数值分析课程设计实验二

合集下载

数值分析实验报告2

数值分析实验报告2

实验报告实验项目名称函数逼近与快速傅里叶变换实验室数学实验室所属课程名称数值逼近实验类型算法设计实验日期班级学号姓名成绩512*x^10 - 1280*x^8 + 1120*x^6 - 400*x^4 + 50*x^2 - 1并得到Figure,图像如下:实验二:编写程序实现[-1,1]上n阶勒让德多项式,并作画(n=0,1,…,10 在一个figure中)。

要求:输入Legendre(-1,1,n),输出如a n x n+a n-1x n-1+…多项式。

在MATLAB的Editor中建立一个M-文件,输入程序代码,实现勒让德多项式的程序代码如下:function Pn=Legendre(n,x)syms x;if n==0Pn=1;else if n==1Pn=x;else Pn=expand((2*n-1)*x*Legendre(n-1)-(n-1)*Legendre(n-2))/(n);endx=[-1:0.1:1];A=sym2poly(Pn);yn=polyval(A,x);plot (x,yn,'-o');hold onend在command Windows中输入命令:Legendre(10),得出的结果为:Legendre(10)ans =(46189*x^10)/256 - (109395*x^8)/256 + (45045*x^6)/128 - (15015*x^4)/128 + (3465*x^2)/256 - 63/256并得到Figure,图像如下:实验三:利用切比雪夫零点做拉格朗日插值,并与以前拉格朗日插值结果比较。

在MATLAB的Editor中建立一个M-文件,输入程序代码,实现拉格朗日插值多项式的程序代码如下:function [C,D]=lagr1(X,Y)n=length(X);D=zeros(n,n);D(:,1)=Y';for j=2:nfor k=j:nD(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1));endendC=D(n,n);for k=(n-1):-1:1C=conv(C,poly(X(k)));m=length(C);C(m)= C(m)+D(k,k);end在command Windows 中输入如下命令:clear,clf,hold on;k=0:10;X=cos(((21-2*k)*pi)./22); %这是切比雪夫的零点Y=1./(1+25*X.^2);[C,D]=lagr1(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.01:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到Figure ,图像如下所示:比较后发现,使用切比雪夫零点做拉格朗日插值不会发生龙格现象。

MATLAB数值分析实验二(复合梯形、辛普森和龙贝格求积,以及二重积分计算等)

MATLAB数值分析实验二(复合梯形、辛普森和龙贝格求积,以及二重积分计算等)

佛山科学技术学院实验报告课程名称_______________ 数值分析________________________实验项目_______________ 数值积分____________________专业班级机械工程姓名余红杰学号2111505010 指导教师陈剑成绩日期月日一、实验目的b1、理解如何在计算机上使用数值方法计算定积分 a f ""X的近似值;2、学会复合梯形、复合Simpson和龙贝格求积分公式的编程与应用。

3、探索二重积分.11 f (x, y)dxdy在矩形区域D = {( x, y) | a _ x _ b, c _ y _ d}的数值D积分方法。

二、实验要求(1)按照题目要求完成实验内容;(2)写出相应的Matlab程序;(3)给出实验结果(可以用表格展示实验结果);(4)分析和讨论实验结果并提出可能的优化实验。

(5)写出实验报告。

三、实验步骤1、用不同数值方法计算积xln xdx =-- 0 9(1)取不同的步长h,分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h的函数,并与积分精确值比较两公式的精度。

(2)用龙贝格求积计算完成问题(1 )。

2、给出一种求矩形区域上二重积分的复化求积方法,然后计算二重积分..e"y dxdy,其中积分区域D二{0乞x岂1,0岂y乞1}。

1.%lnt_t.m复化梯形:function F = Int_t(x1,x2,n)%复化梯形求积公式% x1,x2为积分起点和中点%分为n个区间,没选用步长可以防止区间数为非整数。

%样点矩阵及其函数值:x = lin space(x1,x2 ,n+1);y = f(x);m = len gth(x);%本题中用Matlab计算端点位置函数值为NaN,故化为零: y(1) = 0;y(m) = 0;%算岀区间长度,步长h:h = (x2 -x1)/n;a = [1 2*o nes(1,m-2) 1];%计算估计的积分值:F = h/2*sum(a.*y);%f.mfun cti on y = f(x)y = sqrt(x).*log(x);%run 11.mclc,clear;%分为10个区间,步长0.1的积分值:F = In t_t(0,1,10);F10 = F%分为100个区间F = In t_t(0,1,100);F100 = F%误差计算W10 = abs((-4/9)-F10);W100 = abs((-4/9)-F100);W = [W10 W100]%复化辛普森:%l nt_s.mfun cti on F = In t_s(x1,x2 ,n)%复化梯形求积公式% x1,x2区间,分为n个区间。

数值分析实验报告--实验2--插值法

数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。

显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。

我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。

龙格(Runge )给出一个例子是极著名并富有启发性的。

设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。

实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。

(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。

(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。

1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。

1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。

Matlab 脚本文件为Experiment2_1_1fx.m 。

可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。

数值分析实验报告二

数值分析实验报告二

数值实验报告二一、实验名称解线性方程组的列主元素高斯消去法和LU 分解法二、实验目的通过数值实验,从中体会解线性方程组选主元的必要性和LU 分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。

三、实验内容解下列两个线性方程组(1) ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x 四、算法描述1、 列主元素高斯消去法记: ij ij a a =1)( (i, j = 1,2,3n )i i b b =1)( (i = 1,2,3n )消元过程:对于k = 1,2,3n(1) 选行号k i ,使)()(max k i ni k k k i k k a a ≤≤=。

