第1章--单自由度系统的自由振动题解

合集下载

第1章 单自由度系统自由振动-2-2

第1章 单自由度系统自由振动-2-2

(nmax
)2
Vmax
1 2
mg
(R

r
)m2 ax
Tmax Vmax
n
2g 3(R r)
19
谢 谢!

1 2
k1
(lΦ)2

1 2
k2 (dΦ)2

1 2
(k1 l2

k2 d 2 )Φ2
由机械能守恒定律有
Tmax Vmax

1 2
J02Φ2

1 2
(k1 l2

k2 d 2 )Φ2
则得固有频率
0
k1l2 k2d 2 J
l
k1
dB
A
O
k2
10
单自由度系统自由振动-能量法
例:如图所示是一个倒置的摆
无阻尼系统为保守系统,其机械能守恒,即动能 T 和 势能 V 之和保持不变 ,即:
k
动能:
T 1 mx2 2
弹簧原长位置

m
0
静平衡位置
势能: (重力势能)
(弹性势能)
k
mgx
x k( x )dx
0
零势能点
x
V mgx x k xdx 0
A
D
mg
柯尼希定理(Konig's theorem)是质点系运动学 中的一个基本定理.其文字表述是:质点系的总动 能等于全部质量集中在质心时质心的动能,加上各 质点相对于质心系运动所具有的动能.
18
单自由度系统自由振动-能量法
例:用能量法计算固有频率(纯滚动)
动能:T

1 2
m
(

单自由度系统的有阻尼自由振动

单自由度系统的有阻尼自由振动

0.8 (e nTd ) 20 0.16
ln5 20 nTd 20 n 2 n 1 2
由于 很小,ln5 40
ln5 W W ln5 1502 c 2 m k 2 2 40 g st 40 1980 0.122( Ns/cm)
nt
2 t n2 n
C2 e
2 t n2 n
)
代入初始条件 (t 0时 , x x0 , x x 0 )
C1
2 0 ( n n 2 n x ) x0
2 n
2
2 n
; C2
2 0 ( n n 2 n ) x0 x 2 2 n 2 n
可见阻尼使自由振动的周期增大,频率降低。当阻尼小时, 影响很小,如相对阻尼系数为5%时,为1.00125,为20%时, 影响为1.02,因此通常可忽略。
14
振幅的影响: 为价评阻尼对振幅衰减快慢的影响,引入减 幅系数η ,定义为相邻两个振幅的比值。
Ai Aewnti wnti td ewntd Ai 1 Ae
5
也可写成
x Ae nt sin(d t )
2 d n n2
—有阻尼自由振动的圆频率
x 0 , 则 设 t 0 时, x x0 , x
2 2 2 x n ( x nx ) 0 n 2 A x0 0 2 02 ; tg1 0 nx0 n n x
16
例4 如图所示,静载荷P去除后质量块越过平衡位置的最大 位移为10%,求相对阻尼系数。
17
x(t ) e
wnt
0 wn x0 x ( x0 cos wd t sin wd t ) wd
18

第1章--单自由度系统的自由振动题解

第1章--单自由度系统的自由振动题解

习 题1-1一单层房屋结构可简化为题1-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。

求该房屋作水平方向振动时的固有频率。

解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。

等效弹簧系数为k 则 mg k δ=其中δ为两根杆的静形变量,由材料力学易知δ=324mgh EJ=则 k =324EJh设静平衡位置水平向右为正方向,则有 "m x kx =- 所以固有频率3n 24mhEJp =1-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题1-2图所示。

试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。

解:给杆一个微转角2a =h题1-1图题1-2图θF sin α2θαhmgθ2F cos =mg由动量矩定理:aha mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ&&其中12cossin ≈≈θααhl ga p ha mg ml n 22222304121==⋅+θθ&& g h a l gah l p T n 3π23π2π222===1-3求题1-3图中系统的固有频率,悬臂梁端点的刚度分别是k 1和k 3,悬臂梁的质量忽略不计。

解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。

k 1ˊ与k 3并联,设总刚度为k 2ˊ。

k 2ˊ与k 4串联,设总刚度为k 。

即为21211k k k k k +=',212132k k kk k k ++=',4241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++=)(42412132314214324212k k k k k k k k k k m k k k k k k k k k p ++++++=1-4求题1-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。

