中考专题――切线长定理及弦切角定理

合集下载

郭氏数学-圆的切线长定理、弦切角定理、切割线定理、相交弦定理

郭氏数学-圆的切线长定理、弦切角定理、切割线定理、相交弦定理

郭氏数学-圆的切线长定理、弦切角定理、切割线定理、相交弦定理切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。

2.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。

直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。

5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。

6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。

7.与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD.连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥A B于P.PC2=PA·PB.用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理圆幂定理⊙O中,割线PB交⊙O于A,CD为弦P'C·P'D=r2-OP'2PA·PB=OP2-r2r为⊙O的半径延长P'O交⊙O于M,延长OP'交⊙O于N,用相交弦定理证;过P作切线用切割线定理勾股定理证8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O 于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。

(完整版)圆切线长定理、弦切角定理、切割线定理、相交弦定理

(完整版)圆切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段[学习目标]1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。

2.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。

直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。

5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。

6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。

7.与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD. 连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB. 用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理圆幂定理⊙O中,割线PB交⊙O于A,CD为弦P'C·P'D=r2-OP'2PA·PB=OP2-r2r为⊙O的半径延长P'O交⊙O于M,延长OP'交⊙O于N,用相交弦定理证;过P作切线用切割线定理勾股定理证8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数| |(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。

切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段[学习目标]1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。

(PA长)2.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。

直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。

5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。

6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。

7.与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD. 连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB.(特殊情况)用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理(记忆的方法方法)圆幂定理⊙O中,割线PB交⊙O于A,CD为弦P'C·P'D=r2-OP'2PA·PB=OP2-r2r为⊙O的半径延长P'O交⊙O于M,延长OP'交⊙O于N,用相交弦定理证;过P作切线用切割线定理勾股定理证8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。

切线长定理、弦切角定理、切割线定理、相交弦定理37508(最新整理)

切线长定理、弦切角定理、切割线定理、相交弦定理37508(最新整理)

图3 解:∵PC 是⊙O 的切线,PAB 是⊙O 的割线,且 PA:PB=1:4 ∴PB=4PA 又∵PC=12cm
由切割线定理,得



∴ ∴PB=4×6=24(cm) ∴AB=24-6=18(cm) 设圆心 O 到 AB 距离为 d cm, 由勾股定理,得
故应填 。
例5.如图4,AB 为⊙O 的直径,过 B 点作⊙O 的切线 BC,OC 交⊙O 于点 E,AE 的延长线交 BC 于点 D,(1)
图4
【试题答案】
文档
实用标准文案
一、选择题 1. A 2. C
3. A
4. B
5. B
6. A
二、填空题 7. 90
8. 1
9. 30
10.
三、解答题: 11.由切线长定理得△BDE 周长为4,由△BDE∽△BAC,得 DE=1cm 12.证明:连结 AC,则 AC⊥CB
∵CD⊥AB,∴△ACB∽△CDB,∴∠A=∠1 ∵PC 为⊙O 的切线,∴∠A=∠2,又∠1=∠2, ∴BC 平分∠DCP 13.设 BM=MN=NC=xcm
7.与圆有关的比例线段
定理
图形
已知
结论
证法
相交弦定
⊙O 中,AB、CD 为弦,交 PA·PB=PC·PD. 连结 AC、BD,证:△APC∽

于 P.
△DPB.
相交弦定 理的推论
文档
⊙O 中,AB 为直径,CD⊥AB PC2=PA·PB. 于 P.
(特殊情况)
用相交弦定理.
实用标准文案
切割线定 理
∴ ∴∠C=∠EDC ∴ED=EC ∴AE=EC ∴OE 是△ABC 的中位线 ∴BC=2OE

切线长,弦切角,相交弦

切线长,弦切角,相交弦

切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段1.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

2弦切角定理及其推论圆周角∠CAB,让射线AC绕点A旋转,产生无数个圆周角,当AC绕点A旋转至与圆相切时,停止旋转,得∠BAE问:这时∠BAE还是圆周角吗?为什么?像∠BAE这样的角叫做弦切角,请你仿照圆周角的定义,给出弦切角的定义:_____________________________________________________________________________________________问题:以下各图中的角哪个是弦切角?思考:弦切角相对于圆心的位置,分为哪几类?请在右上方画出图。

