C 1C , AB ⊂ 平面,得平面 BCC 1B 1⊥ 平面 ABC 1 , 过 E 做 BC 1 的垂线交 BC 1 于 F , EF ⊥ 平面 ABC 1连接AF,则∠EAF为所求,因为BC⊥BC1,EF⊥BC1,所以BC∥EF,E为CC1的中点得F为C1B的中点,EF=12,由(2)知AE=√5,所以sin∠EAF=12√5=√510【解析】【分析】根据线面垂直的判定定理,证明直线与平面内两条相交直线垂直即可;(2)根据线面垂直的定义,证明直线与平面垂直,即可说明直线与平面内任何一条直线垂直;(3)通过作垂线得到直线与平面所成的角,通过解三角形求出线面所成角的正弦即可. 20.【答案】(1)解:由a n+1=2S n+1知a n=2S n−1+1(n≥2)两式相减得:a n+1=3a n(n≥2)又a2=2s1+1=2a1+1=3,所以a2a1=3也成立,故a n+1=3a n,n∈N∗即数列{a n}是以1为首项,3为公比的等比数列,所以a n=3n−1(n∈N∗).(2)解:因为log3b n=log3a n+1an=3n−1log33n=n⋅3n−1,所以T n=1×30+2×31+3×32+⋯+n⋅3n−13T n=1×31+2×32+3×33+⋯+(n−1)⋅3n−1+n⋅3n两式相减得:−2Tn =(12−n)⋅3n−12,所以T n=(n2−14)3n+14.【解析】【分析】(1)根据等比数列的定义确定数列{a n}是以1为首项,3为公比的等比数列,即可求出的通项公式;(2)根据对数恒等式,结合错位相消求和法,即可求出前n项和T n.21.【答案】(1)证明:设CD中点为N,则由AP⇀=λPC⇀,BP⇀=λPD⇀可推得AB⇀=λDC⇀,MP⇀=λPN⇀,这说明AB⇀∥CD⇀,且M,P和N三点共线.对A,B使用点差法,可得y A−y B=a(x A−x B)(x A+x B),即k AB=2a⋅x M.同理k CD=2a⋅x N.于是x M=x N,即MN⊥x轴,所以x M=x P=1为定值.(2)解:由k=2得到a=1,设y M=t∈(1,3),|PM|=3−t,联立{y=x2,y−t=2(x−1),得x2−2x+2−t=0,所以|x A−x B|=2√t−1, |AB|=√1+k2|x A−x B|=√5⋅2√t−1,根据点到直线的距离公式知P到AB的距离为d=|t−3|√5,于是SΔPAB=(3−t)√t−1,令x= √t−1,x∈(0,2),则S=−x3+2x,S′=−3x2+2,令S′=0得x=√63,当x∈(0,√63)时,S′>0,函数为增函数,当x∈(√63,2)时,S′<0,函数为减函数,故当x=√63,即t=53时,SΔPAB有最大值4√69.【解析】【分析】(1)根据向量之间的关系,采用点差法,即可确定点M的坐标为定值;(2)根据点斜式写出直线方程,将直线方程与抛物线方程联立,通过弦长公式和点到直线的距离,表示出三角形的面积,求导数,利用导数研究函数的单调性,即可求出三角形面积的最大值.22.【答案】(1)解:n为定值,故f′(x)=1n x 1n−1(n−lnx)+√xn(−1x)=−√xn lnxx(x>0),令f′(x)=0,得x=1,当0<x<1时,f′(x)>0,当x>1时,f′(x)<0,所以函数在(0,1)上单调递增,在(1,+∞)上单调递减,所以当x=1时,函数有极大值f(1),也是最大值,所以f(x)max=f(1)=n.(2)解:由前一问可知lnx≥n−n√xn,取n=2得lnx≥2−2√x,于是∑m+1 i=1lni≥∑(2−2i)m+1i=2>2m−4∑m+1i=21√i+√i−1=2m−4∑(√i−√i−1)m+1i=2=2m−4√m+1+4=2(√m+1−1)2.(3)解:要证明当a≥e,k>0时,关于x的方程√x(2−lnx)=−kx+a有唯一解,令t=√x,即证明g(t)=kt2+2t−2tlnt−a有唯一零点,先证明g(t)存在零点,再利用导数得函数单调性,极值确定函数只有唯一零点.我们先证三个引理【引理1】x(1−lnx)≤1(由第1问取n=1即可)【引理2】lnx≥1−1x(由【引理1】变形得到)【引理3】lnx≤x−1(可直接证明也可由【引理2推出】证明:lnx=−ln 1x≤−(1−11x)=x−1.下面我们先证明函数g(t)存在零点,先由【引理2】得到:g(t)≤kt2+2t−2t(1−1t)−a=kt2+2−a.令t=√a−2k,可知g(t)≤0.再由【引理3】得到lnx<x,于是g(t)=t(kt−4ln√t)+(2t−a)>t√t(k√t−4)(2t−a).令t>16k2,且t>a2,可知g(t)>0.由连续性可知该函数一定存在零点.下面我们开始证明函数g(t)最多只能有一个零点.我们有g′(t)=2kt−2lnt=2t(k−lnt t).令ℎ(t)=lntt ,则ℎ′(t)=1−lntt2,则ℎ(t)在(0,e)递增,在(e,+∞)递减,即ℎ(t)max=1e.当k≥1e时,有g′(t)≥0恒成立,g(t)在(0,+∞)上递增,所以最多一个零点.当0<k<1e时,令g′(t1)=g′(t2)=0,t1<e<t2,即lnt1=kt1,于是g(t1)=t1lnt1+2t1−2t1lnt1−a=t1(2−lnt1)−a.再令t1=eT(0<T<1),由【引理1】可以得到g(t1)=eT(1−lnT)−a<e×1−a≤0.因此函数g(t)在(0,t1)递增,(t1,t2)递减,(t2,+∞)递增,t=t1时,g(t)有极大值但其极大值g(t1)<0,所以最多只有一个零点.综上,当k>0,a≥e时,函数y=f(x)与y=−kx+a的图像有唯一交点.【解析】【分析】(1)求导数,利用导数确定函数的单调性,结合单调性求出函数的最大值即可;(2)由(1)可得不等式lnx≥n−n√xn,结合放缩法,即可证明相应的不等式;(3)构造函数,求导数,利用导数确定函数的单调性,求出函数的极值,根据函数零点与函数图象交点横坐标的关系,数形结合,即可证明相应的结论.。