结构动力学习题解答

结构动力学习题解答
̇̇ = hδ ( t ) ; θ 0
然后积分求初始速度
̇̇ d t = θ̇0 = θ 0
0+ 0+ 0+

0
∫ hδ ( t ) d t = h ∫ δ ( t ) d t = h
0 0 0+

再积分求初位移
̇̇ d t == h )d t = 0 ; θ0 = θ 0
0+

0

0
̇̇ 、 θ̇ 和 θ 的瞬态响应 这样方程(6)的解就是系统对于初始条件 θ 0 0 0
1.6 求图 1-35 所示系统的固有频率。图中磙子半径为 R,质量为 M,作纯滚动。弹簧刚度 为K 。 解:磙子作平面运动, 其动能 T=T 平动 +T 转动 。
K R M 图 1-35 x
T平动 = T转动
1 ̇2; Mx 2 2 2 ̇ ⎞ 1 ⎛ MR 2 ⎞ ⎛ x ̇⎞ 1 ⎛x = I⎜ ⎟ = ⎜ ⎟⎜ ⎟ ; 2 ⎝R⎠ 2 ⎝ 2 ⎠⎝ R ⎠
U= r 2 1 1 1 1⎛ K A ϕ A 2 + K B ϕ B 2 = K Aϕ A 2 + K B ϕ B 2 = ⎜ K A + K B A 2 2 2 2 2⎜ rB ⎝
(
)
⎞ 2 ⎟ϕ ; ⎟ A ⎠
系统的机械能为
T +U = r 2 1 1⎛ ̇ A2 + ⎜ K A + K B A (m A + m B )rA 2ϕ 4 2⎜ rB 2 ⎝
d (T + U ) = 0 ,进一步得到系 dt
统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤: (1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷 的幅值 Ai 、 Ai +1 。 (2)由对数衰减率定义 δ = ln(

12.3 单自由度体系的自由振动

12.3  单自由度体系的自由振动

各杆EI= 。 【例12-5】试求图示结构的ω。各杆 =C。 】
3l 4 B C D m B y A l l l 4 A l C D l
1
M1 图
解:
δ 11
7l 3 = 12 EI
1 12 EI EI = = 1.309 ω= 3 mδ11 7ml ml 3
All Rights Reserved 重庆大学土木工程学院®
【注二】惯性力 FI = −m&& = maω 2 sin(ωt + α ) = mω 2 y , 注二】 y FI 永远与位移方向一致,在数值上与位移成比例, 永远与位移方向一致,在数值上与位移成比例,其比例系 数为 mω 2 。
All Rights Reserved
重庆大学土木工程学院®
12.3.4 自振周期与自振频率
1.自振周期 自振周期 因
y = a sin (ωt + α ) = a sin (ωt + α + 2 π ) 2π = a sin ω t + + α = a sin[ω (t + T ) + α ] ω
所以自振周期
T =

ω
表示体系振动一次所需要的时间,其单位为 ( 表示体系振动一次所需要的时间,其单位为s(秒) 。
式中, 为重力加速度 为重力加速度; 式中,g为重力加速度;W=mg为质点 为质点 的重力; 表示将重力W=mg 的重力;∆st=Wk11,表示将重力 施加于振动方向所产生的静位移。 施加于振动方向所产生的静位移。
All Rights Reserved 重庆大学土木工程学院®
T = 2π ∆st g
All Rights Reserved 重庆大学土木工程学院®

动力学(第1章)

动力学(第1章)

f
(t)
=
2P0
ωt π
∫ ∫ bi
=
2 T
T 0
f (t) sin(iωt)dt = 4ω π
π 2ω 0
f
(t) sin(iωt)dt
=
8P0 i2π 2
i −1
(−1) 2 (i
= 1,3,5,⋅⋅⋅)
6of12
结构动力学的教程(同济大学结构所蒋通研究员)
∑ 取
i=1~3
β1 算得:
=
1

1 ω2
= 1−ω
2ζω 3 2 + (2ζω )2
1+ 4ζ 2ω 2 (1− ω 2 )2 + (2ζω )2
5of12
结构动力学的教程(同济大学结构所蒋通研究员)
隔振要求: 频率比: ω
=
ω
>
2⇒
ωn
阻尼比小:ζ ↓⇒ A ↓
B
A <1 B
但过小通过共振区不利
主动隔振:将振源隔开,使振动传播不出去(隔振器)
+ϕ)
振幅与相位角: A=
x02
+
⎜⎜⎝⎛
x&0 ωn
⎟⎟⎠⎞2

=
arctg
ωn x0 x&0
x
A
x&0
x0
t ϕ /ωn
t t +T
例题 1-1 求图示体系的固有频率
悬臂梁刚度:k1
=
3EI l3
与 K2 并联后等效刚度:k = k1 + k2 固有频率:ωn = k / m (串联弹簧)
l m
• •
能量守衡:We +Wd + Wf = 0 → ω = ωn →

第一章(单自由度系统的振动)

第一章(单自由度系统的振动)