(2) 交换)(k kj a 与)(k j i k a (j = k, k+1,k+2n )以及)()(k i k k k b b 与所含的数值。

(3)对于i = k, k+1,k+2n ,计算)()(k kkk ik ik a a m =)()()1(k kj ik k ij k ij a m a a -=+ (j = k, k+1,k+2n ))()()1(k k ik k i k i b m b b -=+回代过程:)(n nnn n a b x = )()1)()(/(k kk j n k j k kj k k k a x a a x ∑+=-= (k = n-1, n-2, n-3 1 )在此算法中的)(k k i k a 称为第k 个列主元素,它的数值总要被交换到第k 个主对角线元素的位置上。

2、 LU 分解法通过MATLAB 自有的函数,把系数矩阵A 分解成A=LU ,其中:L 是下三角矩阵,U 是上三角矩阵,这时方程组Ax=b 就可以分解成两个容易求解的三角形方程组Ly=b ,Ux=y 。

实验二函数逼近与曲线拟合

实验二函数逼近与曲线拟合

《数值分析》课程设计实验报告实验二函数逼近与曲线拟合一、问题提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。

在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t 的拟合曲线。

二、实验步骤先写出线性最小二乘法的M文件function c=lspoly(x,y,m)% x是数据点的横坐标组成的向量,y是纵坐标组成的向量% m是要构成的多项式的次数,c是多项式由高到低次的系数所组成的向量n=length(x);b=zeros(1:m+1);f=zeros(n,m+1);for k=1:m+1f(:,k)=x.^(k-1);enda=f'*f;b=f'*y';c=a\b;c=flipud(c);方法一:近似解析表达式为:y(t)=a1t+a2t2+a3t3第二步在命令窗口输入:lspoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3.44 ,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:ans =0.0000-0.00520.26340.0178即所求的拟合曲线为y=-0.0052t2+0.2634t+0.0178在编辑窗口输入如下命令:>>x=[0,5,10,15,20,25,30,35,40,45,50,55];y=[0,1.27,2.16,2.86,3.44, 3.87,4.15,4.37,4.51,4.58,4.02,4.64];>> t=0:0.1:55;>> z=-0.0052*t.^2+0.2634*t+0.0178;>> plot(x,y,'ro',t,z);grid命令执行得到如下图(图2-1)0102030405060拟合多项式与数据点的关系方法二:假设近似表达式为:y(t)=c0+c1t+c2t2第一步在命令窗口输入:>>lspoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3. 44,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:ans =-0.00240.20370.2305即所求的拟合曲线为y=-0.0024t2+0.2037t+0.2305在编辑窗口输入如下命令:>>x=[0,5,10,15,20,25,30,35,40,45,50,55];y=[0,1.27,2.16,2.86,3.44,3.87,4.15,4.37,4.51,4.58,4.02,4.64];>> t=0:0.1:55;>> z=-0.0024*t.^2+0.2037*t+0.2305;>> plot(x,y,'ro',t,z);grid命令执行得到如下图(图2-2)拟合多项式与数据点的关系三、实验结论在利用数据的最小二乘法求拟合曲线时,选取合适的近似表达式很重要,应通过不断的试验找出较为合适的近似表达式,这样才能尽可能的提高拟合精度。

数值分析实验报告二2汇总

数值分析实验报告二2汇总
legend('数据点(xi,yi)','牛顿插值曲线y=f(x)');xlabel('x');ylabel('y');
title('数据点(xi,yi)和牛顿插值曲线y=f(x)的图形')
运行结果:
实验结果分析:
最小二乘法拟合的曲线误差最小。
也可以得到三图合一的图像:
在以上命令的基础上
运行命令plot(x1,y1,'r*',x,y,'b-',t,p1,'k-',x,P2,'y-')
% f积分函数
% a/b:积分上下限
% tol:积分误差
% R:Romberg积分值
% k:二分次数
k=1;
h=b-a;
%第一步
T(k,1)=h/2*(f(a)+f(b));
err=1;
whileerr>=eps
T(k,k)= Tห้องสมุดไป่ตู้k,1);
h=h/2;
%第二步求梯形值T0
temp=0;
i=1;
whilei<2^k
实验结果分析:
本题用了三种方法计算,虽然三种方法的结果差别不大,但得到结果的过程不同,每个方法都有其优缺点。
成绩评定
签字:年月日
-3002399751579999/9007199254740992*x^3-311/1125899906842624*x^2+4128299658423301/562949953421312*x-2533274790396013/281474976710656
拉格朗日插值
实验步骤:

11级数值分析2实验项目

11级数值分析2实验项目

数值分析2实验项目实验一 简单迭代法与加速方法一、目的与要求:1、掌握求解非线性方程实根的简单迭代法的编程运算2、会分析迭代步数,设计容许误差二、实验内容:1、方程324100x x +-=可以等价化成以下三种形式:(i) 1/210(4)x x x =- (ii) 1/210()4x x =+ (iii) 32241038x x x x x x+-=-+ 针对三种等价形式给出三种不同的简单迭代格式并使用每种格式计算方程在区间[1,2]上的解,初值选为1.5,容许误差选为1.0E-5,即510-;分析每种格式的收敛性;分析收敛格式的迭代步数与计算时间.2、结合上述问题中(ii)相应的迭代格式,利用Stenffenson 迭代法求原方程的解。

初值选为1.5,容许误差选为1.0E-5,分析迭代步数与计算时间,并与上述简单迭代法作比较.实验二 Newton 迭代法一、目的与要求:掌握求解非线性方程实根的Newton 切线法的编程运算二、实验内容:1、用Newton 切线法求xx e -=在0.5附近的根,2、用Newton 切线法求方程310x x --=在1.5附近的一个根. (选做)3、用Newton 切线法计算3k =,4k =时,方程2((3)0k x x -=在1.3附近的根以及2.5附近的根,比较计算两根时的迭代次数,并与理论结论作比较. 实验三 Newton 下山法与重根加速法一、目的与要求:掌握求解非线性方程实根的Newton 下山法与重根加速法的编程运算二、实验内容:1、分别使用Newton 切线法与Newton 下山法求解方程310x x --=在 1.5x =附近的根,但是初值选为0.6x =,根据计算结果,验证下山法在初值选取范围上的优越性。