浙江省金丽衢十二校2019届高三第二次联考数学试题Word版含解析
浙江省金丽衢十二校2019届高三第二次联考数学试题一、选择题(共10小题,每小题4分,满分40分)1. 设集合M={x| },N={x|0<x<2},则M∪N=()A. [0,1)B. (0,1)C. [0,2)D. (0,2)【答案】C【解析】分析:解分式不等式得集合M,再根据集合的并集定义得结果.详解:因为,所以,因此M∪N= [0,2),选C.点睛:集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.2. 若双曲线的两条渐近线相互垂直,则它的离心率是()A. B. C. 2 D.【答案】A【解析】双曲线两条渐近线互相垂直, ,计算得出.即为等轴双曲线.因此,本题正确答案是.3. 某四面体的三视图如图所示,正视图、左视图都是腰长为2的等腰直角三角形,俯视图是边长为2的正方形,则此四面体的最大面的面积是()A. 2B.C.D. 4【答案】C【解析】分析:先还原几何体,再根据锥体体积公式得结果.详解:因为几何体为一个四面体,六条棱长分别为,所以四面体的四个面的面积分别为因此四面体的最大面的面积是,选C.点睛:1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.4. 函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象如图,则φ=()A. B. C. D.【答案】B【解析】分析:先根据图确定半个周期,得ω,再根据最大值求φ.详解:因为,所以因为|φ|<因此,选B.点睛:已知函数的图象求解析式(1). (2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.5. 已知(﹣1+3i )(2﹣i )=4+3i (其中i 是虚数单位,是z 的共轭复数),则z 的虚部为( ) A. 1 B. ﹣1 C. i D. ﹣i 【答案】A【解析】分析:根据复数除法得,再得z ,根据复数概念得结果. 详解:因为(﹣1+3i )(2﹣i )=4+3i , 所以因此,虚部为1,选A............................... 6. 已知正项数列{a n }中,a 1=1,a 2=2,(n ≥2),则a 6=( )A.B. 4C. 16D. 45【答案】B【解析】分析:先根据等差数列定义及其通项公式得,再根据正项数列条件得a n ,即得a 6.详解:因为,所以所以公差等差数列,,因为,因此,选B.点睛:证明或判断为等差数列的方法:(1)用定义证明:为常数);(2)用等差中项证明:;(3)通项法:为的一次函数;(4)前项和法:7. 用0,1,2,3,4可以组成的无重复数字的能被3整除的三位数的个数是()A. 20B. 24C. 36D. 48【答案】A【解析】分析:先根据能被3整除的三位数字组成为012,024,123,234四种情况,再分类讨论排列数,最后相加得结果.详解:因为能被3整除的三位数字组成为012,024,123,234四种情况,所以对应排列数分别为因此一共有,选A.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.8. 如果存在正实数a,使得f(x+a)为奇函数,f(x﹣a)为偶函数,我们称函数f(x)为“Θ函数”.给出下列四个函数:①f(x)=sinx ②f(x)=cosx ③f(x)=sinx﹣cosx ④f(x)=sin2(x+).其中“Θ函数”的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】分析:根据奇偶性求出对应a的值,若存在就是“Θ函数”.详解:若f(x)=sinx是“Θ函数”,则,若f(x)=cosx是“Θ函数”,则,若f(x)=sinx﹣cosx =是“Θ函数”,则,若f(x)= sin2(x+)是“Θ函数”,则,因此“Θ函数”的个数为2,选B.点睛:函数是奇函数;函数是偶函数;函数是奇函数;函数是偶函数.9. 设a>b>0,当取得最小值c时,函数f(x)=|x﹣a|+|x﹣b|+|x﹣c|的最小值为()A. 3B.C. 5D.【答案】A【解析】分析:根据基本不等式求最值c,并确定a,b取值,再根据绝对值定义去掉绝对值,结合分段函数图像确定最小值.详解:因为,所以当且仅当时取等号,此时因为,所以因此当时,f(x)取最小值为3.选A.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10. 如图,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=0.6,则当E、F移动时,下列结论中错误的是()A. AE∥平面C1BDB. 四面体ACEF的体积为定值C. 三棱锥A﹣BEF的体积为定值D. 异面直线AF、BE所成的角为定值【答案】D【解析】分析:先证面AB1D1平行面C1BD,即得AE∥平面C1BD,通过计算四面体ACEF的体积、三棱锥A﹣BEF的体积以及异面直线AF、BE所成的角确定命题的真假.详解:因为B1D1// BD,C1D// AB1,所以面AB1D1平行面C1BD,因此AE∥平面C1BD,所以A正确,因为为定值,所以B正确,因为为定值,所以C正确,当E,F交换后,异面直线AF、BE所成的角发生变化,因此D错,选D.点睛:立体几何中定值或定位置问题,其基本思想方法是以算代证,或以证代证,即从条件出发,计算所求体积或证线面平行与垂直关系,得到结果为定值或位置关系为平行或垂直.二、填空题(共7小题,每小题6分,满分36分)11. 若f(x)为偶函数,当x≥0时,f(x)=x(1﹣x),则当x<0时,f(x)=_____;方程[5f(x)﹣1][f(x)+5]=0的实根个数为_____.【答案】 (1). (2). 