高中数学《函数的奇偶性》教学设计

合集下载

高中数学教学设计函数的奇偶性

高中数学教学设计函数的奇偶性

高中数学教学设计函数的奇偶性教学目标:1.理解函数的奇偶性的概念;2.掌握函数奇偶性的判断方法;3.能够应用函数的奇偶性解决实际问题。

教学重点:1.函数奇偶性的定义和判断方法;2.函数奇偶性在数学问题中的应用。

教学难点:1.函数奇偶性与函数图像的对称关系的建立;2.函数奇偶性的应用。

教学过程:一、导入新知(10分钟)在复习上一节课所学内容的基础上,提问学生在函数图像中是否有些特殊的关系。

引导学生进入新课题,函数的奇偶性。

二、概念解释(5分钟)引导学生回顾函数的定义,给出函数奇偶性的定义。

函数f(x)是指定实数集D上的一个对应关系,对于定义域内的任意两个实数x1和x2,由f(x1)=y1和f(x2)=y2,只有当x1=x2时,才可能有y1=y2、函数f(x)是奇函数,如果对于定义域内的任意实数x,有f(-x)=-f(x);函数f(x)是偶函数,如果对于定义域内的任意实数x,有f(-x)=f(x)。

三、奇偶性判断方法(10分钟)1.奇数次幂与偶数次幂的关系:奇函数的定义表明,当x取正值和负值时,函数值的正负是相反的。

当函数中含有奇数次幂项时,函数为奇函数;当函数中只含有偶数次幂项时,函数为偶函数。

2.奇函数与偶函数的关系:奇函数和偶函数之间存在对称关系,即关于坐标轴对称。

若函数的图像相对于y轴对称,则该函数为偶函数;若函数的图像相对于原点对称,则该函数为奇函数。

四、练习与讨论(15分钟)1.通过给出一些具体函数的表达式,让学生判断其奇偶性;2.给学生一些简单的函数图像,让学生通过观察判断其奇偶性。

五、案例分析(15分钟)通过一些实际问题的案例,让学生应用奇偶性的概念解决问题。

六、拓展应用(15分钟)引导学生思考,在实际生活中是否存在奇函数和偶函数的应用情景。

引导学生探索相应的实际问题,并通过练习来应用所学知识解决问题。

七、课堂小结(5分钟)对本节课的学习进行总结和归纳,强调奇偶性在解决数学问题中的应用意义。

高中一年级上学期数学《函数的奇偶性》教学设计

高中一年级上学期数学《函数的奇偶性》教学设计

1.3.2函数的奇偶性(1)
一、教学目标
1.知识技能:
(1)学会用数学语言描述偶函数和奇函数的概念,并能够理解其几何意义,进一步培养学生的观察能力和数形结合的数学思想意识;
(2)学会运用函数图象理解和研究函数的性质;
(3)通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力; (4)能够利用定义判断函数的奇偶性;
(5)能运用函数奇偶性的代数特征和几何意义解决一些简单的问题.
2.过程与方法:让学生体会从具体到抽象、从特殊到一般的数学思维过程,以及数形结合的重要数学思想和方法.
3.情感,态度,价值观:
(1)通过自主探索,体会数形结合的思想,感受数学的对称美;
(2)通过小组合作交流培养学生团结互助的精神.
二、教学重点和难点
重点:函数奇偶性的概念.
难点:函数的奇偶性的判定.
三.教学过程
探究2:(1) 从对称角度看,以下两个函数图象有什么共同特征吗?
(2) 当自变量x任取一对相反数时,相应的两个函数值有什么关系?反映在解析式上有什么关
教师活动。

函数奇偶性的教学设计

函数奇偶性的教学设计

函数奇偶性的教学设计这是函数的奇偶教学设计一等奖,是老师和家长可以借鉴的优秀教学设计一等奖文章。

函数奇偶性的教学设计 1教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1.复习初中所学函数的概念,强调函数的模型化思想;2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国xxxx年4月份非典疫情统计:日期新增确诊病例数3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本P20例1解:(略)说明:○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.巩固练习:课本P22第1题2.判断两个函数是否为同一函数课本P21例2解:(略)说明:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

《3.1.3函数的奇偶性》教学设计教学反思-2023-2024学年高中数学人教B版19必修第一册

《3.1.3函数的奇偶性》教学设计教学反思-2023-2024学年高中数学人教B版19必修第一册

《3.1.3 函数的奇偶性》教学设计方案(第一课时)一、教学目标1. 理解奇偶性的概念,掌握判断函数奇偶性的方法。

2. 能够运用奇偶性性质,解决相关数学问题。

3. 提高学生对函数性质的理解和掌握,为后续函数学习打下基础。

二、教学重难点1. 教学重点:理解奇偶性的概念,掌握判断函数奇偶性的方法。

2. 教学难点:如何引导学生运用奇偶性性质解决实际问题。

三、教学准备1. 准备教学用具:黑板、白板、笔、函数图像等。

2. 制作PPT课件,包含概念引入、方法讲解、例题分析、练习题等环节。

3. 搜集相关数学问题,以便学生运用奇偶性性质进行解答。

4. 确定教学方法,采用讲授与讨论相结合,引导学生自主探究。

四、教学过程:1. 导入新课:教师展示一些函数图像(如:y=x^2, y=x^3, y=sinx等),引导学生观察图像特征。

随后,教师提出疑问:“对于这些函数,它们是否有某些共性?”以此引发学生对函数奇偶性的思考。

设计意图:通过直观的函数图像,引发学生对奇偶性的初步感知,为后续教学做好铺垫。

2. 探索奇偶性的定义:教师引导学生逐步推导奇偶性的定义,并解释其含义。

在此过程中,教师可借助具体函数进行说明,帮助学生理解。

例如,对于函数f(x),如果对于定义域内的任意x,都有f(-x)=-f(x),则称函数f(x)为奇函数;如果对于定义域内的任意x,都有f(-x)=f(x),则称函数f(x)为偶函数。

设计意图:通过逐步推导,帮助学生理解奇偶性的定义,并强调定义中的关键条件。

3. 实例分析:教师展示一些具体的奇偶函数图像,引导学生观察并分析它们的性质。

学生可尝试用自己的语言描述奇偶函数的特征,如单调性、对称性等。

设计意图:通过实例分析,帮助学生加深对奇偶性概念的理解,并锻炼其分析能力。

4. 探究奇偶性的应用:教师引导学生思考奇偶性在数学及其他领域中的应用,如代数问题、几何问题等。

学生可分组讨论,交流想法,最后由教师进行总结。

《函数的奇偶性》教学设计

《函数的奇偶性》教学设计

《函数的奇偶性》教学设计一、教学目标课程标准对本节课的要求是:结合具体函数,了解奇偶性的含义.从认知层次的三个维度对课标进行了分解,具体如下:依据行为动词,我又从能力层次将课标进行了再分解,具体如下:由此确定的学习目标为:1.建立奇偶函数的概念:通过观察一些具体函数的对称性(关于y轴或原点对称)形成奇偶函数的直观认识。

然后通过代数运算,验证并发现数量特征对定义域中的“任意”值都成立,最后在此基础上建立奇(偶)函数的概念。

理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性.2.函数奇偶性的研究历经了从直观到抽象,从图形语言到数学语言,理解函数奇偶性概念的形成过程,让学生自主探究。

培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想.3.通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力和认真钻研的数学品质。

二、教学重点与难点重点:函数奇偶性的概念和几何意义。

难点:奇偶性概念的数学化提炼过程。

三、教学过程本节课我采取“教学、评价、学习一致性”的教学设计,同时采用“点拨式自主学习与合作探究”的教学方法,借助五个环节实现本节课的学习目标.从学生熟悉的与入手,顺应了同学们的认知规律,从特殊到一般,培养学生的语言表达能力和抽象概括能力,形成偶函数的概念。

板书设计板书设计分为教师板书和学生板书两块内容,教师板书,我侧重将本节的四个主要内容展示在黑板上,便于学生理解和记忆.学生板书,我将留给学生展示课堂演板,便于对学生掌握的情况进行总结和评价.课后实践:1.课本P42练习2, P46102.设y=f(x)为R上的任一函数,判断下列函数的奇偶性:(1). F(x)=f(x)+f(- x) (2)F(x)=f(x)-f(-x)。