2、分别使用Newton 切线法与重根加速法计算3k =,4k =时,方程2((3)0k x x -=在1.3附近的根,在相同的容许误差下,比较两种方法的计算时间与迭代次数.实验四 解非线性方程组的Newton 迭代法一、目的与要求:掌握求解非线性方程方程组的Newton 迭代法编程运算二、实验内容:使用Newton 迭代法求解非线性方程组122212230450x x x x +-=⎧⎨+-=⎩,容许误差选为1.0E-5,给出初值分别选取为(1.5,1.0),(2.0,2.0),(1000,1000)时迭代步数,并分析迭代步数之间差别的原因.实验五 Euler 方法和梯形方法一、目的与要求:掌握求解一阶常微分方程初值问题Euler 方法和梯形方法编程运算二、实验内容:1. 分别使用Euler 方法、梯形方法和预估-校正方法在步长选为1/10时计算一阶常微分方程初值问题⎪⎩⎪⎨⎧=<<++-=1)0(110,1y x y y dx d (该问题的精确解为x e x y x +=-)(), 将误差(精确解与数值解的差)列表, 并画出精确解与数值解的函数图象.2. 使用Euler 方法和梯形方法在步长选为1/8,1/16,1/32时分别计算下述一阶常微分方程初值问题'()4(0,1](0)1y x x y ⎧=∈⎪⎨=⎪⎩(该问题的精确解为22()(1)y x x =+) 给出(1)y 的近似值与误差,将误差(精确解与数值解的差)列表,并画出精确解与数值解的函数图象.(选作)实验六 经典Runge-kutta 方法一、目的与要求:掌握求解一阶常微分方程初值问题经典Runge-kutta 方法编程运算二、实验内容:1.用经典Runge-kutta 方法在步长选为1/10时计算一阶常微分方程初值问题⎪⎩⎪⎨⎧=<<++-=1)0(110,1y x y y dx d (该问题的精确解为x e x y x +=-)(), 将误差(精确解与数值解的差)列表, 并画出精确解与数值解的函数图象. 实验七 四阶Adama 显式和隐式方法一、目的与要求:掌握求解一阶常微分方程初值问题四阶Adama 显式和隐式方法编程运算二、实验内容:1.分别用四阶Adama 显式和隐式方法在步长选为1/10时计算一阶常微分方程初值问题⎪⎩⎪⎨⎧=<<++-=1)0(110,1y x y y dx d (该问题的精确解为x e x y x +=-)(), 将误差(精确解与数值解的差)列表, 并画出精确解与数值解的函数图象. 实验八 计算矩阵主特征值及主特征向量(选作)一、目的与要求:掌握求解矩阵主特征值及主特征向量的改进幂法编程运算二、实验内容:用改进幂法求解矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1634310232的主特征值及主特征向量,并列表.。

数值分析实验二

数值分析实验二
b=polyfit(x,y,4);
x1=0.0:0.05:1.00;
>> y1=a(4)+a(3)*x1+a(2)*x1.^2+a(1)*x1.^3;
y2=b(5)+b(4)*x1+b(3)*x1.^2+b(2)*x1.^3+b(1)*x1.^4;
>> plot(x,y,'*');
>> hold on;
(1)掌握曲线拟合的最小二乘法;
(2)将函数逼近方法与插值法进行比较。
2.实验要求(由课任教师于实验开始前公布,不低于2行,不超过3行,由学生负责填写;5号字,行距20):
3.实验内容(由课任教师指明,由学生填写,不超出本页本栏):
1.对于给函数 在区间[-1,1]上取 =-1+0.2i(i=0,1,……,10),试求3次曲线拟合,试画出拟合曲线并打印出方程,与用插值法的结果比较。
>> plot(x1,y1,'-r')
>> y2=newton(x,y,x1);
>> hold on;
>> plot(x1,y2,'-')
2.>> y=[1.00 0.41 0.50 0.61 0.91 2.02 2.16];
>> x=[0.0 0.1 0.2 0.3 0.5 0.8 1.0];
>> a=polyfit(x,y,3);
2.由实验给出数据表
x
0.0
0.1
0.2
0.3
0.5
0.8
1.0
y
1.0
0.41

数值分析实验二

数值分析实验二

内江师范学院数值分析实验报告册编制张莉审定牟廉明专业:班级:级班学号:姓名:数学与信息科学学院2013年9月说明一、学生在做实验之前必须要准备实验,主要包括预习与本次实验相关的理论知识,熟练与本次实验相关的软件操作,收集整理相关的实验参考资料,要求学生在做实验时能带上充足的参考资料;若准备不充分,则学生不得参加本次实验,不得书写实验报告;二、要求学生要认真做实验,主要是指不得迟到、早退和旷课,在做实验过程中要严格遵守实验室规章制度,认真完成实验内容,极积主动地向实验教师提问等;三、各个实验按照学生水平分别设置了A、B、C、D四个等级,其中对应的难度系数为1、、、,也可根据实际完成情况制定相应地的难度系数,但总体保证难度排序为A级难度最大,B级次之,C级较易,D级最简单。

四、学生可以根据自己对各个实验涉及到的知识点掌握的程度自由选取A、B、C、D等级的实验题目。

五、学生要认真工整地书写实验报告,实验报告的内容要紧扣实验的要求和目的,不得抄袭他人的实验报告;四、根据实验准备、实验态度、实验报告的书写、实验报告的内容进行综合评定,并给出实验成绩评定分。

实验名称: 实验二 插值与拟合 指导教师: 吴开腾 张莉 实验时数: 4 实验设备:安装了Matlab 、C ++、VF 软件的计算机 实验日期:2013年 10 月 23、30 日 实验地点: 第五教学楼北902 实验目的:1. 掌握插值方法的基本思想和基本步骤,能够根据实际问题选用适当地插值方法进行数值实验,并从实验过程中理解各类插值方法之间的联系与区别。