6【解析】分析:根据偶函数性质求对偶区间解析式,结合函数图像与确定交点个数.详解:因为f(x)为偶函数,所以当x<0时,f(x)=,因为[5f(x)﹣1][f(x)+5]=0,所以研究与交点个数,如图:因此有6个交点.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在的展开式中,常数项为_____;系数最大的项是_____.【答案】 (1). (2).【解析】分析:先根据二项展开式通项公式得项的次数与系数,再根据次数为零,算出系数得常数项,根据系数大小比较,解得系数最大的项.详解:因为,所以由得常数项为因为系数最大的项系数为正,所以只需比较大小因此r=2时系数最大,项是,点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.13. 已知向量满足的夹角为,则 =_____;与的夹角为_____.【答案】 (1). (2).【解析】分析:根据向量模的性质以及向量数量积求以及||,再根据向量数量积求向量夹角.详解:因为的夹角为,所以,,所以因此.点睛:求平面向量夹角方法:一是夹角公式;二是坐标公式;三是几何方法,从图形判断角的大小.14. 函数f(x)=x2+acosx+bx,非空数集A={x|f(x)=0},B={x|f(f(x))=0},已知A=B,则参数a的所有取值构成的集合为_____;参数b的所有取值构成的集合为_____.【答案】 (1). (2).【解析】分析:根据条件A=B,得f(0)=0,解得a;再根据f(-b)=0,得f(x)=-b无解或仅有零根,解得b的取值范围.详解:因为A=B,所以f(x)=0成立时f(f(x))=0也成立,因此f(0)=0,,即参数a的所有取值构成的集合为,因为f(x)=x2+ bx,所以由f(x)=0得当-b=0时, f(f(x))= x4=0,满足A=B,当时,由f(f(x))=0得f(x)=0或f(x)=-b,因此f(x)=-b无解或仅有零根,因为,即方程无解,,综上b的取值范围为点睛:已知函数有零点或方程有解求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的方程或不等式,再通过解方程或不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数交点或函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.15. 已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α∥β④若m∥l,则α⊥β其中正确的命题的序号是_____.(注:把你认为正确的命题的序号都填上).【答案】①④【解析】分析:因为m⊥α,则m垂直与α平行所有平面中的直线;若m∥l,则β过垂直于α一条垂线,所以α⊥β;对于不成立的可以举反例说明.详解:因为m⊥α,则m垂直与α平行所有平面中的直线;所以若m⊥α,l⊂β,α∥β,则m⊥l;若m∥l,m⊥α,l⊂β,则β过垂直于α一条垂线,所以α⊥β;若α⊥β,m⊥α,l⊂β,则m,l位置关系不定;若m⊥l,m⊥α,l⊂β,则α,β也可相交,因此命题的序号是①④.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.16. 从放有标号为1、2、4、8、16、32的6个球的口袋里随机取出3个球(例如2、4、32),然后将3个球中标号最大和最小的球放回口袋(例子中放回2和32,留下4),则留在手中的球的标号的数学期望是_____.【答案】7.2【解析】分析:先确定随机变量的取法2,4,8,16,再分别求对应概率,最后根据数学期望公式求期望.详解:因为留在手中的球的标号可以为2,4,8,16,所以,,,因此点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,第二步是“探求概率”,第三步是“写分布列”,第四步是“求期望值”.17. 设直线2x+y﹣3=0与抛物线Γ:y2=8x交于A,B两点,过A,B的圆与抛物线Γ交于另外两点C,D,则直线CD的斜率k=_____.【答案】2【解析】分析:根据圆以及抛物线的对称性可得直线AB与直线CD关于x轴对称,所以斜率和相反,即得结果.详解:因为根据圆以及抛物线的对称性可得直线AB与直线CD关于x轴对称,所以直线AB与直线CD斜率和相反,因为直线AB斜率为-2,所以直线CD斜率为2.点睛:研究解几问题,一是注重几何性,利用对称性减少参数;二是巧记一些结论,简约思维、简化运算,如利用关于原点对称,为椭圆上三点).三、解答题(共5小题,满分74分)18. 已知函数f(x)=sin(x+)+sin(x﹣)+cosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)在△ABC中,f(A)=,△ABC的面积为,AB=,求BC的长.【答案】(1)(2)2或【解析】分析:(1)先根据两角和与差正弦公式展开,再根据配角公式得基本三角函数形式,最后根据正弦函数周期公式求结果,(2)先求A,再根据面积公式求不,最后根据余弦定理求a.详解:解:函数f(x)=sin(x+)+sin(x﹣)+cosx.化简可得:f(x)=2sinxcos+cosx=sinx+cosx=2sin(x+)(Ⅰ)f(x)的最小正周期T=;(Ⅱ)由f(A)=,即2sin(A+)=,∴sin(A+)=,∵0<A<π,∴<(A+).可得:(A+)=或则A=或A=.当则A=时,△ABC的面积为=bcsinA,AB=c=,∴b=AC=2余弦定理:BC2=22+(2)2﹣2××cos,解得:BC=2当A=时,△ABC的面积为=bc,AB=c=,∴b=AC=1直角三角形性质可得:BC2=22+(2)2,解得:BC=.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.19. 