2020-2021学年第一学期七年级数学答题卡
精品解析:山东省日照市岚山区2020-2021学年七年级上学期期末数学试题(解析版)
2020~2021学年度上学期期末质量检测七年级数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共6页.满分120分.考试时间为100分钟.2.答第Ⅰ卷前务必将自己的姓名、考号等信息填写在答题卡规定位置上.考试结束,本试卷和答题卡一并收回.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题号的答案标号涂黑.如需改动,必须先用橡皮擦干净,再改涂其他答案.不涂在答题卡上,答在试卷上无效.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案须写在答题卡各题目指定的区域内,在试卷上答题不得分;如需改动,先划掉原来的答案,然后再写上新的答案.第Ⅰ卷(选择题 36分)一、选择题(本大题共12小题,每小题3分,满分36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 在()1--,0,−π,|-2.5|,0.333,227,225⎛⎫- ⎪⎝⎭这7个数中,正有理数的个数是( ) A. 3个B. 4个C. 5个D. 6个 【答案】C【解析】【分析】根据有理数式整数、有限小数或无限循环小数,再根据正负数的判断即可得出答案. 【详解】解:()11--=, 2.5 2.5-=,0.333,227,224525⎛⎫-= ⎪⎝⎭为正有理数; 0为整数,−π为无理数,故选C .【点睛】本题考查了实数,关键是熟悉有理数的概念.2. 如图,数轴上有A 、B 、C 、D 四个点,其中绝对值最小的数对应的点是( )A. 点AB. 点BC. 点CD. 点D【答案】B【解析】【分析】根据距离原点越近其绝对值越小即可求解;【详解】解:数轴上点A ,B ,C ,D 在数轴上表示的数距离原点越近,其绝对值越小,∴绝对值最小的数对应的点是B .故答案选B .【点睛】本题主要考查了数轴、绝对值、有理数比大小,准确判断是解题的关键.3. 在算式612--⊗中的⊗所在位置,填入下列运算符号,能使最后计算出来的值最小的符号是()A. +B. −C. ×D. ÷【答案】B【解析】【分析】根据题意,可以计算出各种情况下式子的值,然后比较大小,即可解答本题.【详解】解:A.当算式612--⊗中的⊗所在位置,填入+时,6125--+=;B.当算式612--⊗中的⊗所在位置,填入−时,6123---=;C.当算式612--⊗中的⊗所在位置,填入×时,6124--⨯=;D.当算式612--⊗中的⊗所在位置,填入÷时,116122--÷=;113452<<<∴最后计算出来的值最小的符号是“−”;故选B .【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.4. 在式子2abc ,π,3x y +,243x y-,2a ,22a a +中,单项式的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】直接利用单项式的定义分析得出答案.【详解】解:在式子2abc ,π,3x y +,243x y -,2a,22a a +中, 3x y +,22a a +为多项式;2a不是单项式;2abc ,π,243x y -,为单项式; 故选B .【点睛】本题考查了单项式:数或字母的积组成的式子叫单项式,单独的一个数或字母也是单项式;单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5. 下列运算正确的是( )A. 22223x x x -=-B. 220x y xy -=C. 2235a a a +=D. 532m m -= 【答案】A【解析】【分析】根据合并同类项法则一一判断即可.【详解】解:A. 22223x x x -=-,此选项正确;B.22x y xy -不是同类项不能合并,此选项错误;C.235a a a +=,此选项错误;D.532m m m -=,此选项错误;故选A .【点睛】本题考查了合并同类项,熟练掌握同类项的定义是解题的关键. 6. 下列说法错误的是( )A. 5.80万是精确到百位的近似数B. 近似数58.3与58.30表示的意义不相同C. 2.7×104精确到十分位 D. 近似数2.20是由数a 四舍五入得到的,那么数a 的取值范围是2.195 2.205a ≤<【答案】C【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】解:A. 5.80万是精确到百位的近似数,说法正确,不符合题意;B. 近似数58.3与58.30表示的意义不相同,说法正确,不符合题意;C. 2.7×104=27000精确到千位,说法错误,符合题意;D. 近似数2.20是由数a四舍五入得到的,那么数a的取值范围是2.195 2.205≤<,说法正确,不符合题意;a故选C.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.7. 如图,小明同学用剪刀沿着虚线将一张圆形纸片剪掉一部分,发现剩下纸片的周长比原来的周长要小,能正确解释这一现象的数学知识是( )A. 两点之间,直线最短B. 经过一点,有无数条直线C. 两点确定一条直线D. 两点之间,线段最短【答案】D【解析】【分析】根据两点之间,线段最短解答.【详解】解:能正确解释这一现象的数学知识是两点之间,线段最短.故选D.【点睛】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.8. 下列图形都是由六个相同正方形组成的,经过折叠不能围成正方体的是()A. B.C. D.【答案】D【解析】【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:选项A 、B 、C 经过折叠均能围成正方体,选项D 折叠后有两个面重叠,不能折成正方体. 故选:D .【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1−4−1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2−2−2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3−3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1−3−2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.9. 一个角的补角比这个角的余角的2倍还多40°,则这个角的度数是( ) A. 40°B. 50°C. 60°D. 70°【答案】A【解析】【分析】设这个角为x 度.根据一个角的补角比这个角的余角的2倍还多40°,构建方程即可解决问题.【详解】解:设这个角为x 度.则根据题意:180-x=2(90-x )+40,解得:x=40.所以这个角的度数是40°.故选:A .【点睛】本题考查余角和补角的有关计算,一元一次方程的应用,掌握方程思想,能根据题意找出等量关系并列出方程是解决此题的关键.10. 已知−2是关于x 的一元一次方程ax+b=1的解,则代数式3(41)b a b -+-的值是( )A. 0B. 1C. 2D. 3 【答案】D【解析】【分析】将2x =-代入ax+b=1可得到12b a =+,再将3(41)b a b -+-化简为241b a -+,将12b a =+代入化简后的式子即可得出答案. 【详解】解:−2是关于x 的一元一次方程ax+b=1的解,21a b ∴-+=12b a ∴=+()341b a b ∴-+-341b a b =--+241b a =-+()21241a a =+-+2441a a =+-+3=故选D .【点睛】本题考查了一元一次方程的解及整式的化简求值,熟练掌握运算法则是解题的关键.11. 如图,已知∠AOB=120°,从∠AOB 的内部引两条射线OM 、ON ,使得夹角∠MON=60°,则∠AON 与∠BOM 一定满足的关系是( )A. ∠AON+∠BOM=120°B. ∠AON+∠BOM=180° C . ∠AON=∠BOMD. ∠AON=2∠BOM【答案】B【解析】【分析】根据角的和差,可得∠AON+∠MOB=∠AOM+∠MON+∠MON+∠NOB=∠AOB+∠MON ,再代入计算即可求解.【详解】解:对于A 、B 选项:∵∠AON =∠AOM +∠MON ,∠MOB =∠MON +∠NOB ,∴∠AON+∠MOB=∠AOM+∠MON+∠MON+∠NOB=∠AOB+∠MON∵∠AOB=120°,∠MON=60°,∴∠AON+∠BOM=120°+60°=180°,故A 选项不符合题意;故B 选项符合题意;对于C 选项:条件不足,不能说明∠AON=∠BOM ,故不符合题意;对于D 选项:条件不足,不能说明∠AON=2∠BOM ,故不符合题意;故选:B .【点睛】本题考查了角的计算,解题的关键是利用了角的和差关系求解.12. 一套仪器由1个A 部件和3个B 部件构成,1立方米钢材可做40个A 部件或240个B 部件,现要用6立方米钢材制作这种仪器,设应用x 立方米钢材做B 部件,其他钢材做A 部件,恰好配套,则可列方程为( )A. 340240(6)x x ⨯=-B. 324040(6)x x ⨯=-C. 403240(6)x x =⨯-D. 240340(6)x x =⨯-【答案】D【解析】【分析】根据A 部件使用的钢材数=6-B 部件的钢材数表示出A 部件使用的钢材数,再根据A 部件的个数×3=B 部件的个数列出方程.【详解】∵应用x 立方米钢材做B 部件,∴可做240x 个B 部件,且应用6-x 立方米钢材做A 部件.∴可做40(6-x )个A 部件∵一套仪器由1个A 部件和3个B 部件构成,且恰好配套.∴240340(6)x x =⨯-故选D.【点睛】本题考查一元一次方程的应用,解题关键是理解题意找出等量关系式,根据等量关系式列出方程. 第Ⅱ卷(非选择题 84分)二、填空题(本大题共4小题,每小题4分,共16分.请将答案直接写在答题卡相应位置上) 13. 国家统计局2020年12月10日公布的全国粮食生产数据显示,我国粮食生产实现“十七连丰”:2020年全国粮食总产量为13390亿斤,产量连续6年保持在1.3万亿斤以上.将“13390亿”用科学记数法表示为______________.【答案】1.339×1012【解析】【分析】科学记数法的表示形式为:10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动位数相同,当原数绝对值>1时,n 是正数,当原数的绝对值<1时,n 是负数.【详解】13390亿121339000000000 1.33910==⨯,故选:A .【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为:10n a ⨯,其中110a ≤<,n 为整数,表示时关键要正确确定a 和n 的值.14. 计算1103752.8'︒-︒=____________.【答案】5749︒'【解析】【分析】先根据1度等于60分,1分等于60秒的换算关系统一单位,再算减法即可.【详解】解:1103752.8=110375248=109975248=5749'''''︒-︒︒-︒'︒-︒︒,故答案为:5749︒'.【点睛】本题考查了度、分、秒之间的换算的应用,能正确进行度、分、秒之间的换算是解此题的关键,注意:1=60,1=60'''. 15. 如图,B 、C 为线段AD 上的两点,若线段AD 的长度为a ,线段BC 的长度为b ,则图中所有线段的长度之和为__________.【答案】3a+b【解析】【分析】先写出所有的线段,再利用线段的和与差即可得出答案.【详解】解:图中所有线段为AB 、AC 、AD 、BC 、BD 、CD,AD a BC b ==∴AB+AC+AD+BC+BD+CD()AB BC CD AD AC BD =+++++2a AD BC =++=3a b +,故答案为:3a+b .【点睛】本题考查了线段的和与差,熟练掌握线段之间的关系是解题的关键.16. 如图,小悦和小萱同学一起玩“数字盒子”的游戏:先任意想一个数输入“数字盒子”中,按顺序进行四次运算后,得到一个输出的数.若小悦想了一个数,并告诉小萱这个数经过 “数字盒子”后输出的数是−2,则小悦所想的数是________.【答案】1【解析】【分析】由结果逆着运算,即由输出的数加4,再乘以2,接着减去1,最后除以3即可解题.【详解】解:242-+= 224⨯=413-=331÷=故答案为:1.【点睛】本题考查有理数的混合运算,是基础考点,难度较易,掌握相关知识是解题关键.三、解答题(本大题共6小题,满分68分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17. (1)计算:()()()22021353682146⎛⎫-⨯-+-÷--- ⎪⎝⎭(2)先化简,再求值:33131122233x x y x y ⎛⎫⎛⎫+---+ ⎪ ⎪⎝⎭⎝⎭,其中1 2.x y =-=-, 【答案】(1)-4;(2)34x y -;4【解析】【分析】(1)直接利用有理数混合运算法则计算得出答案,(2)先去括号,根据合并同类项法则化简出最简结果,再将1,2x y =-=-代入其中即可求解.【详解】(1)()()()22021353682146⎛⎫-⨯-+-÷--- ⎪⎝⎭ ()13684112⎛⎫=⨯-+-÷+ ⎪⎝⎭3214=--+=- (2)33131122233x x y x y ⎛⎫⎛⎫+---+ ⎪ ⎪⎝⎭⎝⎭ 33131222233x x y x y =+-+- 34x y =-当12x y ,时,原式()()()3412484=⨯---=---=. 【点睛】本题考查了有理数混合运算,整式的加减——化简求值,熟练掌握合并同类项的法则,和有理数混合运算法则是解题关键.18. 如图,已知正方形网格中的三点A ,B ,C ,按下列要求完成画图和解答:(1)画线段AB ,画射线AC ,画直线BC ;(2)取AB 的中点D ,并连接CD ;(3)根据图形可以看出:∠________与∠________互为补角.【答案】(1)见解析;(2)见解析;(3)∠ADC与∠BDC互为补角【解析】【分析】(1)根据直线,射线,线段的定义画出图形即可;(2)根据中点的定义找到点D再连接CD即可;(3)根据补角的性质即可得出答案.【详解】解:(1)如下图所示;(2)如下图所示;(3)根据图形可以看出:∠ADC与∠BDC互为补角.【点睛】本题考查了作图-应用与设计,解题的关键时熟练掌握基本知识,灵活运用所学知识解决问题.19. 数学课上老师布置大家解方程3142125x x-+=-,小星同学板演的解题过程如下:【解析】解:去分母,得5(31)2(42)1x x-=+-.①去括号,得155841x x-=+-.②移项,得158541x x-=+-.③合并同类项,得78x=.④系数化为1,得87x =. ⑤ (1)老师批阅后说小星同学的解题过程有误,你认为出现错误的步骤是_______(只填写序号),错误原因是:_________,这个方程正确的解应该是x=________.然后,请你自己细心解下面的方程:(2)121236x x +--=+. 【答案】(1)①,方程两边没有同时乘10 ,17x =-;(2)6x = 【解析】【分析】 依据解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1求解即可.【详解】解:(1) ① 方程两边没有同时乘10 17x =- 3142125x x -+=- 解:去分母,得()()53124210x x -=+-去括号,得1558410x x -=+-移项,得1584105x x -=-+合并同类项,得71x =-系数化为1,得17x =-(2)解方程121236x x +--=+过程如下: 解:去分母,得2(1)612(2)x x +-=+-.去括号,得226122x x +-=+-.移项,得212226x x +=+-+.合并同类项,得318x =.系数化为1,得6x .【点睛】本题考查了解一元一次方程,熟练掌握运算法则是解题的关键.20. 如图1,点A、O、B在同一条直线上,∠BOC=40°,OD平分∠AOC.从点O出发画一条射线OE,使得∠COE=90°.请画出满足条件的射线OE,并求出∠DOE的度数.(1)如图2,已画出射线OE的第一种位置,请将解题过程补充完整:【解析】解:因为∠AOB=180°,∠BOC=40°,所以∠AOC=∠________−∠________=________°.因为OD平分∠AOC,所以∠COD=12∠________=________°.因为∠COE=90°,所以∠DOE=∠________−∠________=________°.(2)请在图3中画出射线OE的第二种位置,并直接写出此种情况下∠DOE的度数.【答案】(1)AOB ,BOC ,140°;AOC,70°;COE ,COD ,20°;(2)见解析,∠DOE=160°【解析】【分析】(1)根据邻补角的定义求出∠AOC,再由角平分线的性质得出∠COD,最后根据∠DOE=∠ COE−∠ COD 即可得出答案;(2)根据邻补角的定义求出∠AOC,再由角平分线的性质得出∠COD,最后根据∠DOE=∠ COE+∠ COD 即可得出答案.【详解】解:(1)因为∠AOB=180°,∠BOC=40°,所以∠AOC=∠ AOB −∠ BOC = 140 °.因为OD平分∠AOC,所以∠COD=12∠ AOC = 70 °.因为∠COE=90°,所以∠DOE=∠ COE −∠ COD = 20 °.(2)射线OE的位置如下图所示,此时∠DOE=160°.因为∠AOB=180°,∠BOC=40°,所以∠AOC=∠AOB −∠ BOC =140°.因为OD平分∠AOC,所以∠COD=12∠ AOC=70°.因为∠COE=90°,所以∠DOE=∠ COE +∠ COD =90°+70°=160°.【点睛】本题考查了邻补角定义,角平分线的定义以及角的计算,准确识图是解题的关键.21. 阅读下面的材料,解决有关问题:在如图1的“数表”中,数字按一定规律排列,我们分别在“数表”中涂抹出两个“H”,在每个“H”所覆盖的7个数字中,将最上端两数的和与最下端两数的和相减,计算结果称为“H值”.【计算与发现】分别计算图1中的两个不同位置的“H”所对应的“H值”:(2+4)−(20+22)=;(24+26)−(42+44)=,我们可以初步发现:__________________________;【探究与证明】图2是从图1中截出的一部分,在“H”所覆盖的7个数字中,若设中心数为x,则A、B、C、D所对应的数可分别表示为,,,(用含x的代数式表示),并请你利用整式的运算,对【计算与发现】中发现的规律进行验证.【答案】【计算与发现】−36;−36;不同位置的“H”所对应的“H值”都是−36;【探究与证明】x﹣10,x+8,x+10,x﹣8;见解析【解析】【分析】【计算与发现】直接根据有理数的加减运算法则计算即可;根据结果即可得出规律;【探究与证明】先分别表示出A、B、C、D所对应的数,再代入(A+D)−(B+C)即可验证规律.【详解】解:【计算与发现】(2+4)−(20+22)=6-42=-36;(24+26)−(42+44)=50-86=-36;我们可以初步发现:不同位置的“H”所对应的“H值”都是−36.【探究与证明】A、B、C、D所对应的数分别为:x﹣10,x+8,x+10,x﹣8;(A+D)−(B+C)=(x﹣10+ x﹣8)﹣(x+8+ x+10)=2x﹣18﹣2x﹣18=−36.【点睛】本题考查了有理数的加减运算及整式的加减的应用,熟练掌握运算法则是解题的关键.22. 疫情期间,某蛋糕店采用“线上”销售模式,即提前一天线上下单,第二天无接触送货上门.为了吸引客户,在A、B两种蛋糕送达时,采用赠代金券的返利方式给顾客意外惊喜.已知返利方式有两种,每种方式返利后A、B两种蛋糕的实际利润如下表:蛋糕店每日限量销售A 、B 两种蛋糕共计30盒,且都能售完,每天只推出一种返利方式.(1)若采用方式一返利,某天销售A 、B 两种蛋糕的实际利润共274元,则A 、B 两种蛋糕各售出多少盒? (2)下完订单的当晚,店员M 说:“明天无论采用哪种返利方式,销售A 、B 两种蛋糕的实际总利润都一样”,你觉得她的判断会成立吗?请说明理由.【答案】(1)A 种蛋糕售出17盒,B 种蛋糕售出13盒;(2)店员的判断不成立,见解析【解析】【分析】(1)设A 种蛋糕售出x 盒,则B 种蛋糕售出(30−x )盒,根据“采用方式一返利,某天销售A 、B 两种蛋糕的实际利润共274元,”列出方程求解即可;(2)设A 种蛋糕订了y 盒,则B 种蛋糕订出(30−y )盒,若店员的判断成立,根据“明天无论采用哪种返利方式,销售A 、B 两种蛋糕的实际总利润都一样”列方程求解,再根据y 只能取整数,即可得出答案.【详解】解:(1)设A 种蛋糕售出x 盒,则B 种蛋糕售出(30−x )盒,根据题意得方程()10830274x x +-=.解得17x =.因此,3013x -=.答:A 种蛋糕售出17盒,B 种蛋糕售出13盒.(2)设A 种蛋糕订了y 盒,则B 种蛋糕订出(30−y )盒,若店员的判断成立,则可列方程:()()1083091130y y y y +-=+-解得22.5y =因为y 只能取整数,所以22.5y =不符合题意,因此店员的判断不成立. 【点睛】本题考查了一元一次方程的应用,读懂题意找到等量关系式式解题的关键.。