2. 理解各类插值方法优缺点,并能自行编程求解。

3. 理解插值方法与数据拟合的区别,掌握数据拟合方法解决实际问题的基本步骤和求解理论,并能通过数值实验进行验证。

实验准备:1. 在开始本实验之前,请回顾教科书的相关内容;2. 需要一台准备安装Windows XP Professional 操作系统和装有数学软件的计算机。

数值分析实验报告2

数值分析实验报告2

实验报告一、实验名称复合梯形求积公式、复合辛普森求积公式、龙贝格求积公式及自适应辛普森积分。

二、实验目的及要求1. 掌握复合梯形求积计算积分、复合辛普森求积计算积分、龙贝格求积计算积分和自适应辛普森积分的基本思路和步骤.2. 培养Matlab 编程与上机调试能力. 三、实验环境计算机,MATLAB 软件 四、实验内容1.用不同数值方法计算积分94ln 10-=⎰xdx x 。

(1)取不同的步长h 。

分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确指比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善。

(2)用龙贝格求积计算完成问题(1)。

(3)用自适应辛普森积分,使其精度达到10-4。

五、算法描述及实验步骤1.复合梯形公式将区间[a,b]划分为n 等份,分点x k =a+ah,h=(b-a)/h,k=0,1,...,n ,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用梯形公式(1.1),得)]()([2)(b f a f ab dx x f b a+-≈⎰ (1.1) )]()(2)([2)]()([211110b f x f b f hx f x f h T n k k k n k k n ++=+=∑∑-=+-= (1.2)),(),(12)(''2b a f h a b f R n ∈--=ηη(1.3) 其中Tn 称为复合梯形公式,Rn 为复合梯形公式的余项。

2.复合辛普森求积公式将区间[a,b]划分为n 等份,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用辛普森公式(1.4),得)]()2(4)([6b f ba f a f ab S +++-=(1.4) )]()(2)(4)([6)]()()([611102/112/11b f x f x f b f hx f x f x f h S n k k n k k k k n k k n +++=++=∑∑∑-=-=+++-= (1.5) ),(),()2(180)()4(4b a f h a b f R n ∈-=ηη (1.6)其中Sn 称为复合辛普森求积公式,Rn 为复合辛普森求积公式的余项。

(完整word版)数值分析课程设计实验二

(完整word版)数值分析课程设计实验二

实验二2.1一、题目:用高斯消元法的消元过程作矩阵分解。

设20231812315A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦消元过程可将矩阵A 化为上三角矩阵U ,试求出消元过程所用的乘数21m 、31m 、31m 并以如下格式构造下三角矩阵L 和上三角矩阵U(1)(1)212223(2)313233120231,1L m U a a m m a ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦验证:矩阵A 可以分解为L 和U 的乘积,即A =LU 。

二、算法分析:设矩阵111213212223313233a a a A a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,通过消元法可以将其化成上三角矩阵U ,具体算法如下: 第1步消元:111111(1)22112(1)331130,0;;2,3;i i i i i i i i a m a a a a m a i a a m a +=≠⎧⎪=+=⎨⎪=+⎩ 得到111213(1)(1)12223(1)(1)323300a a a A a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭第2步消元:(1)(1)(1)32322222(2)(1)(1)333332230,0;;a m a a a a m a ⎧+=≠⎪⎨=+⎪⎩ 得到的矩阵为111213(1)(1)22223(2)33000a a a A a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭三、程序及运行结果b1.mA=[20 2 3;1 8 1;2 -3 15];for i=1:2M(i)=A(i+1,1)/A(1,1);endfor j=2:3A1(j,2)=A(j,2)-M(j-1)*A(1,2);A1(j,3)=A(j,3)-M(j-1)*A(1,3);endM(3)=A1(3,2)/A1(2,2);A1(3,2)=0;A1(3,3)=A1(3,3)-M(3)*A1(2,3);M,A1运行结果为:M =0.0500 0.1000 -0.4051A1 =0 0 00 7.9000 0.85000 0 15.0443所以:10020230.051007.90.850.10.405110015.0443L U ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭验证:L=[1 0 0;0.05 1 0;0.1 -0.4051 1];U=[20 2 3;0 7.9 0.85;0 0 15.0443];A1=L*UA1 =20.0000 2.0000 3.00001.0000 8.0000 1.00002.0000 -3.0003 15.0000四、精度分析因为根据LU 的递推公式可知,L ,U 分别为下三角和上三角矩阵,其中L 不在对角线上的元素值为111()k ik ik is sk s kk l a l u u -==-∑,在计算每个系数时会产生相应的计算误差。

数值分析第七版课程设计

数值分析第七版课程设计

数值分析第七版课程设计一、实验背景数值分析是计算数学的重要分支,是研究利用计算机求解数值问题的方法和理论的一门学科。

本课程设计旨在通过实验,加深对数值分析相关算法的理解,提高数学建模和计算机编程的能力。

二、实验内容本次课程设计包括以下两个实验:实验一:插值与逼近1.将函数$f(x)=\\dfrac{1}{x}$在区间[1,2]上进行等距节点插值,节点数分别为5、10、15和20,误差使用最大误差和平均误差来比较。

2.使用Newton插值法和Lagrange插值法对于函数$f(x)=\\sin x$进行插值,比较两种方法的误差。

3.对于函数f(x),给定节点x0,x1,x2,x3,计算出f(x)在x=1.5处的三次Hermite插值。

4.对于函数$f(x)=\\dfrac{1}{1+x^2}$,使用最小二乘法对其进行多项式逼近,比较多项式次数为1、2、3和4时的逼近结果。

实验二:数值微积分1.使用五点中心公式,计算f″(x)的近似值,并比较二、四、六、八次公式的精度。

2.使用梯形公式和Simpson公式分别求解函数$f(x)=\\cos(x^2)$在区间[0,1]上的定积分,比较两种方法的精度。

3.使用数值微积分方法计算曲线y=x3+2x+1在区间[0,1]上的弧长,步长分别为0.2、0.1、0.05和0.025,并比较不同步长对计算结果的影响。

三、实验要求1.使用MATLAB或Python等编程语言完成实验,并提交完整的程序代码以及实验报告。

2.实验报告应包括实验的目的、原理、过程、结果及其分析等内容。

3.程序代码应具有较好的结构性、可读性和可复用性,其中涉及到的算法应有详细的注释。

四、实验评分1.实验报告50分,其中内容占30分,格式和排版占20分。

2.程序代码50分,其中正确性占30分,可读性和可复用性占20分。

3.本次课程设计总成绩为实验报告分数和程序代码分数的加权平均分。

工程数学—数值分析实验报告(二)