四棱锥S﹣ABCD的底面是边长为1的正方形,则棱SB垂直于底面.(Ⅰ)求证:平面SBD⊥平面SAC;(Ⅱ)若SA与平面SCD所成角为30°,求SB的长.【答案】(1)见解析(2)1【解析】分析:(1)由正方形性质得AC⊥BD,由已知线面垂直关系得AC⊥SB,由线面垂直判定定理得AC⊥面SBD,再根据面面垂直判定定理得结论,(2)先将四棱锥补成正四棱柱ABCD ﹣A′SC′D′,作AE⊥A′D于E,则根据线面垂直判定定理得AE⊥面SCD,即得∠ASE即为SA与平面SCD所成角的平面角,最后根据解三角形得结果.详解:证明:(Ⅰ)连结AC,BD,∵四边形ABCD是正方形,∴AC⊥BD,∵SB⊥底面ABCD,∴AC⊥SB,∴AC⊥面SBD,又由AC⊂面SAC,∴面SAC⊥面SBD.解:(Ⅱ)将四棱锥补成正四棱柱ABCD﹣A′SC′D′,连结A′D,作AE⊥A′D于E,连结SE,由SA′∥CD,知平面SCD即为平面SCDA′,∵CD⊥侧面ADD′A′,∴CD⊥AE,又AE⊥A′D,∴AE⊥面SCD,∴∠ASE即为SA与平面SCD所成角的平面角,设SB=x,在直角△ABS中,SA=,在直角△DAA′中,∴=,解得x=1,∴SB的长为1.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.20. 已知函数f(x)=a x﹣xlna(a>0且a≠1).(Ⅰ)求函数f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数f(x)单调区间;(Ⅲ)若对任意x1,x2∈R,有|f(sinx1)﹣f(sinx2)|≤e﹣2(e是自然对数的底数),求实数a的取值范围.【答案】(1)y=1(2)在[0,+∞)递增,在(﹣∞,0]递减;(3)【解析】分析:(1)先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程,(2)根据a与1大小分类讨论导函数符号,再根据导函数符号确定单调区间,(3)先将恒成立问题转化为对应函数最值,再根据单调性确定函数最值,通过构造函数解不等式,可得实数a的取值范围.详解:解:(Ⅰ)∵f′(x)=a x lna﹣lna=(a x﹣1)lna,∴f′(0)=0,又∵f(0)=1,∴所求切线方程是:y=1;(Ⅱ)当a>1时,令f′(x)>0,解得:x>0,令f′(x)<0,解得:x<0,当0<a<1时,令f′(x)>0,解得:x>0,令f′(x)<0,解得:x<0,故对∀a>0,且a≠1,f(x)在[0,+∞)递增,在(﹣∞,0]递减;(Ⅲ)记f(x)在x∈[﹣1,1]上的最大值是M,最小值是m,要使对任意x1,x2∈R,有|f(sinx1)﹣f(sinx2)|≤e﹣2,只需M﹣m≤e﹣2即可,根据f(x)的单调性可知,m=f(0)=1,M为f(﹣1),f(1)的最大值,f(﹣1)=+lna,f(1)=a﹣lna,f(﹣1)﹣f(1)=﹣a+2lna,令g(x)=﹣x+2lnx,g′(x)=﹣≤0,故g(x)在(0,+∞)递减,又∵g(1)=0,∴a>1时,g(a)<g(1)=0,即f(﹣1)<f(1),此时M=a﹣lna,要使M﹣m≤e﹣2,即有a﹣lna﹣1≤e﹣2,再令h(x)=x﹣lnx,由h′(x)=可知h(x)在(1,+∞)递增,不等式a﹣lna≤e﹣1可化为h(a)≤h(e),解得:1<a≤e,当0<a<1时,g(a)>g(1)=0,即f(﹣1)>f(1),此时M=+lna,要使M﹣m≤e﹣2,即有+lna﹣1≤e﹣2,再令l(x)=+lnx,由l′(x)=,可知l(x)在(0,1)递减,不等式+lna≤e﹣1可化为l(a)≤l(),解得:≤a<1,综上,a的范围是[,1)∪(1,e].点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法, 使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.21. 已知椭圆T的焦点在x轴上,一个顶点为A(﹣5,0),其右焦点到直线3x﹣4y+3=0的距离为3.(Ⅰ)求椭圆T的方程;(Ⅱ)设椭圆T的长轴为AA',P为椭圆上除A和A'外任意一点,引AQ⊥AP,A'Q⊥A'P,AQ 和A'Q的交点为Q,求点Q的轨迹方程.【答案】(1)(2)【解析】分析:(1)根据条件列关于a,b,c方程组,解方程组可得a,b,(2)交轨法求轨迹,先设P,Q坐标,根据垂直关系得斜率乘积为-1,两式对应相乘,利用椭圆方程化简可得Q点轨迹方程,最后根据根据纯粹性去掉两点.详解:解:(Ⅰ)设椭圆的方程为:(a>b>0),设椭圆的右焦点为(c,0),则=3,解得:c=4,由题意的焦点在x轴上,则a=5,b2=a2﹣c2=3,∴椭圆的标准方程:;(Ⅱ)设P(5cosθ,3sinθ),A'(5,0),θ≠kπ,k∈Z,设Q(x,y),x≠5且x≠﹣5,于是,×=﹣1,×=﹣1,两式相乘:×=1,化简,所求轨迹方程为:,x≠5且x≠﹣5,∴点Q的轨迹方程,x≠5且x≠﹣5.点睛:求轨迹方程,一般有以下方法,一是定义法,动点满足圆或圆锥曲线定义;二是直接法,化简条件即得;三是转移法,除所求动点外,一般还有已知轨迹的动点,寻求两者关系是关键;四是交轨法或参数法,如何消去参数是解题关键,且需注意消参过程中的等价性.22. 已知数列{an}的首项a1=1,前n项和为Sn,且an+1=Sn+n+1(n∈N+)(Ⅰ)求证数列{an+1}为等比数列;(Ⅱ)设数列{ }的前n项和为Tn,求证:.(Ⅲ)设函数,令,求数列{bn}的通项公式,并判断其单调性.【答案】(1)见解析(2)见解析(3)见解析【解析】分析:(1)先根据和项与通项关系得项之间递推关系,再利用等比数列定义证数列{an+1}为等比数列;(2)先根据等比数列通项公式求an +1,解得an,再放缩利用等比数列求和公式得结论,(3)先求导数,得,再利用错位相减法求其中部分和,即得,最后根据相邻两项差的关系判断数列单调性,这时可利用数学归纳法证明.