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性》一、教学目标:1. 知识与技能:理解函数奇偶性的概念,能够判断函数的奇偶性;学会运用函数的奇偶性解决一些简单问题。

2. 过程与方法:通过观察、分析、归纳等方法,探索函数奇偶性的性质及其判断方法。

3. 情感态度价值观:培养学生的逻辑思维能力,提高学生对数学的兴趣。

二、教学内容:1. 函数奇偶性的定义2. 函数奇偶性的判断方法3. 函数奇偶性的性质三、教学重点与难点:1. 教学重点:函数奇偶性的定义及其判断方法。

2. 教学难点:函数奇偶性的性质及其应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究函数奇偶性的性质;2. 通过实例分析,让学生掌握函数奇偶性的判断方法;3. 利用小组讨论,培养学生的合作能力。

五、教学过程:1. 导入:回顾上一节课的内容,引导学生思考函数的奇偶性与什么有关。

2. 新课讲解:(1)介绍函数奇偶性的定义;(2)讲解函数奇偶性的判断方法;(3)分析函数奇偶性的性质。

3. 例题解析:选取典型例题,分析解题思路,引导学生运用函数奇偶性解决问题。

4. 课堂练习:布置练习题,让学生巩固所学内容。

5. 总结与拓展:总结本节课的主要内容,提出拓展问题,激发学生的学习兴趣。

6. 课后作业:布置适量作业,巩固所学知识。

注意:在教学过程中,要关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够掌握函数奇偶性的相关知识。

六、教学评估:1. 课堂提问:通过提问了解学生对函数奇偶性的理解程度,及时发现并解决学生学习中存在的问题。

2. 练习题解答:检查学生完成练习题的情况,评估学生对函数奇偶性知识的掌握情况。

3. 课后作业:批改课后作业,了解学生对课堂所学知识的巩固程度。

七、教学反思:1. 反思教学内容:检查教学内容是否全面、深入,是否适合学生的认知水平。

2. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。

3. 反思教学效果:总结本节课的教学成果,找出不足之处,为下一节课的教学做好准备。

1.4 函数的奇偶性》一等奖创新教学设计

1.4 函数的奇偶性》一等奖创新教学设计

1.4 函数的奇偶性》一等奖创新教学设计2.1.4《函数的奇偶性》教学设计一.教材分析:“函数的奇偶性”是普通高中课程标准试验教科书(必修)数学1的第二章第2.1.4节的内容。

函数的奇偶性是函数的一个重要性质,常伴随着函数的其他性质出现。

函数奇偶性揭示的是函数自变量与函数值之间的一种特殊的数量规律,直观反映的是函数图象的轴对称性和点对称性。

利用数形结合的数学思想来研究此类函数的问题常为我们展示一个新的思考视角。

函数的奇偶性也是学生今后研究三角函数、二次曲线等知识的重要铺垫,而且灵活地应用函数的奇偶性常使复杂的不等问题、方程问题、作图问题等变得简单明了。

二.学情分析:这节课是函数奇偶性质学习的第一课时,因此通过学生先对实物图的观察、分析、理解来获得函数的奇偶性再结合理论推导来理解函数的奇偶性就显得比较流畅。

这样一方面与学生的认知结构相吻合,另一方面也可以增强学生的阅读理解能力。

另外根据我班学生的情况,本教案在例题的选择及处理方式方面也可作适当调整。

三.教学目标1、知识与技能目标:使学生理解奇函数、偶函数的概念,学会用定义判断函数的奇偶性。

2、过程与方法目标:在奇偶性概念形成过程中,培养学生的观察,归纳能力同时渗透数形结合和特殊到一般的数学思想方法.3、情感、态度、价值观目标:在学生感受数学美的同时激发学习的兴趣,培养学生乐于求索的精神。

四.教学重点、难点教学重点:函数奇偶性概念。

教学难点:对函数奇偶性的概念的理解及判断。

五.教学方法本节课采用观察、探索、启发、讨论、归纳等多种教学手段和方法,采用媒体辅助教学,通过数形结合,增强直观性,通过函数奇偶性的图象对称性演示,使学生享受到数学的美感。

六.教学用具:多媒体。

七.教学过程:(一)导入新课设计:提出问题“我们生活在美的世界中,有过许多对美的感受,请大家观察下列事物给你的感觉体现了什么样的美感呢?”在屏幕上给出一组图片设计理由:联系生活实际,激发学生的学习兴趣,使学生对函数的奇偶性反应在图像上的特点有一个初步的认识。

《函数的奇偶性》教学设计

《函数的奇偶性》教学设计
2、“函数奇偶性”对知识点掌握不全面的学生往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了考虑函数定义域的问题。
3、在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。在这个问题上我除了注意概念的讲解,还特意用几何画板、PPT图像演示来加强本节课重点问题的讲解。
深化对偶函数概念的理解,引导学生从“形”和“数”两方面再次认识定义。
(四)类比偶函数定义形成过程,自主得到奇函数的定义及相关分析
培养学生类比、归纳、抽象、概括的能力。
(五)做预习自测
通过习题,使学生在学习新知识的同时能加以应用。
设计亮点:
1、微课实录中充分展示了教法、学法中的互动模式,“问题”贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。并引导学生总结出本节课应积累的解题经验。
《函数的奇偶性》教学设计
作者信息
姓 名
联系电话
所教学科
数学
所教学段
高中
电子邮件
单位名称
微课程信息
主题名称
函数的奇偶性
选题意图
函数的奇偶性是函数的一个非常重要的性质,函数奇偶性的判断 是本节的重点,难点是函数奇偶性概念的理解。奇、偶函数的解析定义与图像性质的紧密结合是本节教学的主要特点,奇函数与中心对称、偶函数与轴对称密切相 关,采用数形结合的方法,可强化学生对奇、偶函数性质的理解,但是传统的教学方式很难达到预期的目标,所以选择微课来突破这个知识点,会起到事半功倍的效果。
制作方式(可多选)


□拍摄 □录屏 □演示文稿 □动画 □其他
预计时间
6分钟
微课程设计
教学过程
设计意图
(一)设疑导入、观图激趣

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性》一、教学目标:1. 理解函数奇偶性的概念,掌握判断函数奇偶性的方法。

2. 能够运用函数奇偶性的性质解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容:1. 函数奇偶性的定义与判断方法2. 函数奇偶性的性质及应用3. 常见函数的奇偶性分析三、教学重点与难点:1. 函数奇偶性的定义与判断方法2. 函数奇偶性与图像的关系四、教学方法与手段:1. 采用问题驱动法,引导学生主动探索函数奇偶性的性质。

2. 利用多媒体课件,展示函数奇偶性的图像,增强直观感受。

3. 开展小组讨论,促进学生之间的交流与合作。

五、教学过程:1. 导入新课:通过回顾初中阶段学习的函数图像,引导学生发现函数的奇偶性现象。

2. 讲解函数奇偶性的定义与判断方法:讲解函数奇偶性的定义,举例说明判断方法。

3. 探究函数奇偶性的性质:引导学生通过小组讨论,发现函数奇偶性与图像的4. 应用实例:分析生活中遇到的函数奇偶性问题,运用函数奇偶性解决问题。

教案示例:一、教学目标:1. 理解函数奇偶性的概念,掌握判断函数奇偶性的方法。

2. 能够运用函数奇偶性的性质解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容:1. 函数奇偶性的定义与判断方法2. 函数奇偶性的性质及应用3. 常见函数的奇偶性分析三、教学重点与难点:1. 函数奇偶性的定义与判断方法2. 函数奇偶性与图像的关系四、教学方法与手段:1. 采用问题驱动法,引导学生主动探索函数奇偶性的性质。