工程数学—数值分析实验报告(二)

工程数学—数值分析实验报告(二)2010年11月13日郑州轻工业学院 机电工程系制冷与低温专业 10级研究生 王哲一.实验目的通过本实验了解学习特征值的内涵和幂法是求方阵的最大特征值及对应特征向量的一种迭代法。

利用幂法求方阵的最大特征值及对应特征向量的一种迭代法,等等。

主要了解掌握幂法的几种加速法,来求解特征值与特征向量。

培养编程与上机调试能力及应用数学软件(excel ,Matlab ,Linggo )等实现这几种方法。

二.幂法具体理论设An 有n 个线性无关的特征向量v 1,v 2,…,v n ,对应的特征值1,2,…,n ,满足基本思想:因为{v1,v2,…,vn}为Cn 的一组基,所以有:∑∑====ni ikini i i kk v A av a A xA 11)0()(∑∑==+==ni ii kik ni i k iiv a v a v a 21111λλλ])([21111∑=+=ni i i ki k v a v a λλλ若a 1=0,则因舍入误差的影响,会有某次迭代向量在v 1方向上的分量不为0迭代下去可求得及对应特征向量的近似值。

111111111111111)0(1)0()max()max()max()max()max()max(λλλλλ==≈---v a v a v a v a xAx A k kk kk k注:若A 的特征值不满足条件,幂法收敛性的分析较复杂但若。

则定理结论仍成立。

此时不同初始向量的迭代向量序列一般趋向于的不同特征向量。

三.用幂法求⎪⎪⎪⎭⎫ ⎝⎛=361641593642A的最大模特征值及对应特征向量1.利用excel 来求解特征值和特征向量矩阵A2 4 63 9 15 416 36计算区k x k|x k | max(x k ) y k0 1 11 1 1 1 1 1 1 1 112 27 56 12 27 56 56 0.21428571429 0.48214285714 12 8.3571428571 19.982142857 44.571428571 8.3571428571 19.982142857 44.571428571 44.571428571 0.1875 0.44831730769 13 8.1682692308 19.597355769 43.923076923 8.1682692308 19.597355769 43.923076923 43.923076923 0.1859676007 0.44617447461 14 8.1566330998 19.573473074 43.882661996 8.1566330998 19.573473074 43.882661996 43.882661996 0.18587370795 0.44604115118 15 8.1559120206 19.571991484 43.880153251 8.1559120206 19.571991484 43.880153251 43.880153251 0.185******** 0.4460328881 16 8.1558673562 19.571899699 43.879997817 8.1558673562 19.571899699 43.879997817 43.879997817 0.185******** 0.4460323763 17 8.1558645901 19.571894014 43.879988191 8.1558645901 19.571894014 43.879988191 43.879988191 0.185******** 0.44603234461 18 8.155864418819.57189366243.8799875948.155864418819.57189366243.87998759443.8799875940.185********0.4460323426512.利用Matlab 来求解特征值和特征向量 function y = maxa(x) k=1;n=length(x); for i=2:nif (abs(x(i))>abs(x(k))), k=i; end; end; y=x(k);A=[2,4,6;3,9,15;4,16,36]; x0=[1;1;1]; y=x0/maxa(x0) x1=A*ywhile(abs(maxa(x1)-maxa(x0)))>0.001 x0=x1;y=x0/maxa(x0) x1=A*yend; ymaxa(x1)四.幂法的迭代公式:加速方法⎪⎩⎪⎨⎧==+)()1()()()()max(k k k k k Ay x x xy)2(1)()1()2(2)1()2()2()max()max(2)max()]max()[max()max(+∆+++++=+---k k k k k k k x x xxx xλ1.Aitken 加速法步骤:)2()2()2()1()1()1()0()0()0()max()max()max(+++→→→→→→→→→k k k yxxyx xyxx计算)max()max(2)max()]max()[max()max()()1()2(2)1()2()2()2(1k k k k k k k x x xxx x+---=++++++λ五.用幂法求方阵A 的最大模特征值,并用Aitkem 加速法⎪⎪⎪⎭⎫ ⎝⎛---=20101350144A1.利用excel 来解决幂法求方阵A 的最大模特征值,并用Aitkem 加速法矩阵A-414 0 -5 13 0 -10 2计算区 k x k |x k |max(x k ) λy k 0 1 1 1 1 1 1 1 1 1 1 1108110811010.80.1 2 7.2 5.4 -0.8 7.2 5.4 0.8 7.2 7.8644067797 1 0.75-0.11111111111 3 6.5 4.75-1.2222222222 6.5 4.751.2222222222 6.5 6.2666666667 10.73076923077 -0.188******** 4 6.23076924.5 -1.3760686.23076924.5 1.37606836.23076926.062510.7222222-0.220850308 3761 308 761 308 2222 480115 6.11111111114.3888888889-1.44170096026.11111111114.38888888891.44170096026.11111111116.015384615410.71818181818-0.235914702586 6.05454545454.3363636364-1.47182940526.05454545454.33636363641.47182940526.05454545456.003831417610.71621621622-0.24309494687 6.0270270274.3108108108-1.48618989366.0270270274.31081081081.48618989366.0270270276.000956937810.71524663677-0.246587560828 6.01345291484.298206278-1.49317512166.01345291484.2982062781.49317512166.01345291486.000239177210.71476510067-0.248305780859 6.00671140944.2919463087-1.49661156176.00671140944.29194630871.49661156176.00671140946.000059790710.71452513966-0.2491565616710 6.00335195534.2888268156-1.49831312336.00335195534.28882681561.49831312336.00335195536.000014947510.71440536013-0.2495794240411 6.00167504194.2872696817-1.49915884816.00167504194.28726968171.49915884816.00167504196.000003736910.71434552051-0.2497900732112 6.00083728724.2864917667-1.49958014646.00083728724.28649176671.49958014646.00083728726.000000934210.71431561323-0.2498951520713 6.00041858524.286102972-1.49979030416.00041858524.2861029721.49979030416.00041858526.000000233610.71430066271-0.2499476132914 6.0002092784.2859086153-1.49989522666.0002092784.28590861531.49989522666.0002092786.000000058410.71429318824-0.2499738187615 6.00010463534.2858114471-1.49994763756.00010463534.28581144711.49994763756.00010463536.000000014610.7142894512-0.249986913342.利用Matlab来解决幂法求方阵A的最大模特征值,并用Aitkem加速法幂法A=[-4,14,0;-5,13,0;-1,0,2];x0=[1;1;1];k=1y=x0/maxa(x0)x1=A*ywhile(abs(maxa(x1)-maxa(x0)))>0.01x0=x1;k=k+1maxa(x0)y=x0/maxa(x0)x1=A*yend;Aitkem加速A=[-4,14,0;-5,13,0;-1,0,2];l1=0;k=1x0=[1;1;1];y0=x0/maxa(x0)x1=A*y0;y1=x1/maxa(x1)x2=A*y1;y2=x2/maxa(x2)l0=maxa(x2)-(maxa(x2)-maxa(x1))^2/(maxa(x2)-2*maxa(x1) + maxa(x0))while (abs(l1-l0))>0.01x0=x1;x1=x2;l1=l0;k=k+1x2=A*y2maxk=maxa(x2)y2=x2/maxkl0=maxa(x2)-(maxa(x2)-maxa(x1))^2/(maxa(x2)-2*maxa(x1)+maxa(x0))end;六.实验体会1.通过实验,我更加掌握利用幂法求方阵的最大特征值及对应特征向量的一种迭代法;2.利用各种加速法求方阵的最大特征值及对应特征向量的一种迭代法;3.在试验过程中更进一步了解excel,Matlab解线性方程的方便性以及它的强大功能,相信这对以后的学习和工作都有很大的帮助。