单自由度系统的振动方程
c
k
m
s k
c
o
u
m
u
f (t)
mu(t) k[u(t) s ] cu(t) mg f (t)
k (u s ) cu
m
mg
f (t)
mg k s
mu(t) cu(t) k u(t) f (t)(单自由度系统振动方程的一般形式)
结论:只要以系统静平衡位置为坐标原点,那么在列写系统运动方程 时就可以不考虑系统重力的作用。
问题2
k1
k2
k3
m
k4
k1 k3
k2

k4
问题2
k1
k2
k3
m
k4
k1
k3
k2

k4 k1
k3
k2
m
k4
问题3
无质量弹性杆
刚性杆
k
m
等效
k
m
F
k F /
第一章:单自由度系统的振动
第二讲:
无阻尼单自由度系统的自由振动
•正确理解固有频率的概念 •会求单自由度无阻尼系统的固有频率
无阻尼单自由度系统的自由振动
4
o 势能:V mg(R r)(1 cos ) 1 mg(R r) 2
2
R
m 简谐运动: max sin(nt )
B
rC
Tmax
3m 4
(
R
r
)2
(n
max
)
2
A
D
mg
Vmax
1 2
mg
(
R
r
)m2 ax
Tmax Vmax

单自由度系统(自由振动)

单自由度系统(自由振动)

第二章 单自由度系统的自由振动本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。

§2-1 无阻尼系统的自由振动无阻尼单自由度系统的动力学模型如图1.1所示。

设质量为m ,单位是kg 。

弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。

弹簧在自由状态位置如图中虚线所示。

当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形∆:,同时也产生弹簧恢复力K ∆,当其等于重力W 时,则处于静平衡位置,即 W=K ⋅∆若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。

首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。

现设质量m 向下运动到x ,此时弹簧恢复力为K(∆+x),显然大于重力W ,由于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx xm (1-1-1 令mkp =2(1-1-2)单自由度无阻尼系统自由振动运动方程为02=+x p x(1-1-3)设方程的特解为 ste x =将上式代入(1-1-3)处特征方程及特征根为ips p s ±==+2,1220则(1-1-3)的通解为ptD pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4)C 、D 为任意积分常数,由运动的初始条件确定,设t=0时00,x xx x == (1-1-5)()x m x k W F=+∆-=∑量位静平衡位置 一自由度弹簧—质量系统 ∆==k mgW xx)则pt pxpt x x sin cos 00 += (1-1-6)经三角变换,又可表示为)sin(α+=pt A x(1-1-7)其中 001220,x px tg p x x A -=⎪⎪⎭⎫ ⎝⎛+=α (1-1-8) 自由振动的振幅A 和初相位角α与系统的参数和初始条件有关。

机械振动基础-单自由度系统-1

机械振动基础-单自由度系统-1

• 速度和加速度也是简谐函数,并与位移具有相同频率; • 在相位上,速度超前位移90,加速度超前位移180°。
• 加速度始终与位移反向: u&&(t) n2u(t) • 速度和加速度的幅值分别是振幅的 n和n2倍。
• 简谐振动过程
最大振幅
最大速度
最大振幅
-A
速度为零, 位移,加速度 绝对值最大, 方向反向。
m
解:系统的动能和势能分别为:
系统的广义力为:
T 1 mx2 , 2
U 1 kx2 2
Q W P(t)x Pt
x
x
代入到拉格朗日方程得:
d dt
Tx
dU dx
Q
mx kx P(t)
例1-3: 如图所示:圆弧形滑道上,有一均质圆柱体 作纯滚动。建立其运动方程。
解:因为纯滚动,所以振动
a) 简谐振动是一种周期振动
周期振动满足条件: u(t T ) u(t)
(1.2.13)
即每经过固定时间间隔,振动将重复原来的过程。最小正 常数 T -振动周期。
Tn
2 n
2
m k
(1.2.14)
— 无阻尼单自由度系统自由振动的固有周期。
固有频率的另一种形式:
fn
n 2
1 Tn
(赫兹)
表示1秒内重复振动的次数。
该矢量在t 时刻在y轴 上的投影 即为位移 响应在同 一时刻的 值.
b) 简谐运动的位移、速度和加速度之间的关系:
• 速度和加速度可分别表达为:
u&(t )
na
cos
nt
na
sin(nt
2
)
(1.2.17)
u&&(t) n2a sin nt n2a sin nt (1.2.18)

2-1结构动力学(单自由度)

