北航自动控制原理-Chapter05_频率分析法

合集下载

自控理论第五章频率分析法

自控理论第五章频率分析法

Uo(s) Ui (s) T (sUo(s) uo0 ) Uo(s) TsUo(s) Ui (s) Tuo0
1
1 A
Uo (s)
Ts
1[Ui (s)
Tuo0 ]
Ts
[ 1
s
2
2
Tuo0 ]
取拉氏反变换,
uo
(t
)
(uo0
1
AT T 2
2
)e
t T
A sin(t arctanT ) 1 T 22
I ( )
G( j)
G(jω) R2 (ω) I 2 (ω) G(jω)=arctg I (ω)
R(ω)
幅频特性 相频特性
A( )
()
o
Re R( )
为了直观的、明确的表示在很宽的频率范围内的频率响应, 采用图形表示要比采用函数表示方便地多。因此在频域分析中, 要极为重视频率特性的图形表示方法。
在控制工程中,频率分析法常常是用图解法进行 分析和设计的,因此有必要介绍常用的频率特性的三 种图解表示。
幅相频率特性曲线:即系统幅相曲线或极坐标图。用以在 复平面上描述系统频率特性。也称奈奎斯特(Nyquist)图
Bode图(对数坐标图):即系统对数频率特性曲线。在对
数坐标中将频率响应的幅频特性与相频特性 分开来表示的图形。
j
ω=∞, φ=-90°
1 (ω=0,φ=0)
0
φ
∣G(jω)∣
(2)对数频率特性曲线(Bode图)
对数频率特性图---Bode图。它是将幅频特性和相频特性分 别用两个图表示,为了在很宽的频率范围内描绘频率特性,坐 标刻度采用对数化的形式。
对数频率特性的定义:
L(ω)= 20 lg ∣G(jω)∣-------- 对数幅频特性 φ(ω)= ∠G(jω) ------------- 对数相频特性

自动控制原理简明教程第二版5 第五章 频率响应分析法

自动控制原理简明教程第二版5 第五章 频率响应分析法

15
5.2.2. 典型环节的频率特性曲线绘制方法
(1)比例环节 ) (2)惯性环节 ) (3)振荡环节 ) (4)积分环节 ) (5)其他典型环节与最基本环节的关系 )
16
(1) 比例环节的幅相频率特性曲线
传递函数: 传递函数: G ( s ) = K ( K > 0) 由传递函数得频率特性表达式: 由传递函数得频率特性表达式:
2 2
ω 2ζ ωn ϕ (ω ) = −arctg ω 1 − ( )2 ωn
对数频率特性
2 2 ω 2 ω L(ω ) |= 20 lg A(ω ) = -10 lg 1 − ( ) + 2ζ ωn ωn ω
8
2.对数频率特性曲线(对数坐标图或伯德图) .对数频率特性曲线(对数坐标图或伯德图) 对数频率特性曲线包括对数幅频特性和对数相频特性两条曲线 由频率特性 G( jω) =
1 jϕ(ω) = A(ω)e 1+ jωT
对数幅频特性 L(ω) = 20lg G( jω) = 20lg A(ω) = −20lg
U2 (s) 1 = U1(s) Ts +1
G(s) =
输入正弦信号 u1 ( t ) = A sin ω t
1 1 Aω U1(s) = ⋅ 2 输出响应 U2 (s) = Ts +1 Ts +1 s +ω2
3
5.1.2 频率特性的定义
输出响应 U2 (s) = 输出响应
u2 t) = (
1 1 Aω U1(s) = ⋅ 2 Ts +1 Ts +1 s +ω2
13
5.2.1. 典型环节