2. 利用多媒体课件,展示函数奇偶性的图像,增强直观感受。

3. 开展小组讨论,促进学生之间的交流与合作。

五、教学过程:1. 导入新课:通过回顾初中阶段学习的函数图像,引导学生发现函数的奇偶性现象。

2. 讲解函数奇偶性的定义与判断方法:讲解函数奇偶性的定义,举例说明判断3. 探究函数奇偶性的性质:引导学生通过小组讨论,发现函数奇偶性与图像的关系。

《3.1.3函数的奇偶性》教学设计教学反思-2023-2024学年高中数学人教B版2019必修第一册

《3.1.3函数的奇偶性》教学设计教学反思-2023-2024学年高中数学人教B版2019必修第一册

《3.1.3 函数的奇偶性》教学设计方案(第一课时)一、教学目标1. 理解奇偶性的概念,掌握判断函数奇偶性的方法。

2. 能够运用奇偶性性质解决一些数学问题。

3. 培养观察、分析和抽象概括的能力,提高数学素养。

二、教学重难点1. 教学重点:理解函数奇偶性的概念,掌握判断函数奇偶性的方法。

2. 教学难点:灵活运用奇偶性性质解决实际问题。

三、教学准备1. 准备教学用具:黑板、白板、笔、函数图像等。

2. 制作PPT课件,包含案例分析、知识点讲解、练习题等。

3. 收集或自创有关奇偶性的实际问题,以便进行案例教学。

4. 确定教学内容的逻辑顺序,设计合理的教学环节。

四、教学过程:**1. 导入新课*** 回顾:之前学过的函数有哪些特性?* 提问:函数图象的特征由哪些因素决定?* 讲解:函数的对称性,介绍奇偶性概念。

**2. 探索新知*** 观察图形:展示一些函数的图象,让学生观察并找出对称轴。

* 提出问题:对称轴与函数特性有什么关系?* 讨论:引导学生归纳出奇偶性的定义。

* 练习:给出一些练习题,让学生加深对定义的理解。

**3. 知识扩展*** 讲解:奇偶性定义的延伸,包括性质和判定方法。

* 提问:如何判断函数的奇偶性?* 举例:举出一些奇偶性变化的例子,让学生分析。

* 讨论:引导学生讨论奇偶性的应用,如对称性的应用。

**4. 实践活动*** 布置作业:让学生自己画出一些函数的图象,并观察其奇偶性。

* 讲解:如何利用对称性进行解题。

* 讨论:学生展示自己的作业,并分享解题心得。

**5. 课堂小结*** 回顾本节课的主要内容,包括奇偶性的定义、性质、判定方法等。

* 强调重点和难点,引导学生思考如何将奇偶性应用到实际问题中。

教学设计方案(第二课时)一、教学目标1. 理解并掌握函数的奇偶性的概念和性质。

2. 能够根据函数的奇偶性判断函数的对称性。

3. 学会运用奇偶性解决实际问题。

二、教学重难点1. 重点:理解函数的奇偶性概念和性质,能够运用奇偶性判断函数的对称性。

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性》章节一:函数奇偶性的概念引入教学目标:1. 理解函数奇偶性的概念;2. 学会判断函数的奇偶性;3. 掌握函数奇偶性的性质。

教学内容:1. 引入奇偶性的概念;2. 举例说明奇偶性的判断方法;3. 总结奇偶性的性质。

教学步骤:1. 引入奇偶性的概念,让学生思考日常生活中遇到的奇偶性例子;2. 给出函数奇偶性的定义,解释奇偶性的判断方法;3. 通过具体例子,让学生学会判断函数的奇偶性;4. 引导学生总结奇偶性的性质。