2-1结构动力学(单自由度)
c 2 m
O
t
这条曲线仍具有衰减性,但不具有波动性。
1, cr 2m
c 2m
c cr
阻尼比
(2)ξ> 1(强阻尼)情况
1,2 2 1 0
y t C1e1t C2e2t
t


y( t )
O
y (t ) e t C1 sinh 2 1 t C 2 cosh 2 1 t
g y st
y st m T 2 2 k g
频率只取决于体系的质量和刚度,而与外界因素 无关,是体系本身固有的属性,所以又称为固有频率
(natural frequency)。
(3)简谐自由振动的特性
y(t ) Asin( t )
(t ) A 2 sin(t ) y 加速度为: 惯性力为: FI (t ) m (t ) mA 2 sin(t ) y
特征根 一般解
2 2 2 0
1, 2 2 1


y(t ) C1e
1t
C2 e
2t
(1)ξ= 1(临界阻尼)情况
1,2
y C1 C2 t e t
y( t )
tan v

t
y y0 (1 t ) v0t e
d
阻尼对自振频率、周期的影响
,
d
Td T
在工程结构问题中,若0.01<ξ<0.1,可近似取:
d , Td T
y(t ) e t Asin ( d t )
阻尼对振幅的影响
yk Aetk Td e y k 1 Ae (tk Td )

单自由度系统受迫振动

单自由度系统受迫振动

(
s in
s
cos ) sin dt]
B
sin(t
)
自由伴随振动
强迫响应
0
k m
c
2 km
d 0 1 2
B F0 k
1
(1 s2 )2 (2s)2
s
0
2s
arc
tan 1
s
2
单自由度系统受迫振动/ 受迫振动的过渡阶段
x(t)
e0t
( x0
c osd t
x0
0 x0 d
sin dt)
x0
0
sin
0t
B0 1 s2
cos t
x0
cos 0t
x0
0
sin 0t
B0 1 s2
cos 0t
B0 1 s2
cos t
单自由度系统受迫振动/ 受迫振动的过渡阶段
x(t)
x0
cos 0t
x0
0
sin 0t
B0 1 s2
cos 0t
B0 1 s2
cos t
如果要使系统响应只以 为频率振动
初始条件: x0 0
s
0
通解:
x(t)
c1
cos0t
c2
sin
0t
1
B s
2
sin
t
齐次方程通解 非齐次方程特解 c1, c2 由初始条件确定
单自由度系统受迫振动/ 受迫振动的过渡阶段
x(t)
c1
cos0t
c2
sin
0t
B 1 s2
sin
t
x(0) x0
c1 x0
x(பைடு நூலகம்) x0

第1章 单自由度系统的振动

第1章 单自由度系统的振动

第1章 单自由度系统的振动1.1概述机械振动是工程中常见的物理现象。

悬挂在弹簧上的物体在外界干扰下所作的往复运动就是最简单直观的机械振动。

广泛地说,各种机器设备及其零部件和基础,都可以看成是不同程度的弹性系统。

例如桥梁在车辆通过时引起的振动,汽轮机、发电机由于转子不平衡引起的振动等。

因此,机械振动就是在一定的条件下,振动体在其平衡位置附近所作的往复性的机械运动。

实际中的振动系统是很复杂的。

为了便于分析研究和运用数学工具进行计算,需要在满足工程要求的条件下,把实际的振动系统简化为力学模型。

例如图示1.1-1就是个最简单的单自由度质量(m )—弹簧(k )系统。

如果实际系统很复杂,要求的精度较高,简化的力学模型也就复杂。

振动系统中和参数的动态特性,可以用常系数线性微分方程来描述的,称为线性振动。

但工程实际中也有很多振动系统是不能线性化的,如果勉强线性化,就会使系统的性质改变,所得的系统只能按非线性振动系统处理。

机械振动分析方法很多。

对于简单的振动系统,可以直接求解其微分方程的通解。

由于计算机进行数值计算非常方便,所以振动仿真是一种最直接的方法。

由于振动模型中尤其是多自由度振动很方便用矩阵微分方程来描述,所以MATLAB 语言在振动仿真中体现出十分优越的特性。

本章先介绍机械振动的单自由度、多自由度振动的基础,然后介绍仿真计算的各种计算公式,最后通过MATLAB 语言来实现。

1.2单自由度系统的振动1.2.1 无阻尼自由振动如图1.1-1所示的单自由度振动系统可以用如下微分方程描述:0=+kx xm (1.2.1-1) 令mkn =2ω ,方程的通解为t b t a x n n ωωcos sin += (1.2.1-2)式(1.2.1-2)表示了图示(1.1-1)中质量m 的位置随时间而变化的函数关系,反映了振动的形式与特点,称为振动函数。

式(1.2.1-2)中,a 、b 为积分常数,它决定于振动的初始条件。

振动力学各章作业题解()

振动力学各章作业题解()