自动控制原理第五章频域分析法

自动控制原理第五章频域分析法
L ( ) L a( ) L ( ,)
振荡环节的幅相特性 振荡环节的对数幅频渐进特性
七、二阶微分环节
G(s)sn
2
2sn
1
G (j) j n 22 j n 1 1 n 2 2 j2 n
n0,01
2
G(j) (12)2422
n2
n2
G( j) arctg n 2
1
2 n
G(ju)
1
(1u2)242u2
G(j u)arc2tgu
1u2
若 u1 G (ju) arctg2u 90
1u2
振荡环节的幅相特性曲线(极坐标图)
u0
0.9
0.8
0.6
u 1
0.4
振荡环节的幅频、相频特性曲线
0.05
0.2 0.5 0.7
幅频特性的谐振峰值和谐振角频率:
G(ju)
G(
j)
1
j
e2
相频特性是一常值 2
积分环节的幅频/相频、幅相特性曲线
对数频率特性
三、微分环节
传递函数 G(s) s
j
幅相特性 G( j) e 2
相频特性是一常值 2
微分环节的幅频/相频、幅相、对数特性曲线
四、惯性环节(一阶系统)
传递函数 幅相特性
G(s) 1 Ts1
G(j) 1 1 ejta1nT Tj1 (T)21
1
(1u2)242u2
d G d (j) u u 0 ,u r 1 22 ( 1 /2 0 .7)0
rn12 2 ( 1/ 20 .7)0
幅频特性的谐振角频率和谐振峰值:
rn1 22, M r G (jr) 1 /21 2

自动控制原理 第五章 频率法

自动控制原理 第五章 频率法

频率特性
在稳态下输出:e2 = E2Sin(wt +υ ) 仍是正弦信号, 频率不变, 幅值和相角发生变化. 变化与w有关. 1/jwC 1 写成矢量形式:e2 = ————— e1 = ———— e1 R + 1/jwC 1+jwRC e2 1
-— = ———— e1 1+jwRC
与电路参数RC有关、与输入电压的频率有关
自动控制原理
蒋大明
幅相特性与传递函数之间的关系
输出输入的振幅比(幅频特性): A(w) = Ac/Ar = | G(jw)| = G(S) | 输出输入的相位差(相频特性): υ (w) = υ - 0 =∠G(jw) =∠G(S) | 所以:G(jw) = G(S)|S=jw 频率特性 传递函数 证毕
自动控制原理
蒋大明
一阶不稳定环节
一阶不稳定环节的对数幅频特性与惯性环节的完全一样;相频则有所 不同,是在-180至-90范围内变化.
L ( )
0 -20
1
10

(a )
( )
0o
90o

(b)
180o
图5-20 一阶不稳定环节 的对数频率特性
自动控制原理
蒋大明
时滞环节
传递函数: G(S) = e-τ
S
幅相频率特性:
G(jw) = e-jτ
A(w) = 1 υ (w) = -τ w
w
自动控制原理
蒋大明
时滞环节
对数频率特性: L(w) = 20 lg A(w) = 20lg 1 = 0 υ (w) = -τ w
(横坐标对数分度,曲线)
自动控制原理
蒋大明
第三节
1.

自动控制原理第五章频率响应法

自动控制原理第五章频率响应法
智能化和自适应频率响应分析方法
随着人工智能和机器学习技术的发展,将人工智能和机器学习技术应用于频率响应分析中 ,可以大大提高分析的准确性和效率,是未来研究的一个重要方向。
06
参考文献
参考文献
01
《现代控制系统分析与设计(第八版)》作者: Richard C. Dorf and Robert H. Bishop
01
频率响应法的起源可以追溯到20世纪30年代,当时研究者开始 使用频率响应法来分析电气系统的稳定性。
02
随着计算机技术和信号处理技术的发展,频率响应法的应用范
围不断扩大,分析精度和计算效率也不断提高。
目前,频率响应法已经成为自动控制原理中最重要的分析方法
03
之一,广泛应用于控制系统的分析和设计。
02
非线性系统的频率响应分析
非线性系统的频率响应分析是研究非线性系统对不同频率输入信号的响应特性。由于非线性系统的输出与输入之间不存在明 确的函数关系,因此需要采用特殊的方法进行分析。
在实际应用中,非线性系统的频率响应分析广泛应用于音频处理、图像处理、通信等领域。通过分析非线性系统的频率响应 特性,可以揭示系统的内在规律,为系统设计和优化提供依据。
02
《自动控制原理(第五版)》作者:孙亮
03
《控制系统设计指南(第二版)》作者:王树青
感谢您的观看
THANKS
对数坐标图分析法
对数坐标图分析法也称为伯德图,通过将系统 的频率响应以对数坐标的形式表示出来,可以 方便地观察系统在不同频率下的性能变化。
在对数坐标图中,幅值响应和相位响应分别以 对数形式表示,这样可以更好地展示系统在不 同频率下的变化趋势。
对数坐标图分析法适用于分析各种类型的系统 和多输入多输出系统,对于非线性系统也可以 进行一定的分析。