Matlab与数值分析第二题课程设计报告

Matlab与数值分析第二题课程设计报告

第二题课程设计报告一.引言:在实际问题中,函数解析式未知,函数往往通过实验观测得到的一组数据,即仅仅已知某个区间[a,b]上的一系列点的函数值。

如何根据实验观测数据,在某个区间[a,b]上给出其他点的函数值。

——插值问题如何求出函数,使其在“一定意义下”逼近实验观测数据。

——曲线拟合问题二.方法原理介绍:数值逼近(Approximation):逼近理论是研究如何将函数利用一组简单函数近似表征,并定量分析逼近过程中产生的误差。

数值逼近包括两大类:插值和拟合插值(Interpolate):已知函数在xi处的值为yi ,求p(x),使之满足:yi = p(xi)其中,p(x)为插值函数,xi处为插值节点,插值节点的区间称为插值区间,yi = p(xi)为插值条件。

拟合(Fit):已知函数在xi处的值为yi ,求 f (x),使之满足:e=‖yi - f (xi)‖在给定的准则下最小。

差异(Difference):插值函数必须经过插值点。

拟合函数不必经过拟合点。

三.仿真结果及性能分析:以f(x)=1/(1+25*x^2)为实例进行分析,相关程序在文件夹里。

Lagrange插值(Untitled1.m及lagrangen.m)Lagrange插值中间逼近效果较好,但两端出现Runge现象以Chebyshev为插值点的Lagrange插值(Untitled2.m及lagrangen.m)相比之下,Chebyshev插值两端的收敛性更好。

样条插值(Untitled3.m)相比之下,样条插值样点之间的收敛性更好。

二次和三次拟合多项式(两线重合)(Untitled4.m)相比之下,二次和三次拟合多项式中间误差较大,两端误差较小。

四.结论:插值:适用性:1.观测数据本身没误差,要求函数在每个节点与实验数据相符。

2.观测数据组数与实际问题阶数相同。

特点和性能比较:grange插值算法较简单,随着插值结点数增加,插值多项式的次数也相应增加,容易带来剧烈振荡,带来数值不稳定。

数值分析课程设计报告(MATLAB版)

数值分析课程设计报告(MATLAB版)

(2)取右端向量 b 的三位有效数字得 b [1.83 1.08 0.783]T ,求方程组的准确 解 X ,并与 X 的数据 [1 1 1]T 作比较 。说明矩阵的病态性。
算法及相应结果: (1)在 MATLAB 命令窗口里输入如下命令: >> H=[1 1/2 1/3;1/2 1/3 1/4;1/3 1/4 1/5]; b=[11/6 13/12 47/60]'; >> x=H\b 回车得到结果为: x = 1.0000 1.0000 1.0000 (2)紧接着在上题基础上继续输入如下命令: >> c=[1.83 1.08 0.783]'; x1=H\c 回车得到如下结果: x1 = 1.0800 0.5400 1.4400
问题分析:考虑由直线段(2 个点)产生第一个图形(5 个点)的过程,设 P 1 和 P5 分别为原始直线段的两个端点。现在需要在直线段的中间依次插入三个点 。显然, P2 位于 P P2 , P3 , P4 产生第一次迭代的图形(图 1-4) 1 点右端直线段的三分 之一处, P4 点绕 P2 旋转 60 度(逆时针方向)而得到的,故可以处理为向量 P2 P4 经正交变换而得到向量 P2 P3 ,形成算法如下: (1) P2 P 1 (P 5 P 1) / 3 ; (2) P4 P 1 2( P 5 P 1) / 3 ; (3) P3 P2 ( P4 P2 ) AT ; 在算法的第三步中,A 为正交矩阵。
运行结果: 0.0884 0.0580 0.0431 0.0343 0.0285 0.0243 0.0212 0.0188 0.0169 0.0154 0.0141 0.0130 0.0120 0.0112 0.0105 0.0099 0.0094 0.0087 0.0092 0.0042 (2)从 I 30 较粗略的估计值出发,我们不妨取 0.01. 源程序:

数值分析的实验报告

数值分析的实验报告

数值分析的实验报告数值分析的实验报告导言数值分析是一门研究数值计算方法和数值计算误差的学科,它在科学计算、工程技术和社会经济等领域具有广泛的应用。

本实验旨在通过对数值分析方法的实际应用,验证其有效性和可靠性。

实验一:方程求根方程求根是数值分析中的基础问题之一。

我们选取了一个非线性方程进行求解。

首先,我们使用二分法进行求解。

通过多次迭代,我们得到了方程的一个近似解。

然后,我们使用牛顿法进行求解。

与二分法相比,牛顿法的收敛速度更快,但需要选择一个初始点。

通过比较两种方法的结果,我们验证了牛顿法的高效性。

实验二:插值与拟合插值与拟合是数值分析中常用的数据处理方法。

我们选取了一组实验数据,通过拉格朗日插值法和最小二乘法进行插值和拟合。

通过对比两种方法的拟合效果,我们验证了最小二乘法在处理含有噪声数据时的优势。

同时,我们还讨论了插值和拟合的精度与样本点数量之间的关系。

实验三:数值积分数值积分是数值分析中的重要内容之一。

我们选取了一个定积分进行计算。

首先,我们使用复化梯形公式进行积分计算。

通过增加分割区间的数量,我们得到了更精确的结果。

然后,我们使用复化辛普森公式进行积分计算。

与复化梯形公式相比,复化辛普森公式具有更高的精度。

通过比较两种方法的结果,我们验证了复化辛普森公式的优越性。

实验四:常微分方程数值解常微分方程数值解是数值分析中的重要应用之一。

我们选取了一个常微分方程进行数值解的计算。

首先,我们使用欧拉方法进行数值解的计算。

然后,我们使用改进的欧拉方法进行数值解的计算。

通过比较两种方法的结果,我们验证了改进的欧拉方法的更高精度和更好的稳定性。

实验五:线性方程组的数值解法线性方程组的数值解法是数值分析中的重要内容之一。

我们选取了一个线性方程组进行数值解的计算。

首先,我们使用高斯消元法进行数值解的计算。

然后,我们使用追赶法进行数值解的计算。

通过比较两种方法的结果,我们验证了追赶法在求解三对角线性方程组时的高效性。

《数值分析》课程实验报告范文

《数值分析》课程实验报告范文

《数值分析》课程实验报告范文《数值分析》课程实验报告姓名:学号:学院:机电学院日期:2022年某月某日目录实验一函数插值方法1实验二函数逼近与曲线拟合5实验三数值积分与数值微分7实验四线方程组的直接解法9实验五解线性方程组的迭代法15实验六非线性方程求根19实验七矩阵特征值问题计算21实验八常微分方程初值问题数值解法24实验一函数插值方法一、问题提出对于给定的一元函数的n+1个节点值。

试用Lagrange公式求其插值多项式或分段二次Lagrange插值多项式。

实验二函数逼近与曲线拟合一、问题提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。

在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t的拟合曲线。

t(分)051015202530354045505501.272.162.863.443.874.154.374.51 4.584.024.64二、要求1、用最小二乘法进行曲线拟合;2、近似解析表达式为;3、打印出拟合函数,并打印出与的误差,;4、另外选取一个近似表达式,尝试拟合效果的比较;5、某绘制出曲线拟合图。

三、目的和意义1、掌握曲线拟合的最小二乘法;2、最小二乘法亦可用于解超定线代数方程组;3、探索拟合函数的选择与拟合精度间的关系四、实验步骤:第一步先写出线性最小二乘法的M文件functionc=lpoly(某,y,m)n=length(某);b=zero(1:m+1);f=zero(n,m+1); fork=1:m+1f(:,k)=某.^(k-1);enda=f'某f;b=f'某y';c=a\b;c=flipud(c);第二步在命令窗口输入:>>lpoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3.44,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:an=-0.00240.20370.2305即所求的拟合曲线为y=-0.0024某2+0.2037某+0.2305在编辑窗口输入如下命令:>>某=[0,5,10,15,20,25,30,35,40,45,50,55];>>y=-0.0024某某.^2+0.2037某某+0.2305;>>plot(某,y)命令执行得到如下图五、实验结论分析复杂实验数据时,常采用分段曲线拟合方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 2.1
一、题目:
用高斯消元法的消元过程作矩阵分解。


20231
812
3
15A ⎡⎤
⎢⎥=⎢⎥⎢⎥-⎣⎦
消元过程可将矩阵A 化为上三角矩阵U ,试求出消元过程所用的乘数21m 、31m 、31m 并以如下格式构造下三角矩阵L 和上三角矩阵U
(1)
(1)21
22
23(2)31
32
331
20
23
1,1L m U a a m m a ⎡⎤⎡⎤
⎢⎥⎢⎥==⎢⎥⎢
⎥⎢⎥⎢⎥⎣⎦⎣

验证:矩阵A 可以分解为L 和U 的乘积,即A =LU 。

二、算法分析:
设矩阵11121321
222331
32
33a a a A a a a a a a ⎛⎫
⎪= ⎪ ⎪⎝⎭
,通过消元法可以将其化成上三角矩阵U ,具体算法如下: 第1步消元:111111(1)2
2112(1)
331130,0;
;2,3;
i i i i i i i i a m a a a a m a i a a m a +=≠⎧⎪
=+=⎨⎪=+⎩ 得到111213(1)(1)12223(1)(1)32
330
0a a a A a a a a ⎛⎫
⎪= ⎪ ⎪⎝