问题:已知如图,AB是⊙O的一条切线,A为切点,AC是⊙O的一条弦,则∠ADC与∠BAC有什么关系?请给出证明。

(提示:类比圆周角定理的证明方法)弦切角定理:________________________________________________________问题:若两个弦切角所夹的弧相等,,那么这两个弦切角相等吗?为什么?弦切角定理的推论:___________________________________________________例如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F. 求证:EF∥BC.一、选择题(共17小题)1、如图,BD为圆O的直径,直线ED为圆O的切线,A、C两点在圆上,AC平分∠BAD且交BD于F点.若∠ADE=19°,则∠AFB的度数为何?()A、97°B、104°C、116°D、142°2、如图为△ABC和一圆的重迭情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70°,∠B=60°,则的度数为何()A、50°B、60°C、100°D、120°3、如图,CD是⊙O的切线,T为切点,A是上的一点,若∠TAB=100°,则∠BTD的度数为()A、20°B、40°C、60°D、80°4、如图,四边形ABCD内接于⊙O,AB=BC.AT是⊙O的切线,∠BAT=55°,则∠D等于()A、110°B、115°C、120°D、125°5、如图,直线AD与△ABC的外接圆相切于点A,若∠B=60°,则∠CAD等于()A、30°B、60°C、90°D、120°6、如图,△ABC是⊙O的内接三角形,AD是⊙O的切线,点A为切点,∠ACB=60°,则∠DAB的度数是()A、30°B、45°C、60°D、120°7、已知:如图,E是相交两圆⊙M和⊙N的一个交点,且ME⊥NE,AB为外公切线,切点分别为A,B连接AE,BE,则∠AEB的度数为()8、如图,直线AB切⊙O于点A,割线BDC交⊙O于点D、C.若∠C=30°,∠B=20°,则∠ADC=()A、70°B、50°C、30°D、20°9、如图,PA、PB、DE分别与⊙O相切,若∠P=40°,则∠DOE等于()度.A、40B、50C、70D、8010、如图,P为半⊙O直径BA延长线上一点,PC切半⊙O于C,且PA:PC=2:3,则sin∠ACP的值为_______11、如图AB是⊙O的直径,DE为⊙O的切线,切点为B,点C在⊙O上,若∠CBE=40°,则∠A的度数为( )A、30°B、40°C、50°D、60°12、如图,△ABC内接于⊙O,BD切⊙O于点B,AB=AC,若∠CBD=40°,则∠ABC等于()A、40°B、50°C、60°D、70°13、如图,AB、CD是⊙O的两条平行弦,BE∥AC交CD于E,过A点的切线交DC延长线于P,若AC=则PC•CE的值是()A、18B、6C、D、14、如图,AB为⊙O的直径,C、D为⊙O上的点,直线MN切⊙O于C点,图中与∠BCN互余的角有()A、1个B、2个C、3个D、4个则∠ACB等于()A、70°B、55°C、70°或110°D、55°或125°16、如图,AB是⊙O的直径,DB、DE分别切⊙O于点B、C,若∠ACE=25°,则∠D的度数是()A、50°B、55°C、60°D、65°17、如图,在⊙O中,AB是弦,AC是⊙O切线,过B点作BD⊥AC于D,BD交⊙O于E点,若AE平分∠BAD,则∠ABD的度数是()A、30°B、45°C、50°D、60°二、填空题(共13小题)18、如图,已知AD为⊙O的切线,⊙O的直径是AB=2,弦AC=1,则∠CAD=_________度.19、已知⊙O 中,的度数为70°,过点A的直线AC与⊙O相切,则弦切角∠BAC的度数为_________.20、如图,AB切⊙O于C,AO交⊙O于D,AO的延长线交⊙O于E,若∠A=α,则∠ECB=_________(用含α的式子表示).21、如图,△ABC内接于圆⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,则∠AOB=___度.22、如图,割线PAB过圆心O,PD切⊙O于D,C 是上一点,∠PDA=20°,则∠C的度数是______度.23、如图,PA、PB是⊙O的两条切线,A、B为切点,则∠ABO ﹣∠ABP=___.24、如图,四边形ABED内接于⊙O,E是AD延长线上的一点,若∠AOC=122°,则∠B=_________度,25、如图,已知AB是⊙O的弦,AC切⊙O于点A,∠BAC=60°,则∠ADB的度数为_________度.26、如图,AB为⊙O直径,CE切⊙O于点C,CD⊥AB,D为垂足,AB=12cm,∠B=30°,则∠ECB=_________度;CD=_________cm.27、如图,已知AB是圆O的弦,AC是圆O的切线,∠BAC的平分线交圆O于D,连BD并延长交AC于点C,若∠DAC=40°,则∠B=_________度,∠ADC=_________度.28、如图,PA切⊙O于A点,C是弧AB上任意一点,∠PAB=58°,则∠C的度数是_________度.29、如图,EF切△ABC的外接圆于C,∠BAC=80°,那么∠BCE=_________度.30、已知:如图,在⊙O中,AB是直径,四边形ABCD内接于⊙O,∠BCD=130°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为_________.3.与圆有关的比例线段 定理 图形 已知 结论 证法相交弦 定理⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD . 连结AC 、BD ,证:△APC∽△DPB .相交弦定理的推论⊙O 中,AB 为直径,CD⊥AB 于P.PC 2=PA·PB . 用相交弦定理.切割线 定理⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于APT 2=PA·PB 连结TA 、TB ,证:△PTB∽△PAT切割线 定理推论PB 、PD 为⊙O 的两条割线,交⊙O 于A 、CPA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理圆幂定理⊙O 中,割线PB 交⊙O 于A ,CD 为弦 P'C·P'D=r 2-OP'2PA·PB=OP 2-r 2r 为⊙O 的半径延长P'O 交⊙O 于M ,延长OP'交⊙O 于N ,用相交弦定理证;过P 作切线用切割线定理勾股定理证8.圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。