详解:解:(Ⅰ)证明:an+1=Sn+n+1,可得当n≥2时,an =Sn﹣1+n,两式相减可得,an+1﹣an=an+1,可得an+1+1=2(an+1),n≥2,由a1+1=2,a2+1=4,可得数列{an+1}为公比为2的等比数列;(Ⅱ)an+1=2•2n﹣1=2n,即有an=2n﹣1,当n=1时,T1=1,当n=2时,T2=1+,当n=3时,T3=1++=显然有;n>3时,Tn=1++++…+<1+++(++…+)=1+++<1+++=1++<1++=;(Ⅲ)设函数,令,f′n(x)=an +2an﹣1x+…+na1x n﹣1,则bn=f′n(1)=an +2an﹣1+…+na1=(2n﹣1)+2(2n﹣1﹣1)+3(2n﹣2﹣1)+…+n(21﹣1)=2n+2•2n﹣1+3•2n﹣2+…+n•21﹣.令A=2n+2•2n﹣1+3•2n﹣2+…+n•21,A=2n﹣1+2•2n﹣2+3•2n﹣3+…+n•20,两式相减可得,A=2n+2n﹣1+2n﹣2+…+2﹣n=2n+1﹣n﹣2,即A=2n+2﹣2n﹣4,bn=2n+2﹣2n﹣4﹣=2n+2﹣n2﹣n﹣4,{bn}递增,只需证明当n为自然数时,bn+1﹣bn=2n+2﹣n﹣3>0.当n=1时,2n+2﹣n﹣3=4>0,假设n=k时,2k+2﹣k﹣3>0,则当n=k+1时,2k+3﹣k﹣4=(2k+2﹣k﹣3)+(2k+2﹣1)>0恒成立,综上可得,当n为一切自然数时,bn+1>bn.即数列{bn}为递增数列.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.。
_浙江省金衢十二校2019届数学中考模拟试卷(3月)_
第1页,总28页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………浙江省金衢十二校2019届数学中考模拟试卷(3月)考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)A . -3B .C . ±3D .2. 如图,抛物线交x 轴于点A ,B ,交y 轴于点C ,当△ABC 纸片上的点C 沿着此抛物线运动时,则△ABC 纸片随之也跟着水平移动,设纸片上BC 的中点M 坐标为(m ,n),在此运动过程中,n 与m 的关系式是( )A . n= (m - )2-B . n= (m - )2+C . n= (m - )2-D . n= (m - )2-3. 如图,以AB 为直径的半△O 上有两点D ,E ,ED 与BA 的延长线交于点C ,且有DC=OE ,若△EOB=72°,则△C 的度数是( )答案第2页,总28页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 24°B . 30°C . 36°D . 60°4. 下列计算正确的是( )A . a 2 a 3=a 6B . (2a 2)3=6a 6C . 2a -a=2D . (a 2)3=a 65. 有20张背面完全一样的卡片,其中8张正面印有双龙洞风光,7张正面印有仙华山风光,5张正面印有方岩风光,把这些卡片的背面朝上搅匀,从中随机抽出一张卡片,抽中正面是双龙洞风光卡片的概率是( ) A . B . C . D .6. 将圆心角为90°,面积为4πcm 2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为( ) A . 1cm B . 2cm C . 3cm D . 4cm7. 由5个大小相同的正方体组成的几何体如图所示,它的左视图是( )A .B .C .D .8. 根据国家统计局最新数据,2019年1至2月份全国房地产开发投资12000亿元,同比增长11.6%.数12000用科学计数法表示为( )A . 1.2×103B . 12×103C . 1.2×104D . 0.12×1059. 近期气候温暖湿润很适合春笋生长,某农林基地预计2019年春笋产量将由2017年的45万吨提升到50万吨,设每年春笋产量年平均增长率为 ,则可列方程为( ) A .B .C .D .10. 如图,已知△ABC(AB <BC <AC),用尺规在AC 上确定一点P ,使PB+PC =AC ,则下列选项中,一定符合要求的作图痕迹是( )第3页,总28页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .B .C .D .第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共5题)1. 分解因式:x 3-x= .2. 某景区在“春节”假期间,每天接待的游客人数统计如下:(单位:万人)农历 十二月三十 正月初一 正月初二 正月初三 正月初四 正月初五 正月初六人数 1.22.3 2 2.3 1.2 2.3 0.6 表中表示人数的一组数据中,众数和中位数分别是 和 .3. 已知关于x 的方程x 2﹣2x+2k =0的一个根是1,则k = .4. 如图,已知半△O 的直径AB 为3,弦AC 与弦BD 交于点E ,OD△AC ,垂足为点F ,AC=BD ,则弦AC 的长为 .5. 如图,在矩形纸片ABCD 中,AB=4,点G 是BC 边上一点,且BG=5(BG<CG).将矩形纸片沿过点G 的折痕GE 折叠,使点B 恰好落在AD 边上,折痕与矩形纸片ABCD 的边相交于点E ,则折痕GE 的长为 .答案第4页,总28页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人 得分二、计算题(共2题)6. 计算: .7. 解分式方程: .评卷人 得分三、综合题(共7题)8. 如图,已知 与一次函数 的图像相交于点 , .(1)求 和一次函数解析式;(2)求 的面积. 9. 