教学评估:1. 课堂提问,了解学生对奇偶性概念的理解程度;2. 布置练习题,让学生运用奇偶性的判断方法。

章节二:奇函数和偶函数的性质教学目标:1. 理解奇函数和偶函数的性质;2. 学会运用奇偶性解决实际问题。

教学内容:1. 介绍奇函数和偶函数的性质;2. 举例说明奇偶性在实际问题中的应用。

教学步骤:1. 回顾奇偶性的概念,引导学生理解奇函数和偶函数的性质;2. 通过具体例子,让学生学会运用奇偶性解决实际问题;3. 总结奇偶性在实际问题中的应用。

教学评估:1. 课堂提问,了解学生对奇偶性性质的理解程度;2. 布置练习题,让学生运用奇偶性解决实际问题。

章节三:函数奇偶性的判定定理教学目标:1. 理解函数奇偶性的判定定理;2. 学会运用判定定理判断函数的奇偶性。

教学内容:1. 介绍函数奇偶性的判定定理;2. 举例说明判定定理的运用方法。

教学步骤:1. 引导学生理解函数奇偶性的判定定理;2. 通过具体例子,让学生学会运用判定定理判断函数的奇偶性;3. 总结判定定理的运用方法。

教学评估:1. 课堂提问,了解学生对判定定理的理解程度;2. 布置练习题,让学生运用判定定理判断函数的奇偶性。

章节四:函数奇偶性在实际问题中的应用教学目标:1. 理解函数奇偶性在实际问题中的应用;2. 学会运用奇偶性解决实际问题。

教学内容:1. 介绍函数奇偶性在实际问题中的应用;2. 举例说明奇偶性在实际问题中的解决方法。

《函数的奇偶性》教学设计

《函数的奇偶性》教学设计

《函数的奇偶性》教学设计一、内容和内容解析1.内容函数的奇偶性.2.内容解析函数的奇偶性是函数的重要性质之一,从“形”的角度,函数的奇偶性揭示了函数的整体图象与函数在y轴右侧的局部图象之间的关系;从“数”的角度,函数的奇偶性刻画了函数自变量与函数值之间存在的一种特殊的数量规律.用数量关系刻画函数图象的对称性,体现了数形结合的思想.从研究方法上看,它延续了函数单调性的研究思想和方法:用数量关系刻画函数的图象性质,这也为后续进一步研究具体函数的性质提供研究的方法与角度.从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数等各种基本初等函数的基础.因此,本节课起着承上启下的重要作用.这一节利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学的学习中.从方法论的角度来看,本节教学过程中还渗透了数形结合、化归等数学思想方法.奇偶性的教学无论是在知识还是在能力方面对学生的教育起着非常重要的作用,因此本节课充满着数学方法论的渗透教育,同时又是数学美的集中体现.奇偶性是函数的“整体性质”,是某些函数的特殊性质.奇偶性是把函数图象的对称性(几何特性)转化为代数关系,并用严格的符号语言表示,沟通了形与数,实现了从定性到定量的转化.基于以上分析,本单元的教学重点:函数奇偶性概念的形成和函数奇偶性的判断.二、目标和目标解析1.目标(1)借助函数图象,了解函数奇偶性的概念及几何意义;(2)会运用概念判断函数的奇偶性;(3)在抽象函数奇偶性的过程中感悟数学概念的抽象过程及符号表示的作用.2.目标解析达成上述目标的标志是:(1)知道函数奇偶性是把函数图象的对称性(几何特性)转化为代数关系,并用严格的符号语言表示,沟通了形与数,实现了从定性到定量的转化.(2)会用函数奇偶性的定义,按一定的步骤证明函数的奇偶性.(3)初中阶段学生对于函数的学习侧重于直观形象和定性讨论,而高中阶段研究函数,侧重于数形结合和符号逻辑语言结合,用精确的量化(符号)语言、形式推理来刻画变量之间关系和规律,即通过形式化、符号化来使函数性质数学化,在数学化的过程中培养学生的直观想象、抽象概况等思维能力和素养,感受数学符号语言的魅力.三、教学问题诊断分析学生在初中阶段已经学习了轴对称图形,中心对称图形以及它们的性质,对二次函数、反比例函数图象的对称性也非常熟悉.对于具体函数,能够观察函数图象,描述图象的对称性,能从数量关系上对函数的对称性进行初步刻画,但学生并不明确数与形转化的过程,即为什么对于定义域内任意x ,当满足()()-=f x f x 时,函数图象关于y 轴对称.通过函数单调性的理解和学习,学生初步积累了研究函数的基本方法与初步经验,学生接触到了由形象到具体,然后再由具体到一般的科学处理方法,这些对本节内容刚开始的引入和概念形成起到了很好的铺垫作用.但是学生的分析归纳能力和用数学规范语言表达的能力还比较弱,我们必须引导学生从“数”与“形”两个方面来加深对函数奇偶性本质的认识.从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题.但分析、归纳、抽象的思维能力还是比较薄弱,通过恰当的培养和引导能够使得学生的分析归纳能力得到提高.根据以上分析,确定本节课的教学难点:对关系式()()-=f x f x (或()()-=-f x f x )的理解.四、教学过程设计(一) 情景导入我们知道函数是描述事物变化规律的数学模型,函数性质是“变化中的规律性,变化中的不变性”.上一节课,我们共同学习了函数的单调性与最大(小)值,用符号语言准确地描述了函数图象在定义域的某个区间上“上升”(或“下降”)的性质,本节课,我们继续研究函数的其他性质.(二)概念的形成问题1:平面直角坐标系中的任意一点(,)P a b 关于x 轴、y 轴、坐标原点的对称点Q 、R 、S 的坐标.追问:一般地,若两点关于x 轴对称,它们的坐标之间有何关系?若关于y 轴对称呢?关于原点中心对称呢?设计意图:从学生已学知识复习导入,通过具体的点引导学生感受对称与坐标的关系,为后续奇偶性定义中的任意性做一些铺垫.问题2:画出并观察函数2()f x x =和2()g x x =-的图象,你能发现这两个函数图象有什么共同特征吗?师生活动:先由学生独立思考,教师利用PPT 展示函数图象.学生观察后,不难发现,这两个函数的图象都关于y 轴对称.那么,如何使用符号语言精准地描述“函数图象关于y 轴对称”这一特征?所以,教师继续追问.追问:对于上述两个函数,1()f 与1()f -,2()f 与2()f -,3()f 与3()f -,()f x 与()-f x 有什么关系?师生活动:先由学生独立思考,教师积极地引导学生发现,当自变量取一对相反数时,相应的两个函数值相等.追问:对于定义域内任意的一个x ,都有()()-=f x f x 成立吗?如何验证我们的猜想呢?师生活动:以2()f x x =为例,其定义域为R .对于定义域R 内任意的一个x ,都有x R -∈,()f x 与()-f x 均有意义.因为22()()f x x x -=-=,所以()()-=f x f x 是成立的.同样的,验证函数2()g x x =-,结论依然成立.设计意图:通过观察函数的图象,思考问题,提高学生分析问题、总结问题的能力.从多个具体的实例中抽象概括出共同特征,形成较为抽象的数学语言,让学生体会数学语言的严谨性和简洁性,教师给出严格的定义表述.定义:一般地,设函数()f x 的定义域为I ,如果∀∈x I ,都有-∈x I ,且()()-=f x f x ,那么函数()f x 就叫做偶函数.问题3:从偶函数的定义出发,如何证明函数()=y f x 是偶函数的充要条件是它的图象关于y 轴对称.师生活动:先由学生独立思考完成,再组织全班交流.教师积极地引导学生尝试探索,在充分交流的基础上,教师给出严格的定义表述.充分性:设P x y (,)是函数()f x 图象上任意一点,则()=y f x .因为函数()f x 的图象关于y 轴对称,所以点P 关于y 轴的对称点Q x y -(,)也在函数()f x 图象上,即()=-y f x .