切线长及弦切角

切线长及弦切角

切线长定理与弦切角定理一、切线长定理 1、切线长:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长 2、切线长定理:如图:因为PA 、PB 是O ⊙的切线,A 、B 是切点,所以,PA=PB二、弦切角定理及其推论1、弦切角:________________________________________________________________。

问题: 以下各图中的角哪个是弦切角?2、弦切角定理:________________________________________________________3、弦切角定理的推论:___________________________________________________ 【运用举例】例1. 如图,PA 、PB 是⊙O 的切线,切点分别是A 、B ,直线EF 也是⊙O 的切线,切点为Q ,交PA 、PB 为E 、F 点,已知12PA cm ,求△PEF 的周长.例2.如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC 分别相交于E,F. 求证:EF∥BC.拓展提升已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,A和B是切点,BC是直径.求证:AC∥OP.课后训练学案1.在△ABC中,AB=5cm BC=7cm AC=8cm,⊙O与BC、AC、AB分别相切于D、E 、F,则AF=_____, BD=_______ 、CF=________2.已知PA、PB切⊙O于A、B,∠APB=60º,PA=4,则⊙O的半径为。

3.已知⊙O的半径为3,点P到圆心O的距离为23,则过点P的两条切线的夹角为度,切线长为。

4.BC是⊙O的弦,P是BC延长线上一点,PA与⊙O相切于点A,∠ABC=25°,∠ACB=80,则∠P的度数为_______.★5.已知⊙O1和⊙O2外切于点B,PB是两圆公切线,PA、PB分别与⊙O1、⊙O2相切于A、C,如果AP=2X-3,PC=X+3,则x= 。

九年级数学切线长定理、弦切角、和圆有关的比例线段人教版知识精讲

九年级数学切线长定理、弦切角、和圆有关的比例线段人教版知识精讲

九年级数学切线长定理、弦切角、和圆有关的比例线段人教版【本讲教育信息】一. 教学内容:切线长定理、弦切角、和圆有关的比例线段[学习目标]1. 切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。

2. 切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

3. 弦切角、顶点在圆上,一边和圆相交,另一边和圆相切的角。

直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)4. 弦切角定理:弦切角等于其所夹的弧所对的圆周角。

5. 弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。

6. 遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。

7. 与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于PPA·PB=PC·PD 连结AC、BD,证:△APC∽△DPB相交弦定理的推论⊙O 中,AB 为直径,CD ⊥AB 于PPC 2=PA ·PB 用相交弦定理切割线定理⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于APT 2=PA ·PB 连结TA 、TB ,证:△PTB ∽△PAT切割线定理推论PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA ·PB =PC ·PD 过P 作PT 切⊙O 于T ,用两次切割线定理圆幂定理⊙O 中,割线PB 交⊙O 于A ,CD 为弦 P'C ·P'D =r 2-OP'2 PA ·PB =OP 2-r 2 r 为⊙O 的半径延长P'O 交⊙O 于M ,延长OP'交⊙O 于N ,用相交弦定理证;过P 作切线用切割线定理勾股定理证8. 圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数|OP R 22-|(R 为圆半径),因为OP R 22-叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。

第一讲:切线长定理、弦切角定理、圆幂定理2012.03.04

第一讲:切线长定理、弦切角定理、圆幂定理2012.03.04

第一讲:切线长定理、弦切角定理、圆幂定理 (2012-3-4)【定理的介绍】第1课一、切线长定理:(教材要求)从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. 要注意:此定理包含两个结论,如图,PA 、PB 切⊙O 于A 、B 两点,①PA=PB ②PO 平分APB ∠.对定理的理解:(1)若已知圆的两条切线相交,则切线长相等; (2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

经验总结:圆的外切四边形对边和相等; 圆的外切等腰梯形的中位线等于腰长.二、弦切角定理:(补充内容,可用于在圆中找相似三角形)1.弦切角概念:顶点在圆上,一边和圆相交,另一边和圆相切的角。

2.弦切角定理:弦切角等于它所夹的弦对的圆周角,也可以这样说:弦切角的度数等于它所夹弧的度数的一半. 3.弦切角定理的推论:如果两个弦切角所夹的弧相等,那么这两个弦切角相等.解题经验:.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。