如图,四边形 内接于,对角线 为的直径,过点 作交的延长线于点 , 为的中点,连结,.(1)求 的度数.(2)求证:是 的切线.第5页,总28页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)若时,求的值.10. 某校教职工为庆祝“建国70周年”开展学习强国知识竞赛,本次知识竞赛分为甲、乙、丙三组进行,下面两幅统计图反映了教师参加学习强国知识竞赛的报名情况,请你根据图中的信息回答下列问题:(1)该校教师报名参加本次学习强国知识竞赛的总人数为人,并补全频数分布直方图;(2)该校教师报名参加丙组的人数所占圆心角度数是;(3)根据实际情况,需从甲组抽调部分教师到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名教师到丙组?11. 正方形ABCD 的边长为4,以B 为原点建立如图1平面直角坐标系中,E 是边CD 上的一个动点,F 是线段AE 上一点,将线段EF 绕点E 顺时针旋转90°得到EF'.(1)如图2,当E 是CD 中点, 时,求点F'的坐标.答案第6页,总28页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)如图1,若 ,且F',D ,B 在同一直线上时,求DE 的长.(3)如图3,将正边形ABCD 改为矩形,AD=4,AB=2,其他条件不变,若,且F',D ,B 在同一直线上时,求DE 的长(请用含n 的代数式表示)12. 如图,在平面直角坐标系中,点A ,点B 分别是x 轴正半轴和直线y=x(x>0)上的动点,以AB 为边在右侧作矩形ABCD ,AB=2,BC=1.(1)若OA=时,则△ABO 的面积是 ;(2)若点A 在x 轴正半轴移动时,则CO 的最大距离是 . 13. 有一只拉杆式旅行箱(如图),其侧面示意图如图所示,已知箱体长 ,拉杆 的伸长距离最大时可达 ,点 , , 在同一直线上,在箱体底端装有圆形的滚筒 , 与水平地面切于点 ,在拉杆伸长至最大的情况下,当点 距离水平地面 时,点 到水平面的距离 为 .设.(1)求 的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在 端拉旅行箱时,为, .求此时拉杆 的伸长距离(精确到 ,参考数据:,第7页,总28页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………,)14. 如图1,抛物线y 1=x 2tx -t+2与x 轴交于点A ,B(点A 在点B 的左侧),过y 轴上的点C(0,4),直线y 2=kx+3交x 轴,y 轴于点M 、N ,且ON=OC.(1)求出t 与k 的值.(2)抛物线的对称轴交x 轴于点D ,在x 轴上方的对称轴上找一点E ,使△BDE 与△AOC 相似,求出DE 的长.(3)如图2,过抛物线上动点G 作GH△x 轴于点H ,交直线y 2=kx+3于点Q ,若点Q′是点Q 关于直线MG 的对称点,是否存在点G(不与点C 重合),使点Q′落在y 轴上?,若存在,请直接写出点G 的横坐标;若不存在,请说明理由.参数答案1.【答案】:【解释】:答案第8页,总28页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………2.【答案】:【解释】:3.【答案】:【解释】:第9页,总28页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………4.【答案】:【解释】: 5.【答案】: 【解释】:6.【答案】:答案第10页,总28页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:7.【答案】:【解释】:8.【答案】:【解释】:9.【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】: 10.【答案】:【解释】: 【答案】: 【解释】: 【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○……………………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】: 【解释】: 【答案】: 【解释】: (1)【答案】:(2)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:(2)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:(3)【答案】:【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:(2)【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○……………………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○……………………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省金衢十二校2019年初三联考数学试卷命题学校:浦江县实验中学 武阳中学一、选择题(本题有10小题,每小题3分,共30分)1.如果+30 m 表示向东走30 m ,那么向西走40 m 表示为( ▲ )A . +30 mB .-30 mC . +40 mD .-40 m2.中国航母辽宁舰(如题3图)是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为( ▲ ) A .6.75×103吨 B . 6.75×104吨C .6.75×105吨D .6.75×10-4吨3. 已知点A (a ,2019)与点A ′(-2019,b )是关于原点O 的对称点,则b a +的值为( ▲ ) A . 