振动⼒学各章作业题解()第02章单⾃由度系统的振动2.1 ⼀根抗弯刚度72=3610Ncm EI ?的简⽀架,两⽀承间跨度l 1=2m ,⼀端伸臂l 2=1m ,略去梁的分布质量,试求悬臂端处重为Q =2548 N 的重物的⾃由振动频率。

【提⽰:22123()EJ k l l l =+,2212()3st Ql l l EI δ+=,11.77n st gk gQ ωδ=== 1/s 】 2.2 梁AB 其抗弯刚度72=910Ncm EI ?,A 端与B 端由弹簧⽀承,弹簧刚性系数均为k =52.92 kN/m ,如图所⽰。

略去梁的分布质量,试求位于B 端点左边1⽶处,重为Q =4900 N 的物块⾃由振动的周期。

【解法1:通过计算静变形求解。

A ,B 弹簧受⼒为3Q 和23Q,压缩量为3Q k 和23Q k ,则由弹簧引起的静变形为159Q k δ=;利⽤材料⼒学挠度公式求出梁变形引起的静变形222212(321)4619Q QEI EIδ??--==?。

周期为:1222 1.08nT gδδππω+===s 。

解法2:通过弹簧刚度的串并联计算总等效刚度求解。

A ,B 弹簧相对Q 处的等效刚度为(产⽣单位变形需要的⼒,利⽤解法1中计算的静变形结果)195k k =;利⽤材料⼒学挠度公式求出梁相对Q 处的等效刚度294EI k =;总等效刚度为:12111eq k k k =+。

周期为22 1.08neqQT gk ππω===s 。

】 2.4 ⼀均质刚杆重为P ,长度为L 。

A 处为光滑铰接,在C 处由刚性系数为k 的弹簧使杆在⽔平位置时平衡。

弹簧质量不计,求杆在竖直⾯内旋转振动时的周期。

【解:利⽤定轴转动微分⽅程:21()32st P l l P k a a g ??δ=-- ,2st lk a P δ=,得:22103P l k a g+= , 222/3223n Pl g l PT ka a gkπππω===】题 2-1 图BAQl 1 l 2题 2-2 图2m1mQkkAB 题 2-4 图lakA CB2.8 ⼀个重为98 N 的物体,由刚性系数为k =9.8 kN/m 的弹簧⽀承着(简化为标准m-k-c 振动系统),在速度为1 cm/s 时其阻⼒为0.98 N 。

于开平-结构动力学第二讲

于开平-结构动力学第二讲

(2) 阻尼力的功:
Wd A cos t dt c 2 / 1 cos 2 t cA2 2 dt 0 2 1 2 1 2 2 2 / cA2 2 cA cos 2 t dt 0 2 2
5 稳态响应振幅和相位
5.2 初始相位角 根据初相位角表达式
2 tg 1 2
可以画出初相位角随频率比的变化曲线,简称相频曲线:
在共振点,不管阻尼比多大,初相位角均为90度。
6 稳态响应复数解法及频响函数
之前将外载荷假设为正弦形式,其运动控制方程为:
������������ሷ 1 + ������������ሶ 1 + ������������1 = ������0 sin������������ 简谐激励的另一种典型形式为余弦形式,其运动控制方程写作: ������������ሷ 2 + ������ ������ሶ 2 + ������������2 = ������0 cos������������ (2) (1)
o o o
o
1 2 Fo A sin Fo A sin 2
6 稳态响应复数解法及频响函数
令方程特解为������ ������ = ������������ ������ ������������������ ,代入运动控制方程得: (−������2 ������������������ + ������������������������������ + ������������������ )������ ������������������ = ������0 ������ ������������������ 方程对任意时刻t恒等,则方程两边指数函数������ ������������������ 前系数相等,由此可得: ������������ = ������0 ������ − ������������ 2 + ������������������

振动理论03(1)-单自由度系统自由振动

振动理论03(1)-单自由度系统自由振动
如果水在U形管中往复地振动,那么运 动质量就是 。 注意到,在这个问 题中,没有涉及弹簧。实际上,重力的 作用把水柱恢复到它的平衡位置,因此 在题目中有一个重力弹簧,按定义它的 弹性常数是单位位置变化所需要的力。
42
2014/9/28
管中其中一个臂的水位升高1厘米,另一个臂的水位就
降低1厘米,因此就给出2厘米水柱的失衡重量,产生
-任意瞬时的位置与平衡位置 之间的距离)?
10
2014/9/28
弹簧力
阻尼力
作用在质量块的力总计 sin
应用牛顿第二定律: 单自由度系统运动微分方程
mx cx kx P0 sin t
惯性力 阻尼力 弹性力 外来的谐力
单自由度扭转系统振动方程
圆盘的惯性矩为 轴的抗扭刚度为 外加扭矩 0 用于转动物体的广义牛顿定律
弹簧-质量系统
研究系统的振动问题时,常常把它简化成由若干个“ 无质量”的弹簧和“无弹性”的质量所组成的模型, 称为弹簧-质量系统(spring mass system)
角振动(angular vibration):以角位移作为独立坐标的系 统。例如后面将要介绍的圆盘的扭振(Torsional vibration)。
用一根弹簧把一个质量m悬挂 在刚性天花板上。弹簧的刚度 由弹性系数 表示
在质量和刚性天花板之间有油 或者空气缓冲器机构
质量静止时,缓冲器不传递力 质量运动时,缓冲器的阻尼力与
速度成正比,即 c:阻尼常数或粘性阻尼常数
9
2014/9/28
假设一个交变外力作用在质 量上
计算外力造成的质量的运动 ,即求出质量运动距离 的时 间函数
振动理论(3) 第3章 单自由度系统自由振动
自由度
自由度