【典型例题】例1 已知PA 、PB 、DE 分别切⊙O 于A 、B 、C 三点,若PO=13㎝,PED ∆的周长为24㎝,40APB ∠=︒, 求:①⊙O 的半径;②EOD ∠的度数.P例2 如图,⊙O 分别切ABC ∆的三边AB 、BC 、CA 于点D 、E 、F ,若,,BC a AC b AB c ===. (1)求AD 、BE 、CF 的长;(2)当90C ∠=︒,求内切圆半径r .例3 如图,⊙O 是ABC ∆的外接圆,ACB ∠的平分线CE交AB 于D ,交⊙O 于E ,⊙O 的切线EF 交CB 的延长线于F .求证:2AEAD EF =⋅例4 如图,AB 为⊙O 的弦,CD 切⊙O 于P ,AC CD ⊥于C ,BD CD ⊥于D ,PQ AB ⊥于Q . 求证:2PQ AC BD =⋅EB【课堂专练】1.如图,PA 、PB 分别切⊙O 于点A 、B ,OP 与⊙O 相交于点M ,以下结论,错误的是( ) A 、OP AB ⊥ B 、C 、APO BPO ∠=∠D 、M 是PAB ∆的外心2.若⊙O 的切线长和半径相等,则两条切线所夹的角的度数为:( )A 、30︒B 、45︒C 、60︒ D 、90︒ 4.如图,直线BC 切⊙O 于点A ,则图中的弦切角共有( ) A 、2个 B 、3个 C 、4个 D 、6个5.如图,AB 为⊙O 的直径,DB 、DC 分别切⊙O 于B 、C ,若25ACE ∠=︒,则D ∠为( ) A 、50︒ B 、55︒ C 、60︒ D 、65︒ 6.圆的外切平行四形一定是 形.7.圆外切梯形的周长为24cm ,则它的中位线的长是 ㎝. 8.如图,AB 是⊙O 的直径,CE 切⊙O 于C ,CD AB ⊥于D .若60,3ECB CD ∠=︒=,则sin A = ,BD = . 9.如图,⊙O 是ABC ∆的内切圆,D 、E 、F 为切点,::4:3:2A B C ∠∠∠=,则DEF ∠= °.FEC ∠= °.10.直角三角形的两条直角边为5㎝、12㎝, 则此直角三角形的外接圆半径为 ㎝, 内切圆半径为 ㎝.11.如图,直线AB 、BC 、CD 分别与⊙O 相切于点E 、F 、G , 且AB ∥CD ,若OB=6㎝,OC=8㎝,则BOC ∠= , ⊙O 的半径= ㎝,BE+CG= ㎝. 12.如图,PA 、PB 是⊙O 的切线,AB 交OP 于点M , 若2,OM cm AB PB ==,则⊙O 的半径是 ㎝.AM DM =P13.如图,四边形ABCD 是直角梯形,以垂直于底的腰AB 为直径 的⊙O 与腰CD 相切于E ,若此圆半径为6㎝,梯形ABCD 的周长为38㎝, 求梯形的上、下底AD 、BC 的长.14.如图,AB 为⊙O 的直径,过B 作⊙O 的切线,C 为切线上一点,连OC 交⊙O 于点E ,AE 的延长线交BC 于D .(1)求证:2CE CD CB =⋅.(2)若2AB BC ==,求CD 的长.三.圆幂定理(补充内容)第2课定理 图形 已知 结论证法相 交 弦 定 理⊙O 中,AB 、CD 为弦,交于PPA ·PB =PC ·PD 连结AC 、BD ,证:△APC ∽△DPB相的 交推 弦论 定 理⊙O 中,AB 为直径,CD ⊥AB 于P PC 2=PA ·PB (此处可补充射影定理) 用相交弦定理 切 割 线 定 理⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于A PT 2=PA ·PB 连结TA 、TB ,证:△PTB ∽△PAT 切割线定理推论PB 、PD 为⊙O 的两条割线,交⊙O 于A 、CPA ·PB =PC ·PD 过P 作PT 切⊙O 于T ,用两次切割线定理,等量代换可得。

切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段[学习目标]1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。

2.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。

直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。

5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。

6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。

7.与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD. 连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB. 用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理圆幂定理⊙O中,割线PB交⊙O于A,CD为弦P'C·P'D=r2-OP'2PA·PB=OP2-r2r为⊙O的半径延长P'O交⊙O于M,延长OP'交⊙O于N,用相交弦定理证;过P作切线用切割线定理勾股定理证8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。

切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理

以及与圆有关的比例线段[学习目标]1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。

2.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。

直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢(四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。

5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。

6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。

7.与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD.连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB.用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理圆幂定理⊙O中,割线PB交⊙O于A,CD为弦P'C·P'D=r2-OP'2PA·PB=OP2-r2r为⊙O的半径延长P'O交⊙O于M,延长OP'交⊙O于N,用相交弦定理证;过P作切线用切割线定理勾股定理证8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。