扬州树人学校2020—2021学年第一学期期中试卷七年级数学(含答题卡、答案)
扬州树人学校2020-2021学年第一学期期中试卷七年级数学 2020.11(满分:150分 考试时间:120分钟)一、选择题(每题3分,共24分) 1.7-的绝对值是()A .71-B .71C .7-D .72.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为 ( ) A .3.12×106 B .3.12×105 C .31.2×105D .0.312×1073.为庆祝新中国成立71周年,我市某楼盘让利于民,决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为 ( ) A .a -10%B .a •10%C .(1-10%)aD .(1+10%)a4.下列算式中,正确的是 ()A . 0―(―6)= ―6B .293()342⨯-=-C .(-36)÷(-9)=-4 D .7÷71×7=75.下列各式:﹣x +1,π+3,9>2,,,其中代数式的个数是 ()A .5B .4C .3D .26.某种速冻水饺的储藏温度是-18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是() A .-15℃ B . -16℃ C .-19℃ D . -20℃ 7.在下列各数﹣(+5)、﹣12、(﹣)2、﹣、﹣(﹣1)2007、﹣|﹣3|中,负数有( )A .2个B .3个C .4个D .5个8.如图,正方形的边长为1,在正方形的4个顶点处标上字母,,,A B C D ,先让正方形上的顶点A 与数轴上的数2-所对应的点重合,再让正方形沿着数轴按顺时针方向滚动,那么数轴上的数2020将与正方形上的哪个字母重合 ( ) A .字母A B .字母BC .字母CD .字母D二、填空题(每题3分,共30分)9.数轴上表示数5和表示﹣14的两点之间的距离是 .10.比较大小: 32-21-. 11.已知某人的身份证号是:320821************,那么他出生的月份是月.12.定义一种新运算:a ※b =a +b ﹣ab ,如2※(﹣2)=2+(﹣2)﹣2×(﹣2)=4, 那么(﹣1)※(﹣4)= .13.下列说法:①23xy -的系数是2-;②232mn 的次数是2次;③14332+-y x xy 是七次三项式;④6x y+是多项式.其中说法正确的是 . 14.如图所示是计算机某计算程序,若开始输入x =﹣2,则最后输出的结果是.15.如已知a ﹣2b =3,则7+3a ﹣6b 的值为 . 16.从数﹣6,1,﹣3,5,﹣2中任取两个数相乘,其积最小的是.17.把一个两位数m 放在数字1的前面,组成一个三位数,这个三位数可表示为 .18.已知在数轴上有三点A ,B ,C ,点A 表示的数为a ,点B 表示的数为b ,且a 、b 满足2(3)10a b ++-=.沿A ,B ,C 三点中的一点折叠数轴,若另外两点互相重合, 则点C 表示的数是 .三、解答题(共96分) 19.(本题满分8分)计算 (1)-3+(-9)+10-(-18)(2)-3+1--2()20.(本题满分8分)计算 (1)()[]2433611--⨯+- ; (2)40+()531-+-369418⎛⎫⨯ ⎪⎝⎭. 21.(本题满分8分)根据所给a, b 的值,求代数式的值。
江苏省南京一中2020-2021学年七年级上学期第一次月考数学试卷
江苏省南京一中2020-2021学年七年级(上)第一次月考数学试卷(解析版)一、选择题(本大题共6小题,每小题3分,共18分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.如果物体下降5米记作﹣5米,则+3米表示()A.下降3米B.上升3米C.下降或上升3米D.上升﹣3米2.一个数的绝对值是7,这个数是()A.7B.﹣7C.7或﹣7D.不能确定3.在下列数﹣,+1,6.7,﹣14,0,,﹣5,25%中,属于整数的有()A.2 个B.3 个C.4 个D.5 个4.若|a|=a,则a是()A.零B.正数C.非负数D.负数或05.下列说法正确的个数是()①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1B.2C.3D.46.如图,数轴上A、B两点分别对应有理数a、b,则下列结论①ab<0;②a﹣b>0;③a+b >0;④|a|﹣|b|>0中正确的有()A.①④B.①③C.①③④D.①②④二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应的位置上)7.比较大小:﹣π﹣3.14(选填“>”、“=”、“<”).8.﹣的相反数是,倒数是.9.直接写出计算结果:(﹣8)×(﹣2020)×(﹣0.125)=.10.某公交车原坐有22人,经过站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),则车上还有人.11.把数轴上表示2的点移动5个单位长度后所表示的数是.12.已知|a﹣1|与(b+6)2互为相反数,则a+b的值是.13.已知a是最大的负整数,b是最小的正整数,c是绝对值最小的数,则(a+c)÷b=.14.在下列数中:①3.14,②﹣5,③0.,④1.010010001…,⑤π,⑥其中,无理数是.(填序号)15.将输入如图所示的流程图,在输出圈的括号内输出的数分别为.16.阅读材料:我们在求1+2+3+…+99+100的值时可以用如下方法:我们设S=1+2+3+…+99+100①,那么S=100+99+…+3+2+1②.然后,我们由①+②,得2S=(100+1)+(99+2)+…+(98+3)+(99+2)+(100+1)=100×101.得S=100×101÷2=5050.依据上述方法,求5+10+15+…+195+200的值为.三、解答题(本大题共6小题,共62分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)请在数轴上画出表示下列各数的点,并用“<”号将这些数按从小到大的顺序连接起来.﹣(﹣2),﹣1,0,,﹣2.5.18.(20分)计算:(1)(﹣4)﹣(+3)+(﹣5);(2)﹣81÷(﹣2)×÷(﹣16);(3)6﹣3.3﹣(﹣6)﹣(﹣3)+3.3;(4)(﹣24)×(+﹣0.75).19.(6分)定义运算“*”为:a*b=a×b﹣(a+b),求2*5,(﹣3)*(﹣8).20.(4分)某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次﹣4+7﹣9+8+6﹣5﹣2(1)求收工时距A地多远?(2)在第次纪录时距A地最远.(3)若每km耗油0.4升,问共耗油多少升?21.(10分)阅读下列材料:|x|=,即当x<0时,=﹣1.用这个结论可以解决下面问题:(1)已知a,b是有理数,当ab≠0时,求的值;(2)已知a,b是有理数,当abc≠0时,求的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求的值.22.(14分)已知在数轴上有A,B两点,点B表示的数为﹣1,点A在点B的右边,AB=24.若有一动点P从数轴上点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒3个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)当t=1时,写出数轴上点A,P所表示的数分别为、;(2)若点P,Q分别从A,B两点同时出发,问当t=时,点P与点Q相距3个单位长度?(3)若点O到点M,N其中一个点的距离是到另一个点距离的2倍,则称点O是[M,N]的“好点”,设点C是点A,B的中点,点P,Q分别从A,B两点同时出发,点P向左运动到C点时返回到A点时停止,动点Q一直向右运动到A点后停止运动,求当t为何值时,点C为[P,Q]的“好点”?参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分。
人教版2020-2021学年度七年级数学上册第1章有理数单元测试卷(含最新中考试题 解析版)
人教版2020年秋七年级数学上册第1章有理数单元测试卷班级姓名座号温馨提示:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B铅笔填涂相应位置。
2.选择题用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
3.解答题用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
一.选择题(共10小题,满分30分,每小题3分)1.某人向东行走5米,记作“+5米”,那么他向西行走3米,记作()A.“﹣3米”B.“+3米”C.“﹣8米”D.“+8米”2.用﹣a表示的数一定是()A.负数B.正数或负数C.负整数D.以上全不对3.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长到80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10134.下列说法中,正确的是()A.若两个有理数的差是正数,则这两个数都是正数B.一个数的绝对值一定是正数C.0减去任何有理数,都等于此数的相反数D.倒数等于本身的为1,0,﹣15.若|x|=7,|y|=9,则x﹣y为()A.±2B.±16C.﹣2和﹣16D.±2和±166.下列运算正确的是()A.(﹣2)÷(﹣4)=2 B.0﹣2=2 C.D.﹣=﹣4 7.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.﹣a<﹣b<a<b C.﹣b<a<﹣a<b D.﹣b<b<﹣a<a 8.下列四组数中,其中每组三个都不是负数的是()①2,|﹣7|,﹣(﹣);②﹣(﹣6),﹣|﹣3|,0;③﹣(﹣5),,﹣(﹣|﹣6|);④﹣[﹣(﹣6)],﹣[+(﹣2)],0.A.①、②B.①、③C.②、④D.③、④9.若a+b=0,则下列各组中不互为相反数的数是()A.a3和b3B.a2和b2C.﹣a和﹣b D.和10.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+a.如:1☆3=1×32+1=10.则(﹣2)☆3的值为()A.10B.﹣15C.﹣16D.﹣20二.填空题(每空2分,共9个小空,满分18分)11.在数轴上把点A(﹣5)沿数轴移动6个单位后得到点B,则B所表示的数为.12.a是最大的负整数,b是最小的正整数,c为绝对值最小的数,则6a﹣2b+4c=.13.①比﹣9大﹣3的数是;②5比﹣16小;③数与的积为14.14.如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点的数据;则被淹没的整数点有个,负整数点有个,被淹没的最小的负整数点所表示的数是.15.(2分)已知:,,,…,观察上面的计算过程,寻找规律并计算C106=.三.解答题(共6小题,满分52分)16.(12分)①(﹣5)﹣(﹣2.25)﹣(﹣2)﹣(+5);②(5﹣12)﹣(13﹣5).③0﹣(﹣2)+(﹣7)﹣(+1)+(﹣10);④﹣0.5﹣5﹣1+3﹣4+2.17.(7分)规定○是一种新的运算符号,且a○b=a2+a×b﹣a+2,例如:2○3=22+2×3﹣2+2=10.请你根据上面的规定试求:①﹣2○1的值;②1○3○5的值.18.(7分)a的相反数为b,c的倒数d,m的绝对值为6,试求6a+6b﹣9cd+m的值.19.(7分)十几年前我国曾经流行有一种叫“二十四点”的数学趣味算题,方法是给出1~13之间的自然数,从中任取四个,将这四个数(四个数都只能用一次)进行“+”“﹣”“×”“÷”运算,可加括号使其结果等于24.例如:对1,2,3,4可运算(1+2+3)×4=24,也可以写成4×(1+2+3)=24,但视作相同的方法.现有郑、付两同学的手中分别握着四张扑克牌(见下图);若红桃♥、方块♦上的点数记为负数,黑桃♠、梅花♣上的点数记为正数.请你对郑、付两同学的扑克牌的按要求进行记数,并按前面“二十四点”运算方式对郑、付两同学的记数分别进行列式计算,使其运算结果均为24.(分别尽可能提供多种算法)依次记为:、、、依次记为:、、、.(1)帮助郑同学列式计算:(2)帮助付同学列式计算:.20.(9分)小车司机蔡师傅某天下午的营运全是在东西走向的富泸公路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+14,﹣3,+7,﹣3,+11,﹣4,﹣3,+11,+6,﹣7,+9(1)蔡师傅这天最后到达目的地时,距离下午出车时的出发地多远?(2)蔡师傅这天下午共行车多少千米?(3)若每千米耗油0.1L,则这天下午蔡师傅用了多少升油?21.(10分)观察下列等式:第1个等式:a1==(1﹣)第2个等式:a2==(﹣)第3个等式:a3==(﹣)第4个等式:a4==(﹣)…请回答下列问题:(1)按上述等式的规律,列出第5个等式:a5==(2)用含n的式子表示第n个等式:a n==(3)求a1+a2+a3+a4+…+a100的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:∵人向东行走5米,记作“+5米”,∴他向西行走3米,记作“﹣3米”,故选:A.2.解:a>0时,﹣a<0,是负数,a=0时,﹣a=0,0既不是正数也不是负数,a<0时,﹣a>0,是正数,综上所述,﹣a表示的数可以是负数,正数或0.故选:D.3.解:80万亿用科学记数法表示为8×1013.故选:B.4.解:A、若两个有理数的差是正数,则这两个数不一定都是正数,如3﹣(﹣4)=7,错误;B、一个数的绝对值不一定是正数,如0,错误;C、0减去任何有理数,都等于此数的相反数,正确;D、倒数等于本身的为1,﹣1,0没有倒数,错误;故选:C.5.解:∵|x|=7,|y|=9,∴x=﹣7,y=9;x=﹣7,y=﹣9;x=7,y=9;x=7,y=﹣9;则x﹣y=﹣16或2或﹣2或16.故选:D.6.解:∵(﹣2)÷(﹣4)=2÷4=0.5,故选项A错误,∵0﹣2=﹣2,故选项B错误,∵=,故选项C错误,∵﹣=﹣=﹣4,故选项D正确,故选:D.7.解:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和﹣a两个正数中,﹣a<b;在a和﹣b两个负数中,绝对值大的反而小,则﹣b<a.因此,﹣b<a<﹣a<b.故选:C.8.解:下列四组数:①2,|﹣7|,﹣(﹣);②﹣(﹣6),﹣|﹣3|,0;③﹣(﹣5),,﹣(﹣|﹣6|);④﹣[﹣(﹣6)],﹣[+(﹣2)],0中,三个数都不是负数的是①、③组.故选:B.9.解:A、因为a=﹣b,所以a3=﹣b3,即a3和b3互为相反数,故本选项错误;B、因为a=﹣b,所以a2=b2,即a2和b2不互为相反数,故本选项正确;C、因为a=﹣b,所以﹣a=b,即﹣a和﹣b互为相反数,故本选项错误;D、因为a=﹣b,所以=﹣,即和互为相反数,故本选项错误;故选:B.10.解:根据题中的新定义得:(﹣2)☆3=﹣2×32﹣2=﹣18﹣2=﹣20,故选:D.二.填空题(共5小题,满分18分)11.解:在数轴上把点A(﹣5)沿数轴移动6个单位后得到点B,则B所表示的数为:﹣5+6=1,或﹣5﹣6=﹣11,故答案为:1或﹣11.12.解:由题意可知:a=﹣1,b=1,c=0.则6a﹣2b+4c=﹣6﹣2+0=﹣8,故答案为:﹣8.13.解:①比﹣9大﹣3的数是:﹣9+(﹣3)=﹣12;②5比﹣16小﹣21;③14÷()=﹣6;故答案为:﹣12,﹣21,﹣6.14.解:由数轴可知,﹣72和﹣41之间的整数点有:﹣72,﹣71,…,﹣42,共31个;﹣21和16之间的整数点有:﹣21,﹣20,…,16,共38个;故被淹没的整数点有31+38=69个,负整数点有31+21=52个,被淹没的最小的负整数点所表示的数是﹣72.故答案为:69,52,﹣72.15.解:;;;…;C106==210.三.解答题(共6小题,满分52分)16.解:①(﹣5)﹣(﹣2.25)﹣(﹣2)﹣(+5)=(﹣5+2)﹣(﹣2.25+5)=﹣2﹣3.5=﹣6②(5﹣12)﹣(13﹣5)=﹣7﹣8=﹣15③0﹣(﹣2)+(﹣7)﹣(+1)+(﹣10)=2﹣7﹣1﹣10=﹣16④﹣0.5﹣5﹣1+3﹣4+2=(﹣0.5﹣1﹣4)+(﹣5+3)+2=﹣6﹣2+2=﹣8+2=﹣517.解:①﹣2○1=(﹣2)2+(﹣2)×1﹣(﹣2)+2=4﹣2+2+2=6;②1○3○5=(12+1×3﹣1+2)○5=(1+3﹣1+2)○5=5○5=52+5×5﹣5+2=25+25﹣5+2=47.18.解:∵a、b互为相反数,c、d互为倒数,m的绝对值是6,∴a+b=0、cd=1,m=±6,当m=6时,6a+6b﹣9cd+m=6×0﹣9×1+×6=﹣7;当m=﹣6时,6a+6b﹣9cd+m=6×0﹣9×1+×(﹣6)=﹣11.19.解:依次记为:﹣9、7、﹣6、2;依次记为:7、﹣13、﹣5、3.(1)(﹣9+7﹣2)×(﹣6)=(﹣4)×(﹣6)=24;(2)[﹣5×(﹣13)+7]÷3=(65+7)÷3=72÷3=24.故答案为:﹣9,7,﹣6,2;7,﹣13,﹣5,3;(﹣9+7﹣2)×(﹣6);[﹣5×(﹣13)+7]÷3.20.解:(1)14﹣3+7﹣3+11﹣4﹣3+11+6﹣7+9=38(千米)答:蔡师傅这天最后到达目的地时,距离下午出车时的出发地38千米;(2)14+3+7+3+11+4+3+11+6+7+9=78(千米)答:蔡师傅这天下午共行车78千米;(3)78×0.1=7.8(L)答:这天下午蔡师傅用了7.8升油.21.解:(1)观察下列等式:第1个等式:a1==(1﹣)第2个等式:a2==(﹣)第3个等式:a3==(﹣)第4个等式:a4==(﹣)…则第5个等式:a5==×(﹣);故答案为,×(﹣);(2)由(1)知,a n==(﹣),故答案为:,(﹣);(3)原式=+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=×(1﹣+﹣+﹣+…+﹣)=×=.。
【人教版】七年级上册数学《期末考试试卷》及答案
B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;
C、主视图从左往右2列正方形的个数均依次为1,1,不符合所给图形;
D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.
故选:C.
∵两个圆和一个长方形,可以围成一个圆柱,
∴C正确;
∵三棱柱展开图有5个面,
∴D错误,
故选C.
【点睛】本题主要考查立体图形的平面展开图,理解立体图形的平面展开图是解题的关键.
6.在以下形状不规则的组件中,如图不可能是下面哪个组件的视图()
A. B. C. D.
【答案】C
【解析】
【分析】
依次分析所给几何体三视图是否与所给图形一致即可.
A线段DAB.线段BA
C线段DCD.线段BD
9.下列说法正确的是( )
A. ab2的次数是2B. 1是单项式
C. 的系数是 D.多项式a+b2的次数是3
10.将方程 移项后,正确的是()
A. B.
C. D.
11.一副三角尺如图摆放,图中不含15°角的是()
A. B.
C. D.
12.下列说法正确的是( )
A.点 与点 B.点 与点 C.点 与点 D.点 与点
3.下列各图中所给的线段、射线、直线能相交的是( )