1 B . 5 C . 6 D .4 4.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( ▲ ) A .125 B .512C .135D .1312 5.一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数、中位数分别为( ▲ ) A .3,4 B .3,3.5 C . 3.5,3 D .4,3 6.反比例函数xm y 3-=(m ≠3)在图象所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ )A .3m <-B . 3m >-C .3m <D . 3m >7.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( ▲ )8.用棋子按下列方式摆图形,依此规律,第n个图形比第(n-1)个图形多(▲)枚棋子.A .4nB . 5n -4C .4n -3D . 3n -29. 如图,平行四边形ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( ▲ ) A .27° B .36° C . 46° D .63°10.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y ,yA B C D ABCD 图1关于x 的函数图象如图2所示, 则△ABC 的面积是( ▲ ) A .4 B .3 C .2 D .1二、填空题(本题有6小题,每小题4分,共24分) 11.一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出一个黄球的概率是 ▲ .12.若实数a 、b 满足a +b =5,a 2b +ab 2=-10,则ab 的值是 ▲ .13.如图所示,已知菱形OABC ,点C 在x 轴上,直线y =x 经过点A ,菱形OABC的边长是xky =的图象经过点B ,则k 的值为 ▲ . 14.如图,在周长为20cm 的平行四边形ABCD 中,AB ≠AD ,AC ,BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为 ▲ cm .15.如图,矩形ABCD 中,AB =8,AD =3.点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的右下方作正方形AEFG ,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过 ▲ 秒时,直线MN 和正方形AEFG 开始有公共点? 16.如图,Rt △ABC 的斜边AB 在x 轴上,OA =OB =6,点C 在第一象限,∠A =30°, P (m ,n )是线段BC 上的动点,过点P 作BC 的垂线a ,以直线a 为对称轴,将线段OB 轴对称变换后得线段O ′B ′,(1)当点B ′ 与点C 重合时,m 的值为 ▲ ;(2)当线段O ′B ′与线段AC 没有公共点时,m 的取值范围是 ▲ . 三、解答题(本题有8小题,共66分,各题必须写出解答过程)17.(本题6分)先化简,再求值:(a ﹣2)2+a (a +4),其中3=a ;18.(本题6分)解方程:12;33x x x+=--19.(本题6分)已知:如图,斜坡BQ 坡度为i =1︰2.4(即为QC 与BC 的长度之比),在斜坡BQ 上有一棵香樟树PQ ,柳明在A 处测得树顶点P 的仰角为α,并且测得水平的AB =8米,另外BQ =13米,tanα=0.75.点A 、B 、P 、Q 在同一平面上,PQ ⊥AB 于点C .求香樟树PQ 的高度.20.(本题8分)已知:如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC于点D ,过点D 作DE ⊥AC 于点E .(1)请说明DE 是⊙O 的切线; (2)若∠B =30°,AB =8,求DE 的长.C(第19题) (14题)(第15题)(第20题)21.(本题8分)为提高初中生的身体素质,教育行政部门规定:初中生每天参加户外活动的平均时间应不少于...1.小时...为了解学生参加户外活动的情况,某区教育行政部门对部分学生参加户外活动的时间进行了抽样调查,并将调查结果绘制成下列两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)这次抽样共调查了 ▲ 名学生,并补全条形统计图;(2)计算扇形统计图中表示户外活动时间0.5小时的扇形圆心角度数;(3)本次调查学生参加户外活动的平均时间是否符合要求?(写出判断过程......)22.(本题10分)甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (时)的函数图象如图所示.(1)直接写出甲组加工零件的数量y 与时间x 之间的函数关系式 ▲ ; (2)求乙组加工零件总量a 的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?23.(本题10分)如图1,抛物线y=-x 2+2bx +c (b >0)与y 轴交于点C ,点P 为抛物线顶点,分别作点P ,C 关于原点O 的对称点P′,C′,顺次连接四点得四边形PC P′C′. (1)当b=c=1时,求顶点P 的坐标;(2)当b=2,四边形PC P′C′为矩形时(如图2),求c 的值;(3)请你探究:四边形PCP′C′能否成为正方形?若能,求出符合条件的b ,c 的值;若不能,请说明理由.(第23题图1)(第23题图2) 部分学生每天户外活 部分学生每天户外活动时间条形统计图(第21题)(第22题)24.(本题12分)如图,过点A (0,3)的直线l 1与x 轴交于点B ,tan ∠ABO=43.