中考专题――切线长定理及弦切角定理

中考专题――切线长定理及弦切角定理

中考复习专题——切线长定理与弦切角定理【知识要点】1.切线长定理:过圆外一点P 做该圆的两条切线,切点为A 、B 。

AB 交PO 于点C ,则有如下结论: (1)PA=PB(2)PO ⊥AB,且PO 平分AB(3)APO BPO OAC OBC ∠=∠=∠=∠;AOP BOP CAP CBP ∠=∠=∠=∠2.弦切角定理:弦切角(切线与圆的夹角)等于它所夹的弧所对的圆周角 推论:若两弦切角所夹的弧相等,则这两个弦切角也相等【典型例题】【例1】 如图1,AB , AC 是⊙O 的两条切线,切点分别为 B 、 C 、 D 是优弧BC 上的点,已知∠BAC=800,那么∠BDC =______.图1 图2 图3 举一反三:1.如图2,AB 是⊙ O 的弦, AD 是⊙ O 的切线,C 为 AB 上任一点,∠ACB=1080,那么∠BAD =______.2.如图3,PA ,PB 切⊙ O 于 A , B 两点, AC ⊥PB ,且与⊙ O 相交于 D ,若∠DBC=220,则∠APB=________.【例2】如图,已知圆上的弧AC BD =,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ; (2)BC 2=BE ×CD .C BO A DC BA D POPBAO举一反三:1.如图,AB 是圆O 的直径,D 为圆O 上一点,过D 作圆O 的切线交AB 的延长线于点C ,若DA =DC ,求证:AB =2BC .【例3】已知:如图 7-149,PA ,PB 切⊙O 于A ,B 两点,AC 为直径,则图中与∠PAB 相等的角的个数为A .1 个;B .2个;C .4个;D .5个.【例4】如图,AE 、AD 、BC 分别切⊙O 于点E 、D 、F ,若AD=20,求△ABC 的周长.举一反三:1. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°.(1)求∠APB 的度数;(2)当OA =3时,求AP 的长.2.已知:如图,⊙O内切于△ABC,∠BOC=105°,∠ACB=90°,AB=20cm.求BC、AC 的长.3.已知:如图,△ABC三边BC=a,CA=b,AB=c,它的内切圆O的半径长为r.求△ABC的面积S.4.如图,在△ABC中,已知∠ABC=90o,在AB上取一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2 cm,AD=4 cm.(1)求⊙O的直径BE的长;(2)计算△ABC的面积.【课后作业】1.如图1,CD 是⊙O 的直径,AE 切⊙O 于点B ,连接DB ,若20D ∠=︒,则DBE ∠的大小为( )A. 20︒B. 40︒C. 60︒D. 70︒图1 图2 图32.如图2,ABC ∆是圆的内接三角形,PA 切圆于点A ,PB 交圆于点D .若60ABC ∠=,1PD =,8BD =,则PAC ∠=________,PA =________.3.如图3,AB 是半圆O 的直径,C 、D 是半圆上的两点,半圆O 的切线PC 交AB 的延长线于点P , ∠PCB =25°,则∠ADC 为A.105°B.115°C.120°D.125°4.如图4,AB 是⊙O 的直径,EF 切⊙O 于C ,AD ⊥EF 于D ,AD=2,AB=6,则AC 的长为 A.2 B.3 C.23图4 图5 图65.如图5,AB 是⊙ O 的直径,AC 、BC 是⊙ O 的弦,PC 是⊙ O 的切线,切点为 C ,∠BAC=350,那么∠ACP 等于A. 350B. 550C. 650D. 12506.如图6,在⊙ O 中,AB 是弦,AC 是⊙ O 的切线,A 是切点,过 B 作BD ⊥AC 于D ,BD 交⊙ O 于 E 点,若 AE 平分∠BAD ,则∠BAD=A. 300B. 450C. 500D. 6007.已知:如图7-154,⊙O 的半径OA ⊥OB ,过A 点的直线交OB 于P ,交⊙O 于Q ,过Q 引⊙O 的切线交OB 延长线于C ,且PQ=QC .求∠A 的度数.CDE OAFB PO ACBD EO A C B D A P O C O DB C D8.已知:如图7-155,⊙O内接四边形ABCD,MN切⊙O于C,∠BCM=38°,AB为⊙O直径.求∠ADC的度数.9.已知:如图,圆内接四边形ABCD的AB边经过圆心,AD,BC的延长线相交于E,过C点的切线CF ⊥AE于F.求证:(1)△ABE为等腰三角形;(2)若 BC=1cm,AB=3cm,求EF的长.。

【最新资料】圆切线长定理、弦切角定理、切割线定理、相交弦定理

【最新资料】圆切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段[学习目标]1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。

2.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。

直线AB 切⊙O 于P ,PC 、PD 为弦,图中几个弦切角呢?(四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。

5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。

6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。

7.与圆有关的比例线段定理 图形 已知 结论 证法相交弦定理⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD . 连结AC 、BD ,证:△APC∽△DPB .相交弦定理的推论⊙O 中,AB 为直径,CD⊥AB 于P.PC 2=PA·PB . 用相交弦定理.切割线定理⊙O中,PT 切⊙O 于T ,割线PB 交⊙O 于A PT 2=PA·PB 连结TA 、TB ,证:△PTB∽△PAT切割线定理推论PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理圆幂定理⊙O 中,割线PB 交⊙O 于A ,CD 为弦 P'C·P'D =r 2-OP'2 PA·PB=OP 2-r 2 r 为⊙O 的半径 延长P'O 交⊙O 于M ,延长OP'交⊙O 于N ,用相交弦定理证;过P 作切线用切割线定理勾股定理证8.圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。

圆切线长定理弦切角定理切割线定理相交弦定理

圆切线长定理弦切角定理切割线定理相交弦定理

圆切线长定理弦切角定理切割线定理相交弦定理部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段[学习目标]1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。

b5E2RGbCAP2.切线长定理对于切线长定理,应明确<1)若已知圆的两条切线相交,则切线长相等;<2)若已知两条切线平行,则圆上两个切点的连线为直径;<3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;<4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;<5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

p1EanqFDPw3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。

直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?<四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。