A. B. C. D.
4.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )
A.3.386×108B.0.3386×109C.33.86×107D.3.386×109
高密市2020—2021学年七年级上月考数学试卷含答案解析
高密市2020—2021学年七年级上月考数学试卷含答案解析一、选择题:(请把选项答案涂在答题卡上,每小题3分,总计36分)1.下列各选项中的代数式,符合书写格式的为()A.(a+b)÷c B.a﹣b厘米 C.D.2.某学校礼堂第一排有35个座位,往后每一排比前一排多2个座位,设第n排的座位数为m个,当n=20时,m的值为()A.75 B.73 C.54 D.553.下列方程中,是一元一次方程的是()A.x2+x﹣3=x(x+2) B.x+(4﹣x)=0 C.x+y=1 D.4.多项式2x﹣3y+4+3kx+2ky﹣k中没有含y的项,则k应取()A.k= B.k=0 C.k=﹣D.k=45.下列各组中,不是同类项的是()A.12 a3y与B.与C.2ab x3与D.6 a2mb与﹣a2bm6.若x2+3x﹣5的值为7,则3x2+9x﹣2的值为()A.0 B.24 C.34 D.447.船在静水中的速度为10km/h,水流速度为2km/h,顺流航行s km所需时刻为()A.(+2)h B.()h C.(﹣2)h D.()h8.下列变形中,错误的是()A.2x+6=0变形为2x=﹣6 B.=2+x变形为x+3=4+2xC.﹣2(x﹣4)=2变形为x﹣4=1 D.﹣=变形为﹣x﹣1=19.小明在做解方程的题时,不小心将方程中的一个常数污染了看不清晰(式中用(【】)表示),被污染的方程是:2y﹣=y﹣(【】),如何办呢?小明想了一想,便翻看了书后的答案,此方程的解是y=﹣,因此他专门快补好了那个常数,并迅速地完成了作业.同学们,你们能补出那个常数吗?它应是()A.1 B.2 C.3 D.410.把方程去分母后,正确的是()A.3x﹣2(x﹣1)=1 B.3x﹣2(x﹣1)=6 C.3x﹣2x﹣2=6 D.3x+2x﹣2=611.一个多项式减去x2﹣2y2等于x2+y2,则那个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣x2+2y212.某种出租车的收费标准是:起步价7元(即行驶的距离不超过3千米都需付7元车费),超过3千米,每增加1千米,加收2.4元(不足1千米按1千米运算)某人乘这种出租车从甲地到乙地共付车费19元,那么此人从甲地到乙地通过的路程的最大值是()千米.A.11 B.8 C.7 D.5二.填空题(共7个小题,每小题3分,共21分)13.单项式的系数是,次数是.14.若x n y与x3y m是同类项,则m=,n=.15.多项式x+7是关于x的二次三项式,则m=.16.合并多项式5x2﹣3x3﹣x﹣4+x3+2x﹣x2﹣9中的同类项,并把结果按字母x升幂排列:.17.设a表示一个两位数,b表示一个三位数,把a放在b的左边,组成一个五位数x,把b放在a的左边组成一个五位数y,则x﹣y可被整除.18.一根铁丝长a米,第一次用去它的一半少1米,第二次用去剩下的一半多1米,结果还剩米.19.买4本练习本与3支铅笔一共用了2.35元,已知铅笔价格的8倍与练习本价格的5倍相等,则每支铅笔元,每个练习本元.三、解答题(总计满分63分)20.已知A=x3﹣2x2+4x+3,B=x2+2x﹣6,C=x3+2x﹣3,求A﹣(B+C)的值.21.2(mn﹣3m2)+[m2﹣5(mn﹣m2)+2mn].其中m=1,n=﹣2.22.已知两个整式的差是c2 d2﹣a2 b2,假如其中一个整式是a2b2+c2d2﹣2abcd,求另一个整式.23.如图,边长分别为a,b的两个正方形拼在一起,试写出阴影部分的面积,并求出当a=5cm,b=3cm时,阴影部分的面积.24.解下列方程(1)(2)(3)(4).25.将一些长为30cm,宽为10cm的长方形白纸,按如图所示的方法粘合起来,黏合部分的宽为2cm.(1)求5张纸黏合后的长度;(2)设x张白纸粘合后的纸条总长度为ycm,写出y与x的函数关系式;(3)当x=20张时,y的值是多少?26.依照我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时刻将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km.求提速后的火车速度.(精确到1km/h)2020-2021学年山东省潍坊市高密市七年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题:(请把选项答案涂在答题卡上,每小题3分,总计36分)1.下列各选项中的代数式,符合书写格式的为()A.(a+b)÷c B.a﹣b厘米 C.D.【考点】代数式.【分析】依照代数式的书写要求判定各项.【解答】解:A、(a+b)÷c正确书写为:,错误;B、a﹣b厘米正确书写为:(a﹣b)厘米,错误;C、正确书写为:,错误;D、书写正确;故选D.2.某学校礼堂第一排有35个座位,往后每一排比前一排多2个座位,设第n排的座位数为m个,当n=20时,m的值为()A.75 B.73 C.54 D.55【考点】代数式求值.【分析】第一用含n的式子表示第n排中座位的数量,然后将n=20代入运算即可.【解答】解:m=35+2(n﹣1)=35+2n﹣2=2n+33.当n=20时,m=40+33=73.故选:B.3.下列方程中,是一元一次方程的是()A.x2+x﹣3=x(x+2) B.x+(4﹣x)=0 C.x+y=1 D.【考点】一元一次方程的定义.【分析】依照一元一次方程的定义:只含有一个未知数(元),同时未知数的指数是1(次)的方程叫做一元一次方程.它的一样形式是ax+b=0(a,b是常数且a≠0),进行选择.【解答】解:A、x2+x﹣3=x(x+2),是一元一次方程,正确;B、x+(4﹣x)=0,不是一元一次方程,故本选项错误;C、x+y=1,不是一元一次方程,故本选项错误;D、+x,不是一元一次方程,故本选项错误.故选A.4.多项式2x﹣3y+4+3kx+2ky﹣k中没有含y的项,则k应取()A.k= B.k=0 C.k=﹣D.k=4【考点】多项式.【分析】原式合并后,依照结果不含y,确定出k的值即可.【解答】解:原式=(3k+2)x+(2k﹣3)y+4﹣k,由结果不含y,得到2k﹣3=0,即k=.故选A.5.下列各组中,不是同类项的是()A.12 a3y与B.与C.2ab x3与D.6 a2mb与﹣a2bm【考点】同类项.【分析】依照同类项的定义判定即可:所含字母相同,同时相同字母的指数也相同,如此的项叫做同类项.【解答】解:A、=ya3,与12a3y是同类项,故正确;B、x3y与﹣xy3不是同类项,故错误;C、2abx3与﹣bax3是同类项,故正确;D、6a2mb与﹣a2bm是同类项,故正确;故选B.6.若x2+3x﹣5的值为7,则3x2+9x﹣2的值为()A.0 B.24 C.34 D.44【考点】代数式求值.【分析】本题需要有整体思想,把所求代数式化为已知代数式的形式,将其代入即可.【解答】解:3x2+9x﹣2=3(x2+3x﹣5)+13,∵x2+3x﹣5=7,∴原式=3×7+13=34.故选C.7.船在静水中的速度为10km/h,水流速度为2km/h,顺流航行s km所需时刻为()A.(+2)h B.()h C.(﹣2)h D.()h【考点】列代数式.【分析】第一表示出船在顺水中的速度,进而利用总路程除以速度得出时刻.【解答】解:由题意可得:船在顺水时的速度为:(10+2)km/h,则顺流航行s km所需时刻为:h.故选:B.8.下列变形中,错误的是()A.2x+6=0变形为2x=﹣6 B.=2+x变形为x+3=4+2xC.﹣2(x﹣4)=2变形为x﹣4=1 D.﹣=变形为﹣x﹣1=1【考点】等式的性质.【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、依照等式性质1,2x+6=0两边同时减去6,即可得到2x=﹣6;B、依照等式性质2,=2+x两边同时乘以2,即可得到x+3=4+2x;C、依照等式性质2,﹣2(x﹣4)=2两边都除以﹣2,应得到x﹣4=﹣1,因此C错误;D、依照等式性质2,﹣=两边同时乘以2,即可得到﹣x﹣1=1;故选:C.9.小明在做解方程的题时,不小心将方程中的一个常数污染了看不清晰(式中用(【】)表示),被污染的方程是:2y﹣=y﹣(【】),如何办呢?小明想了一想,便翻看了书后的答案,此方程的解是y=﹣,因此他专门快补好了那个常数,并迅速地完成了作业.同学们,你们能补出那个常数吗?它应是()A.1 B.2 C.3 D.4【考点】一元一次方程的解.【分析】设那个数是a,把y=﹣代入方程得出方程2×(﹣)﹣=×(﹣)﹣a,求出即可.【解答】解:y=﹣代入方程得出方程2×(﹣)﹣=×(﹣)﹣a,解得:a=3.故选:C.10.把方程去分母后,正确的是()A.3x﹣2(x﹣1)=1 B.3x﹣2(x﹣1)=6 C.3x﹣2x﹣2=6 D.3x+2x﹣2=6【考点】解一元一次方程.【分析】方程两边都乘以6即可得出答案.【解答】解:﹣=1,方程两边都乘以6得:3x﹣2(x﹣1)=6,故选B.11.一个多项式减去x2﹣2y2等于x2+y2,则那个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣x2+2y2【考点】整式的加减.【分析】被减式=差+减式.【解答】解:多项式为:x2﹣2y2+(x2+y2)=(1+1)x2+(﹣2+1)y2=2x2﹣y2,故选B.12.某种出租车的收费标准是:起步价7元(即行驶的距离不超过3千米都需付7元车费),超过3千米,每增加1千米,加收2.4元(不足1千米按1千米运算)某人乘这种出租车从甲地到乙地共付车费19元,那么此人从甲地到乙地通过的路程的最大值是()千米.A.11 B.8 C.7 D.5【考点】一元一次不等式的应用.【分析】本题可先用19减去7得到12,则2.4(x﹣3)≤12,解出x的值,取最大整数即为本题的解.【解答】解:依题意得:2.4(x﹣3)≤19﹣7,则2.4x﹣7.2≤12,即2.4x≤19.2,∴x≤8.因此x的最大值为8.故选:B.二.填空题(共7个小题,每小题3分,共21分)13.单项式的系数是﹣,次数是4.【考点】单项式.【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此即可得出答案.【解答】解:单项式的次数是4,系数是﹣.故答案为:﹣、4.14.若x n y与x3y m是同类项,则m=1,n=3.【考点】同类项.【分析】由同类项的定义(所含字母相同,相同字母的指数相同)可得:n=3,m=1.【解答】解:由同类项的定义可知:n=3,m=1.答:m=1,n=3.15.多项式x+7是关于x的二次三项式,则m=2.【考点】多项式.【分析】由于多项式是关于x的二次三项式,因此|m|=2,但﹣(m+2)≠0,依照以上两点能够确定m的值.【解答】解:∵多项式是关于x的二次三项式,∴|m|=2,∴m=±2,但﹣(m+2)≠0,即m≠﹣2,综上所述,m=2,故填空答案:2.16.合并多项式5x2﹣3x3﹣x﹣4+x3+2x﹣x2﹣9中的同类项,并把结果按字母x升幂排列:﹣13+x+4x2﹣2x3.【考点】多项式;同类项.【分析】第一找出同类项,进而合并,再利用字母x升幂排列即可.【解答】解:5x2﹣3x3﹣x﹣4+x3+2x﹣x2﹣9=﹣2x3+4x2+x﹣13,按字母x升幂排列:﹣13+x+4x2﹣2x3.故答案为:﹣13+x+4x2﹣2x3.17.设a表示一个两位数,b表示一个三位数,把a放在b的左边,组成一个五位数x,把b放在a的左边组成一个五位数y,则x﹣y可被9整除.【考点】列代数式.【分析】依照题意,可设那个两位数为a,三位数为b.则有,①;,②;然后用①减去②,依照得出的结果,即可得出结论.【解答】解:设那个两位数为a,三位数为b.;,,x﹣y=﹣=999a﹣99b=9,9是9的倍数,因此这两个五位数的差能被9整除.故答案为:918.一根铁丝长a米,第一次用去它的一半少1米,第二次用去剩下的一半多1米,结果还剩a﹣米.【考点】列代数式.【分析】第一次用去a﹣1,第二次用去 [a﹣(a﹣1)]+1,用a减去这两次的总量可得.【解答】解:依照题意,用去两次后还剩a﹣(a﹣1)﹣ [a﹣(a﹣1)]﹣1=a﹣,故答案为:a﹣.19.买4本练习本与3支铅笔一共用了2.35元,已知铅笔价格的8倍与练习本价格的5倍相等,则每支铅笔0.25元,每个练习本0.4元.【考点】一元一次方程的应用.【分析】此题中的等量关系明确,应注意由“铅笔价格的8倍与练习本价格的5倍相等”,能够得到铅笔价格与练习本价格的比为5:8,进而可设铅笔价格与练习本价格分别为5x元、8x元,列方程即可求得.【解答】解:设铅笔价格与练习本价格分别为5x元、8x元,由题意得:4×8x+3×5x=2.35解得:x=0.05.故铅笔价格与练习本价格分别为0.25元、0.4元.三、解答题(总计满分63分)20.已知A=x3﹣2x2+4x+3,B=x2+2x﹣6,C=x3+2x﹣3,求A﹣(B+C)的值.【考点】整式的加减.【分析】依照A=x3﹣2x2+4x+3,B=x2+2x﹣6,C=x3+2x﹣3,能够求得A﹣(B+C)的值.【解答】解:∵A=x3﹣2x2+4x+3,B=x2+2x﹣6,C=x3+2x﹣3,∴A﹣(B+C)=x3﹣2x2+4x+3﹣(x2+2x﹣6+x3+2x﹣3)=x3﹣2x2+4x+3﹣x2﹣2x+6﹣x3﹣2x+3=﹣3x2+12.21.2(mn﹣3m2)+[m2﹣5(mn﹣m2)+2mn].其中m=1,n=﹣2.【考点】整式的加减—化简求值.【分析】先去小括号,再去中括号,合并同类项,最后代入求出即可.【解答】解:2(mn﹣3m2)+[m2﹣5(mn﹣m2)+2mn]=2mn﹣6m2+[m2﹣5mn+5m2+2mn]=2mn﹣6m2+m2﹣5mn+5m2+2mn=﹣mn,当m=1,n=﹣2时,原式=﹣1×(﹣2)=2.22.已知两个整式的差是c2 d2﹣a2 b2,假如其中一个整式是a2b2+c2d2﹣2abcd,求另一个整式.【考点】整式的加减.【分析】依照题意可得出要求的整式可能有两种情形:①(c2 d2﹣a2 b2)+(a2b2+c2d2﹣2abcd),②(a2b2+c2d2﹣2abcd)﹣(c2 d2﹣a2 b2).【解答】解:①(c2 d2﹣a2 b2)+(a2b2+c2d2﹣2abcd)=c2 d2﹣a2 b2+a2b2+c2d2﹣2abcd=2c2 d2﹣2abcd,②(a2b2+c2d2﹣2abcd)﹣(c2 d2﹣a2 b2)=a2b2+c2d2﹣2abcd﹣c2 d2+a2 b2=2a2b2﹣2abcd.23.如图,边长分别为a,b的两个正方形拼在一起,试写出阴影部分的面积,并求出当a=5cm,b=3cm时,阴影部分的面积.【考点】整式的混合运算;代数式求值.【分析】利用正方形面积公式以及三角形面积公式得出,结合整体图形面积减去空白面积得出阴影部分的面积即可.【解答】解:由题意可得:阴影部分的面积为:a2+b2+(a﹣b)×b﹣a2﹣b(a+b)=a2+b2+ab﹣b2﹣a2﹣ba﹣b2=a2﹣b2+ab=×52﹣×32+×3×5=15.5.24.解下列方程(1)(2)(3)(4).【考点】解一元一次方程.【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去括号,去分母,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:6x﹣6+3x=2x﹣4+12,移项合并得:7x=14,解得:x=2;(2)方程整理得:﹣=50,即5x+5﹣100x﹣300=100,移项合并得:﹣95x=395,(3)去分母得:4x﹣2﹣10x﹣1=6x+3﹣6,移项合并得:12x=0,解得:x=0;(4)去括号得:x﹣x+(x﹣9)=(x﹣9),去分母得:9x﹣3x+x﹣9=x﹣9,移项合并得:6x=0,解得:x=0.25.将一些长为30cm,宽为10cm的长方形白纸,按如图所示的方法粘合起来,黏合部分的宽为2cm.(1)求5张纸黏合后的长度;(2)设x张白纸粘合后的纸条总长度为ycm,写出y与x的函数关系式;(3)当x=20张时,y的值是多少?【考点】函数关系式;函数值.【分析】(1)依照题意能够求得5张纸黏合后的长度;(2)由题意可得能够表示出y与x的函数关系式;(3)将x=20代入y与x的函数关系式,即可解答本题.【解答】解:(1)由题意可得,5张纸黏合后的长度是:30+(30﹣2)×4=142cm,即5张纸黏合后的长度是142cm;(2)由题意可得,y=30+(30﹣2)(x﹣1)=28x+2,即y与x的函数关系式是y=28x+2;(3)当x=20时,y=28×20+2=562(cm).26.依照我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时刻将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km.求提速后的火车速度.(精确到1km/h)【考点】一元一次方程的应用.【分析】依照路程÷时刻=速度,等量关系:提速后的运行速度﹣原运行的速度=260,列方程求解即可.【解答】解:设连云港至徐州客运专线的铁路全长为xkm,列方程得:﹣=260,1.7x=358.8,≈352km/h.答:提速后的火车速度约是352km/h.2021年10月27日。
2020-2021学年江苏省盐城市盐都区、大丰区七年级(上)期末数学试卷(解析版)
2020-2021学年江苏省盐城市盐都区、大丰区七年级第一学期期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.2021的相反数是()A.﹣2021B.2021C.D.﹣2.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)3.我国渤海、黄海、东海、南海海水中含有的铝、锰两种元素的总量均约为8×106吨,计算铝、锰两种元素总量的和(结果用科学记数法表示)约为()A.8×106B.16×106C.1.6×107D.16×10124.有理数a、b在数轴上的对应点的位置如图所示,化简|a+b|,结果是()A.﹣a﹣b B.a﹣b C.﹣a+b D.a+b5.下列计算正确的是()A.5a+6b=11ab B.9a﹣a=8C.a2+3a=4a2D.3ab+4ab=7ab6.一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“您”相对的字是()A.牛B.年C.愉D.快7.将一副三角板按如图所示位置摆放,其中∠α=∠β的是()A.①②B.②③C.①④D.②④8.一件商品,按标价八折销售盈利20元,按标价六折销售亏损10元,求标价多少元?小明同学在解此题的时候,设标价为x元,列出如下方程:0.8x﹣20=0.6x+10.小明同学列此方程的依据是()A.商品的利润不变B.商品的售价不变C.商品的成本不变D.商品的销售量不变二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.苹果每千克a元,买5千克苹果应付元.10.若∠α=23°30′,则∠α的补角的度数为.11.如图是一计算程序,若输入的数是﹣5,则输出的数是.12.若将单项式﹣xy2的系数用字母a表示、次数用字母b表示,则a b=.13.若单项式2x m﹣1y2与单项式是同类项,则m﹣n=.14.如果m﹣n=5,那么﹣3m+3n﹣7的值是.15.小明同学在用一副三角尺“拼角”活动中,拼成了如图所示的有公共顶点A的形状,其中∠C=30°,∠E=45°,则∠DAB﹣∠EAC=°.16.如表,从左到右在每个小格中都填入一个整数、使得任意三个相邻格子所填整数之和都相等,则第2021个格子中的整数是.﹣1a b c3b﹣5…三、解答题(本大题共有10小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.计算:(1)1+(﹣2)+|﹣3|;(2)﹣12÷[(﹣3)2+2×(﹣5)].18.化简.(1)2m﹣3n﹣5n﹣7m;(2)4(x2﹣xy+6)﹣3(2x2﹣xy).19.解方程.(1)3x﹣3=﹣2(1+x);(2)=1.20.先化简,再求值:2(3a2b﹣ab2)﹣(﹣ab2+3a2b),其中a=﹣1,b=.21.把6个相同的小正方体摆成如图所示的几何体.(1)画出该几何体的主视图、左视图、俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加个小正方体.22.如图,直线AB,CD,EF相交于点O,OG⊥CD.(1)已知∠AOC=38°12',求∠BOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.23.如图,网格中每个小格都是边长为1的正方形,点A、B、C、D都在网格的格点上.(1)过点C画直线l∥AB;(2)过点B画直线AC的垂线,垂足为点E;(3)比较大小:BA BE,理由是:;(4)若线段BC=5,则点D到直线BC的距离为.24.如图,C为线段AB上一点,D为CB的中点,AB=16,AD=10.(1)求AC的长;(2)若点E在线段AB上,且CE=1,求BE的长.25.某商场打算购进西装和衬衫共55件,其中西装的单价是1000元/件,衬衫的单价是200元/件.采购部进行了预算,打算领取32000元,会计计算后说:“如果用这些钱共买这两种产品,那么账肯定算错了”.试用学过的方程知识解释会计这样说的理由.26.【阅读理解】射线OC是∠AOB内部的一条射线,若∠COA=∠BOC,则称射线OC是射线OA在∠AOB内的一条“友好线”.如图1,∠AOB=60°,∠AOC=20°,则∠AOC=∠BOC,所以射线OC是射线OA在∠AOB内的一条“友好线”.【解决问题】(1)在图1中,若作∠BOC的平分线OD,则射线OD射线OB在∠AOB内的一条“友好线”;(填“是”或“不是”)(2)如图2,∠AOB的度数为n,射线OM是射线OB在∠AOB内的一条“友好线”,ON平分∠AOB,则∠MON的度数为;(用含n的代数式表示)(3)如图3,射线OB从与射线OA重合的位置出发,绕点O以每秒3°的速度逆时针旋转;同时,射线OC从与射线OA的反向延长线重合的位置出发,绕点O以每秒5°的速度顺时针旋转,当射线OC与射线OA重合时,运动停止.问:当运动时间为多少秒时,射线OA、OB、OC中恰好有一条射线是余下两条射线中某条射线在余下两条射线所组成的角内的一条“友好线”?参考答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.2021的相反数是()A.﹣2021B.2021C.D.﹣【分析】利用相反数的定义分析得出答案,只有符号不同的两个数互为相反数.解:2021的相反数是:﹣2021.故选:A.2.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)【分析】分别按照有理数的加减法、有理数的乘除法法则计算即可.解:A.3+(﹣2)=1,故A不符合题意;B.3﹣(﹣2)=3+2=5,故B不符合题意;C.3×(﹣2)=﹣6,故C符合题意;D.(﹣3)÷(﹣2)=1.5,故D不符合题意.综上,只有C计算结果为负.故选:C.3.我国渤海、黄海、东海、南海海水中含有的铝、锰两种元素的总量均约为8×106吨,计算铝、锰两种元素总量的和(结果用科学记数法表示)约为()A.8×106B.16×106C.1.6×107D.16×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:2×8×106=1.6×107.故选:C.4.有理数a、b在数轴上的对应点的位置如图所示,化简|a+b|,结果是()A.﹣a﹣b B.a﹣b C.﹣a+b D.a+b【分析】根据数轴判断出a<0,b>0,且|a|>|b|,再根据有理数的加法法则可解答.解:由图可知,a<0,b>0,且|a|>|b|,∴a+b<0,所以,|a+b|=﹣a﹣b.故选:A.5.下列计算正确的是()A.5a+6b=11ab B.9a﹣a=8C.a2+3a=4a2D.3ab+4ab=7ab【分析】根据合并同类项法则逐一判断即可.解:A.5a与6b不是同类项,所以不能合并,故本选项不合题意;B.9a﹣a=8a,故本选项不合题意;C.a2与3a不是同类项,所以不能合并,故本选项不合题意;D.3ab+4ab=7ab,正确,故本选项符合题意.故选:D.6.一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“您”相对的字是()A.牛B.年C.愉D.快【分析】根据正方体表面展开图的特征进行判断即可.解:由正方体表面展开图的“相间、Z端是对面”可知,“您”的对面是“年”,故选:B.7.将一副三角板按如图所示位置摆放,其中∠α=∠β的是()A.①②B.②③C.①④D.②④【分析】根据题意计算、结合图形比较,得到答案.解:A图形中,根据同角的余角相等可得∠α=∠β;B图形中,∠α>∠βC图形中,∠α<∠βD图形中,∠α=∠β=45°.所以∠α=∠β的是①④.故选:C.8.一件商品,按标价八折销售盈利20元,按标价六折销售亏损10元,求标价多少元?小明同学在解此题的时候,设标价为x元,列出如下方程:0.8x﹣20=0.6x+10.小明同学列此方程的依据是()A.商品的利润不变B.商品的售价不变C.商品的成本不变D.商品的销售量不变【分析】设标价为x,根据商品的成本不变列出方程解答即可.解:设标价为x,则0.8x﹣20=成本价,0.6x+10=成本价,所以小明同学列方程:0.8x﹣20=0.6x+10的依据是商品的成本不变.故选:C.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.苹果每千克a元,买5千克苹果应付5a元.【分析】根据总价=单价×重量进行求解即可.解:买5千克苹果应付5a元.故答案为:5a.10.若∠α=23°30′,则∠α的补角的度数为156°30′.【分析】如果两个角的和是180°,则这两个角互为补角.由此定义进行求解即可.解:∵∠α=23°30′,∴∠α的补角=180°﹣∠α=23°30′=156°30',故答案为:156°30'.11.如图是一计算程序,若输入的数是﹣5,则输出的数是16.【分析】把﹣5输入,按照程序图进行计算即可.解:当输入的数为﹣5时,﹣5+1=﹣4,(﹣4)2=16,即输出的数是16.故答案为:16.12.若将单项式﹣xy2的系数用字母a表示、次数用字母b表示,则a b=﹣1.