过点A 的另一直线l 2:y =-34tx +b (t >0)与x 轴交于点Q ,点P 是射线AB 上的一个动点,过P 作PH ⊥x 轴于点H ,设PB =5t .(1)求直线l 1 的函数解析式;(2)当点P 在线段AB 上运动时,设△PHQ 的面积为S (S ≠0),求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);(3)当点P 在射线AB 上运动时,是否存在这样的t 值,使以P ,H ,Q 为顶点的三角形与△AOQ 相似?若存在,直接写出所有满足条件的t 值所对应的P 点坐标;若不存在,请说明理由.答题卷(第24题)l 2(备用图)l 2C(第23题图1)评分标准一、选择题 (每题3分,共30分)二、填空题(每题4分,共24分)11.35; 12. -2 ;1; 14.10; 15.53 ; 16.(1)29 ; (2) 9156324m m <≤≤<或三、简答题(本题有8小题,共66分,每小题要求写出必要的求解过程) 17. (本题6分)解:(1)原式=a 2﹣4a +4+a 2+4a =2a 2+4, (4分)当a =原式=2()2+4 =10; (2分)18.(本题6分)解:去分母得:x ﹣1=2(x ﹣3)x ﹣1=2x ﹣6 ∴x =5 (5分)经检验:x =5是原方程的根. (1分) 19.(本题6分) 解:设CQ=x ,BC=2.4x , x 2+(2.4x )2=132解得:x =5 (3分) ∵tan a =0.7520PC= ∴PC =15∴PQ=15-5=10(米) (3分) 20.(本题8分)(1)500 (2 分)图略,对应的人数为180,正确得 (2分)(2)360500100⨯=72° (2分) (3)∵)8021405.118011005.0(5001⨯+⨯+⨯+⨯=1.2>1∴本次调查中学生参加户外活动的平均时间符合要求. (2分)21.(本题8分)解:(1)连接OD ,则OD =OB , ∴∠B =ODB .∵AB =AC , ∴∠B =∠C . ∴∠ODB =∠C . ∴OD ∥AC .∴∠ODE =∠DEC =90°. ∴DE 是⊙O 的切线. (4分) (2)连接AD , ∵AB 是⊙O 的直径, ∴∠ADB =90°.∴.又∵AB =AC ,∴CD =BD =,∠C =∠B =30°. ∴. (4分)22. (本题10分)解:(1)∵图象经过原点及(6,360), ∴设解析式为:y =kx , ∴6k =360, 解得:k =60, ∴y =60x (0<x ≤6);故答案为:y =60x (0<x ≤6); (3分) (2)乙2小时加工100件, ∴乙的加工速度是:每小时50件,∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍. ∴更换设备后,乙组的工作速度是:每小时加工50×2=100件, a =100+100×(4.8﹣2.8)=300; (3分)(3)乙组更换设备后,乙组加工的零件的个数y 与时间x 的函数关系式为: y =100+100(x ﹣2.8)=100x ﹣180, 当0≤x ≤2时,60x +50x =300,解得:x =(不合题意舍去); 当2<x ≤2.8时,100+60x =300,解得:x =(不合题意舍去);∵当2.8<x ≤4.8时,60x +100x ﹣180=300, 解得x =3,∴再经过3小时恰好装满第1箱. (4分) 答:经过3小时恰好装满第一箱. 23.(本题10分)解:(1)当b=c=1时,y=-x 2+2x +1=-(x -1)2+2 ∴顶点P 的坐标为(1,2) (3分)(2)当b=2时,c x c x x c bx x y ++--=++-=++-=4)2(42222∴顶点P 的坐标为(2,4+c )当0=x 时,c y = ∴点C 的坐标为(0,c ) 当四边形PC P′C′为矩形时OP=OC 即222)4(2c c =++ 解得25-=c (3分) (3)当四边形PCP′C′能成为正方形时,PP ′⊥CC ′ 且OP=OC此时点P 必在x 轴上, ∴0)1(4)2()1(422=+=-⨯-⨯-⨯b c b c ①∵OP=OC 点C 必在y 轴的负半轴上 ∴c b -=② 由①②得,c=0(舍去),c=-1, b=1 (4分)24.(本题12分)解:(1)∵A (0,3),且tan ∠ABO=43∴B (4,0)设y=kx+b ,将A (0,3) B (4,0)代入上式得b=3 0=4k +b 解得k=43-,b=3 ∴ 函数解析式为y=43-x +3 (3分) (2)由B (4,0).∴OB =4,∵OA =3, ∴AB =5. 由题意,得△BHP ∽△BOA , ∵OA ∶OB ∶AB =3∶4∶5, ∴HP ∶HB ∶BP =3∶4∶5, ∵PB =5t ,∴HB =4t ,HP =3t .∴OH =OB -HB =4-4t . 由y =-34t x +3与x 轴交于点Q , 得Q (4t ,0) ①当H 在Q 、B 之间时(如图1)QH =OH -OQ =(4-4t )-4t =4-8t . S=21(4-8t )×3t=)210(6122≤<+-t t t -------------2分 (图1)1212(图2)②当H 在O 、Q 之间时(如图2)QH =OQ -OH =4t -(4-4t )=8t -4. S=21(8t -4) 3t=)121(6122≤<-t t t -------------2分 (3)存在t 的值,使以P 、H 、Q 为顶点的三角形与△AOQ 相似①当H 在Q 、B 之间t 1=732,P 1)3221,825( 或者t 2-1,P 2)323,248(-- ②当H 在O 、Q 之间t 3=2532.得P 3)3275,87(或者t 4=1,P 4(0,3) ③当H 在B 的右侧t 5=1, P 5(8,-3) -------------5分。