所以对任意的x ,都有()()-=f x f x ,所以函数()=y f x 是偶函数.必要性:设P x y (,)是函数()f x 图象上任意一点,则()=y f x .记点P 关于y 轴的对称点为Q ,则Q x y -(,).因为函数()f x 是偶函数,所以()()-=f x f x ,即()-y =f x ,所以点Q 在函数()f x 图象上,所以函数()=y f x 的图象关于y 轴对称.问题4:画出并观察函数()=f x x 和1()g x x =的图象,你能发现这两个函数图象有什么共同特征吗?师生活动:教师利用PPT 展示函数图象,学生观察图象后回答问题.不难发现,这两个函数的图象都关于原点成中心对称图形.那么,如何使用符号语言精准地描述“函数图象关于原点中心对称”这一特征?所以,教师继续追问.追问:对于上述两个函数,1()f 与1()f -,2()f 与2()f -,3()f 与3()f -,()f x 与()-f x 有什么关系?师生活动:先由学生独立思考完成,再组织全班交流.教师积极地引导学生发现,当自变量取一对相反数时,相应的函数值()f x 与()-f x 也是一对相反数.追问:对于定义域内任意的一个x ,都有()()f x f x -=-成立吗?如何验证我们的猜想呢?师生活动:以()f x x =为例,定义域为R .对于定义域R 内任意的一个x ,x R -∈,()f x 与()-f x 均有意义.因为()f x x -=-,所以()()f x f x -=-是成立的.同样的,验证函数1()g x x=,结论依然成立. 设计意图:通过观察函数的图象,思考问题,提高学生分析问题、总结问题的能力.从多个具体的实例中抽象概括出共同特征,形成较为抽象的数学语言,让学生体会数学语言的严谨性和简洁性,教师给出严格的定义表述.定义:一般地,设函数()f x 的定义域为I ,如果∀∈x I ,都有-∈x I ,且()()-=-f x f x ,那么函数()f x 就叫做奇函数.当函数()f x 是偶函数或奇函数时,称()f x 具有奇偶性.问题5:从奇函数的定义出发,如何证明函数()=y f x 是奇函数的充要条件是它的图象关于原点对称.师生活动:先由学生独立思考完成,再组织全班交流.教师积极地引导学生尝试探索,在充分交流的基础上,教师给出严格的定义表述.该问题类比问题2的证明过程.充分性:设P x y (,)是函数()f x 图象上任意一点,则()=y f x .因为函数()f x 的图象关于原点对称,所以点P 关于原点的对称点为Q x y --(,)也在函数()f x 图象上,即()-=-y f x .所以对任意的x ,都有()()-=-f x f x ,所以函数()=y f x 是奇函数.必要性:设P x y (,)是函数()f x 图象上任意一点,则()=y f x .记点P 关于原点的对称点为Q ,则Q x y --(,).因为函数()f x 是奇函数,所以()()-=-f x f x ,即()y =f x --,所以点Q 在函数()f x 图象上,所以函数()=y f x 的图象关于原点对称.(三)概念的辨析问题6:判断下列函数的奇偶性:(1)2f x x =(); (2)2()f x x =,2 0x ∈-(,];(3)3()f x x =,2 2x ∈-(,]; (4)3f x x =(),21 1 2(,]∪[,)x ∈--. 师生活动:先由学生独立思考,教师再组织全班交流.答案:(1)偶函数;(2)非奇非偶函数;(3)非奇非偶函数;(4)奇函数.设计意图:从同一个函数出发,学生更为容易进行探究活动,得出结论.我们不难发现,(1)、(4)中每一个x 、-x 同时属于定义域,所以()-f x 与()f x 都有意义.而(2)、(3)中则无法满足每一个x 、-x 同时属于定义域,所以()-f x 与()f x 无法满足都有意义.师生共同得出结论:函数具有奇偶性的前提是函数的定义域关于原点对称,如不对称,则可直接判断其为非奇非偶函数.追问:奇函数()f x 若在0x =处有定义,0()?f =师生活动:因为()f x 为奇函数,所以00()()f f -=-,200()f =,00()f =.(四)概念的深化例1 判断下列函数的奇偶性:(1)4()f x x =; (2)5()f x x =;(3)1()f x x x =+; (4)21()f x x=; (5)21()()f x x =-; (6)()=xf x x .师生活动:本例由学生独立思考、小组讨论,可让几个学生进行板书,完成后再进行点评完善.解:(1)函数4()f x x =的定义域为R .因为x R ∀∈,都有x R -∈,且44()()()f x x x f x -=-==,所以,函数4()f x x =为偶函数.(2)函数5()f x x =的定义域为R .因为x R ∀∈,都有x R -∈,且55()()()f x x x f x -=-=-=-,所以,函数5()f x x =为奇函数.(3)函数1()f x x x =+的定义域为{}0x x ≠. 因为{}0x x x ∀∈≠,都有{}0x x x -∈≠,且11()()()f x x x f x x x-=-+=-+=--, 所以,函数1()f x x x =+为奇函数. (4)函数21()f x x =的定义域为{}0x x ≠. 因为{}0x x x ∀∈≠,都有{}0x x x -∈≠,且2211()()()f x f x x x -===-, 所以,函数21()f x x=为偶函数. (5)函数21()()f x x =-的定义域为R .因为x R ∀∈,都有x R -∈,且2211()()()()f x x x f x -=--=+≠±,所以,函数21()()f x x =-为非奇非偶函数.另解:函数21()()f x x =-为初中阶段所学的二次函数,显然,其对称轴为1x =. 函数图象如下:故函数21()()f x x =-为非奇非偶函数.(6)由函数解析式可得定义域为{}0x x ≠.因为x R ∀∈,都有x R -∈,且()()xx f x f x x x --==-=--, 所以,函数()f x 为奇函数.另解:()=x f x x 1010,;-,.x x ⎧>=⎨<⎩ 函数图象如下:从图可知,函数图象关于原点对称,故()f x 是奇函数.追问:你能总结例题的解题过程,归纳一下利用定义判断函数奇偶性的基本步骤吗? 设计意图:通过追问,师生共同总结利用定义判断函数奇偶性的基本步骤,教师给出解答示范.第一步,首先确定函数的定义域,并判断其定义域是否关于原点对称;第二步,确定()-f x 与()f x 的关系;第三步,作出相应结论:若()()-=f x f x 或0()()f x f x --=,则()f x 是偶函数;若()()-=-f x f x 或0()()f x f x -+=,则()f x 是奇函数.通过具体的函数,深化学生对判断函数奇偶性的基本步骤的理解,尤其是“首先确定函数的定义域,并判断其定义域是否关于原点对称”;三是通过例题让学生能够了解有些函数是非奇非偶函数.例2 (1)判断函数3f x x x =+()的奇偶性.(2)如右图,是函数3f x x x =+()图象的一部分,你能根据()f x 的奇偶性画出它在y 轴左边的图象吗?(3)一般地,如果知道()=y f x 为偶(奇)函数,那么我们可以怎样简化对它的研究?师生活动:本例由学生独立思考,完成后教师再进行点评完善.(1)奇函数;(2)图象如下设计意图:通过思考,让学生根据奇(偶)函数的图象的对称性画函数的图象,进一步理解函数的奇偶性。