5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。

6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。

7.与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O 中,AB 、CD 为弦,交于P. PA·PB =PC·PD. 连结AC 、BD ,证:△APC∽△DPB. 相交弦定理的推论⊙O 中,AB 为直径,CD⊥AB 于P. PC2=PA·PB. 用相交弦定理. 切割线定理⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于APT2=PA·PB 连结TA 、TB ,证:△PTB∽△PAT切割线定理推论PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB =PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理圆幂定理⊙O 中,割线PB 交⊙O 于A ,CD 为弦 P'C·P'D =r2-OP'2 PA·PB =OP2-r2 r 为⊙O 的半径 延长P'O 交⊙O 于M ,延长OP'交⊙O于N ,用相交弦定理证;过P 作切线用切割线定理勾股定理证 8.圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||<R 为圆半径),因为叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。

2024-2025学年初中数学九年级上册(人教版)同步练习第06讲切线长定理与弦切角定理(原卷版)

2024-2025学年初中数学九年级上册(人教版)同步练习第06讲切线长定理与弦切角定理(原卷版)

第06讲切线长定理与弦切角定理课程标准学习目标①切线长的定义与切线长定理②三角形的内切圆与内心③弦切角的定义与弦切角定理1.掌握切线长的定义与切线长定理,并能够熟练的运用切线长解决问题。

2.掌握并能够画三角形的内切圆,掌握三角形的内心极其性质,并能够运用其解决相关问题。

3.掌握弦切角的定义与定理并熟练运用。

知识点01 切线长定理1.切线长的定义:经过圆外一点作圆的切线,这点和之间的线段的长,叫做这点到圆的切线长。

即如图,若PA与PB是圆的切线,切点分别是A与B,则PA 与PB的长度是切线长。

2.切线长定理:从圆外一点作圆的切线,可以作条,它们的长度。

圆心和这一点的连线两条切线的夹角。

即P A PB,∠APO∠BPO。

推广:有切线长定理的结论可得:①△APO△BPO⇒∠AOP∠B OP⇒AM⌒AM⌒⇒AB OP。

题型考点:①切线长定理的应用。

【即学即练1】1.如图,⊙O与△ABC的边AB、AC、BC分别相切于点D、E、F,如果AB=4,AC=5,AD=1,那么BC的长为.【即学即练2】2.如图,△ABC中,∠A=60°,BC=6,它的周长为16.若⊙O与BC,AC,AB三边分别切于E,F,D 点,则DF的长为()A.2B.3C.4D.6【即学即练3】3.如图,P为⊙O外一点,P A、PB分别切⊙O于A、B,CD切⊙O于点E,分别交P A、PB于点C、D,若P A=5,则△PCD的周长为()A.5B.7C.8D.104.如图所示,P是⊙O外一点,P A,PB分别和⊙O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交P A,PB于D,E.若△PDE的周长为12,则P A的长为()A.12B.6C.8D.4知识点02 三角形的内切圆与内心1.内切圆的定义:如图:与三角形各边都的圆叫三角形的。

三角形叫做圆的。

2.内心:三角形的的圆心叫做三角形的内心,三角形的内心就是三角形三个内角的交点。

所以圆心到三角形三边的距离相等。

郭氏数学 圆的切线长定理、弦切角定理、切割线定理、相交弦定理

郭氏数学 圆的切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。

2.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。

直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。

5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。

6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。

7.与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD. 连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB. 用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理圆幂定理⊙O中,割线PB交⊙O于A,CD为弦P'C·P'D=r2-OP'2PA·PB=OP2-r2r为⊙O的半径延长P'O交⊙O于M,延长OP'交⊙O于N,用相交弦定理证;过P作切线用切割线定理勾股定理证8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。

直线与圆切线长定理弦切角

直线与圆切线长定理弦切角

直线与圆切线长定理弦切角直线与圆的位置关系一、直线与圆的位置关系1. 直线与圆的三种位置关系如果⊙O的半径为r,圆心O到直线l的距离为d,那么(1)直线l和圆O相交d2. 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