【分析】由题意可得a=﹣1,b=3,代入运算即可.解:由题意得:a=﹣1,b=3,∴a b=(﹣1)3=﹣1.故答案为:﹣1.13.若单项式2x m﹣1y2与单项式是同类项,则m﹣n=2.【分析】直接利用同类项的定义得出关于m,n的值,再代入计算即可.解:∵单项式2x m﹣1y2与单项式是同类项,∴m﹣1=2,n+1=2,解得:m=3,n=1,则m﹣n=3﹣1=2,故答案为:2.14.如果m﹣n=5,那么﹣3m+3n﹣7的值是﹣22.【分析】首先把﹣3m+3n﹣7化成﹣3(m﹣n)﹣7,然后把m﹣n=5代入化简后的算式,求出算式的值是多少即可.解:当m﹣n=5时,﹣3m+3n﹣7=﹣3(m﹣n)﹣7=﹣3×5﹣7=﹣15﹣7=﹣22.故答案为:﹣22.15.小明同学在用一副三角尺“拼角”活动中,拼成了如图所示的有公共顶点A的形状,其中∠C=30°,∠E=45°,则∠DAB﹣∠EAC=15°.【分析】根据三角尺特殊角的度数,三角形的内角和,求出∠BAC=60°,∠DAE=45°,进而将∠DAB﹣∠EAC转化为∠BAC﹣∠DAE即可.解:由三角尺的特殊角可知,∠ADE=∠ABC=90°,∵∠C=30°,∠E=45°,∴∠BAC=90°﹣∠C=60°,∠DAE=90°﹣∠E=45°,∴∠DAB﹣∠EAC=∠BAC﹣∠DAE=60°﹣45°=15°,故答案为:15.16.如表,从左到右在每个小格中都填入一个整数、使得任意三个相邻格子所填整数之和都相等,则第2021个格子中的整数是3.﹣1a b c3b﹣5…【分析】根据三个相邻格子的整数的和相等列式求出a=3、c=﹣1,再根据第9个数是﹣5可得b=﹣5,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.解:∵任意三个相邻格子中所填整数之和都相等,∴﹣1+a+b=a+b+c,解得c=﹣1,a+b+c=b+c+3,所以,数据从左到右依次为﹣1、3、b、﹣1、3、b,第9个数与第三个数相同,即b=﹣5,所以,每3个数“﹣1、3、﹣5”为一个循环组依次循环,∵2021÷3=673……2,∴第221个格子中的整数与第2个格子中的数相同,为3.故答案为:3.三、解答题(本大题共有10小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.计算:(1)1+(﹣2)+|﹣3|;(2)﹣12÷[(﹣3)2+2×(﹣5)].【分析】(1)先算绝对值,再算加法即可求解;(2)先算乘方,再算乘除,最后算加法;如果有括号,要先做括号内的运算.解:(1)1+(﹣2)+|﹣3|=1+(﹣2)+3=2;(2)﹣12÷[(﹣3)2+2×(﹣5)]=﹣1÷(9﹣10)=﹣1÷(﹣1)=1.18.化简.(1)2m﹣3n﹣5n﹣7m;(2)4(x2﹣xy+6)﹣3(2x2﹣xy).【分析】(1)合并同类项进行化简;(2)原式去括号,合并同类项进行化简.解:(1)原式=(2﹣7)m+(﹣3﹣5)n=﹣5m﹣8n;(2)原式=4x2﹣4xy+24﹣6x2+3xy=﹣2x2﹣xy+24.(1)3x﹣3=﹣2(1+x);(2)=1.【分析】(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.解:(1)去括号得:3x﹣3=﹣2﹣2x,移项得:3x+2x=﹣2+3,合并得:5x=1,解得:x=;(2)去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.20.先化简,再求值:2(3a2b﹣ab2)﹣(﹣ab2+3a2b),其中a=﹣1,b=.【分析】根据整式的运算法则即可求出答案.解:原式=6a2b﹣2ab2+ab2﹣3a2b=3a2b﹣ab2当a=﹣1,b=时,原式=3×(﹣1)2×﹣(﹣1)×()2=1+=.21.把6个相同的小正方体摆成如图所示的几何体.(1)画出该几何体的主视图、左视图、俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加2个小正方体.【分析】(1)根据三视图的概念作图即可得;(2)保持这个几何体的左视图和俯视图不变,那么最多可以再在后面一行第1和2列各添加1个小正方体.解:(1)如图所示:(2)保持这个几何体的左视图和俯视图不变,那么最多可以再在后面一行第1和2列各添加1个小正方体,故答案为:2.22.如图,直线AB,CD,EF相交于点O,OG⊥CD.(1)已知∠AOC=38°12',求∠BOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.【分析】(1)根据互为余角的意义和对顶角的性质,可得∠AOC=∠BOD=38°12′,进而求出∠BOG;(2)求出∠EOG=∠BOG即可,解:(1)∵OG⊥CD.∴∠GOC=∠GOD=90°,∵∠AOC=∠BOD=38°12′,∴∠BOG=90°﹣38°12′=51°48′,(2)OG是∠EOB的平分线,理由:∵OC是∠AOE的平分线,∴∠AOC=∠COE=∠DOF=∠BOD,∵∠COE+∠EOG=∠BOG+∠BOD=90°,∴∠EOG=∠BOG,即:OG平分∠BOE.23.如图,网格中每个小格都是边长为1的正方形,点A、B、C、D都在网格的格点上.(1)过点C画直线l∥AB;(2)过点B画直线AC的垂线,垂足为点E;(3)比较大小:BA>BE,理由是:垂线段最短;(4)若线段BC=5,则点D到直线BC的距离为 2.4.【分析】(1)取格点T,直线直线CT即可;(2)利用数形结合的思想解决问题即可;(3)根据垂线段最短解决问题即可;(4)利用面积法构建方程求解即可.解:(1)如图,直线l即为所求;(2)如图,直线即为所求;(3)BA>BE(垂线段最短);故答案为:>,垂线段最短;(4)设点D到BC的距离为h,∵S△DCB=×3×4=×5×h,∴h=2.4,故答案为:2.4.24.如图,C为线段AB上一点,D为CB的中点,AB=16,AD=10.(1)求AC的长;(2)若点E在线段AB上,且CE=1,求BE的长.【分析】(1)先求出BD,再利用线段的中点性质求出BC即可;(2)分两种情况,点E在点C的右侧,点E在点C的左侧.解:(1)∵AB=16,AD=10,∴BD=AB﹣AD=6,∵D为CB的中点,∴BC=2BD=12,∴AC=AB﹣BC=16﹣12=4;(2)分两种情况:当点E在点C右侧时,∵CE=1,∴BE=BC﹣CE=12﹣1=11,当点E在点C左侧时,∴BE=BC+CE=12+1=13,∴BE的长为11或13.25.某商场打算购进西装和衬衫共55件,其中西装的单价是1000元/件,衬衫的单价是200元/件.采购部进行了预算,打算领取32000元,会计计算后说:“如果用这些钱共买这两种产品,那么账肯定算错了”.试用学过的方程知识解释会计这样说的理由.【分析】设商场打算购进西装x件,则商场打算购进衬衫(55﹣x)件,根据支出总额为32000元为等量关系建立方程求出其解就可以判断结论.解:帐肯定算错了,理由是:设商场打算购进西装x件,则商场打算购进衬衫(55﹣x)件,根据题意得1000x+200(55﹣x)=32000,解得x=26.25.因为x为正整数,x=26.25不符合题意,所以帐肯定算错了.26.【阅读理解】射线OC是∠AOB内部的一条射线,若∠COA=∠BOC,则称射线OC是射线OA在∠AOB内的一条“友好线”.如图1,∠AOB=60°,∠AOC=20°,则∠AOC=∠BOC,所以射线OC是射线OA在∠AOB内的一条“友好线”.【解决问题】(1)在图1中,若作∠BOC的平分线OD,则射线OD是射线OB在∠AOB内的一条“友好线”;(填“是”或“不是”)(2)如图2,∠AOB的度数为n,射线OM是射线OB在∠AOB内的一条“友好线”,ON平分∠AOB,则∠MON的度数为n;(用含n的代数式表示)(3)如图3,射线OB从与射线OA重合的位置出发,绕点O以每秒3°的速度逆时针旋转;同时,射线OC从与射线OA的反向延长线重合的位置出发,绕点O以每秒5°的速度顺时针旋转,当射线OC与射线OA重合时,运动停止.问:当运动时间为多少秒时,射线OA、OB、OC中恰好有一条射线是余下两条射线中某条射线在余下两条射线所组成的角内的一条“友好线”?【分析】(1)根据“友好线”定义即可作出判断;(2)根据“友好线”定义即可求解;(3)利用分类讨论思想,分四种情况进行计算即可.解:(1)∵OB是∠BOC的平分线,∴∠BOD=∠COD,∵∠COA=∠BOC,∴∠BOD=∠AOD,∴射线OD是射线OB在∠AOB内的一条“友好线”.故答案为:是.(2)∵射线OM是射线OB在∠AOB内的一条“友好线”,∠AOB的度数为n,∴∠BOM=∠AOB=n,∵ON平分∠AOB,∴∠BON=∠AOB=n,∴∠MON=∠BON﹣∠BOM=n﹣n=n.故答案为:n.(3)设运动时间为x(x≤36)秒时,射线OA、OB、OC中恰好有一条射线是其余两条射线中某条射线的“友好线”.当射线OB是射线OA在∠AOC内的一条“友好线”时,则∠AOB=∠COB,所以3x=(180﹣5x﹣3x),解得x=(符合题意),即运动时间为秒时,射线OB是射线OA的“友好线”.当射线OB是射线OC在∠AOC内的一条“友好线”时,则∠COB=∠AOB,所以180﹣5x﹣3x=×3x,解得x=(符合题意),即运动时间为秒时,射线OB是射线OC的“友好线”.当射线OC是射线OB在∠AOB内的一条“友好线”时,则∠COB=∠AOC,所以3x+5x﹣180=(180﹣5x),解得x=(符合题意),即运动时间为秒时,射线OC是射线OB的“友好线”.当射线OC是射线OA在∠AOB内的一条“友好线”时,则∠AOC=∠COB,所以180﹣5x=(5x+3x﹣180),解得x=30(符合题意),即运动时间为30秒时,射线OC是射线OA的“友好线”.综上所述,当运动时间为或或或30秒时,符合题意要求.。
(宁波)2019-2020学年第一学期七年级期末测试-数学答题卡
请在各题目的答题区域内作答,超出矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出矩形边框限定区域的答案无效
24.(1)
请在各题目的答题区域内作答,超出矩形边框限定区域的答案无效
26.(1)
(2)
(2) (3)
25.(1)① ②
(2)
(3)
请在各题目的答题区域内作答,超出矩形边框限定区域的答案无效
学校: 姓名: 班级:
考试编号
2019-2020 学年第一学期七年级期末测试 -数学答题卡
条形码
注意事项: 1、选择题作答必须用 2B 铅笔填涂,修改时用橡 皮擦干净。 2、笔答题作答必须用黑色签字笔填写,答题不
请在各题目的答题区域内作答,超出矩形边框限定区域的答案无效
22.
23.(1)
(2)
请在各题目的答题区域内作答,超出矩形框限定区域的答案无效
请请请在在在各各各题题题目目目的的的答答答题题题区区区域域域内内内作作作答答答,,,超超超出出出矩矩矩形形形边边边框框框限限限定定定区区区域域域的的的答答答案案案无无无效效效
得超过答题边框区域。
3、保持答题卡卡面清洁,不要折叠,不要弄破。 4、在考生信息框中填写班级、姓名及考号。 5、正确填涂:
此方框为缺考学生标记,由监考员用 2B 铅笔填涂
13. 15. 17.
14. 16. 18.
三、解答题(第 19-20 题每题 6 分,第 21-24 题每题 8 分,第 25 题 10 分,第 26 题 12 分,共 66 分)
19.(1)
请在各题目的答题区域内作答,超出矩形边框限定区域的答案无效
(2)
20.(1)
七年级数学试卷+答题卡+答案(2019-2020)第一学期期末试卷上册惠州惠城区
惠城区2019-2020学年度第一学期期末教学质量检测七年级数学试题说明:1、答卷前,考生必须将自己的学校、班级、学号按要求填写在左边密封线内的空格内. 2.答题可用黑色或蓝色钢笔、圆珠笔按各题要求答在试卷(或答题卡)上,但不能用铅笔或红笔.(注:画图用铅笔)3.本试卷共五大题,25小题,满分120分,100分钟内完成,相信你一定会有出色的表现!一、选择题:(本大题共10小题,每小题3分,共30分)在每小题给出的四个选择项中,只有一个是正确的,请将正确选择项前的字母填在下面表格中相应的位置. 1.2-等于( )A .-2B .12-C .2D .122.如图是由几个正方体组成的立体图形,则这个立体图形从左看到的平面图形是( )A .B .C .D .3.地球上的海洋面积约为36100000km 2,用科学记数法可表示为( )km 2A .3.61×106B .3.61×107C .0.361×108D .3.61×109 4.下面运算正确的是( )A .3ab +3ac =6abcB . 4a 2b -4b 2a =0C .2x 2+7x 2=9x 4D .3y 2-2y 2=y 2 5.多项式xy 2+xy +1是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式6.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2x D .21=+y y7.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x ﹣1)﹣2(2+3x )=1B .3(x ﹣1)+2(2x +3)=1C .3(x ﹣1)+2(2+3x )=6D .3(x ﹣1)﹣2(2x +3)=68.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店请你帮助他选择一条最近的路线是( ) A .A →C →D →B B .A →C →F →B C .A →C →E →F →BD .A →C →M →B第8题图 第9题图9.如图,把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°10. 下表中,填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .58B .66C .74D .112二、填空题:(本大题共6小题,每小题4分,共24分)请把答案直接填写在相应位置上,不需写出解答过程.11.13-______-0.3 ( 用“<”,“>”,“=”填空 ). 12.若212n ab +与3222n a b --是同类项,则=n .13.小红在计算3+2a 的值时,误将“+”号看成“-”号,结果得13,那么3+2a 的值应为 .14.一个角的5倍等于71°4′30″,这个角的余角是 .15.因为∠1+∠2=180°,∠2+∠3=180°,所以∠1=∠3,根据是 . 16.若25x xy -=,426xy y +=-,则23x xy y -+= .B2 8424 62246 844m 6三、解答题:(每小题6分,共18分) 17.计算:2321353752⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭18.先化简,再求值:()()222321231x y x y xy ---+,其中,12x =-,2y =-19.如图,小雅家(图中点O 处)门前有一条东西走向的公路,测得学校(图中点A 处)在距她家北偏西60°方向的500米处,文具商店在距她家正东方向的1500米处,请你在图中标出文具商店的位置(保留画图痕迹).四、解答题:(每小题7分,共21分) 20.已知方程23101124x x -+-=与关于x 的方程23xax -=的解相同,求a 的值.21.如图,点M 为AB 中点,BN =12AN ,MB =3 cm ,求AB 和MN 的长.22.100cm )年数(n )高度(cm ) 1 100+12 2 100+24 3 100+36 4 100+48 …………假设以后各年树苗高度的变化与年数的关系保持上述关系,回答下列问题:⑴ 生长了10年的树高是 cm ,用式子表示生长了n 年的树高是 cm ⑵ 种植该种树多少年后,树高才能达到2.8m ?五、解答题:(每小题9分,共27分)23.某电器商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,故进货量减少了10台. ⑴ 商场第二次购进这款电风扇时,进货价为 元; ⑵ 这两次各购进电风扇多少台?⑶ 商场以210元/台的售价卖完这两批电风扇,商场获利多少元?24. 如图,已知O 为直线AD 上一点,∠AOC 与∠AOB 互补,OM 、ON 分别是∠AOC 、 ∠AOB 的平分线,∠MON =56°.⑴ ∠COD 与∠AOB 相等吗?请说明理由; ⑵ 求∠BOC 的度数;⑶ 求∠AOB 与∠AOC 的度数.25.阅读下面材料并回答问题.Ⅰ 阅读:数轴上表示-2和-5的两点之间的距离等于(-2)-(-5)=3 数轴上表示1和-3的两点之间的距离等于1-(-3)=4一般地,数轴上两点之间的距离等于右边点对应的数减去左边点对应的数. Ⅱ 问题:如图,O 为数轴原点,A 、B 、C 是数轴上的三点,A 、C 两点对应的数互为相反数,且A 点对应的数为-6,B 点对应的数是最大负整数. ⑴ 点B 对应的数是 ,并请在数轴上标出点B 位置;⑵ 已知点P 在线段BC 上,且PB =25PC ,求线段AP 中点对应的数; ⑶ 若数轴上一动点Q 表示的数为x ,当QB =2时,求22100a c x bx +⋅-+的值(a,b,c 是点A 、B 、C 在数轴上对应的数).密封线内不要答题2019~2020学年度第一学期期末教学质量检查七年级数学试题答卷说明:1.答卷共4页.考试时间为100分钟,满分120分.2.答卷前必须将自己的姓名、座号等信息按要求填写在密封线左边的空格内一、选择题(本题共10小题,每小题3分,共30分.)二、填空题(本题共6小题,每小题4分,共24分.11.12.13.14.15. 16.三、解答题(一)(本题共3小题,每小题6分,共18分)19.解:四、解答题(二)(本题共3小题,每小题7分,共21分)20.解:21.解:22.解:五、解答题(三)(本题共3小题,每小题9分,共27分)23.解:五、解答题(三)(本题共3小题,每小题9分,共27分)24.解:25.解:密封线内不要答题惠城区2019-2020学年度第一学期期末教学质量检测七年级数学答案与评分标准一、选择题:(本大题共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案CABDDADBDC二、填空题:(本大题共6小题,每小题4分,共24分)11. < 12.3 13.-714. 75°47′6″ 15.同角的补角相等 (或等量减等量差相等)16.12三、解答题:(每小题6分,共18分) 17.解:原式=()118-+-……4分 =19=-……6分18.解:原式=22263622x y x y xy --+- =225xy -……4分当12x =-,2y =-时, 原式=()2122592⎛⎫⨯-⨯--=- ⎪⎝⎭……6分19.解:……5分如图点B 为文具商店的位置……6分四、解答题:(每小题7分,共21分)20.解:解方程23101124x x -+-=,得3x =-……4分 将3x =-代入方程23xax -=,得231a +=- 解得:1a =-……7分21.解:∵点M 为AB 中点∴ AB =2MB =6……3分 ∴ AN +NB =6∵ BN =12AN ∴ 2BN +NB =6 ∴ NB =2……6分∴ MN =MB -NB =1……7分22解.⑴ 220 cm ,(100+12 n ) cm ……4分⑵ 设种植该种树n 年后,树高达到2.8m 由100+12 n =280,得 n =15答:种植该种树15年后,树高才能达到2.8m ……7分五、解答题:(每小题9分,共27分)23.解:⑴ 180元……1分⑵ 设第一次购进了x 台,根据题意得:150x =(150+30)(x -10) ……4分化简得 30x =1800, 解得 x =60.所以 x -10=60-10=50.答:第一次购进了60台,第二次购进了50台. ……5分 ⑶(210-150)×60+(210-180)×50=3600+1500=5100(元). ……7分24.解:⑴ ∠COD =∠AOB .理由如下: 如图 ∵点O 在直线AD 上∴∠AOC +∠COD =180°又∵∠AOC 与∠AOB 互补 ∴∠AOC +∠AOB =180° ∴∠COD =∠AOB⑵ ∵ OM 、ON 分别是∠AOC 、∠AOB 的平分线 ∴∠AOM =∠COM ,∠AON =∠BON∴∠BOC =∠BOM +∠COM11 =∠BOM +∠AOM=(∠MON -∠BON )+(∠MON +∠AON ) =2 ∠MON=112°⑶由⑴得:∠COD =∠AOB∵ ∠AOB +∠BOC + +∠COD =180°∴ ∠AOB =12(180°-∠B OC )=12(180°-112°)=34° ∴ ∠AOC =180°-∠AOB =180°-34°=146°.25.解:⑴点B 对应的数是 -1 ……1分点B 位置如图:……2分⑵ 设点P 对应的数为p∵ 点P 在线段BC 上∴ PB =p -(-1)=p +1PC =6-p ∵ PB =25PC ∴ p +1=25(6-p ) ∴p =1设AP 中点对应的数为t则t -(-6)=1-t∴ t =-2.5∴AP 中点对应的数为-2.5……5分⑶ 由题意:a +c =0,b =-1当点Q 在点B 左侧时,-1 - x =2,x =-3∴ 22100a c x bx +⋅-+=0-(-1)×(-3)+2=-1……7分 当点Q 在点B 右侧时,x -(-1)=2,x =1∴ 22100a c x bx +⋅-+=0-(-1)×1+2=3……9分。
最新北师大版数学七年级上册《期末检测题》附答案
2020-2021学年第一学期期末测试北师大版七年级数学试题一、选择题:(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂)1.下列四个数中,最小的数是()A.13- B. 0 C. -2 D. 22.如图所示的直角三角形ABC绕直角边AC旋转一周,所得的几何体从正面看到的形状图是()A. B. C. D.3.如图,若数轴上不重合的A、B两点到原点的距离相等,则点B所表示的数是()A. 3B. 2C. 1D. 04.下列调查中,适合采用全面调查(普查)方式的是()A. 了解九龙江流域的水污染情况B. 了解漳州市民对中央电视台2019年春节联欢晚会的满意度C. 为保证我国北斗三号卫星成功发射,对其零部件进行检查D. 了解全市“文明好司机”礼让斑马线及行人文明过马路情况5.“植树时只要定出两棵树位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是()A. 两点确定一条直线B. 两点之间,线段最短C. 直线可以向两边延长D. 两点之间线段的长度,叫做这两点之间的距离6.下列结论中正确的是()A. 单项式24x yπ的系数是14,次数是4 B. 单项式m的次数是1,无系数C. 在213a ,x y π-,54y x ,0中整式有2个D. 多项式2223x xy ++是三次三项式 7.下列抽样调查中,样本具有代表性的是( )①在某大城市调查我国的扫盲情况;②随机在100所中学里调查我国学生的视力情况;③在一个鱼塘里随机捕了20条鱼,了解鱼塘里鱼的生长情况;④在某一农村小学里抽查100名学生,调查我国小学生的健康状况.A. ①②B. ①④C. ②④D. ②③8.小明和小亮各收集了一些废电池.如果小明 ,他的废电池个数就和小亮一样多.设小亮收集了x 个废电池,则两人一共收集了(26)x -个.要将题目补充完整,横线上可填( )A. 少收集3个B. 少收集6个C. 多收集3个D. 多收集6个 9.已知整数1a ,2a ,3a ,4a ,…满足下列条件:10a =,212a a =-+,324a a =-+,436a a =-+,…,12n n a a n +=-+(n 为正整数),依此类推,2019a 的值为A . -2017 B. -2018 C. -2019 D. -202010.如图,把六张大小完全相同的小长方形卡片(如图①)不重叠无缝隙的放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长之和是( )A. 4mB. 4nC. 3m n +D. 4n m -二、填空题(共6小题,每小题4分,满分24分.请将答案填入答题卡的相应横线上) 11.如果单项式6m x y 和33yx 是同类项,则m =__________.12.在千年府衙前回味历史,在石板巷里品味静谧,在骑楼下享受慢时光.没有喧嚣的车流,多了闲适的脚步——这就是漳州古城.2018年,前来漳州古城的游客人次超过1700000.其中1700000用科学记数法表示为__________.13.五边形共有______________条对角线.14.如图是方程313142x x -+-=的求解过程,其中依据等式的基本性质的步骤有__________.(填序号)15.对某中学同年级70名男生的身高进行了测量,得到一组数据,其中最大值是183cm ,最小值是146cm ,对这组数据进行整理时,确定它的组距为5cm ,则至少应分__________组.16.已知关于x 的一元一次方程13102020x x m +=+的解为3x =-,那么关于y 的一元一次方程1(21)310(21)2020y y m •++=++的解为__________. 三、解答题:共9题,满分86分.请在答题卡的相应位置作答17.计算:111()(36)4612--⨯- 18.化简求值:22223(2)2(2)a ab b a ab b -+--+,其中2a =,1b =-19.为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A 级:优秀;B 级良好;C 级及格;D 级不及格),并将测试结果绘制成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题.(1)本次抽样测试的学生人数是 .(2)图1中∠α的度数是多少度?并直接把图2条形统计图补充完整;(3)该县九年级学生3500名,如果全部参加这次中考体育科目测试,请你估计不及格的人数多少人? 20.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.21.某公司6天内货品进出仓库的吨数如下,其中正数表示进库的吨数:+31,-32,-16,+35,-38,-20.