函数奇偶性的教案

函数奇偶性的教案

函数奇偶性的教案【篇一:《函数的奇偶性》教案】1.3.2《函数的奇偶性》一、教材分析1.教材所处的地位和作用“奇偶性”是人教a版第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。

奇偶性是函数的一条重要性质,教材从学生熟悉的及数、三角函数的基础。

因此,本节课起着承上启下的重要作用。

2.学情分析从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。

同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题.3.教学目标基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:【知识与技能】1.能判断一些简单函数的奇偶性。

2.能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。

【过程与方法】经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。

【情感、态度与价值观】通过自主探索,体会数形结合的思想,感受数学的对称美。

从课堂反应看,基本上达到了预期效果。

4、教学重点和难点重点:函数奇偶性的概念和几何意义。

几年的教学实践证明,虽然“函数奇偶性”这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。

他们往往流于表面形式,只根据奇偶性的定义检验f(-x)=-f(x)或f(-x)=f(x)成立即可,而忽视了考虑函数定义域的问题。

因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。

因此,我把“函数的奇偶性概念”设计为本节课的重点。

在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。

难点:奇偶性概念的数学化提炼过程。

由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。

因此我把“奇偶性概念的数学化提炼过程”设计为本节课的难点。

高中数学《函数的奇偶性》教学设计

高中数学《函数的奇偶性》教学设计

函数的奇偶性教学设计一、内容和内容解析1.内容函数的奇偶性2. 内容解析函数的奇偶性是函数的主要性质之一,它刻画了函数图象的对称关系.如果一个函数具有奇偶性,那么意味着有对称关系,只要研究函数定义在x>0的部分就足够了,这样可以简化研究函数以及函数性质过程.与函数的单调性是函数的“局部性质”不同,函数的奇偶性是函数的“整体性质”;函数的单调性是针对所有函数来讨论的,而函数的奇偶性是某些函数的特殊性质.在研究函数奇偶性的过程中,与研究函数单调性的方式和方法是类似的. 函数的奇偶性也是把图象的对称性(几何特性)转化为代数关系,并用严格的符号语言表示,沟通了形与数,实现了从定性到定量的转化,这也体现出数学概念逐渐抽象、严格化的过程,进一步让学生体会对于数学一般概念的学习方法.在初中,学生学习了二次函数图象的对称性,主要还是从函数图象的基本特征入手(几何特性),在高中,我们除了从几何特性入手,更重要的是要将这种几何特性,通过引入数学符号,利用数学语言和符号语言,清晰而准确的表达出来.比如,对于偶函数,将图象关于轴对称的几何特征,描述为?x∈D,f(-x)=f(x),用精确的语言表达. 和研究函数单调性一样,这种从形象直观到定性刻画再到抽象的符号语言刻画的研究过程,以及通过引入数学符号、借助代数语言精确定量地刻画变化规律的方法,体现了数学抽象的一般过程,对于培养学生的数学抽象能力具有重要意义.在教学的过程中,教师不应仅仅体现函数奇偶性的概念和关系,还要注意这种研究数学的过程、方法和思想.基于以上分析,确定教学重点:函数奇偶性的符号语言刻画.二、目标和目标解析1.目标(1)借助函数图象,会用符号语言表达函数的奇偶性,了解函数奇偶性的概念和几何意义;(2)能判断函数是否具有奇偶性,并会用定义证明函数的奇偶性;(3)能利用函数的奇偶性解决一些简单的问题;(4)进一步在抽象函数奇偶性的过程中感悟数学概念的抽象过程及符号表示的作用.2.目标解析达成上述目标的标志是:(1)能够用“?x∈I”(其中I是函数f(x)的定义域)表达出定义域内的每一个点均满足要求. 能够根据函数的图象的对称性,将图象关系利用严格的数学语言进行表达,从而总结出函数奇偶性的定义.知道函数的奇偶性是反映函数图象的特殊的对称性;(2)能利用定义严格的判断一个函数是否具有奇偶性;(3)能通过函数图象的对称性以及奇偶性的定义,解决一些具体的数学问题;(4)在研究过单调性的基础上,进一步体会经历从图象直观到文字语言描述,再到符号语言刻画的过程,进一步感悟量词的运用,感受数学符号语言的作用.三、教学问题诊断分析学生在初中阶段已经学习了一次函数、正比例函数、反比例函数和二次函数,这些函数的图象都具有对称性.研究奇偶性只研究特殊的对称关系,即关于轴和关于原点的对称关系. 对于具体的函数,学生从图象中直接观察并不困难,困难在于:一是如何将具体函数一般化,得到一般函数的规律;二是如何用符号语言“?x∈I,都有f(-x)=f(x)”以及“?x∈I,都有f(-x)=f(x)”来进行表达.在上一单元函数的单调性中已经进行过,因此这里学生不会过于陌生,但是如何用量词准确的表达这个关系仍然是一个难点.教学中,要借助一定的教学媒体,如用信息技术展示函数图象的对称关系,展示将整体的对称关系用任意点的形式表达,让学生通过数学直观上升到数学抽象,用语言进行描述,进而用符号语言准确的表达.根据以上分析,确定教学难点是:符号语言表达函数奇偶性的定义;对“任意”“都有”等涉及无限取值的语言的理解和使用.四、教学支持条件分析为使学生更好地理解奇偶性的形式化定义,降低归纳定义过程中的难度,可利用计算工具,采用动态方式展现函数图象对称的特点,并体会利用点的任意性体现整体函数图象所具有的性质.五、教学过程设计(一)引入引导语:在上一单元中,我们用符号语言精确的描述了函数图象在定义域的某个区间上“上升”(或“下降”)的性质,这一单元中,我们也将通过函数的图象对称性的特点,利用严格的数学语言和符号语言表达这一性质.问题1:请看下面的函数图象,从中你发现了函数图象的哪些特征?你觉得它们反映了函数的哪些方面的性质?师生活动:教师利用信息技术展示例子,学生观察后回答问题.学生有可能回答到单调的关系(因为单调性是刚刚学习完的内容),这时,教师可以展示更多的具有关于y轴对称,而单调性不同的函数图象.教师指出:我们这一节是就要研究图象具有一定对称特性的函数的规律.设计意图:通过实例,使学生感受到这样一类关于轴对称的函数的关系,并类比函数单调性研究的思路,来进一步研究函数的奇偶性.(二)奇偶性的符号化定义1. 从具体实例分析问题2:我们来继续研究这两个我们熟悉的函数f(x)=x2和g(x)=2-|x| 从图象上,我们已经看出它们的图象是关于轴对称的.那么,你能用符号化的语言来刻画这个对称关系吗?师生活动:学生自主活动,然后进行交流.设计意图:让学生体会将几何上的直观用严格的数学语言和符号语言表述的过程.学生可能会遇到困难,这个没有关系,让学生带着疑惑继续进行下面的思考和研究,这样他获得的感受会更深.追问1:你能不能仿照用点的坐标之间的关系刻画函数的单调性,通过点与点之间的坐标的联系找到描述整个图象对称的方式?让我们先从一些具体点的关系入手.先填写下表:师生活动:学生不难发现:当的取值互为相反数的时候,其函数值总是相等的.追问2:这个规律是一般的吗?师生活动:学生不难发现是一般的.追问3:这种所有的x都满足的关系,我们可以通过什么方式方便的表达出来?师生活动:引导学生联系全称量词的表述形式.追问4:大家尝试通过量词的表述,把这个函数的对称关系表达出来,同学之间可以互相讨论一下.师生活动:学生在自己思考的前提下进行讨论,让学生表达得到的关系,如果出现问题,及时引导学生修正,表达出:?x∈I,总有f(-x)=f(x).设计意图:这是本节课的重点,进一步让学生体会从具体到抽象的过程.这里还是在一个具体的函数下,将几何上的直观抽象为符号表达,这也是培养数学表达的能力.2. 偶函数的定义问题3:你能将上面由具体函数得到的关系,推广到一般的图象关于轴对称的函数上吗?师生活动:学生不难得到?x,f(-x)=f(x),但是教师要引导学生注意函数的定义域.逐步完善.并总结出偶函数的定义:“一般地,设函数f(x)的定义域为I,如果?x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数.”3.偶函数定义的巩固与辨析问题4:你能再举出几个偶函数的例子吗?师生活动:由学生举例,教师利用信息技术(如Geogebra或者几何画板)绘制学生举到的函数的图象,并再一次用定义将图象的对称关系加以描述.设计意图:让学生巩固偶函数的概念,并进一步体会其图象特点.问题5:一个函数是偶函数,那么它的定义域有什么特点吗?师生活动:学生思考后,回答.设计意图:根据定义,让学生体会偶函数的定义域关于原点对称.让学生体会,在定义中“?x∈I,都有-x∈I,且f(-x)=f(x)”就能够体现出定义域关于原点对称.4. 奇函数的定义和巩固辨析(ii)考虑图象上的对称关系如何通过坐标的方式体现出来.(iii)这个规律是一般的吗?(iv)大家尝试通过量词的表述,把这个函数的对称关系表达出来;(v)类比偶函数的定义,给出奇函数的定义;(vi)大家再尝试的写出一些奇函数(可以利用信息技术,画出自己写出的函数的图象),同学之间进行交流;(vii)如果一个函数是奇函数,那么它的定义域有什么特点?师生活动:学生自主活动,然后进行交流,汇报.设计意图:在已经研究了偶函数的基础上,让学生仿照偶函数的研究,自主的研究奇函数的概念和性质. 让学生在学到知识的基础上,进一步的体会研究函数性质的一般方法.(三)函数奇偶性的应用例6 判断下列函数的奇偶性:师生活动:先让学生独立思考,讨论研究思路,然后给出严格的表述(让学生板书),教师再引导学生进行对给出的表述进行点评.这里,如果技术条件允许,可以让学生利用信息技术进行探究,但是在探究的基础上要引导学生给出严格的符号化的推导.设计意图:目的是让学生体会如何判断函数的奇偶性. 学生可以通过函数的图象进行判读,但是要严格的说明其奇偶性,还是需要利用定义进行证明.思考:(四)课堂小结问题7:回答下列问题:(1)偶函数是如何定义的?它的图象有什么特点,请举几个偶函数的例子.(2)奇函数是如何定义的?它的图象有什么特点,请举几个奇函数的例子.(3)结合本节课的学习过程,你对研究函数时,从图象特征到数学表达的感受谈谈体会.师生活动:学生独立思考的基础上回答,教师根据实际的情况进行归纳整理.设计意图:(1)和(2)主要是让学生掌握奇偶性的概念、基本性质、图象特征,(3)主要是让学生进一步总结和体会通过图象直观及文字语言刻画得到函数性质,再用符号语言进行表述,进行严谨是数学表达的过程.作业:P87, 习题3.2,第5题;综合运用,第11题.。

3.2.2函数的奇偶性教学设计

3.2.2函数的奇偶性教学设计

3.2.2奇偶性(人教A版普通高中教科书数学必修第一册第三章)一、教学目标1.升华学生对于轴对称图形和中心对称图形的认识,从简单的感性体验上升到数形结合的精确认知。

能够根据具体的数学问题,用归纳和类比的方式,抽象概括出函数的奇偶性的概念,并能够用数学符号语言表达,提升学生的数学抽象素养。

2.能够根据函数奇偶性的概念,判断并证明简单函数的奇偶性,并能够用数学语言表达,提升学生的逻辑推理素养。

3.能够通过具体的函数图像,用归纳的方式,抽象概括出奇函数和偶函数的图像特征,理解图象特征和解析式特征的对应关系,体会数形结合思想,提高观察、归纳能力,提升直观想象素养。

4.能够应用函数的奇偶性解决相关问题。

5.通过演示函数图象的对称性,让学生享受数学的美感,通过从函数图象的对称性抽象出函数奇偶性的定义的过程体验数学研究的严谨性。

二、教学重难点重点函数奇偶性的概念的形成和函数奇偶性的判断与证明.难点函数奇偶性的概念的探究与理解.三、教学过程1.函数奇偶性的概念的形成1.1创设情境,引发思考【实际情境】列举生活中的对称现象。

问题1:同学们能否列举出一些图象具有轴对称性或中心对称性的函数?能否画出他们的图象?【预设的答案】过原点的一次函数、二次函数、反比例函数。

【设计意图】学生在前面学习了函数的单调性,对于研究函数性质的方法已经有了一定的了解。

尽管学生尚不知道函数的奇偶性,但是他们在初中已经学习过轴对称图形和中心对称图形。

联系生活实际,从学生熟悉的图形对称性和坐标点的对称性入手,自然地关注到函数图象的对称性问题。

【数学情境】问题2:画出并观察函数f(x)=x2和函数g(x)=2−|x|的图象,回答下列问题:1.两个函数图象有什么共同特征?2.两个函数图象上有没有横纵坐标具有特殊关系的“对应点”?【预设的答案】两个函数图象都关于y轴对称。

两个函数图象上有很多关于y轴对称的点。

【设计意图】让学生自己画出一些特殊的偶函数的图象,直观地获得偶函数的认识,锻炼学生的动手能力,激发起学生的探索欲。

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性》第一章:引言1.1 课程目标:理解函数奇偶性的概念。