第2步消元:(1)(1)(1)32322222(2)(1)(1)333332230,0;
;
a m a a a a m a ⎧+=≠⎪⎨=+⎪⎩
得到的矩阵为11
1213(1)
(1)22223(2)330
00
a a a A a a a ⎛⎫
⎪= ⎪ ⎪⎝

三、程序及运行结果 b1.m
A=[20 2 3;1 8 1;2 -3 15]; for i=1:2
M(i)=A(i+1,1)/A(1,1); end
for j=2:3
A1(j,2)=A(j,2)-M(j-1)*A(1,2); A1(j,3)=A(j,3)-M(j-1)*A(1,3); end
M(3)=A1(3,2)/A1(2,2); A1(3,2)=0;
A1(3,3)=A1(3,3)-M(3)*A1(2,3); M,A1
运行结果为: M =
0.0500 0.1000 -0.4051 A1 =
0 0 0 0 7.9000 0.8500 0 0 15.0443 所以: 10020
23
0.05
100
7.90.850.10.4051
100
15.0443L U ⎛⎫⎛⎫
⎪ ⎪
== ⎪ ⎪ ⎪ ⎪-⎝



验证:L=[1 0 0;0.05 1 0;0.1 -0.4051 1];U=[20 2 3;0 7.9 0.85;0 0 15.0443];A1=L*U
A1 =
20.0000 2.0000 3.0000 1.0000 8.0000 1.0000 2.0000 -3.0003 15.0000
四、精度分析
因为根据LU 的递推公式可知,L ,U 分别为下三角和上三角矩阵,其中L 不在对角线上的元素值为1
1
1()k ik ik is sk s kk
l a l u u -==
-∑,在计算每个系数时会产生相应的计算误差。

2.2
一、题目
用矩阵分解方法求上题中A 的逆矩阵。


1231000,1,0001b b b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
分别求解方程组
123,,AX b AX b AX b ===
由于三个方程组系数矩阵相同,可以将分解后的矩阵重复使用。

对第一个方程组,由于A=LU ,所以先求解下三角方程组1b =LY ,再求解上三角方程组=U X Y ,则可得逆矩阵的第一列列向量;类似可解第二、第三方程组,得逆矩阵的第二列列向量的第三列列向量。

由三个列向量拼装可得逆矩阵1-A 。

二、算法分析
首先根据LU 分解,将矩阵A 分解成下三角矩阵L 和上三角矩阵U 乘积的形式。

然后分别求解方程组(1,2,3)i i LY b i ==和(1,2,3)i i U X Y i ==。

通过计算可知
10020
23
0.05
100
80.850.10.4
100
15.04L U ⎛⎫⎛⎫
⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝



11,2,3i i i i
LY b Y L b i -=⇒== 1
1,2,3i i i i
U X Y X U Y i -=⇒==
最后求解得到的矩阵[]1
1
2
3B X X X A -==
三、程序及运行结果 b2.m
b1=[1 0 0]';b2=[0 1 0]';b3=[0 0 1]';
L=[1 0 0;0.05 1 0;0.1 -0.4 1];U=[20 2 3;0 8 0.85;0 0 15.04]; y1=inv(L)*b1;x1=inv(U)*y1; y2=inv(L)*b2;x2=inv(U)*y2; y3=inv(L)*b3;x3=inv(U)*y3; x1,x2,x3,[x1,x2,x3]
运行结果为:
x1 =
0.0517 -0.0054 -0.0080
x2 =
-0.0162 0.1222 0.0266
x3 =
-0.0093 -0.0071 0.0665
ans =
0.0517 -0.0162 -0.0093 -0.0054 0.1222 -0.0071 -0.0080 0.0266 0.0665
四、精度分析
矩阵A 经过LU 分解后得到上三角U 和下三角矩阵L ,分别进行
1
1,2,3i i i i
L Y b Y L b i -=⇒== 和1
1,2,3i i i i
U X Y X U Y i -=⇒==计算时便产生了计
算误差,所以最后结果与1A -存在一定的误差。

2.2
一、题目
验证希尔伯特矩阵的病态性:对于三阶矩阵 1
1/21/31/2
1/31/4
1/3
1/4
1/5H ⎡⎤
⎢⎥=⎢⎥⎢⎥⎣⎦
取右端向量T
[11/613/12
47/60]
b =,验证:
(1)向量
T
T
1
2
3[][1
1
1]
X x x x ==是方程组b =H X 的准确解;
(2)取右端向量b 的三位有效数字得T
[1.83
1.08
0.783]
b =,求方程组的准确解
*
X ,并与X 的数据
T
[111]
作比较 。

说明矩阵的病态性。

二、算法分析
(1)要验证向量X 是方程H X b =的准确解,只需求解出该方程的解并与X 作个比较
即可。

因为H X b =,所以1
X H b -=
(2)与第一题算法一样,根据H X b =求解出*1
X H b -=
三、程序及运行结果 b3.m
b1=[11/6 13/12 47/60]';b2=[1.83 1.08 0.783]';
H=[1 1/2 1/3;1/2 1/3 1/4;1/3 1/4 1/5]; x1=inv(H)*b1 x2=inv(H)*b2 运行结果为: x1 =
1.0000 1.0000 1.0000 x2 =
1.0800 0.5400 1.4400
四、精度分析
(1)通过x1的运行结果可知,123[][111]T T
X x x x ==是方程H X b =准确解。

(2)通过
x2
的运行结果可知,由于T
1[1.83
1.08
0.783]b =与
T
2[11/6
13/12
47/60]b =的误差非常小,可是它们的计算结果却差别很大,根据病态
矩阵的定义可知,矩阵H 为病态的。

相关文档
最新文档