(1)经过这6天,仓库里的货品是_________(填“增多了”或“减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨? (3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?22.已知线段AB 和线段a ,延长线段AB 至点C ,使2BC a =,延长BA 至点D ,使点B 是CD 的中点.(1)用尺规作出图形,并标出相应的字母;(保留作图痕迹,不写作法)(2)若1AB =, 1.5a =,求AD 的长.23.我们规定:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”. 例如:方程24x =-的解为2x =-,而242-=-+,则方程24x =-为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x 的一元一次方程5x m =是“和解方程”,求m 的值;(2)已知关于x 一元一次方程3x mn n -=+是“和解方程”,并且它的解是x n =,求m ,n 的值. 24.在学习《展开与折叠》这一课时,老师让同学们将准备好的正方体或长方体沿某些棱剪开,展开成平面图形.其中,阿中同学不小心多剪了一条棱,把一个长方体纸盒剪成了图①、图②两部分.根据你所学的知识,回答下列问题:(1)阿中总共剪开了几条棱?(2)现在阿中想将剪断的图②重新粘贴到图①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,他有几种粘贴方法?请在图①上画出粘贴后的图形(画出一种即可);(3)已知图③是阿中剪开的图①的某些数据,求这个长方体纸盒的体积.25.一副三角尺按照如图所示摆放在量角器上,边AB与量角器0刻度线重合,边AE与量角器180刻度线重合,将三角尺ABC绕量角器中心点A以每秒3的速度顺时针旋转,当边AB与180刻度线重合时停止运动.设三角尺ABC的运动时间为t秒.∠时,求t的值;(1)当AC平分BAD(2)若三角尺ABC开始旋转的同时,三角尺ADE也绕点A以每秒1的速度逆时针旋转.当三角尺ABC停止旋转时,三角尺ADE也停止旋转.∠时,求t的值;①当AD平分BAC②在旋转过程中,是否存在某一时刻,使得4BAE CAD ∠=∠?若存在,请求出t 的值;若不存在,请说明理由.答案与解析一、选择题:(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂)1.下列四个数中,最小的数是()A.13- B. 0 C. -2 D. 2【答案】C【解析】【分析】根据有理数比较大小的方法,正数>0>负数,两个负数里,绝对值大的数反而较小.【详解】解:根据有理数比较大小的方法得出:12023-<-<<∴四个数中最小的数为-2.故答案为:C.【点睛】本题考查的知识点是比较有理数的大小,属于基础性题目,易于掌握,此类题目还可以通过在数轴上将数字标注出来比较大小.2.如图所示的直角三角形ABC绕直角边AC旋转一周,所得的几何体从正面看到的形状图是()A. B. C. D.【答案】A【解析】【分析】首先根据面动成体可得出将直角三角形绕直角边AC旋转一周,所得到的几何体为圆锥,再找到圆锥从正面看到的图形即可【详解】解:∵根据面动成体可得出将直角三角形绕直角边AC旋转一周,所得到的几何体为圆锥,∴从正面看到的图形为等腰直角三角形.故答案为:A.【点睛】本题考查的知识点是点、线、面、体的关系以及简单几何体的三视图,熟记简单几何体的三视图是解题的关键.3.如图,若数轴上不重合的A、B两点到原点的距离相等,则点B所表示的数是()A. 3B. 2C. 1D. 0【答案】B【解析】【分析】根据到原点距离相等的点所表示的数互为相反数,故可知点B表示的数为-2的相反数,即可得出答案. 【详解】解:∵A、B两点到原点的距离相等,且两数不重合,A为-2,∴B为-2的相反数,即B表示2.故答案为:B.【点睛】本题考查的知识点是数轴上点到原点的距离,数轴上到原点距离相等的点有两个且这两个数互为相反数.4.下列调查中,适合采用全面调查(普查)方式的是()A. 了解九龙江流域的水污染情况B. 了解漳州市民对中央电视台2019年春节联欢晚会的满意度C. 保证我国北斗三号卫星成功发射,对其零部件进行检查D. 了解全市“文明好司机”礼让斑马线及行人文明过马路的情况【答案】C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.了解九龙江流域的水污染情况宜采用抽样调查方式;B.了解漳州市民对中央电视台2019年春节联欢晚会满意度宜采用抽样调查方式;C.为保证我国北斗三号卫星成功发射,对其零部件进行检查宜采用全面调查的方式;D. 了解全市“文明好司机”礼让斑马线及行人文明过马路的情况采用抽样调查方式.故答案为:C.【点睛】本题考查的知识点是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于精确度要求较高的调查,事关重大的调查往往选择普查.5.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( )A. 两点确定一条直线B. 两点之间,线段最短C. 直线可以向两边延长D. 两点之间线段的长度,叫做这两点之间的距离 【答案】A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.6.下列结论中正确的是( )A. 单项式24x yπ的系数是14,次数是4 B. 单项式m 的次数是1,无系数 C. 在213a ,x y π-,54y x,0中整式有2个 D. 多项式2223x xy ++是三次三项式 【答案】D【解析】【分析】 根据单项式的系数、次数和多项式的定义以及整式的概念判断即可.【详解】解:A. 单项式24x yπ的系数是14,次数是3,不符合题意; B. 单项式m 的次数是1,系数是1,不符合题意;C. 在213a ,x yπ-,54y x ,0中整式有213a 、x y π-、0,一共3个,不符合题意; D. 多项式2223x xy ++是三次三项式,正确,符合题意.故答案为:D.【点睛】本题考查的知识点是多项式及单项式的概念及其系数、次数问题,属于基础题目,熟记各知识点是解题的关键.7.下列抽样调查中,样本具有代表性的是()①在某大城市调查我国的扫盲情况;②随机在100所中学里调查我国学生的视力情况;③在一个鱼塘里随机捕了20条鱼,了解鱼塘里鱼的生长情况;④在某一农村小学里抽查100名学生,调查我国小学生的健康状况.A. ①②B. ①④C. ②④D. ②③【答案】D【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:①在某大城市调查我国的扫盲情况,样本不符合随机性,因此,不具有代表性,不符合题意;②随机在100所中学里调查我国学生的视力情况,具有代表性,符合题意;③在一个鱼塘里随机捕了20条鱼,了解鱼塘里鱼的生长情况,具有代表性,符合题意;④在某一农村小学里抽查100名学生,调查我国小学生的健康状况,不满足随机性,因此,不具有代表性,不符合题意综上所述,②③符合题意.故答案为:D.【点睛】本题考查的知识点是抽取样本的注意事项,抽取样本一定要符合随机性,这样的样本才具有代表性.8.小明和小亮各收集了一些废电池.如果小明,他的废电池个数就和小亮一样多.设小亮收集了xx 个.要将题目补充完整,横线上可填()个废电池,则两人一共收集了(26)A. 少收集3个B. 少收集6个C. 多收集3个D. 多收集6个【答案】D【解析】【分析】根据两人一共收集(2x-6)个,小亮为x个,则小明收集了(x-6)个,因此,小明需再多收集6个才能和小亮一样多.【详解】解:∵2x-6-x=x-6∵x-6+6=x∴小明多收集6个,他的废电池个数就和小亮一样多.故答案为:D.【点睛】本题考查的知识点是根据所给代数式将题目补充完整,找出题目中的等量关系式是解题的关键. 9.已知整数1a ,2a ,3a ,4a ,…满足下列条件:10a =,212a a =-+,324a a =-+,436a a =-+,…,12n n a a n +=-+(n 为正整数),依此类推,2019a 的值为A. -2017B. -2018C. -2019D. -2020 【答案】B【解析】【分析】根据条件求出前几个数的值,再找出数字的排列规律为:当n 为奇数时,()1n a n =--,当n 为偶数时,n a n =-,代入计算即可.【详解】解:∵10a =, ∴212022a a =-+=-+=- ∴324242a a =-+=--+=- ∴436264a a =-+=--+=- ∴548484a a =-+=--+=-……综上所述,可得出:当n 为奇数时,()1n a n =--,当n 为偶数时,n a n =-,∵2019为奇数,∴2019(1)2018a n =--=-故答案为:B.【点睛】本题考查的知识点是寻找数字的排列规律并求值,解题的关键是根据已给数据找出数据的排列规律,往往先列举前面的几个数字,再分n 为奇数或偶数时分别探寻规律.10.如图,把六张大小完全相同的小长方形卡片(如图①)不重叠无缝隙的放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长之和是( )A. 4mB. 4nC. 3m n +D. 4n m -【答案】B【解析】【分析】 设图①小长方形的长为a ,宽为b ,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得出a+3b=m ,代入计算即可.【详解】解:设图①小长方形的长为a ,宽为b ,上面的长方形的周长:2(m-3b+n-3b)下面的长方形的周长:2(n-a+m-a)周长之和:2m+2n-12b+2n+2m-4a=4m+4n-12b-4a由图②得出:a+3b=m代入可得出:4m+4n-12b-4a=4n故答案为:B.【点睛】本题考查的知识点是代数式的应用,解题的关键是正确的用代数式表示出阴影部分的周长之和.二、填空题(共6小题,每小题4分,满分24分.请将答案填入答题卡的相应横线上) 11.如果单项式6m x y 和33yx 是同类项,则m =__________.【答案】3【解析】【分析】根据同类项的定义直接可求解.【详解】解:∵6mx y 和33yx 是同类项 ∴m=3故答案为:3.【点睛】本题考查的知识点是同类项的定义,在这里需要注意的是所有常数项都是同类项.12.在千年府衙前回味历史,在石板巷里品味静谧,在骑楼下享受慢时光.没有喧嚣的车流,多了闲适的脚步——这就是漳州古城.2018年,前来漳州古城的游客人次超过1700000.其中1700000用科学记数法表示为__________.【答案】61.710⨯【解析】【分析】科学记数法的表示形式为a 10n ⨯的形式,其中0a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:61700000 1.710=⨯故答案为:61.710⨯.【点睛】本题考查的知识点是用科学记数法表示较大的数,需要注意的是当原数的绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.13.五边形共有______________条对角线.【答案】5【解析】【分析】根据多边形的对角线与边的关系,即可求解.【详解】解:∵n 边形共有(3)2n n - 条对角线, ∴五边形共有5(53)2-=5 ∴答案为5. 【点睛】本题考查了多边形的边数与对角线条数的关系,熟记多边形的边数与对角线的关系式(3)2n n -(n 为多边形的边数)是解决此类问题的关键.14.如图是方程313142x x -+-=的求解过程,其中依据等式的基本性质的步骤有__________.(填序号)【答案】①③⑤【解析】【分析】根据等式的基本性质直接判断即可得出答案.基本性质如下:等式两边同时加上(或减去)同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立;等式具有传递性.【详解】解:①去分母,等式两边同时乘以4,依据等式的基本性质2;②去括号,依据去括号法则;③移项,依据等式的基本性质1;④合并同类项,依据合并同类项法则;⑤系数化为1,依据是等式的基本性质2.综上所述,据等式的基本性质的步骤有①③⑤.故答案为:①③⑤.【点睛】本题考查的知识点是等式的基本性质,根据解方程的一般步骤找出所利用的等式性质是解题的关键.15.对某中学同年级70名男生的身高进行了测量,得到一组数据,其中最大值是183cm,最小值是146cm,对这组数据进行整理时,确定它的组距为5cm,则至少应分__________组.【答案】8【解析】【分析】根据组数的计算公式即可得出答案.组数=(最大值-最小值) 组距,计算结果为小数或分数时,用进一法来确定组数.【详解】解:∵1831467.45-= ∵计算结果为小数,我们利用进一法来确定组数,因此组数为8.故答案为:8.【点睛】本题考查的知识点是组数的计算,此类题目要根据题意找出样本数据的最大值和最小值,结合组距,利用公式来求解.16.已知关于x 的一元一次方程13102020x x m +=+的解为3x =-,那么关于y 的一元一次方程1(21)310(21)2020y y m •++=++的解为__________. 【答案】-2【解析】【分析】设2y+1=x ,再根据题目中关于x 的一元一次方程的解确定出y 的值即可.【详解】解:设2y+1=x ,则关于y 的方程化为:13102020x x m +=+, ∴2y +1=x=-3∴y=-2故答案为:-2.【点睛】本题考查的知识点是解一元一次方程,若关于x 、y 的方程毫无关系,一般是将x 的解代入关于x 的方程求出m 值,再代入关于y 的方程,求出y 的值. 三、解答题:共9题,满分86分.请在答题卡的相应位置作答17.计算:111()(36)4612--⨯- 【答案】0【解析】【分析】根据有理数的混合运算法则进行求解即可.可运用乘法的分配律来简便运算. 【详解】解:原式111(36)(36)(36)4612=⨯--⨯--⨯- 963=-++0=【点睛】本题考查的知识点是有理数的混合运算,灵活运用乘法的分配率或结合律可使计算简便化.18.化简求值:22223(2)2(2)a ab b a ab b -+--+,其中2a =,1b =-【答案】224a ab b --+,2【解析】【分析】首先去括号,然后合并同类项,最后代入已知数据计算即可求解.【详解】解:原式2222336422a ab b a ab b =-+-+-224a ab b =--+当2a =,1b =-时,原式2222(1)4(1)=--⨯-+⨯- 424=-++2=【点睛】本题考查的知识点是代数式的化简求值,熟练运用去括号法则、合并同类项法则是解题的关键. 19.为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A 级:优秀;B 级良好;C 级及格;D 级不及格),并将测试结果绘制成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题.(1)本次抽样测试的学生人数是 .(2)图1中∠α的度数是多少度?并直接把图2条形统计图补充完整;(3)该县九年级学生3500名,如果全部参加这次中考体育科目测试,请你估计不及格人数多少人?【答案】(1)40;(2)14 ,图见解析;(3)700【解析】试题分析:(1)根据B级有14人占抽样总学生数的35%,求抽样总人数;(2)由∠α=1640×360°得了角度,C级人数为:总人数-A级人数-B级人数-D级人数;(3)估计3500人中的不及格的人数:3500 抽样样本的不及格率;试题解析:解:(1)本次抽样的人数是14÷35%=40(人),故答案是:40;(2)∠α=1640×360°=144°,C级的人数是40﹣16﹣14﹣2=8(人),故答案是:144.;(3)估计不及格的人数是3500×240=175(人),故答案是:175.20.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【答案】共有7人,这个物品的价格是53元.【解析】【分析】根据题意,找出等量关系,列出一元一次方程.【详解】解:设共有x 人,这个物品的价格是y 元,83,74,x y x y -=⎧⎨+=⎩解得7,53,x y =⎧⎨=⎩ 答:共有7人,这个物品的价格是53元.【点睛】本题考查了二元一次方程的应用.21.某公司6天内货品进出仓库的吨数如下,其中正数表示进库的吨数:+31,-32,-16,+35,-38,-20.(1)经过这6天,仓库里的货品是_________(填“增多了”或“减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨? (3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?【答案】(1)减少了;(2) 6天前仓库里有货品500吨;(3)这6天要付860元装卸费.【解析】【分析】(1)将6天进出仓库的吨数相加求和即可,结果为正则表示增多了,结果为负则表示减少了;(2)结合上问答案即可解答;(3)计算出所有数据的绝对值之和,然后根据进出的装卸费都是每吨5元进行计算.【详解】(1)+31-32-16+35-38-20=-40(吨),∵-40<0,∴仓库里的货品减少了.答:减少了.(2)+31-32-16+35-38-20=-40(吨),即经过这6天仓库里的货品减少了40吨.所以6天前仓库里有货品,460+40=500(吨).答:6天前仓库里有货品500吨.(3)|+31|+|-32|+|-16|+|+35|+|-38|+|-20|=172(吨),172×5=860(元).答:这6天要付860元装卸费.【点睛】本题考查了正数和负数表达相反意义量的意义.22.已知线段AB 和线段a ,延长线段AB 至点C ,使2BC a =,延长BA 至点D ,使点B 是CD 的中点.(1)用尺规作出图形,并标出相应的字母;(保留作图痕迹,不写作法)(2)若1AB =, 1.5a =,求AD 的长.【答案】(1)见解析;(2)2【解析】【分析】(1)根据尺规作图的方法直接作图即可(2)根据(1)中所作图形,可得出BC=BD=2a=3,AD=BD-AB 即可得出答案.【详解】解:(1)∴点C ,点D 为所求作的点(2)∵ 1.5a =∴23BC a ==∵B 是CD 的中点∴3BD BC ==∵1AB =∴312DA BD AB =-=-=【点睛】本题考查的知识点是简单的尺规作图,比较基础,结合所画图形便可找出各线段的关系. 23.我们规定:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”. 例如:方程24x =-的解为2x =-,而242-=-+,则方程24x =-为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x 的一元一次方程5x m =是“和解方程”,求m 的值;(2)已知关于x 的一元一次方程3x mn n -=+是“和解方程”,并且它的解是xn =,求m ,n 的值. 【答案】(1)254-;(2)4m =-;34n =- 【解析】【分析】(1)根据和解方程定义,将x=5m +代入方程求解即可,(2)根据和解方程定义,将x=mn n 3+-和x n =代入方程求解即可.【详解】解:(1)∵关于x 的一元一次方程5x m =是“和解方程”,∴5m +是方程5x m =的解.∴()55m m += ∴25m 4=-. (2)∵关于x 的一元一次方程3x mn n -=+是“和解方程”,∴mn n 3+-是方程3x mn n -=+的解.又∵x n =是它的解,mn n 3n +-=.∴mn 3=.把x n =代入方程,得3n mn n -=+.∴3n 3n -=+.∴4n 3-=.3n 4=-. ∴m 4=-.【点睛】本题考查了一元一次方程的求解,和解方程的定义,中等难度,理解和解方程的定义,将解代入方程求解是解题关键.24.在学习《展开与折叠》这一课时,老师让同学们将准备好的正方体或长方体沿某些棱剪开,展开成平面图形.其中,阿中同学不小心多剪了一条棱,把一个长方体纸盒剪成了图①、图②两部分.根据你所学的知识,回答下列问题:(1)阿中总共剪开了几条棱?(2)现在阿中想将剪断的图②重新粘贴到图①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,他有几种粘贴方法?请在图①上画出粘贴后的图形(画出一种即可);(3)已知图③是阿中剪开的图①的某些数据,求这个长方体纸盒的体积.12cm【答案】(1)8条;(2)有4种粘贴方法,图形见解析;(3)这个长方形纸盒的体积为3【解析】【分析】(1)长方体共有12条棱,图①中未剪的棱有4条,由此可得出剪开的棱数;(2)根据长方体的展开图直接复原即可,注意两个相对面中间要隔一个面;(3)直接设长方体的高为x,则根据图中数据可得出长、宽的代数式,从而解得x的值,再求体积即可.【详解】解:(1)12-4=8(条)因此,阿中总共剪开了8条棱.(2)有4种粘贴方法.如图,四种情况:(3)设高为x cm ,则宽为(4)x -cm ,长为[7(4)](3)x x --=+cm∴4(3)8x ++=解得:1x =∴体积为:3(31)(41)112cm +⨯-⨯=答:这个长方形纸盒的体积为312cm .【点睛】本题考查的知识点是简单几何体的展开图,主要考查学生的空间想象能力,掌握几何体展开图的特征是解题的关键.25.一副三角尺按照如图所示摆放在量角器上,边AB 与量角器0刻度线重合,边AE 与量角器180刻度线重合,将三角尺ABC 绕量角器中心点A 以每秒3的速度顺时针旋转,当边AB 与180刻度线重合时停止运动.设三角尺ABC 的运动时间为t 秒.(1)当AC 平分BAD ∠时,求t 的值;(2)若三角尺ABC 开始旋转的同时,三角尺ADE 也绕点A 以每秒1的速度逆时针旋转.当三角尺ABC 停止旋转时,三角尺ADE 也停止旋转.①当AD 平分BAC ∠时,求t 的值;②在旋转过程中,是否存在某一时刻,使得4BAE CAD ∠=∠?若存在,请求出t 的值;若不存在,请说明理由.【答案】(1)t=5;(2)①26.25t =;②存在,当t 为10秒或24秒时,4BAE CAD ∠=∠,理由见解析【解析】【分析】(1)由已知条件可得出BAC 60∠=︒,DAE 45∠=︒,AC 平分BAD ∠,则BAD 120∠=︒进而得出三角形旋转过的度数,再除以旋转速度即可得解.(2)①由已知条件BAD 30∠=︒,△ABC 旋转的度数180BAD DAE ∠=︒---△DAE 旋转的度数,求解即可;②分两种情况讨论,AC 在AD 的左侧和AC 在AD 的右侧,再根据旋转分别用含t 的式子求出BAE ∠、CAD ∠,再列等式求t 值即可.【详解】解:(1)如图①,∵AC 平分BAD ∠,且60BAC ∠= ∴11202BAD BAC ∠=∠= 由旋转可知:318012045t =--。
湖北省武汉市青山区2020—2021学年七年级第一学期数学期末质量检测(含答案)