学会判断函数的奇偶性。

1.2 教学内容:引入函数的概念。

介绍奇函数和偶函数的定义。

举例说明奇函数和偶函数的性质。

1.3 教学方法:使用多媒体课件进行讲解。

通过具体例子引导学生理解奇偶性的概念。

进行小组讨论,让学生互相交流思路。

1.4 教学活动:引入函数的概念,引导学生回顾已学的函数知识。

讲解奇函数和偶函数的定义,举例说明其性质。

布置练习题,让学生巩固奇偶性的判断方法。

第二章:奇函数的性质2.1 课程目标:理解奇函数的性质。

学会运用奇函数的性质解决问题。

2.2 教学内容:回顾奇函数的定义。

介绍奇函数的性质,如奇函数的图像关于原点对称等。

举例说明奇函数性质的应用。

2.3 教学方法:使用多媒体课件进行讲解。

通过具体例子引导学生理解奇函数的性质。

进行小组讨论,让学生互相交流思路。

2.4 教学活动:回顾奇函数的定义,引导学生复习相关知识。

讲解奇函数的性质,举例说明其应用。

布置练习题,让学生巩固奇函数性质的理解。

第三章:偶函数的性质3.1 课程目标:理解偶函数的性质。

学会运用偶函数的性质解决问题。

3.2 教学内容:回顾偶函数的定义。

介绍偶函数的性质,如偶函数的图像关于y轴对称等。

举例说明偶函数性质的应用。

3.3 教学方法:使用多媒体课件进行讲解。

通过具体例子引导学生理解偶函数的性质。

进行小组讨论,让学生互相交流思路。

3.4 教学活动:回顾偶函数的定义,引导学生复习相关知识。

讲解偶函数的性质,举例说明其应用。

布置练习题,让学生巩固偶函数性质的理解。

第四章:奇偶性的判断4.1 课程目标:学会判断函数的奇偶性。

理解奇偶性在实际问题中的应用。

4.2 教学内容:介绍判断函数奇偶性的方法。

举例说明如何判断函数的奇偶性。

探讨奇偶性在实际问题中的应用。

4.3 教学方法:使用多媒体课件进行讲解。

通过具体例子引导学生理解判断函数奇偶性的方法。

进行小组讨论,让学生互相交流思路。

《函数奇偶性》优秀的教学设计

《函数奇偶性》优秀的教学设计

《函数奇偶性》优秀的教学设计《函数奇偶性》优秀的教学设计「篇一」教学分析本节讨论函数的奇偶性是描述函数整体性质的、教材沿用了处理函数单调性的方法,即先给出几个特殊函数的图象,让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意”值都成立,最后在这个基础上建立了奇(偶)函数的概念、因此教学时,充分利用信息技术创设教学情境,会使数与形的结合更加自然、值得注意的问题:对于奇函数,教材在给出的表格中留出大部分空格,旨在让学生自己动手计算填写数据,仿照偶函数概念建立的过程,独立地去经历发现、猜想与证明的全过程,从而建立奇函数的概念、教学时,可以通过具体例子引导学生认识,并不是所有的函数都具有奇偶性,如函数y=x与y=2x—1既不是奇函数也不是偶函数,可以通过图象看出也可以用定义去说明、三维目标1、理解函数的奇偶性及其几何意义,培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力、2、学会运用函数图象理解和研究函数的性质,掌握判断函数的奇偶性的方法,渗透数形结合的数学思想、重点难点教学重点:函数的奇偶性及其几何意义、教学难点:判断函数的奇偶性的方法与格式、课时安排:1课时教学过程导入新课思路1、同学们,我们生活在美的世界中,有过许多对美的感受,请大家想一下有哪些美呢?(学生回答可能有和谐美、自然美、对称美)今天,我们就来讨论对称美,请大家想一下哪些事物给过你对称美的感觉呢?(学生举例,再在屏幕上给出一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)生活中的美引入我们的数学领域中,它又是怎样的情况呢?下面,我们以麦当劳的标志为例,给它适当地建立平面直角坐标系,那么大家发现了什么特点呢?(学生发现:图象关于y轴对称)数学中对称的形式也很多,这节课我们就同学们谈到的与y轴对称的函数展开研究、思路2、结合轴对称与中心对称图形的定义,请同学们观察图形,说出函数y=x2和y=x3的图象各有怎样的对称性?引出课题:函数的奇偶性、推进新课新知探究提出问题(1)如图1所示,观察下列函数的图象,总结各函数之间的共性、图1(2)如何利用函数的解析式描述函数的、图象关于y轴对称呢?填写表1和表2,你发现这两个函数的解析式具有什么共同特征?表1x—3—2—10123f(x)=x2表2x—3—2—10123f(x)=|x|(3)请给出偶函数的定义、(4)偶函数的图象有什么特征?(5)函数f(x)=x2,x∈[—1,2]是偶函数吗?(6)偶函数的定义域有什么特征?(7)观察函数f(x)=x和f(x)=1x的图象,类比偶函数的推导过程,给出奇函数的定义和性质?活动:教师从以下几点引导学生:(1)观察图象的对称性、(2)学生给出这两个函数的解析式具有什么共同特征后,教师指出:这样的函数称为偶函数、(3)利用函数的解析式来描述、(4)偶函数的性质:图象关于y轴对称、(5)函数f(x)=x2,x∈[—1,2]的图象关于y轴不对称;对定义域[—1,2]内x=2,f(—2)不存在,即其函数的定义域中任意一个x的相反数—x不一定也在定义域内,即f(—x)=f(x)不恒成立、(6)偶函数的定义域中任意一个x的相反数—x一定也在定义域内,此时称函数的定义域关于原点对称、(7)先判断它们的图象的共同特征是关于原点对称,再列表格观察自变量互为相反数时,函数值的变化情况,进而抽象出奇函数的概念,再讨论奇函数的性质、给出偶函数和奇函数的定义后,要指明:①函数是奇函数或是偶函数称为函数的`奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义,可知函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称);③具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称,奇函数的图象关于原点对称;④可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法;⑤函数的奇偶性是函数在定义域上的性质,是“整体”性质,而函数的单调性是函数在定义域的子集上的性质,是“局部”性质、讨论结果:(1)这两个函数之间的图象都关于y轴对称。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:函数的奇偶性的教学设计(一)[任务分析]“函数的奇偶性”是函数的一个重要性质,常伴随着函数的其他性质出现。

函数奇偶性揭示的是函数自变量与函数值之间的一种特殊的数量规律,直观反映的是函数图象的对称性。

利用数形结合的数学思想来研究此类函数的问题常为我们展示一个新的思考视角。

函数的奇偶性也是今后研究三角函数、二次曲线等知识的重要铺垫,而且灵活地应用函数的奇偶性常使复杂的不等式问题、方程问题、作图问题等变得简单明了。

[方法简述]本节课有着丰富的内涵,是继函数单调性以后的又一个重要性质。

教法上本着“以教师为主导,学生为主体,问题解决为主线,能力发展为目标”的指导思想,结合我校学生实际,主要采用“问题导引,分析、比较,自主探究,讲练结合”的教学方法。

通过复习提问呈上其下的引入,通过观察图像,从具体到抽象的引入,通过与单调性研究方法的的类比的引入,使学生对函数的奇偶性先有了一定的感性认识;通过设置一条问题链,采用多角度的,启发式的,学生积极参与的,有思想交锋的方式,引导学生在自主学习与合作交流中经历知识的形成过程;通过层层深入的例题与习题的配置,引导学生积极思考,灵活掌握知识,使学生从“懂”到“会”到“悟”,提高思维品质,力求把传授知识与培养能力融为一体。