单自由度振动系统的运动方程及其解析解

单自由度振动系统的运动方程及其解析解

单自由度振动系统的运动方程及其解析解单自由度振动系统是指只有一个自由度的振动系统,其运动方程可以用一个二阶常微分方程表示。

在这篇文章中,我们将讨论单自由度振动系统的运动方程及其解析解。

1. 引言振动是自然界中一种常见的现象,也是物体在受到扰动后产生的周期性运动。

单自由度振动系统是研究振动现象的基本模型,它可以用来描述弹簧振子、摆锤等物理系统的振动。

2. 运动方程的建立对于单自由度振动系统,其运动方程可以通过牛顿第二定律推导而来。

假设系统的质量为m,位移为x,系统受到的外力为F,弹性系数为k,则可以得到如下的运动方程:m*x'' + k*x = F3. 简谐振动的解析解当外力为零时,即F=0,单自由度振动系统的运动方程简化为:m*x'' + k*x = 0这是一个常系数线性齐次二阶常微分方程,可以通过特征方程的方法求解。

假设解为x(t) = A*cos(ωt + φ),代入方程中可以得到:-m*ω^2*A*cos(ωt + φ) + k*A*cos(ωt + φ) = 0整理得到:(ω^2*m - k)*A*cos(ωt + φ) = 0由于A*cos(ωt + φ)不为零,所以可以得到特征方程:ω^2*m - k = 0解特征方程可以得到系统的固有频率:ω = sqrt(k/m)因此,单自由度振动系统的解析解为:x(t) = A*cos(ωt + φ)其中A和φ为待定常数,分别表示振幅和相位。

4. 非简谐振动的解析解当外力不为零时,即F≠0,单自由度振动系统的运动方程为:m*x'' + k*x = F这是一个非齐次线性二阶常微分方程,可以通过特解和通解的方法求解。

首先求解齐次方程,得到通解:x_h(t) = A*cos(ωt + φ)然后求解非齐次方程的特解,可以通过待定系数法或者复数法得到特解。

最后将通解和特解相加,得到系统的解析解:x(t) = x_h(t) + x_p(t)其中x_h(t)为齐次方程的通解,x_p(t)为非齐次方程的特解。

1-2单自由度系统无阻尼振动(1)解析

1-2单自由度系统无阻尼振动(1)解析
(rad/ s) 为圆频率或固有频率
振动周期 振动频率
( s)
(Hz)
结论2:响应满足叠加原理
系统在初始位移 x0 单独作用下的自由振动, 此时 系统在初始速度 x0单独作用下的自由振动, 此时
x0 0
系统的总响应 叠加性是线性系统的重要特征。
结论3
固有特性
这三个量都由振动系统的参数确 定,而与初始条件无关,是系统 的固有特性,因而又称作:固有 圆频率、固有周期和固有频率。
(2)能量法(拉格朗日方程法) 拉格朗日方程(单自由度系统): T为系统的动能,U为系统的总势能(或应变能),y为位移 自由度(广义坐标),Q为非势力的广义力。 对于定常约束系统,动能仅与速度有关 对于定常约束的保守系统 拉格朗日函数
动能与位移无关, 势能与速度无关
在阻尼可以略去不计的条件下,振动系统自由振动时的机 械能(动能+势能)保持常值。
解:设j为圆盘相对于静平衡位置的角坐 标(即单自由度的广义坐标),作用在 圆盘上的恢复力矩 根据刚体绕定轴转动的平衡方程,有:
例3 弹簧—质量系统,在光滑的水平面上,质量为m的物体 用不计重量的弹簧固定,弹簧原长为l0,沿弹簧轴线取坐标轴 x,以弹簧不受力时右端位置o为原点,向右为正,假设物体 只限于沿x轴进行直线运动,故物体任意时刻的位置可由x完全 确定。建立运动微分方程。
解:以为广义坐标,以系统的静平 衡位置为零势能点,则:
若令
则得:
2.运动微分方程的求解
单自由度自由振动的微分方程:
这是二阶常系数线性微分方程,解的一般形式为:
式中c1、c2是由系统的初始条件决定的。 在t=0 时,初始位移为 ,初始速度为
结论1:
单自由度无阻尼自由振动为简谐振动——位移可以表示为时 间的简谐函数(正弦或余弦) A为系统自由振动的振幅,它表示质量块离开静平衡位置 的最大位移。 为相位角, 为初相位角。