青山区2020—2021学年度第一学期期末质量检测七年级数学试卷青山区教育局教研室命制2021年1月本试卷满分为120分考试用时120分钟一、你一定能选对!(本大题共有10小题,每小题3分,共30分)下列各题均有四个备选答案,其中有且只有一个是正确的,请将正确答案的代号在答题卡上将对应的答案标号涂黑.1.在四个数-1,0,1,2中,最小的数是A.2B.0C.1D.-12.下列方程,是一元一次方程的是A.2x-3=x B.x-y=2 C.x-1x=1D.x2-2x=0 3.方程8-3x=ax-4的解是x=3,则a的值是A.-3B.-1C.1D.34.下列四个几何体中,从左面看是圆的几何体是A.B.C.D.5.检测4个排球,其中超过标准的克数记为正数,不足的克数记为负数.从轻重的角度看,哪个球更接近标准A.-2.4B.+0.7C.3.2D.-0.56.如图,下列说法错误的...是A.∠1与∠AOC表示的是同一个角;B.∠a表示的是∠BOCC.∠AOB也可用∠O表示;D.∠AOB是∠AOC与∠BOC的和7.已知∠α=70°18',则∠α的补角是A.110°42′B.109°42′C.20°42′D.19°42′8.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈CBOAa1三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x 元,则可列方程 A .8x +3=7x +4B .8x ﹣3=7x +4C .3+487x x D .+3487x x 9.下列说法:①延长射线AB ; ②射线OA 与射线AO 是同一条射线; ③若(a -6)x 3-2x 2-8x -1是关于x 的二次多项式,则a =6;④已知A ,B ,C 三个点,过其中任意两点作一条直线,可作出1或3条直线. 其中正确的个数有A. 1个B.2个C.3个D. 4个10.如图,按照上北下南,左西右东的规定画出方向十字线,∠AOE =m °,∠EOF =90°,OM 、ON 分别平分∠AOE 和∠BOF ,下面说法:①点E 位于点O 的北偏西m °;②图中互余的角有4对; ③若∠BOF =4∠AOE ,则∠DON =54°; ④若MON n AOE BOF ,则n 的倒数是23,其中正确有A . 3个B .2个C .1个D .0个二、填空题(本大题共有6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结论直接填写在答题卷的指定位置.11.某地一天早晨的气温是-2℃,中午温度上升了8℃,则中午的气温是 ℃. 12.用两个钉子就可以把木条固定在墙上,用到的数学原理是 . 13.中国的陆地面积约为9600000km 2,数9600000用科学计数法表示为 . 14.如图,是一个正方体的表面展开图,若正方体相对两个面上的数互为相反数,则3x -y 的值为 .15.某糕点厂要制作一批盒装蛋糕,每盒中装2大蛋糕和4块小蛋糕,制作1块大蛋糕要用 0.05kg 面粉,1块小蛋糕要用0.02kg 面粉.现共有面粉450kg ,用 kg 面粉制 作大蛋糕,才能生产最多的盒装蛋糕.16.如图,是一个运算的流程图,输入正整数x 的值,按流程图进行操作并输出y 的值.例东西南北DNM FE B O A2x -3x y 2-25第16题图 第14题图如,若输入x =10,则第一次输出y =5.若输入某数x 后,第二次输出y =3,则输入的x 的值为 .三、解下列各题(本大题共8小题,共72分)下列各题需要在答题卷的指定位置写出文字说明、证明过程、演算步骤或画出图形. 17.计算:(每小题4分,共8分) (1)(-1)10×2+(-2)3÷4 (2) (8a -7b )-2(4a -5b ) 18.解方程:(每小题4分,共8分)(1)5x =3x -6 (2)13123x x19.(本题满分8分) 如图,点C 是线段AB 外一点.请按下列语句画图. (1)①画射线CB ; ②反向延长线段AB ;③连接AC ,并延长至点D ,使CD =BC ;(2)试比较AD 与AB 的大小,并简单说明理由.20.(本题满分8分) 下表是某校七、八年级某月课外兴趣小组活动时间统计表,其中七、八年级同一兴趣小组每次活动时间相同.年级 课外小组活动总时间/ h 文艺小组活动次数 科技小组活动次数七年级18.667八年级 15 5 5 (1)文艺小组和科技各活动1次,共用时 h ; (2)求文艺小组每次活动多少h ?21.(本题满分8分)如图1,将长方形笔记本活页纸片的一角对折,使角的顶点A 落在A ′处,BC 为折痕. (1)若∠ACB =35°. ① 求∠A ′CD 的度数;② 如图2,若又将它的另一个角也斜折过去,并使CD 边与CA ′重合,折痕为CE .求∠1和∠BCE 的度数;(2)在图2中,若改变∠ACB 的大小,则CA′的位置也随之改变,则∠BCE 的大小是否改变?请说明理由.22.(本题满分10分) 2020年“双十一”购物节,某商店将甲种商品降价30%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为2400元,顾客A 参加此次活动购买甲、乙两种商品各一件,共付1830元. (1)求甲、乙两种商品的原销售单价各是多少元?(2)若商店在这次与顾客A 的交易中,甲种商品亏损25%,乙种商品盈利25%,求商店在这次与顾客A 的交易中总的盈亏情况.BA图2 图123.(本题满分10分)【学习概念】 如图1,在∠AOB 的内部引一条射线OC ,则图中共有3个角,分别是∠AOB 、∠AOC 和∠BO C .若其中有一个角的度数是另一个角度数的两倍,则称射线OC 是∠AOB 的“好好线”. 【理解运用】 (1)①如图2,若∠MPQ =∠NPQ ,则射线PQ ∠MPN 的“好好线”(填“是”或“不是”);②若∠MPQ ≠∠NPQ ,∠MPQ =α,且射线PQ 是∠MPN 的“好好线”,请用含α的代数式表示∠MPN ; 【拓展提升】(2)如图3,若∠MPN =120°,射线PQ 绕点P 从PN 位置开始,以每秒12°的速度逆时针旋转,旋转的时间为t 秒.当PQ 与PN 成110°时停止旋转.同时射线PM 绕点P 以每秒6°的速度顺时针旋转,并与PQ 同时停止. 当PQ 、PM 其中一条射线是另一条射线与射线PN 的夹角的“好好线”时,则t = 秒.24.(本题满分12分)已知线段AB =m ,CD =n ,线段CD 在直线AB 上运动(A 在B 的左侧,C 在D 的左侧),且m ,n 满足|m -12|+(n -4)2=0. (1)m = ,n = ;(2)点D 与点B 重合时,线段CD 以2个单位长度/秒的速度向左运动.① 如图1,点C 在线段AB 上,若M 是线段AC 的中点,N 是线段BD 的中点,求线段MN 的长;② P 是直线AB 上A 点左侧一点,线段CD 运动的同时,点F 从点P 出发以3个单位/秒的向右运动,点E 是线段BC 的中点,若点F 与点C 相遇1秒后与点E 相遇.试探索整个运动过程中,FC -5DE 是否为定值,若是,请求出该定值;若不是,请说明理由.N P M CB O A N Q P M MP NA A图1备图 图1图2 图3备图2020~2021学年度第一学期期末试题七年级数学参考答案一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)二、填空题(本大题共8个小题,每小题3分,共18分.把答案填在题中横线上.) 11. 6 ; 12.两点确定一条直线; 13.9.6×106 ;14.-4 ; 15.250 ; 16.9或10或11或12.三、解答题:(本大题共8个小题.共72分.解答应写出文字说明、证明过程或演算步骤.)17.(1)解:原式=12+(8)4………… (2分) =2+2() ………… (3分) =0………… (4分)(2)解:原式=87810a b a b ………… (6分)=3b ………… (8分)18.(1)解:移项,得 536x x……… (2分)合并,得 26x ……… (3分)系数化为1,得 3x ………… (4分)(2)解:去分母,得 3(1)2(3)6x x ……… (5分)去括号,得 336+26x x………… (6分)移项,得 3+26+6+3x x合并,得 515x ………… (7分)系数化为1,得 3x………… (8分)19.(1)①如图,射线CB 即为所作;………… (2分) ②如图,线段AB 的反向延长线即为所作;………… (4分) ③如图,线段AC ,CD 即为所作. ………… (6分)注:(1)(2)(3)交代作图语言及作图正确各1分 (2)AD >AB ………… (7分)理由是:AD=AC+CD=AC+BC >AB (两点之间,线段最短).………… (8分)20.(1)文艺小组和科技小组各活动1次,共用时 3 h ;………… (3分) (2)解:设文艺小组每次活动x h ,………… (4分)题号 1 2 3 4 5 6 7 8 9 10 答案DACCDCBDBB依题意有:6x+7(3-x)=18.6…………(6分)解得:x=2.4,且合乎题意…………(7分)答:文艺小组每次活动2.4h.…………(8分);21.解:(1)①∵∠ACB=35°∴∠2=∠ACB=35°…………(1分)∴∠A’CD=180°-∠2-∠ACB=110°…………(2分)②∵∠1=∠DCE=12∠A’CD∴∠1=55°…………(3分)又∵∠2=35°∴∠BCE=∠1+∠2=90°…………(4分)(2)∠BCE=90°不会改变…………(5分)证明:∵∠1=∠DCE=12∠A’CD…………(6分)∠2=∠ACB=12∠A’CA∴∠BCE=∠1+∠2=12∠A’CD+12∠A’CA=12(∠A’CD+∠A’CA) ………(7分)又∵∠A’CD+∠A’CA=180°∴∠BCE=90°………(8分)22.解:(1)设甲种商品的原销售单价是x元,则乙种商品的原销售单价是(2400-x)元.……(1分)依题意有:(1-30%)x+(1-20%)(2400-x)=1830……(2分)解得:x=900…………(3分)则乙种商品的原销售单价是:2400-x=1500元…………(4分)答:甲、乙两种商品的原销售单价分别是900元和1500元.…………(5分)(2)设甲种商品的成本为a元,则有:(1-25%)a=900×(1-30%) …………(6分)解得:a=840…………(7分)设乙种商品的成本为b元,则有:(1+25%)b=1500×(1-20%) …………(8分)解得:b=960…………(9分)∵a+b=1800<1830∴1830-1800=30元∴商店在这次与顾客A的交易中总的盈亏情况是盈利了30元.…………(10分)23.解:(1)①射线PQ 是∠MPN的“好好线”;…………(2分)②∵射线PQ是∠MPN的“好好线”又∵∠MPQ≠∠NPQ∴此题有两种情况Ⅰ.如图1,当∠MPQ=2∠QPN时∵∠MPQ=α∴∠QPN=1 2α∴∠MPN=∠MPQ+∠QPN=32α…………(4分)Ⅱ.如图2,当∠QPN=2∠MPQ时∵∠MPQ=α∴∠QPN=2α∴∠MPN=∠MPQ+∠QPN=3α…………(5分)综上所述:∠MPN=32α,3α.…………(6分)(2)t= 207,4,5,607秒.(写对一个得1分,写错一个扣1分)…………(10分)24.(1)m=12 ,n=4;…………(2分)(2)①∵AB=12,CD=4∵M是线段AC的中点,N是线段BD的中点∴AM=CM=12AC,DN=BN=12BD…………(3分)∴MN=CM+CD+DN…………(4分)M DCAQNPM图1图2QMP N=12AC +CD +12BD =12AC +12CD +12BD+12CD=12(AC +CD +BD )+12CD=12(AB+CD )…………(6分)=8…………(7分)②如图,设PA =a ,则PC =8+a ,PE =10+a , 依题意有:81013231a a 解得:a =2…………(8分)在整个运动的过程中:BD =2t ,BC =4+2t , ∵E 是线段BC 的中点 ∴CE = BE =12BC =2+t Ⅰ.如图1,F ,C 相遇,即t =2时F ,C 重合,D ,E 重合,则FC =0,DE =0 ∴FC -5 DE =0…………(9分) Ⅱ.如图2,F ,C 相遇前,即t <2时FC =10-5t ,DE =BE -BD =2+t -2t =2-t∴FC -5 DE =10-5t -5(2-t )=0…………(10分) Ⅲ.如图3,F ,C 相遇后,即t >2时FC =5t -10,DE = BD - BE =2t –(2+t )= t -2 ∴FC -5 DE =5t -10 -5(t -2)=0…………(11分)综合上述:在整个运动的过程中,FC -5 DE 的值为定值,且定值为0.…………(12分) (注:本题几问其他解法参照评分) .D (E )C (F )BA图1E A D 图2图3D C A F。
2020-2021学年七年级上学期期中考试数学试题
2020~2021学年第一学期期中考试试题卷初一年级数学 命题人: 审题人:一、选择题(本大题共6小题,每小题3分,共18分)在每小题给出的四个选项中,只有 一项是正确的,请将正确答案前的字母填入答题卡对应的位置.1.2020的相反数是( )A .2020B . -2020C .20201D .20201- 2.据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为( )A .0.426×105B .4.26×105C .42.6×104D .4.26×1043.对于单项式a ,下列说法中正确的是( )A .系数是0,次数是0B .系数是1,次数是0C .系数是0,次数是1D .系数是1,次数是14.某超市老板先将进价a 元的排球提高50%标价出售了80个,后又按标价八折出售了剩下的20个,则该超市出售这100个排球的利润..(利润=总售价-总进价)是( ) A .44a 元 B .64a 元 C .124a 元 D .144a 元 5.如图,有理数a ,b ,c 在数轴上的对应点的位置,且|a |>|b |>|c |,则该数轴的原点位置只可能在( )A .a 的左边B .a 、c 之间C .c 、b 之间D .b 的右边6.在整数集合{-3,-2,-1.,0,1,2,3,4,5,6}中选取两个整数填入“ × =6”的 内,使等式成立,则正确选取后不同..填入..的方法有( ) A .2种 B .4种 C .6种 D .8种二、填空题(本大题共6小题,每小题3分,共18分) 请将正确答案直接填入答题卡对应的位置.7.计算:(-1)20+120 = .8.化简:a +2a +4a +8a +16a = .9.设a 与b 互为相反数,c 与d 互为倒数,比较大小则:(-a-b )2021 (-cd )2020 (请填“>”、“=”或“<”).10.若x -3y =5,则代数式2x -6y +8的值是 .11.写出两个只含字母x 的二次二项式,使它们的和为x -1,满足要求的多项式可以..是:、 .12.已知a 、b 是有理数,若a 2=64,b 3=64,则a +b 的所有值为 .三、计算题(本大题共4小题,每小题6分,共24分)()()13 2.91.4 3.81.5--+--.;2114.1010.82;74⎛⎫⎛⎫-÷-⨯⨯- ⎪ ⎪⎝⎭⎝⎭117515.(36)(1)1296-⨯--+;4216.75(3)(2)(4)+⨯---÷-.四、化简题(本大题共4小题,每小题6分,共24分)17.18.52(45)3(34)x x y x y -++-;五、解答题(本大题共3小题,每小题8分,共24分)21.如图所示,小明有标注①~⑤号的5张写着不同有理数的卡片,请你按要求选出卡片,完成下列各题.(1)从中选出1张卡片,且这张卡片的有理数在全部有理数大小排列里居中,应选取 号卡片,这张卡片上的有理数是 ;2223456;a b ab a b ab +-+-+222219.2(3)3(5);a b ab ab a b --+2220.4(32)3[422()].x xy x y xy y ---++(2)从中选出2张卡片,且这2张卡片的有理数差最大,应选取 号卡片,差的最大值是 ; (3)从中选出3张卡片,且这3张卡片的有理数积最小,应选取 号卡片,积的最小值是 ;(4)从中选出4张卡片,且将这4张卡片的有理数运用加、减、乘和除四则运算及括号列出一个算式,使得该算式的计算结果为24,请你写出算式(只需写出1种即可).① ② ③ ④ ⑤22.定义:若a +b =2,则称a 与b 是关于1的平衡数.(1)直接填写:①5与 是关于1的平衡数;②1-2x 与 是关于1的平衡数(用含x 的代数式表示);③y 与 是关于1的平衡数(用含y 的代数式表示);④z 与z 是关于1的平衡数,则z = .(2)若()22233a x x x =-++,()22341b x x x x ⎡⎤=--++⎣⎦,先化简a 、b ,再判断a 与b 是否是关于1的平衡数.23.已知:5335P x x x =++,42246Q x x =++.(1)当x =1时,分别求P ,Q 的值,当x =-1时,分别求P ,Q 的值;(2)当x =2020时,P 的值为a ,Q 的值为b ,当x =-2020时,用含a ,b 的代数式表示直接写出P ,Q 的值;(3)当x =m 时,P ,Q 的值分别为c ,d ;当x =-m 时,P ,Q 的值分别为e ,f ,则在c ,d ,e ,f 四个有理数中,以下判断正确的是 (只要填序号即可).. ①有两个相等的正数; ②有两个互为相反数;③至多有两个正数; ④至少有两个正数;⑤至多有一个负数; ⑥至少有一个负数.六、解答题(本大题共1小题,每小题12分,共12分)24.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系.数形结合是解决数学问题的重要思想方法.例如:代数式|x﹣3|的几何意义是数轴上x所对应的点与3所对应的点之间的距离:因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.(1)【发现问题】①若代数式|x+1|的值等于2020,求x的值;②已知代数式|x+1|与代数式|x﹣3|的值相等,求x的的值;(2)【探究问题】③求代数式|x+1|+|x﹣3|的最小值;④代数式|x+1|+|x﹣3|是否有最大值?(3)【解决问题】⑤当a为何值时,代数式|x+a|+|x﹣3|的最小值是2.南昌28中教育集团2020~2021学年第一学期期中考试初一年级数学参考答案及评分意见一、选择题(本大题共6小题,每小题3分,共18分)1.B ; 2.D ; 3.D ; 4.A ; 5.C ; 6.C.二、填空题(本大题共6小题,每小题3分,共18分)7.2; 8.31a ; 9.<; 10.18; 11.略; 12.12或-4.三、计算题(本大题共4小题,每小题6分,共24分)13.解:原式=2.9+1.4 -3.8-1.5 ……………………4分=4.3-5.3=-1. …………………6分14.解:原式 ………………………2分 ……………………4分……………………6分 15.解:原式=-33+28+30-36 ……………………5分 =-11. …………………6分16.解:原式=75(3)16(16)+--÷- ……………………………2分 =7-15+1 ……………………4分 =-7. ……………………6分四、化简题(本大题共4小题,每小题6分,共24分)17.解:原式=a +4a +2b ²-5b ²-3ab +6ab 1分=(a +4a )+(2b ²-5b ²)+(-3ab +6ab ) 4分 =5a -3b ²+3ab . 6分 18.解:原式=5x -8x -10y +9x -12y ……………………1分=5x -8x +9x -10y -12y ……………………2分=(5x -8x +9x )-(10y +12y ) ……………………3分=6x -22y. ……………………6分 19.解:原式=6a²b-2ab ²-15ab ²-3a²b …………………………… ………………1分=6a²b -3a²b-2ab ²-15ab ² ………………………………………………2分=(6a²b -3a²b )-(2ab ²+15ab ²) …………………… ……………………3分=3a²b -17ab ² ………………………………………………………… 6分20.解:原式=12x ²-8xy -3(4x ²-2y+2xy+2y ) ………………………………………1分=12x ²-8xy -12x ²-6xy ………………………………………………………2分 =(12x ²-12x ²) -(8xy+6xy )………………………………………… ……4分=-14xy …………………………………… ……………………………6分94910()()7547491095414.=÷-⨯⨯-=⨯⨯⨯=五、解答题(本大题共3小题,每小题8分,共24分)21.解:(1)选②,-1;……………………………………………2分(2)选④⑤(6,-8),最大值是14;………………………………………4分(3)选①④⑤(3,6,-8),最小值是-144;…………………………6分(4)(-8+6)×3×(-4)或(-1-6÷3)×(-8)等. ………………………8分22.解:(1)-3;1+2x;2-y;1;(每空1分)…………………………………4分(2)化简a=-x²-3x+3 ………………………………………………5分b= x²+3x-1 ………………6分因为a+b=2,所以ab是关于1的平衡数. …………8分23.解:(1)当x=1时,P=9,………………………………1分Q=12;………………………………2分当x=-1时,P=-9,………………………………3分Q=12;………………………………4分(2)P=-a,………………………………5分Q=b ………………………………6分(3)①②④⑤(选对2个得1分,选错一个得-1分)……8分六、解答题(本大题共1小题,每小题12分,共12分)24.解:①当|x+1|=2020时,x+1=±2020x =2019,x=-2021.………………………………………………………2分②到-1和3距离相等的点是1,∴x=1.……………………………………4分或:当|x+1|=|x﹣3|时,x=1.…………………………………………………4分③如图,点A、B、P分别表示数﹣1、3、x,AB=4.∵|x+1|+|x﹣3|的几何意义是线段P A与PB的长度之和,∴当点P在线段AB上时,P A+PB=4,当点P在点A的左侧或点B的右侧时,P A+PB>4.∴|x+1|+|x﹣3|的最小值是4.………………………………………………7分或:当x<-1时,|x+1|+|x﹣3|=-(x+1)-(x-3)=-2x+2>4;当-1≤x≤3时,|x+1|+|x﹣3|=(x+1)-(x-3)=4;当x>3时,|x+1|+|x﹣3|=(x+1)+(x-3)=2x-2>4;∴|x+1|+|x﹣3|的最小值是4.……………………………………………7分④代数式|x+1|+|x﹣3|没有最大值.……………………………………………9分⑤当代数式|x+a|+|x﹣3|的最小值是2时,|-a-3|=2,解得a为﹣1或﹣5.12分。
【苏科版】数学七年级上册《期末考试题》(带答案)
2020-2021学年度第一学期期末测试苏科版七年级数学试题一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上). 1.下列是3-的相反数是( )A. 3B. -1 3C. 13 D. -32.如图,数轴的单位长度为1,如果点A 表示的数为-2,那么点B 表示的数是( )A. 3B. 2C. 0D. -13.若要使得算式-3□0.5的值最大,则“□”中填入的运算符号是( )A. +B. -C. ×D. ÷4.下列运算正确的是( )A . 225a 3a 2-= B. 2242x 3x 5x += C. 3a 2b 5ab += D. 7ab 6ba ab -= 5.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 不确定 6.如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是( )A. 秦B. 淮C. 源D. 头7.小明在某月日历中圈出了三个数,算出它们的和是14,那么这三个数的位置可能是( )填写在答题卡相应位置上)9.在-4,0,π,1.010010001,-227,1.3•这6个数中,无理数有______个.10.2019上半年溧水实现GDP为420.3亿元,增幅排名全市11个区第一,请用科学计数法表示2019上半年溧水GDP为_________元.11.若x=-1是关于x的方程2x+a=1的解,则a的值为_____.12.已知a+2b=3,则7+6b+3a=________.13.当温度每下降100℃时,某种金属丝缩短0.2mm.把这种15℃时15mm长的金属丝冷却到零下5℃,那么这种金属丝在零下5℃时的长度是__________mm.14.已知∠α=25°15′,∠β=25.15°,则∠α_______∠β(填“>”,“<”或“=”).15.正方体切去一块,可得到如图几何体,这个几何体有______条棱.16.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.A. B. C. D. 8.下列说法:①两点之间,直线最短;②若AC=BC,则点C是线段AB的中点;③同一平面内过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.其中正确的说法有()A. 1个 B. 2个 C. 3个 D. 4个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接17.数轴上有A 、B 、C 三点,A 、B 两点所表示的数如图所示,若BC =3,则AC 的中点所表示的数是_______.18.某产品的形状是长方体,长为8cm ,它的展开图如图所示,则长方体的体积为_____cm 3.三、解答题(本大题共8题,共64分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)1+(―2)+|-3|;(2)2115524326⎛⎫-⨯-+ ⎪⎝⎭. 20.先化简,再求值:()()2222233a b abab a b ---+,其中1a =-,13b =. 21.解方程: (1)1﹣3(x ﹣2)=4; (2)213x +﹣516x -=1. 22.如图,所有小正方形的边长都为1,点O 、P 均在格点上,点P 是∠AOB 的边 OB 上一点,直线PC ⊥OA ,垂足为点C .(1)过点 P 画 OB 的垂线,交OA 于点D ;(2)线段 的长度是点O 到直线PD 的距离;(3)根据所画图形,判断∠OPC ∠PDC (填“>”,“<”或“=”),理由是 .23.工厂生产某种零件,其示意图如下(单位:mm)(1)该零件的主视图如图所示,请分别画出它的左视图和俯视图(2)如果要给该零件的表面涂上防锈漆,请你计算需要涂漆的面积.24.如图,点O是直线AB上一点,OC⊥OE,OF平分∠AOE,∠COF=25°,求∠BOE的度数.25.小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买纸杯蛋糕的总价为x元,请你根据题意完善表格中的信息,并列方程解答.单价数量总价今天12 x明天26.如图,已知点A、B、C是数轴上三点,O为原点,点A表示的数为-12,点B表示的数为8,点C为线段AB的中点.(1)数轴上点C表示的数是;(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P、Q相遇时,两点都停止运动,设运动时间为t(t>0)秒.①当t为何值时,点O恰好是PQ的中点;②当t为何值时,点P、Q、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果)答案与解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上).1.下列是3 的相反数是()A. 3B. -13C.13D. -3【答案】A【解析】【分析】根据相反数的定义,即可解答.【详解】-3的相反数是3.故选A.【点睛】本题考查了相反数的定义,解决本题的关键是熟记相反数的定义.2.如图,数轴的单位长度为1,如果点A表示的数为-2,那么点B表示的数是()A. 3B. 2C. 0D. -1【答案】A【解析】【分析】根据数轴的单位长度为1,点B在点A的右侧距离A点5个单位长度,直接计算即可.【详解】解:点B在点A的右侧距离A点5个单位长度,∴点B 表示的数为:-2+5=3,故选:A.【点睛】本题主要考查数轴,解决此题时,明确数轴上右边的数总是比左边的数大是解题的关键.3.若要使得算式-3□0.5的值最大,则“□”中填入的运算符号是()A. +B. -C. ×D. ÷【答案】C【解析】【分析】将运算符号放入方框,计算即可作出判断.【详解】解:-3+0.5=-2.5;-3-0.5=-4.5;-3×0.5=-1.5;-3÷0.5=-6, ∵-6<-4.5<-2.5<-1.5∴使得算式-1□0.5的值最大时,则“□”中填入的运算符号是×,故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.下列运算正确的是( )A. 225a 3a 2-=B. 2242x 3x 5x +=C. 3a 2b 5ab +=D. 7ab 6ba ab -=【答案】D【解析】【分析】根据合并同类项系数相加字母及指数不变,可得答案.【详解】解:A 、合并同类项系数相加字母及指数不变,故A 错误;B 、合并同类项系数相加字母及指数不变,故B 错误;C 、不是同类项不能合并,故C 错误;D 、合并同类项系数相加字母及指数不变,故D 正确;故选D .【点睛】本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题关键,注意不是同类项不能合并.5.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A. 