[目标定位]数学教学不仅仅是知识的教学、技能的训练,更应使学生的能力得到提高。

本节课应使学生掌握函数奇偶性的定义,会用定义判断简单函数的奇偶性。

在学生经历函数奇偶性的探究和应用过程中,体会数形结合、分类讨论等数学思想方法,进一步培养学生归纳、类比、迁移能力,增强学生的数学应用意识和创新意识。

注重培养学生积极参与、大胆探索的精神以及合作意识;通过让学生体验成功,培养学生学习数学的信心。

在教学中,重点应为理解函数奇偶性概念的本质特征;掌握函数奇偶性的判别方法。

对高一学生来说,由于初中代数主要是具体运算,因而代数推理能力较弱,许多学生甚至弄不清代数形式证明的意义和必要性。

因此教学难点是有关偶函数问题的证明,与培养驾驭知识、解决问题的能力。

突出重点、突破难点的关键是设计有一定思维含量的问题与实例,引导学生思考、分析讨论,加深学生对函数奇偶性的认识与应用。

结合直观的图形,充分发挥数形结合思想的功能,使学生的感性认识提高到理性认识。

[课堂设计]一、复习旧知、引入定义基于学生前面已经学习过函数的单调性,先从复习函数单调性入手。

问题1:回顾上一节课如何定义增函数、减函数?试举例说明。

由学生回答,学生应该容易得出定义,单调增、减函数(定义略)并能举出一些常见的单调函数,如一次函数,三次函数。

设计意图:从学生已学过的函数单调性复习引入,因为函数的单调性的定义是学生第一次接触用函数的对应关系的性质来刻画函数的性质,他不同于初中是通过图像看性质。

学生在复习中体验用代数手段刻画函数性质的方法,为后面用函数对应关系来刻画函数的奇偶性做好准备。

为突破难点奠定基础。

问题2:判断下列两函数在其定义域内单调性如何?反比例函数x x f 1)(=二次函数1)(2+=x x f设计意图:让学生注意函数的单调性要分区间讨论。

对于同一函数而言,不同的区间上可能会有不同的单调性,为后面研究函数的奇偶性要注意自变量的范围埋下伏笔。

图示学生举出的例子和以上两个例题,(1)x x f 2)(= (2)3)(x x f = (3)12)(+-=x x f(4)xx f 1)(=(5)1)(2+=x x f 引导学生观察图像。

思考:除了显示了函数的单调性,是否还有其他特征?引导学生发现初中就学过的优美的对称性——中心对称、轴对称。

问题3:能否用函数的对应关系来刻划其对称性?让学生先观察、思考、交流讨论,教师再引导。

启发:首先注意到自变量的对称性可以用x 与-x 来刻画,相应的考察f(x)与f(-x)的关系。

(请5个同学到黑板上板演计算f(x)与f(-x)的,并判断相应函数值的特点。

板书课题,引出定义)。

函数奇偶性定义:(1) 如果对于函数定义域内的任意一个x ,都有f(-x)=-f(x),那么函数f(x)叫奇函数。

(2) 如果对于函数定义域内的任意一个x ,都有f(-x)=f(x),那么函数f(x)叫偶函数。

设计意图:引导学生通过函数值的特征来描述函数对应关系的性质,实现由形到数的转化,同时为归纳引出定义以及判断函数奇偶性做好准备。

二、定义理解、揭示本质问题4:定义中那一句话对刻划函数的性质更实质?学生阅读定义,回答问题。

归纳:验证恒等式f(-x)=-f(x)或f(-x)=f(x)的重要性。

让学生根据定义判别以上5个函数的奇偶性,教师作出点评。

设计意图:让学生深刻理解定义,解释函数奇偶性的本质。

把探求新知的权利交给学生,为学生提供宽松、广阔的思维空间,让学生主动参与到问题的发现、讨论和解决等活动上来.而且在探究交流过程中学生对函数奇偶性的认识逐步由感性上升到理性。

问题5:判断函数122)(2++=x x x x f 的单调性如何? 引发学生思考讨论。

学生可能会有两种结论,一是奇函数,二不是奇函数,让学生辨别,引起学生思维的交锋,教师给与宏观的指导,看准火候,及时点拨。

引导学生注意定义中定义域的重要性,得出推论。

推论:奇偶函数的的定义域在轴上对应的点集关于原点对称。

设计意图:强调对定义域的考虑,既帮助学生准确理解定义,又对函数奇偶性的概念进行反面理解,同时使学生进一步熟悉判断奇偶性的方法,为引出推论做准备。

问题6:有没有既是奇函数又是偶函数的函数?引导学生共同探究,得到f(x)=0,且定义域关于原点对称。

共同归纳得到:函数按照奇偶性可分为四类:A.是奇函数而不是偶函数B.是偶函数而不是奇函数C.既是奇函数而又是偶函数D.既不是奇函数又不是偶函数设计意图:数学思维中最积极的的成分是问题,不断的提出问题,不断的解决问题,提出具有探究意义的问题,培养学生的探究意识,进一步完善函数奇偶性的概念。

三、手脑并用、概念应用问题7:能否归纳函数奇偶性的判别方法及步骤:(1) 求函数的定义域;(2) 计算f(-x)(3) 判断f(-x)与-f(x)或(x)是否相等;(4) 下结论,指明是四类中的哪一类。

在刚才归纳的基础上,学生练习例1:判断下列函数的奇偶性 (1)313)(-+=x x x f (2)2432)(x x x f += (3)12)(+=x x f (4)11)(22-+-=x x x f(5)a x f x f ==)()( 教师版书第一小题,学生口答第二小题,(3)、(4)(5)请三位学生板演。

教师规范、订正版演。

设计意图:在归纳中掌握方法,巩固新知及时反馈,为灵活应用方法打下基础.四、沟通联系、深化提高例2 已知函数)(x f 是奇函数,而且在),0(+∞上是增函数,)(x f 在)0,(-∞上是增函数还是减函数?并给出证明。

引导学生分析条件,探索思路,沟通已知与未知的联系,实现单调性的转化。

设计意图:沟通函数奇偶性与单调性的联系,揭示函数奇偶性对函数性质研究的作用。

使学生进一步加深对知识的掌握,并体验数学在解决问题中的作用。

五、归纳小结、练习反馈引导学生归纳小结(1)函数奇偶性的定义(2)判别函数奇偶性的方法(3)函数奇偶性的初步应用设计意图:学生自己从所学到的数学知识、数学思想方法两方面进行总结,提高学生的概括、归纳能力.同时,学生在回顾、总结、反思的过程中,将所学知识条理化、系统化,使自己的认知结构更趋合理.注重数学思想方法的提炼,可使学生逐渐把经验内化为能力,从而走向一个新的制高点。

反馈练习:课本P口答练习在整个练习过程中,教师做好及时小结,加强对学生的个别指导,设计意图:巩固所学知识,进一步促进认知结构的内化,并且可使学生对自己的学习进行自我评价.也让教师及时了解学生的掌握情况,以便进一步调整自己的教学.六、布置作业、引导复习1.书面作业:练习2,练习 1、2、3.2.研究与思考:(1) 若f(x)为奇函数,且x=0时与意义,则f(0)=?(2)判别函数的奇偶性(3) 在公共定义域上,函数的和、差、积、商的起偶性如何?第一层次要求所有学生都要完成,第二层次则只要求学有余力的同学完成.研究思考的(1)(2)(3)不仅开阔了学生的思路,而且提高学生的探究热情。

. 设计意图:分层次作业既巩固所学,又为学有余力的同学留出自由发展的空间,培养学生的创新意识和探索精神。

同时为下节课内容作好准备,将探究的空间由课堂延伸到课外.[教有所思]这节课本着“课程标准为依据,教师为主导,学生为主体”的原则进行设计与教学,高中学生的思维水平已发展到辩证思维的形成阶段,从能力上讲,他们能通过观察、比较、归纳等方式来认识新知识。

结合学生的特点及本节课的内容,在教学中采用了“问题导引,分析比较、自主探究、讲练结合”式的教学方法。

通过问题激发学生求知欲,从学生已知问题已知的函数图形入手,使学生对函数的奇偶性有了一定的感性认识,并且形成各自对函数奇偶性概念的了解,再引导学生抓住实质,抛开个性的东西,抽取共性的内容,在相互交流、启发、补充、争论中,概括出定义,经历了知识的形成过程。

使学生主动参与数学实践活动,在教师的有效指导下解决问题。

应当说在知识的习得、能力的培养二个方面有收获,基本上达到了预期的教学目的。

在概念-方法-应用当中,方法是本节课的重点。

通过对问题3至问题6的分析、反思、深化,使学生的思维步步深入,在自我发现、自我解决问题的过程中,深刻理解了函数奇偶性的定义的实质。

从本堂课的教学实践中我还深刻体会到。

数学教学不只是关心学生“知道了什么”,而应是更多地关注学生“怎么样知道的”。

因此,在教学中注意引导学生主动参与,自主探究问题,并加强合作交流。

相关文档
最新文档