要点:(1)经过半径外端;(2)垂直于这条半径。

3. 切线判定的三种方法(1)切线的定义:和圆只有一个公共点的直线是圆的切线(2)圆心到直线的距离等于半径(3)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线 4.切线的性质定理:圆的切线垂直于过切点的半径由于过已知点有且只有一条直线与已知直线垂直,所以经过圆心垂直于切线的直线一定过切点;反过来,过切点垂直于切线的直线一定经过圆心,因此可以得到两个推论:推论1 经过圆心且垂直于切线的直线必经过切点推论2 经过切点且垂直于切线的直线必经过圆心分析性质定理及两个推论的条件和结论间的关系,总结出如下结论:如果一条直线具备下列三个条件中的任意两个,就可推出第三个(1)垂直于切线(2)过切点(3)过圆心5. 关于切线的性质主要有五个①切线和圆只有一个公共点②切线和圆心的距离等于圆的半径③切线垂直于过切点的半径④经过圆心垂直于切线的直线必过切点⑤经过切点垂直于切线的直线必过圆心 6.辅助线规律(1)直线与圆有公共点时,辅助线的作法是“连结圆心和公共点”,再证直线与半径垂直(2)当直线与圆并没明确有公共点时,辅助线的作法是“过圆心向直线作垂线”,再证圆心到直线的距离等于半径例题讲解例1:已知Rt△ABC的斜边AB=6 cm,直角边AC=3 cm.(1)若以C为圆心,2 cm长为半径的圆和AB的位置关系是_________;(2)若以C为圆心,4 cm长为半径的圆和AB的位置关系是_________;(3)若以C为圆心的圆和AB相切,则半径长为_________;(4)若以C为圆心的圆与边AB有一个交点,则圆的半径r的取值范围____________;(5)若以C为圆心的圆与边AB没有交点,则圆的半径r的取值范围______________. 变式练习:1. 已知∠AOB=30°,M为OA边上一点,以M为圆心、2 cm为半径作⊙M.若点M在OA边上运动,则当OM=_______________ cm时,⊙M与OB相切.第1题第2题第3题2. 如图直线AB,CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在射线OA 上,且与点O的距离为6cm.如果⊙P以1cm/s的速度沿由A向B的方向移动,那么秒种后⊙P与直线CD相切.3. 如图,⊙O的半径为1,圆心O在正三角形的边AB上沿图示方向移动,当⊙O移动到与AC边相切时,OA的长为______. 4. 如图,直线y3x+3与x轴、y分别相交与A、B两点,圆心P的坐标为(1,0),圆3P与y轴相切与点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,横坐标为整数的点P′的个数是() A.2B.3C.4D. 5如果⊙M与y轴相交,那么m的取值范围是_____________.5. 在直角坐标系中,⊙M的圆心坐标为(m,0),半径是2,如果⊙M与y轴相切,那么m=_____;6. 在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切 B.与x轴相离,与y轴相交 C.与x轴相切,与y轴相交 D.与x轴相切,与y轴相离7. ⊙O的半径r=5 cm,点P在直线l上,若OP=5 cm,则直线l与⊙O的位置关系是______. 8. 以三角形的一边长为直径的圆切三角形的另一边,则该三角形为_________.9. 如图,P为正比例函数y3x上的一个动点,⊙P的半径为3,设点P的坐标为(x,y) 2(1)求⊙P与直线x=2相切时点P的坐标;(2)请直接写出⊙P与直线x=2相交、相离时x的取值范围.10. 如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm.半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0(s)时,半圆O在△ABC的左侧,OC=8cm.问:当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切?..11. 如图,在□ABCD中,∠DAB=60°,AB=15㎝.已知⊙O的半径等于3㎝,AB,AD分别与⊙O相切于点E,F.⊙O在□ABCD内沿AB方向滚动,与BC边相切时运动停止.试求⊙O滚过的路程.A二、切线长定理:1. 切线长:在经过圆外一点的切线上,这点和切点之间的线段长,叫做这点到圆的切线长. 2. 切线长和切线的区别切线是直线,不可度量;而切线长是切线上一条线段的长,而圆外一已知点到切点之间的距离,可以度量.3. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. 4. 两个结论:圆的外切四边形对边和相等;圆的外切等腰梯形的中位线等于腰长.三、弦切角定理:1. 弦切角要注意两点:①角的顶点在圆上;②角的一边是过切点的弦,角的边一边是以切点为端点的一条射线.2. 弦切角定理:弦切角等于它所夹的弦对的圆周角,该定理也可以这样说:弦切角的度数等于它所夹弧的度数的一半. 3. 弦切角定理的推论:推论:如果两个弦切角所夹的弧相等,那么这两个弦切角相等.例1:已知PA、PB、DE分别切⊙O于A、B、C三点,若PO=13cm,PED的周长为24cm,APB40,求:(1)⊙O的半径;(2)EOD的度数.例2:如图,⊙O的直径AB=12cm,AM和BN是⊙O的两条切线,DC切⊙O于E,交AM 于D,交BN于C,设AD x,BC y.(1)求y与x的函数关系,并说明是什么函数?(2)若x、y是方程2t30t m0的两根,求x、y的值.(3)求COD的面积.M2巩固练习1. 下列直线是圆的切线的是()A.与圆有公共点的直线 B.过圆直径外端点的直线C.垂直于圆的半径的直线 D.到圆心的距离等于半径的直线2. 如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是() A.点(0,3)B.点(2,3) C.点(5,1)D.点(6,1)第2题第3题第4题3. 如图,在△ABC中,AB10,AC8,BC6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是() A.4.75B.4.8C.5D.4. 如图,PA、PB切⊙O于点A、B,点C是⊙O上一点,且∠ACB=65°,则∠P=M与轴相交于点A(2,5. 如图,与轴相切于点C,则圆心M的坐标是. 0),B(8,0),6. 木工师傅可以用角尺测量并计算出圆的半径r.用角尺的较短边紧靠⊙O,并使较长边与⊙O相切于点C.假设角尺的较长边足够长,角尺的顶点B,较短边AB=8cm.若读得BC 长为acm,则用含a的代数式表示r为 .7. 如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上. 求证:PE是⊙O的切线.B8. 已知:如图,是O上一点,半径OC的延长线与过点的直线交于点,OC BC,1AC OB.(1)求证:AB是O的切线;(2)若ACD45°,OC2,求弦CD2的长.9. 如图,⊙O直径AB=4,P在AB的延长线上,过P作⊙O切线,切点为C,连接AC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考复习专题——切线长定理与弦切角定理
【知识要点】
切线长定理:过圆外一点P做该圆的两条切线,切点为A、B。