相等B. 互余C. 互补D. 不确定【答案】B【解析】【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.【详解】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.【点睛】本题考查了余角和垂线的定义以及对顶角相等的性质.6.如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是()A. 秦B. 淮C. 源D. 头【答案】C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“秦”字对面的字是“灯”,“淮”字对面的字是“头”,“会”字对面的字是“源”.故选:C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.小明在某月的日历中圈出了三个数,算出它们的和是14,那么这三个数的位置可能是()A. B. C. D.【答案】B【解析】【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A、设最小的数是x.x+x+7+x+7+1=14x=1 3故本选项错误;B、设最小的数是x.x+x+1+x+7=14,x=2.故本选项正确.C、设最小的数是x.x+x+1+x+8=14,x=53,故本选项错误.D、设最小的数是x.x+x+6+x+7=14,x=13,故本选项错误.故选:B.【点睛】本题考查一元一次方程的应用,需要学生具备理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.8.下列说法:①两点之间,直线最短;②若AC=BC,则点C是线段AB的中点;③同一平面内过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.其中正确的说法有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】根据线段的性质,平行公理及推理,垂线的性质等知识点分析判断.【详解】解:①两点之间,线段最短,故错误;②若AC=BC,且A,B,C三点共线时,则点C是线段AB的中点,故错误;③同一平面内经过一点有且只有一条直线与已知直线垂直,故正确;④经过直线外一点有且只有一条直线与已知直线平行,故错误.正确的共1个故选:A.【点睛】本题考查了平行公理及推论,线段的性质,两点间的距离以及垂线,熟记基础只记题目,掌握相关概念即可解题.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.-4,0,π,1.010010001,-227,1.3•这6个数中,无理数有______个.【答案】1【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【详解】解:π,是无理数,共1个故答案为:1.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.2019上半年溧水实现GDP为420.3亿元,增幅排名全市11个区第一,请用科学计数法表示2019上半年溧水GDP为_________元.【答案】4.203×1010【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:420.3亿=42030000000=4.203×1010故答案为:4.203×1010【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.若x=-1是关于x的方程2x+a=1的解,则a的值为_____.【答案】3【解析】【分析】把x= -1代入已知方程后,列出关于a的新方程,求出方程的解即可.【详解】解:∵x= -1是关于x的方程2x+a=1的解,∴2×(-1)+a=1,解得a=3.故答案为3.【点睛】本题考查一元一次方程的解.方程的解即为能使方程左右两边相等的未知数的值.12.已知a+2b=3,则7+6b+3a=________.【答案】16【解析】【分析】将原式进行变形,然后整体代入求值即可.【详解】解:7+6b+3a=7+3(a+2b)当a+2b=3时,原式=7+3×3=16故答案为:16【点睛】本题考查代数值求值,利用整体代入思想解题是本题的解题关键.13.当温度每下降100℃时,某种金属丝缩短0.2mm.把这种15℃时15mm长的金属丝冷却到零下5℃,那么这种金属丝在零下5℃时的长度是__________mm.【答案】14.96【解析】【分析】由题意得到,温度下降1℃,金属丝缩短0.002mm,然后计算15℃冷却到零下5℃,温度下降15+5=20℃,从而求出金属丝长度即可.【详解】解:由题意可得:0.2÷100=0.00215-0.002×(15+5)=15-0.002×20=15-0.04=14.96mm故答案为:14.96【点睛】本题考查有理数的混合运算,解题关键是读懂题意.14.已知∠α=25°15′,∠β=25.15°,则∠α_______∠β(填“>”,“<”或“=”).【答案】>【解析】【分析】首先把:∠β=25.15°化为25°9′,然后再比较即可.【详解】解:∠β=25.15°=25°9′,∵25°15′>25°9′,∴∠α>∠β,故答案为:>.【点睛】此题主要考查了度分秒的换算,关键是掌握1度=60分,即1°=60′,1分=60秒,即1′=60″.15.正方体切去一块,可得到如图几何体,这个几何体有______条棱.【答案】12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.16.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.【答案】两点之间线段最短【解析】田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短,故答案为两点之间线段最短.17.数轴上有A、B、C三点,A、B两点所表示的数如图所示,若BC=3,则AC的中点所表示的数是_______.【答案】1.5或4.5【解析】【分析】分两种情况得到C点所表示的数,再根据中点坐标公式可求AC的中点所表示的数.【详解】解:∵B5,BC=3,∴C点为2或8,∴AC的中点所表示的数是(1+2)÷2=1.5或(1+8)÷2=4.5.故答案为:1.5或4.5.【点睛】本题考查了数轴,解题的关键是确定C点所表示的数,注意分类思想的应用.18.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.【答案】192【解析】【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm ,则长方形的宽为(14-2x )cm ,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm ,宽为6cm ,长为8cm ,长方形的体积为:8×6×4=192(cm 3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共8题,共64分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)1+(―2)+|-3|;(2)2115524326⎛⎫-⨯-+ ⎪⎝⎭. 【答案】(1)2;(2)9.【解析】【分析】(1)有理数的加减混合运算,先将绝对值化简,然后计算;(2)有理数的混合运算,使用乘法分配律使得计算简便.【详解】解:(1)1+(―2)+|-3|= 1—2+3= 2(2)2115524326⎛⎫-⨯-+ ⎪⎝⎭ =1152524+2424326-⨯⨯-⨯ = 25-8+12-20= 9【点睛】本题考查有理数的混合运算及乘法分配律,掌握运算顺序及运算法则是本题的解题关键. 20.先化简,再求值:()()2222233a b abab a b ---+,其中1a =-,13b =. 【答案】109【解析】【分析】根据整式的运算法则即可求出答案.【详解】原式2222623a b ab ab a b =-+-223a b ab =-当1a =-,13b =时, 原式()22111103(1)1()13399=⨯-⨯--⨯=+=. 【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,属于基础题型.21.解方程:(1)1﹣3(x ﹣2)=4; (2)213x +﹣516x -=1. 【答案】(1)x=1,(2)x=﹣3【解析】试题分析:(1)按照去括号,移项,合并同类项,系数化为1求解;(2)按照去分母,去括号,移项,合并同类项,实数化为1的步骤解答.解:(1)1﹣3(x ﹣2)=4,1-3x +6=4,-3x =4-6-1,-3x=-3, x=1.(2)213x +﹣516x-=1,2(2x+1)-(5x-1)=6,4x+2-5x+1=6, 4x-5x=6-1-2, -x=3, x=-3 点睛:去括号时一是不要漏乘括号内的项,二是括号前是“-”,去掉括号后括号内各项的符号都要改变;两边都乘个分母的最小公倍数去分母时一是不要漏乘没有分母的项,二是去掉分母后把分子加上括号. 22.如图,所有小正方形的边长都为1,点O、P均在格点上,点P是∠AOB的边OB上一点,直线PC⊥OA,垂足为点C.(1)过点P画OB的垂线,交OA于点D;(2)线段的长度是点O到直线PD 的距离;(3)根据所画图形,判断∠OPC ∠PDC(填“>”,“<”或“=”),理由是.【答案】(1)详见解析;(2)OP;(3)=,同角的余角相等【解析】【分析】(1)过点P作PD⊥OB,交OA于点D即可;(2)根据点到直线距离的定义即可得出结论;(3)根据同角的余角相等即可得出结论.【详解】解:(1)如图即为所求:(2)∵PD⊥OB∴线段OP的长度是点O到直线PD 的距离故答案为:OP (3)∵PC⊥OA ∴∠PDC+∠CPD=90°∵PD⊥OB ∴∠OPC+∠CPD=90°∴∠OPC=∠PDC 故答案为:=,同角的余角相等【点睛】本题考查网格线内基本作图、点到直线的距离的定义及同角的余角相等,熟知相关知识点灵活应用是解答此题的关键.23.工厂生产某种零件,其示意图如下(单位:mm)(1)该零件的主视图如图所示,请分别画出它的左视图和俯视图(2)如果要给该零件的表面涂上防锈漆,请你计算需要涂漆的面积.【答案】(1)见解析,(2)1042cm【解析】【分析】(1)根据左视图是从左面看得到的图形,俯视图是从上面看得到的图形进行画图即可;(2)根据观察到的各面的面积进而求得表面积即可.【详解】(1)如图所示:左视图:俯视图:(2)S表=(3×5+3×5+5×5-1×3)×2=104mm2,答:需要涂漆的面积为104mm2.【点睛】本题考查了几何体三视图的画法以及表面积的求法,注意观察角度是解题的关键.24.如图,点O是直线AB上一点,OC⊥OE,OF平分∠AOE,∠COF=25°,求∠BOE的度数.【答案】50°【解析】【分析】由O C ⊥OE ,可得∠COE =90°,从而求得,∠EOF 的度数,然后利用角平分线的定义得到∠AOE =2∠EOF =130°,从而使问题得解.【详解】解:因为O C ⊥OE所以∠COE =90°因为∠COF =25°所以∠EOF =∠COE -∠COF =65°因为OF 平分∠AOE所以∠AOE =2∠EOF =130°因为∠AOB =180°所以∠BOE =∠AOB -∠AOE =50°【点睛】本题考查了角平分线的定义及角的和差,数形结合思想解题是本题的解题关键.25.小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买纸杯蛋糕的总价为x 元,请你根据题意完善表格中的信息,并列方程解答.【答案】29个.【解析】【分析】根据单价×数量=总价可以表示出今天购买的数量为12x ,由题意可得明天的购买单价为12×0.9=10.8,总价为x-24,则明天的购买数量为-2410.8x ,然后根据明天比今天多买1个列方程求解即可 【详解】表格中的填法不唯一,如:今天 12 12x x明天10.8 -2410.8x x -24由题意,得-2410.8x -12x =1. 解得 x =348.348÷12=29答:小明今天需购买29个纸杯蛋糕.【点睛】本题考查一元一次方程的应用,根据题意找准等量关系是本题的解题关键.26.如图,已知点A 、B 、C 是数轴上三点,O 为原点,点A 表示的数为-12,点B 表示的数为8,点C 为线段AB 的中点.(1)数轴上点C 表示的数是 ;(2)点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P 、Q 相遇时,两点都停止运动,设运动时间为t (t >0)秒. ①当t 为何值时,点O 恰好是PQ 的中点;②当t 为何值时,点P 、Q 、C 三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果)【答案】(1)-2 ;(2)当t 为4秒时,点O 恰好是PQ 的中点;(3)104025,,374 【解析】【分析】(1)利用中点公式计算即可;(2)①用t 表示OP ,OQ ,根据OP=OQ 列方程求解;②分别以P 、Q 、C 为三等分点,分类讨论.【详解】解:(1)∵点A 表示的数为-12,点B 表示的数为8,点C 为线段AB 的中点.∴点C 表示的数为:-12+8=-22故答案为:-2(2)①设t秒后点O恰好是PQ的中点.根据题意t秒后,点由题意,得-12+2t=-(8-t)解得,t=4;即4秒时,点O恰好是PQ的中点.②当点C为PQ的三等分点时PC=2QC或QC=2PC,∵PC=10-2t,QC=10-t,所以10-2t=2(10-t)或10-t=2(10-2t)解得t=103;当点P为CQ的三等分点时(t>4)PC=2QP或QP=2PC ∵PC=-10+2t,PQ=20-3t∴-10+2t=2(20-3t)或20-3t=2(-10+2t)解得t=254或t=407;当点Q为CP的三等分点时PQ=2CQ或QC=2PQ ∵当P、Q相遇时,两点都停止运动∴此情况不成立.综上,t=104025,,374秒时,三个点中恰好有一个点是以另外两个点为端点的线段的三等分点.【点睛】本题考查一元一次方程应用,利用数形结合思想分类讨论是解答的关键.精品试卷。
山东省青岛市市北区2020-2021学年七年级上学期期末数学试题(有答案)
2020-2021学年度第一学期阶段性质量检测七年级数学试题(满分:120分;时间:120分钟)本试题共有25道题.其中1-8题为选择题:9-16题为填空题:17-25为解答题.所有题目请均在答题卡上作答,在本卷上作答无效.第1卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,每小题选对得3分:不选、选错或选出的标号超过一个的不得分。
1.下列调查中、宜采用抽样调查的是( )A.了解某班全体学生的身高情况B.某企业招聘,了解所有的应聘人员基本信息C.乘飞机前对乘客进行安全检查D.调查某城市全体市民的月均用水量2.南海是我国最大的领海,总面积有35000002km ,3500000用科学记数法可表示为( )A.3.5×104B.3.5×10'5C.35×106D.0.35×10'73.如图,数轴上A 、B 、C 、D 四个点中,表示的数互为相反数的是( )A.点A 与点BB.点C 与点BC.点A 与点DD.点C 与点D4.下列四个几何体,从正面和上面看所得到的视图都为长方形的是( )A. B. C. D. 5.若3,2x y =-=,则x+2y 的值为( )A.-7B.-1C.-7或1D.7'或-16.已知一个直角三角形的两条直角边长分别是:3cm 和4cm,以其中一条直角边所在直线为轴旋转一周,得到的几何体的底面积是( )A. 24cm πB. 29cm πC. 22.25cm π'或24cm πD. 29cm π'或216cm π7.某村原有林地108公顿,旱地54公项,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x 公顷旱地改造为林地,则根据题意可得方程( )A.54-x=20%×108B.54-x=20%×(108+x)C.54+x=20%×162D.108-x=20%×(54+x)8.如图所示,将正整数1至2020按一定规律排列成数表,平移表中带阴影的方框,方框中三个数的和可能是( )A. 2018B. 2019C.2013D.2040第二卷二、填空题(本题满分24分,共有8道小题,每小题3分)9.小明向东走100米,记作+100米,那么向西走20米记作____米.10.1.45度=______________分.11.一个直棱柱有21条棱,那么这个棱柱的底面的形状是__________________.12一、二两个组的同学将本组最近5次数学平均成绩:分别绘制成如图的折线统计图.则__________组进步更大。
2020-2021学年河南省三门峡市七年级(上)期末数学试卷(含解析)
2020-2021学年河南省三门峡市七年级(上)期末数学试卷题号 一 二 三 四 总分 得分一、选择题(本大题共10小题,共30.0分) 1. 下列说法正确的是( )A. 符号相反的数互为相反数B. 一个数的绝对值越大,表示它的点在数轴上越靠右C. 一个数的绝对值越大,表示它的点在数轴上离原点越远D. a 的绝对值总是大于02.12x |n |−x +7是关于x 的二次三项式,则n 的值是( )A. 2B. −2C. 2或−2D. 33. a ,b ,c 为同一平面内的任意三条直线,那么它们的交点可能有( )个.A. 1,2或3B. 0,1,2或3C. 1或2D. 以上都不对4. 如图,A 在O 的北偏西m°方向,∠AOB =90°,∠AOC =∠BOC ;下列结论:①∠AOC =135°;②∠BOF +∠AOM =180°;③∠CON −∠AOF =45°;④∠BOF =2∠COE ;其中正确的个数有( )A. 1B. 2C. 3D. 45. 若2x 5a y b+4与−x 1−2b y 2a 是同类项,则b a 的值是( )A. 2B. −2C. 1D. −16. 已知√5−x +∣∣∣3x −y ∣∣∣=0,则√x +y 的整数部分是( )A. 3B. 4C. 5D. 67. 绝对值是5的数是( )A. −5B. 5C. ±5D. 158.两个锐角的和()A. 一定是锐角B. 一定是直角C. 一定是钝角D. 可能是锐角9.如右图所示,在数轴上点A所表示的数为a,则a的值为()A. B. C. D.10.将全体自然数按下面的方式进行排列:按照这样的排列规律,2018应位于()A. A位B. B位C. C位D. D位二、填空题(本大题共5小题,共15.0分)11.2017年国家统计局公布:芜湖2016年国内生产总值(GDP)为2571亿元,同比增长9.5%,全国排名第82名,省内第二.其中2571亿元用科学记数法表示为______ 元.12.小明准备为希望工程捐款,他现在有40元,以后每月打算存20元,若设x月后他能捐出200元,则可列出方程为______ .13.若关于x的一元一次方程ax=2的解是x=1,则a=______.14.如果一个角的余角是60°,那么这个角的度数是______°.15.学校女生人数是全体学生人数的52%,比男生人数多80人,这个学校有学生______人.三、计算题(本大题共1小题,共12.0分)−(a+b+cd)(2m−1)的16.已知a、b互为相反数,c、d互为倒数,|m|=3,求a+bm值.四、解答题(本大题共7小题,共63.0分)17. 解方程:(1)20−2x =−x −1 (2)4x+95−x−52=1+2x 3.18. (1)当a =−1时,求2(a 2−12+2a)−4(a −a 2+1)的值.(2)先化简,再求值:3x 2−[7x −(4x −3)−2x 2],其中x =2.19. 在初一数学联欢会上,教师出示了10张数学答题卡,答题卡背面的图案各不相同:当答题卡正面是正数时,背面是一面旗;当答题卡正面是负数时,背面是一朵花.这10张答题卡正面如下所示:①(−4)×(−2);②−2.8+(+1.9);③0+(−12.9);④−(−2)2;⑤−1.5÷(−2);⑥|−3|−(−2);⑦(−25)2×52;⑧(−1)×(−2)×32003;⑨4÷(19−59);⑩a 2+1请你通过观察说出,答题卡后面有几面旗?几朵花?并写出它们的题号.20.2020年年初,在我国湖北等地区爆发了新型冠状病毒引发的肺炎疫情,对此湖北武汉率先采取了“封城”的措施,为了解决武汉市民的生活物资紧缺问题,某省给武汉捐献一批水果和蔬菜共435吨,其中蔬菜比水果多97吨.(1)求蔬菜和水果各有多少吨?(2)某慈善组织租用甲、乙两种货车共16辆,已知一辆甲车同时可装蔬菜18吨,水果10吨;一辆乙车同时可装蔬菜16吨,水果11吨;若将这批货物一次性运到武汉,有哪几种租车方案?请你帮忙设计出来.(3)若甲种货车每辆需付燃油费1600元,乙种货车每辆需付燃油费1200元,应选(2)中的那种方案,才能使所付的燃油费最少?最少的燃油费是多少元?21.如图,点B在线段AD上,C是线段BD的中点,AD=10,BC=3.求线段CD、AB的长度.22.如图,E、F分别在AB、CD上,∠1=∠D,∠2与∠C互余,EC⊥AF.求证:AB//CD.23.某公园的三个植树队完成春季植树绿化任务,甲队植树x棵,乙队植树的棵数比甲队植树的棵数的2倍多3棵,丙队植树的棵数比甲队植树的棵数的一半少4棵.(1)乙队植树______棵,丙队植树______棵(用含x的代数式表示).(2)当x=20棵时,求三个队一共植树的棵数.答案和解析1.【答案】C【解析】解:A、符号相反的两个数不一定互为相反数,例如,3与−5不是相反数,不符合题意;B、一个数的绝对值越大,表示它的点在数轴上离原点越远,不一定越靠右,不符合题意;C、一个数的绝对值越大,表示它的点在数轴上离原点越远,符合题意;D、当a=0时,|a|=0,不符合题意.故选:C.A、根据相反数的定义即可作出判断;B、根据绝对值的性质即可作出判断;D、根据绝对值的性质即可作出判断;C、根据绝对值的性质即可作出判断.本题考查了相反数、绝对值、数轴,解决本题的关键是熟记相反数、绝对值的定义.2.【答案】C【解析】【分析】本题考查多项式的概念,属于基础题型.根据多项式的概念即可求出n的值.【解答】解:∵多项式是关于x的二次三项式,∴|n|=2,∴n=±2,故选C.3.【答案】B【解析】试题分析:根据三条直线两两平行,三条直线交于一点,两条直线平行与第三条直线相交,三条直线两两相交不交于同一点,可得答案.三条直线两两平行,没有交点;三条直线交于一点,有一个交点;两条直线平行与第三条直线相交,有两个交点;三条直线两两相交不交于同一点,有三个交点,故选:B.4.【答案】C【解析】试题分析:由于∠AOB=90°,∠AOC=∠BOC,则根据周角的定义可计算出AOC=135°;由于∠BOF=∠FOM−∠BOM,∠AOM=∠AOB+∠BOM,把两式相加即可得到∠BOF+∠AOM=180°;由于∠CON=∠AOC−∠AOC=135°−(∠NOF−∠AOF)=135°−90°+∠AOF,则∠CON−∠AOF=45°;把∠CON=90°−∠COE,∠AOF=∠AOB−∠BOF=90°−∠BOF代入③式中得到∠BOF−∠COE=45°.∵∠AOB=90°,∠AOC=∠BOC,=135°,所以①正确;∴∠AOC=360∘−90∘2∵∠BOF=∠FOM−∠BOM=90°−∠BOM,∠AOM=∠AOB+∠BOM=90°+∠BOM,∴∠BOF+∠AOM=180°,所以②正确;∵∠CON=∠AOC−∠AON=135°−(∠NOF−∠AOF)=135°−90°+∠AOF,∴∠CON−∠AOF=45°,所以③正确;∵∠CON=90°−∠COE,∠AOF=∠AOB−∠BOF=90°−∠BOF,∴90°−∠COE−(90°−∠BOF)=45°,∴∠BOF−∠COE=45°,所以④错误.故选C.5.【答案】B【解析】解:由同类项定义,得 {2a =b +45a =1−2b , 解得{a =1b =−2.∴b a =−2. 故选B .由同类项的定义得到关于a 、b 的方程组,可先求得a 和b 的值,从而求出b a 的值. 此题是同类项与方程组的综合题,同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.6.【答案】B【解析】解:∵√5−x +∣∣∣3x −y ∣∣∣=0且√5−x ≥0,∣∣∣3x −y ∣∣∣≥0 ∴√5−x =0,∣∣∣3x −y ∣∣∣=0 解得:x =5,y =15∴√x +y =√20 ∵4<√20<5∴√x +y 的整数部分是4 故选:B .先根据几个非负数的和为0得出这几个非负数分别为0解出x 和y 的值,再根据4<√20<5求解.本题考查了估算无理数的大小以及绝对值和算术平方根的非负性,运用“夹逼法”是解决本题的关键.7.【答案】C【解析】解:绝对值是5的数是±5. 故选:C .根据绝对值的含义和求法,判断出绝对值是5的数是多少即可.此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数−a;③当a是零时,a的绝对值是零.8.【答案】D【解析】解:设这两个锐角分别为α和β,则:0°<α+β<180°,∴两个锐角的和可能是钝角,直角或锐角.故选D.两个锐角即两个小于90°的角,所以两个锐角的和可能是小于90°或大于90°或等于90°,即可能是钝角,直角或锐角,此题主要考查了角的计算,关键注意对钝角,直角和锐角概念的正确理解.9.【答案】A【解析】本题主要考查勾股定理的运用和点在数轴上面的表示。
2020-2021学年上期七年级数学期末考试试卷(含答案及答题卡)
注 置。 2.答第Ⅰ卷(选择题)时,必须使用2B铅笔将对应题目答案的字母涂黑,修改时用
意 橡皮擦干净,再选涂其他答案。
3.答第Ⅱ卷(非选择题)时,必须使用0.5毫米的书写黑色字迹签字笔,作图时可用
事 2B铅笔,要字体工整、笔迹清晰。
~v&$ (3% %%% %k$mnt
!)&(3 4"%#
*&(&3 4"%#
+&(&3 4"%0
,&%&(3 4"%2
0! " jZ"2%" .$% jp b)*¡A¢X£m¤
¥p ¦23 !)& 2 §¨©ª $% j !*& # §¨©ª $% j !+&©ª $% j§¨ 2 !,&©ª $% j§¨ #
!)&hi /% j
*&op /% j
+&hi 0% j
,&op 0% j
(!qr $%$% 1" -" 1g $%$" 1#-( 1stTU$b " .#ut
!)&."