机械振动(习题课及考前复习)

机械振动(习题课及考前复习)

习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
一、考试知识点
第一章
1、单自由度系统振动方程。

2、无阻尼单自由度系统的自由振动。

3、等效单自由度系统。

4、有阻尼单自由度系统的自由振动。

5、简谐力激励下的受迫振动。

6、基础简谐激励下的受迫振动。

第二章
1、多自由度系统的振动方程。

2、建立系统微分方程的方法。

3、无阻尼系统的自由振动。

4、无阻尼系统的受迫振动。

二、考题分布情况
1、主要围绕作业题、课堂练习题、经典例题题型展开。

2、复习时把握每章知识要点,理解基础题型解题方法。

3、考卷共6道大题。

习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
m
222(2)m l θ= ⎧⎨⎩211
(2)m l θ= 212(22)2k l l l θθ−⋅−⋅⋅11k l l θ−⋅221(22)2k l l l
θθ−⋅−⋅⋅
习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
m
m
m
m
m
m
习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题1-1一单层房屋结构可简化为题1-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。

求该房屋作水平方向振动时的固有频率。

解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。

等效弹簧系数为k 则 mg k δ=其中δ为两根杆的静形变量,由材料力学易知δ=324mgh EJ=则 k =324EJh设静平衡位置水平向右为正方向,则有 "m x kx =- 所以固有频率3n 24mhEJp =1-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题1-2图所示。

试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。

解:给杆一个微转角θ2aθ=h α 2F cos α=mg由动量矩定理:aha mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ&&题1-1图题1-2图θF sin α2θαhmgθ其中12cossin ≈≈θααhl ga p ha mg ml n 22222304121==⋅+θθ&& g h a l ga h l p T n 3π23π2π222===1-3求题1-3图中系统的固有频率,悬臂梁端点的刚度分别是k 1和k 3,悬臂梁的质量忽略不计。

解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。

k 1ˊ与k 3并联,设总刚度为k 2ˊ。

k 2ˊ与k 4串联,设总刚度为k 。

即为21211k k k k k +=',212132k k kk k k ++=',4241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++=)(42412132314214324212k k k k k k k k k k m k k k k k k k k k p ++++++=1-4求题1-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。

其中J 1、J 2和J 3是三个轴段截面的极惯性矩,I 是圆盘的转动惯量,各个轴段的转动惯量不计,材料剪切弹性模量为G 。

解:111/l GJ k = (1) 222/l GJ k = (2) 333/l GJ k = (3) )/(23323223l J l J J GJ k += (4))(/)()4)(3)(2(1/)(2332113221332122312l J l J Il l J J l J J l J J G P I k k P n n +++=+=知)由(题1-3图题1-4图1-5如题1-5图所示,质量为m 2的均质圆盘在水平面上可作无滑动的滚动,鼓轮绕轴的转动惯量为I ,忽略绳子的弹性、质量及个轴承间的摩擦力,求此系统的固有频率。

解:此系统是一个保守系统,能量守恒.如图题中的广义坐标x ,设系统的振动方程为:sin()x A wt a =+则系统运动过程中速度表达式为:cos()x Aw wt a =+&系统最大位移和速度分别为:max max x Ax Ax==&系统在运动过程中,动能表达式为:2222212221*********x x T m x m x m r I r R ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭&&&& 弹性势能为:2211221122x U k R k x R ⎛⎫=+ ⎪⎝⎭系统最大动能为:22222max 122211111()()22222Aw Aw T m Aw m Aw m r I r R ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭最大弹性势能为:22max11221122A U k R k A R ⎛⎫=+ ⎪⎝⎭ 由于系统机械能守恒,因此:max max T U =22222122211111()()22222Aw Aw m Aw m Aw m r I r R ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭2211221122A k R k A R ⎛⎫=+ ⎪⎝⎭ 由上式可解得系统的固有频率为:题1-5图1122122232R k k R w I m m R +=⎛⎫++ ⎪⎝⎭1-6如题1-6图所示,刚性曲臂绕支点的转动惯量为0I ,求系统的固有频率。