AB交PO于点C,则有如下结论:
PA=PB
PO⊥AB,且PO平分AB
APO BPO OAC OBC
∠=∠=∠=∠;AOP BOP CAP CBP
∠=∠=∠=∠
弦切角定理:弦切角(切线与圆的夹角)等于它所夹的弧所对的圆周角
推论:若两弦切角所夹的弧相等,则这两个弦切角也相等
【典型例题】
【例1】如图1,AB,AC是⊙O的两条切线,切点分别为B、C、D是优弧BC上的点,已知∠BAC=800,那么∠BDC =______.
图1 图2 图3
举一反三:
1.如图2,AB是⊙ O的弦,AD是⊙ O的切线,C为AB上任一点,∠ACB=1080,那么∠BAD =______.
2.如图3,PA,PB切⊙ O于A,B两点,AC⊥PB,且与⊙ O相交于D,若∠DBC=220,则∠APB=________.【例2】如图,已知圆上的弧AC BD
=,过C点的圆的切线与BA的延长线交于E点,证明:
(1)∠ACE=∠BCD;
(2)BC2=BE×CD.
举一反三:
1.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交
AB的延长线于点C,若DA=DC,求证:AB=2BC.
C
B
O
A
D
C B
A
D
P
O
P B A O
【例3】已知:如图 7-149,PA ,PB 切⊙O 于A ,B 两点,AC 为直径,则图中与∠PAB 相等的角的个数为
A

1 个; B .2个; C .4个; D .5个.
【例4】如图,AE 、AD 、BC 分别切⊙O 于点E 、D 、F ,若AD=20,求△ABC 的周长.
举一反三: 1. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°.
(1)求∠APB 的度数;
(2)当OA =3时,求AP 的长.
2.已知:如图,⊙O 内切于△ABC ,∠BOC=105°,∠ACB=90°,AB=20cm .求BC 、AC 的长.
3.已知:如图,△ABC 三边BC=a ,CA=b ,AB=c ,它的内切圆O 的半径长为r .求△ABC 的面积S .
4. 如图,在△ABC 中,已知∠ABC=90o ,在AB 上取一点E ,以BE 为直径的⊙O 恰与AC 相切于点D ,若AE=2 cm ,AD=4 cm .
(1)求⊙O 的直径BE 的长;
(2)计算△ABC 的面积.
【课后作业】
1.如图1,CD 是⊙O 的直径,AE 切⊙O 于点B ,连接DB ,若20D ∠=︒,则DBE ∠的大小为( )
A. 20︒
B. 40︒
C. 60︒
D. 70︒
图1 图2 图3 2.如图2,ABC ∆是圆的内接三角形,PA 切圆于点A ,PB 交圆于点D .若60ABC ∠=,1PD =,8BD =,则PAC ∠=________,PA =________.
如图3,AB 是半圆O 的直径,C 、D 是半圆上的两点,半圆O 的切线PC 交AB 的延长线于点P , ∠PCB =25°,则∠ADC 为
A.105°
B.115°
C.120°
D.125°
4.如图4,AB 是⊙O 的直径,EF 切⊙O 于C ,AD ⊥EF 于D ,AD=2,AB=6,则AC 的长为
A.2
B.3
C.23
D.4
图4 图5 图6 C D E O A F B O A B
D E O A C B D A P
C O
D B C D
5.如图5,AB是⊙ O的直径,AC、BC是⊙ O的弦,PC是⊙ O的切线,切点为C,∠BAC=350,那么∠ACP等于
A. 350
B. 550
C. 650
D. 1250
6.如图6,在⊙ O中,AB是弦,AC是⊙ O的切线,A是切点,过B作BD⊥AC于D,BD交⊙ O于E 点,若AE平分∠BAD,则∠BAD=
A. 300
B. 450
C. 500
D. 600
已知:如图7-154,⊙O的半径OA⊥OB,过A点的直线交OB于P,交⊙O于Q,过Q引⊙O的切线交OB延长线于C,且PQ=QC.求∠A的度数.
8.已知:如图7-155,⊙O内接四边形ABCD,MN切⊙O于C,∠BCM=38°,AB为⊙O直径.求∠ADC 的度数.
9.已知:如图,圆内接四边形ABCD的AB边经过圆心,AD,BC的延长线相交于E,过C点的切线CF⊥AE 于F.求证:
(1)△ABE为等腰三角形;
(2)若BC=1cm,AB=3cm,求EF的长.。

相关文档
最新文档