*&.$
+&#
,&$
#&$%"' " " v ( w "% x $2 c yz{| }~ (3% %%% 1 }
0!`A4é¢êé *+,-2ÀO!!!!!! Ðë|"
: ;<7 !/%+ 2 .J%0$ #' $
2020-2021学年重庆一中七年级(上)学期第一次月考数学试卷(含解析)
重庆一中2020-2021学年七年级上学期第一次月考数学试题注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考 生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、 姓名是否一致.2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改 动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用 0.5 毫米黑色墨水签字 笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用 2B 铅笔画出,确定后必须用 0.5 毫米黑色墨水签字笔描黑.一、选择题1.比2-小的数是( ) A .2B .0C .22-D .(1)--2.计算:11()33--⨯=( )A .0B .2C .2-D .33.一个数的相反数是它本身,则该数为( ) A .0B .1C .﹣1D .不存在4.下列各组数中,数值相等的是( ) A .-22和(-2)2B .212-和212⎛⎫- ⎪⎝⎭C .(-2)2和22D .212⎛⎫-- ⎪⎝⎭和212-5.下列各式中,正确的是( ) A .-|-16|>0B .|0.2|>|-0.2|C .4577->- D .106-< 6.某地一天早晨的气温是-2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是( ) A .-16℃B .2℃C .-5℃D .9℃7.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是( )A .a+b >0B .a ﹣b >0C .﹣a >﹣b >aD .ab >08.a 、b 是有理数,下列各式中成立的是( ) A .若a≠b ,则|a|≠|b|B .若|a|≠|b|,则a≠bC .若a >b ,则a 2>b 2D .若a 2>b 2,则a >b9.若()2320x y y --++=,则x y ⋅的值是( ) A .2B .4-C .2-D .1010.在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①(1)(1)(1)0a b c ---<;②a b b c a c -+-=-;③()()()0a b b c c a +++>;④1a bc <-,其中正确的结论有( )个 A .4个 B .3个 C .2个 D .1个二、填空题11.如果收入100元记作+100元,则支出20元记作_____元. 12.计算:﹣22+(﹣2)2﹣(﹣1)3=_____.13.移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G 用户总数达到162 000 000,这个数用科学记数法表示为____.14.经验证明,在一定范围内,高出地面的高度每增加100m ,气温就降低大约0.6C ,现在地面的温度是25C ,则在高出地面5000m 高空的温度是______________.15.已知数轴上有A ,B 两点,A ,B 之间的距离为3,点A 对应的数为1,那么点B 对应的数是_____.16.a ,b 是自然数,规定33ba b a ∇=⨯-,则217∇的值是________. 17.在数轴上,点A 表示的数是3+x ,点B 表示的数是2-x ,且A ,B 两点的距离为8,则x= _____.18.已知a 是有理数,[]a 表示不超过a 的最大整数,如[]3.23=,[]1.52-=-,[]0.80=,[]22=等,那么[][]13.14352⎡⎤÷⨯-=⎢⎥⎣⎦______.19.若a 与b 互为相反数,x 与y 互为倒数,|m|=2,则式子|mxy|﹣2a b m x xy++的值为_____. 20.若|m |=m +1,则(4m +1)2019=_____. 21.式子5+(a ﹣2)2的最小值是_____.22.如图,化简代数式|||1||2|a b a b +--+-的结果是__________.23.一列数a 1,a 2,a 3,…,a n ,其中a 1=﹣1,a 2=111a -,a 3=211a -,…,a n =111n a --,则a 1+a 2+a 3+…+a 2020=_____.三、解答题24.把下列各数填在相应的集合中: 15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,π, 1.6 正数集合{ …}; 负分数集合{ …}; 非负整数集合{ …}; 有理数集合{ …}.25.将有理数﹣5,0.4,0,﹣214,﹣412表示在数轴上,并用“<”连接各数.26.计算:(1)﹣27+(﹣32)+(﹣8)+72;(2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4). 27.计算题(1)10.520 4.525%4⎡⎤⎛⎫⨯--- ⎪⎢⎥⎝⎭⎣⎦;(2)5372113713⎛⎫+⨯÷⨯ ⎪⎝⎭.28.计算:(1)()31111232128⎛⎫-+--⨯- ⎪⎝⎭; (2)()231610.751343⎛⎫-+-⨯⨯-÷- ⎪⎝⎭29.计算:(1)()221531924043354⎡⎤⎛⎫⎛⎫-⨯⨯-⨯--÷-⨯⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.(2)()832521118532369⎡⎤⎛⎫---+-⨯-÷-⨯ ⎪⎢⎥⎝⎭⎣⎦30.一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后西走了10千米,到达小华家,最后又向东走了6千米结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1千米,请你在下面的数轴上表示出小明家、小兵家和小华家的具体位置;(2)请你通过计算说明货车最后回到什么地方;(3)如果货车行驶1千米的用油量为0.25升,请你计算货车从出发到结束行程共耗油多少升.31.已知5a =,3b =,281c =,且a b a b +=+,()a c a c +=-+,求1423a b c -+的值32.数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a 。
2020-2021学年山东省济南市高新区七年级第一学期期中数学试卷参考答案及评分标准
第1页(共5页)绝密★启用前2020至2021学年第一学期期中学业水平测试高新初中数学七年级试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为48分;第Ⅱ卷共4页,满分为102分.本试题共6页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共48分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.2020−的相反数为( )A .12020− B .2020 C .2020− D .120202.下列几何体中,是圆锥的为( )A .B .C .D .3.多项式x 3+y 2﹣3的次数是( ) A .2 B .3 C .5 D .64.病毒无情,人间有爱,近段时间,中国新型冠状病毒肺炎疫情,很快就收到了来自世界各国的支持.同时中国也在密切关注伊朗、韩国等国国内疫情情况,并且分享抗疫信息和经验,并根据他们的需要,提供力所能及的支持和帮助.中国联合部分在伊中业于2月25日紧急向伊朗捐赠了5000份新冠病毒核酸检测试剂盒以及250000只口罩.数据250000用科学记数法表示为( ) A .2.5×105 B .2.5×106 C .0.25×106 D .25×104 5.用一个平面去截正方体,截面图形不可能是( )A .B .C .D .6.下列各式中,是5x 2y 的同类项的是( ) A .x 2y B .﹣3x 2yz C .3a 2b D .5x 3 7.已知|a +1|+(b ﹣2)2=0,则ab 的值为( ) A .2 B .1 C .﹣2D .﹣1第2页(共5页)8.下列变形正确的是( ) A .(2)2a a −+=− B .1(21)212a a −−=−+C .1(1)a a −+=−−D .1(1)a a −=−+9.如图,数轴上点C 对应的数为c ,则数轴上与数﹣2c 对应的点可能是( )A .点AB .点BC .点D D .点E10.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( ) A .2a 2﹣πb 2 B .2a 2−π2b 2C .2ab ﹣πb 2D .2ab −π2b 211.已知:x ﹣2y =3,那么代数式x ﹣2y ﹣2(y ﹣x )﹣(x ﹣3)的值为( ) A .3 B .﹣3 C .6 D .912.正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“2”相对的面上的数字是( ) A .1 B .3 C .4 D .5第Ⅱ卷(非选择题 共102分)注意事项:1.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.用“>”或“<”符号填空:﹣7 ﹣9. 14.计算:﹣2﹣2= .15.图1和图2中所有的正方形都一样大,将图1的正方形放在图2中的①、②、③、④某一位置,所组成的图形不能围成正方体的位置是 .第3页(共5页)16.单项式2x m y 3与﹣3xy 3n 是同类项,则m +n = .17.如图,长方形纸片上画有两个完全相同的阴影长方形,那么剩余的非阴影长方形的周长为 (用含a ,b 的代数式表示).第17题图 第18题图18.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是 . 三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题4分)计算:9﹣(﹣1)+(﹣10)20.(本题4分)计算:1325(5)()54÷−⨯÷−.21.(本题4分)合并同类项:5m +2n ﹣m ﹣3n22.(本题5分)计算:4318(2)(3)−−+−⨯−.23.(本题5分)化简:222(32)4(2)x y x x y +−−−.24.(本题6分)5个棱长为1的正方体组成如图所示的几何体,画出该几何体的主视图和左视图.25.(本题6分)若规定a ※b =(a +b )+(a ﹣b ),求13※5的值.26.(本题6分)先化简下式,再求值:12(2)(36)23x y x y x −−−+,其中4x =−,3y =.第4页(共5页)27.(本题8分)小李靠勤工俭学的收入支付上大学的费用,下面是小李某周的收支情况(2)按以上的支出水平,估计小李一个月(按30天计算)至少有多少收入才能维持正常开支?28.(本题8分)先计算,再阅读材料,解决问题: (1)计算:111()12362−+⨯.(2)解决问题:计算12112()3031065÷−+−)时利用通分计算211231065−+−的结果很麻烦,可以采用以下方法进行计算:解:原式的倒数是:21121()3106530−+−÷2112()3031065=−+−⨯ 21123030303031065=⨯−⨯+⨯−⨯ 20351210=−+−=.故原式110=请你根据对所提供材料的理解,选择合适的方法计算:13512()()52426213−÷−+−.29.(本题10分)已知如图,在数轴上有A ,B 两点,所表示的数分别为﹣10,﹣4,点A 以每秒5个单位长度的速度向右运动,同时点B 以每秒3个单位长度的速度也向右运动,如果设运动时间为t 秒,解答下列问题:(1)运动前线段AB 的长为 ; 运动1秒后线段AB 的长为 ; (2)运动t 秒后,点A ,点B 运动的距离分别为 和 ; (3)t = 时,点A 与点B 恰好重合;(4)在上述运动的过程中,是否存在某一时刻t ,使得线段AB 的长为5,若存在,求t 的值; 若不存在,请说明理由.第5页(共5页)30.(本题12分)阅读:将n m ⨯个数排成n 行m 列的矩形阵列被称为一个n m ⨯矩阵,通常用括号将矩阵括起来.如2312⎛⎫ ⎪−⎝⎭就是一个22⨯矩阵,19世纪中叶,英国数学家凯莱,系統地建立了矩阵理论,规定了短阵的运算法则.(1)短阵的加法法则是:两个短阵有相同的行数和列数,它们的和就是对应位置元素相加所得到的矩阵,例知⎪⎪⎭⎫⎝⎛++++=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛f d e c n b m a f e n md c b a ,请你计算:⎪⎪⎭⎫⎝⎛−+⎪⎪⎭⎫ ⎝⎛−−49632351= ; (2)矩阵的乘法法则是:两个矩阵相乘,要求的一个矩阵的列数和后一个矩阵的行数相等,其积为在第i 行,第j 列的元素等于第一个矩阵的第i 行和第二个短阵的第j 列对应位置的元素相乘再求和所得的数,例如⎪⎪⎭⎫⎝⎛++++=⎪⎪⎭⎫⎝⎛⨯⎪⎪⎭⎫ ⎝⎛df cn de cm bf an be am f en md c b a ,请你计算:⎪⎪⎭⎫⎝⎛⨯⎪⎪⎭⎫ ⎝⎛−1221-2123= ; (3)短阵的乘法看上去很奇怪,但在生活中却有现实意义,如某连锁企业两个门店的销第1页(共2页)2020至2021学年第一学期期中学业水平测试 高新初中数学七年级参考答案及评分标准13.> 14.﹣4 15.① 16.2 17.4b ﹣2a 18.556三、解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)解:原式=9+1﹣10·····················································································3分=0·····························································································4分 20.(本题4分)解:原式=25×(−15)×15×(−43) ·································································2分=43.···························································································4分21.(本题4分)解:原式=(5﹣1)m +(2﹣3)n ··································································2分=4m ﹣n ······················································································4分22.(本题5分)解:﹣14﹣8+(﹣2)3×(﹣3)=﹣1﹣8+(﹣8)×(﹣3)········································································2分 =-1-8+24································································································3分 =15······································································································5分23.(本题5分)解:原式=x +6y 2﹣4x ﹣8x +4y 2·······································································4分=10y 2﹣11x ···································································································5分24.(本题6分)解:所画图形如下所示:························································································6分25.(本题6分)解:∵a ※b =(a +b )+(a ﹣b ), ∴13※5=(13+5)+(13﹣5)···································································································4分 =26···························································································································6分 26.(本题6分)解:原式=2x ﹣4y ﹣x +2y +2x=3x ﹣2y ····················································································4分当x =﹣4,y =3时,原式=﹣12﹣6=﹣18········································································6分 27.(本题8分)解:(1)(+65+68+50+66+50+75+74)+(﹣60﹣64﹣63﹣58﹣60﹣64﹣65)········2分=14(元)·····················································································3分答:到这个周末,小李有14元的节余.············································································4分 (2)17(|﹣60|+|﹣64|+|﹣63|+|﹣58|+|﹣60|+|﹣64|+|﹣65|)······················································5分=62(元)···············································································································6分 62×30=1860(元)·······································································································7分 答:小李一个月(按30天计算)至少要有1860元的收入才能维持正常开支.···························8分第2页(共2页)28.(本题8分)解:(1)原式=13×12−16×12+12×12 =4﹣2+6················································································3分 =8························································································4分(2)原式的倒数是:(34−526+12−213)×(﹣52)····························································6分=﹣39+10﹣26+8=﹣47·····························································································7分故原式=−147.···········································································································8分 29.(本题10分)解:(1)答案为6,4···············································································2分 (2)答案为5t ,3t .·····································································································4分 (3)t =3.················································································································6分 (4)由题意:6+3t ﹣5t =5或5t ﹣(6+3t )=5···································································8分 解得t =12或112,∴t 的值为12或112秒时,线段AB 的长为5···········································································10分30.(本题12分)解:(1)答案为(2−1122)·········································································3分 (2)答案为(18−50);··································································································6分 (3··························································10分 (8025120453085)×(20510020154)=(80×20+25×100+120×1580×5+25×20+120×445×20+30×100+85×1545×5+30×20+85×4)=(5900138051731165) ·······································································································12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校
班级
姓名
学号
◆
◆
◆
◆◆
◆◆
◆
◆◆
◆
◆
◆
◆
装
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
订
◆
◆
◆
◆
◆
◆
◆
◆
◆◆
◆
◆
◆线
◆
◆◆
◆
◆◆
◆
◆
◆◆
◆◆
◆
◆◆
中文学校2020—2021学年第一学期 七年级数学阶段考试卷 一、 选择题,每小题3分(共30)
二.填空题,每小题4分,共28分。
11. 12. 13. 14. 15. 16. 17. 三、解答题(共62分) 17.计算(每小题4分,共12分) )()()())((19--11--4-3
-1+ 24--1-32-242⨯⨯+)()()(
ab b a a ab 3)3(233+--+-)()(
19.已知 是关于x 的一元一次方程,求k 的值并写出该一元一次方程。
(6分)
20.先化简,再求值:﹣6x+3(3x 2﹣1)﹣(9x 2﹣x+3),其中3
1-=x .(6分)
321-x k -21
-k =)(
21.如果一个多项式与222n m -的和是13522+-n m ,求这个多项式。
(6分)
22.小明参加“趣味数学”选修课,课上老师给了一个问题,小明看了很为难,你能帮他一下吗?已知b a ,互为相反数,d c ,互为倒数,2=m ,则
cd m m
b a -+++1的值为多少?(6分)
23.某人用400元购买了8套儿童服装,准备以一定价格出售.如果以每套儿童服装55元的价格为标准,超出记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣3(单位:元);(8分)
请通过计算说明:
(1)当他卖完这八套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱? (2)每套儿童服装的平均售价是多少元?
24.如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,正中设计一个圆形喷水池,若四周圆形和中间圆形的半径均为r米,广场长为a米,宽为b米.(8分)
(1)请列式表示广场空地的面积;
(2)若休闲广场的长为500米,宽为300米,圆形花坛的半径为20米,求广场空地的面积(计算结果保留π).
25.一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点.(10分)
(1)用1个单位长度表示1cm,请你在数轴上表示出A、B、C三点的位置;
(2)把点C到点A的距离记为CA,则CA=________cm.
(3)若点B以每秒2cm的速度向左移动,同时A、C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.。