解:设曲臂顺时针方向转动的ϕ角为广义坐标,系统作简谐运动,其运动方程为)sin(αϕ+Φ=t p n 。

ϕ很小,系统的动能为22212)(21)(2121ϕϕϕ&&&l m a m I T O ++=)cos(αϕ+Φ=t p p n n & 所以, 222222122max 212121l p a p m p I T n n n O Φ+Φ+Φ=取系统平衡位置为势能零点。

设各弹簧在静平衡位置伸长为321,,δδδ,由∑=0)(F mO, 02233111=-++l k b k ga m a k δδδ (A )由题意可知,系统势能为a g m l kb k a k V ϕδδϕδδϕδδϕ1222222323321211])[(21])[(21])[(21+--+-++-+=(B ) 将(A )式代入(B )式,可得系统最大势能为,222223221max 212121l k b k a k V Φ+Φ+Φ=由, max max V T = 得=Φ+Φ+Φ222222122212121l p a p m p I n n n O 222223221212121l k b k a k Φ+Φ+Φ 所以,有22212223212lm a m I l k b k a k p O n++++=1-7一个有阻尼的弹簧--质量系统,质量为10 kg ,弹簧静伸长是1cm ,自由振动20个循环后,振幅从0.64 cm 减至0.16cm ,求阻尼系数c 。

解:振动衰减曲线得包络方程为:ntX Ae-=振动20个循环后,振幅比为:200.640.16nTd e = 题1-6图∴ln 420Td n=代入215TTd =-,得:2222ln 44()20nn P N π=- 又 10n stgP g d == ∴2ln 4()20n=224100g N π- ∴c = 6.9 N s /m32c mk lac =,222n 3ml ka p =1-8一长度为l 、质量为m 的均质刚性杆铰接于O 点并以弹簧和粘性阻尼器支承,如题2-8图所示。

写出运动微分方程,并求临界阻尼系数和固有频率的表达式。

解:图(1)为系统的静平衡位置,画受力图如(2)。

由动量矩定理,列系统的运动微分方程为:0220=++a k l c I ϕϕϕ&&&m cn ml ka p ml ka m c ml I n32,303312222220==∴=+3+∴=ϕϕϕ&&&Θ 当n =p n 时,c =c C323232mkl am p nm c n C ===∴题1-8图OmgϕX OY OF KF C1-9如题1-9图所示的系统中,刚杆质量不计,试写出运动微分方程,并求临界阻尼系数及固有频率。

解:222222222222222224222242224202224142n n n c d nI kb b ca a ml kb ca kb ca ml ml kb p ml b k p l ca n ml n p ca b kml l blc mka kbc a p p n ml m l kmb l c a mlϕϕϕϕϕϕϕϕϕ=--=--∴++=∴=====∴==-=-=-&&&&&&&&&Q m 当时m1-10如题1-10图所示,质量为2000 kg 的重物以3 cm/s 的速度匀速运动,与弹簧及阻尼器相撞后一起作自由振动。

已知k =48020 N/m ,c =1960 Ns/m ,问重物在碰撞后多少时间达到最大振幅?最大振幅是多少?解:以系统平衡位置为坐标原点,建立系统运动微分方程为022=++x p x n x n &&&所以有 x&&+c m x &+kmx =0 其特征方程为:2r +19602000r+480202000=0 r =-0.49±4.875i所以:x =1c 0.49te-cos4.875t+2c 0.49te-sin4.875t由于n < p n ,由已知条件,题1-9图题1-10图49.020********=⨯==m c n ,01.242000480202===m k p n ,00=x ,03.00=x & m/s 。

故通解为)sin cos (21t p C t p C e x d d nt +=-其中,875.422=-=n p p n d 。

代入初始条件,得006.0,0000201==+===dd p x p x nx C x C &&,得 t pe C x d nt sin 2-= =0.0060.49t e -sin4.875tx&=0.0060.49te -(-0.49) sin4.875t+0.006⨯4.875cos4.875 物体达到最大振幅时,有0cos sin 22=+-=--t p p e C t p e nC xd d nt d nt & 既得t = 0.30 s 时,物体最大振幅为528.0)3.0875.4sin(006.03.049.0=⨯=⨯-e x cm1-11由实验测得一个系统的阻尼固有频率为d p ,在简谐激振力作用下出现最大位移值的激振频率为m ω,求系统的无阻尼固有频率n p 、相对阻尼系数ζ及对数衰减率δ。

解:221ζω-=n m p , 22n p p n d -=, np n=ζ; 三个方程联立,解得:22222md md p p ωωζ--=2m 2n 2ω-=d p p2221222⎪⎪⎭⎫⎝⎛-=-===d m md dd nd p p p p p nT ωπωππζδ。

相关文档
最新文档