自动控制原理--第5章 频域分析法

自动控制原理--第5章 频域分析法
例如,惯性环节对数幅频特性和相频特性分别为
L() 20lg | G( j) | 20lg 2T 2 1
arctanT
当=0时,L()=0dB, =0, 曲线起始于坐标原点;当=1/T时, L()=-3dB, =-45;
自动控制原理
30
5-4 频域稳定性判据
一、映射定理
闭环特征函数 F(s)=1+G(s)H(s)
T
如果τ>T,则∠G(j)>0°,极坐标曲线在第Ⅰ象限变化;如果τ<T, 则∠G(j)<0°,极坐标曲线在第Ⅳ象限变化,如图所示。
自动控制原理
16
5.3.2 对数坐标图
通过半对数坐标分别表示幅频特性和相频特性的图形, 称为对数坐称图或波德(Bode)图。
1.对数坐标 对数频率特性曲线由对数幅频特性和相频特性两部分
系统的传递函数为 C(s) G(s)
R(s)
假定输入信号r(t)为
r(t) Asint
R(s) L[ Asint] A
A
s 2 2 (s j)(s j)
自动控制原理
7
G(s)
K (s z1 )(s z2 )(s zm ) (s s1 )(s s2 )(s sn )
nm
2j
AG( j) sin(t )
B sin(t )
G( j ) G( j ) e jG( j) G( j) e j

G( j) G(s) s j
这里的结论同RC网络讨论的结果是一致的。
自动控制原理
10
5.3 频率特性的图示方法
频率特性的图示方法主要有三种,即极坐标图、对数坐 标图和对数幅相图,现分述如下。
所以K=10。因此,所求开环传递函数

自动控制原理-第5章 频率分析法

自动控制原理-第5章 频率分析法
一般将幅频特性和相频特性画在一张图 上,使用同一个横坐标(频率轴)。
当幅频特性值用分贝值表示时,通常将它 称为增益。幅值和增益的关系为:
幅值
1
A ( )
增益
0
20lgA(w)
1.26 1.56 2.00 2.51 2468
3.16 10
5.62 15
10.0 20
15
对数频率特性曲线图(伯德图)
频率特性就是输出、输入正弦函数用矢量表示时之比。
10
频率特性的表示方法
一、代数解析法
G(j)bamn((jj))m n abnm11((jj))nm11
b1(j)b0 a1(j)a0
P()jQ()
A()ej()
A() P2 () Q2 () () arctan Q()
对数幅相特性曲线(尼柯尔斯图)
将对数幅频特性和相频特性两条曲线合并成一条曲线。横坐标为相角
特性,单位度或弧度。纵坐标为对数幅频特性,单位分贝。横、纵坐
标都是线性分度。
16
典型环节的频率特性
⒈ 比例环节: G(s) K
G(j)K
幅频特性:A() K ;相频特性: () 0
L()/ dB
5
频率特性的求取
C (s)s a js a js b 1 s1s b 2 s2s b n sn
n
c(t)aejt aejt biesit

css(t)aejt aejt
i1
a G (s )(s jA ) (s j)(s j)s j G ( j)2 A j
G (s)K(sz1)(sz2) (szm) n m (ss1)(ss2) (ssn)

第五章 频率法

第五章 频率法
其中,s1 , s2 ,, sn是系统的闭环极点。要 使系统稳定, 则si 必须都具有负实部。
假设s1 , s2 ,, sn为互异的极点,则有
C ( s) ( s) R( s)
B( s) A 2 r 2 ( s s1 )( s s2 )( s sn ) s
3
() 1 ( ) 2 ( ) 3 ( )
幅值相乘变为相加,简化作图。
L() 20 lg A() 20 lg | G( j) |
北京航空航天大学机械工程及自动化学院
第五章
频率法
由于横坐标采用了对 数分度,因此零频率, 即=0不可能在横坐 标上表示出来,横坐 标表示的最低频率 一般由我们感兴趣的 频率范围来定。
结论
给稳定的系统输入一个正弦,其稳态输出是与输入 同频率的正弦,幅值随ω而变,相角也是ω的函数。
Ar=1 ω=0.5
ω=1
ω=2
ω=2.5
ω=4
北京航空航天大学机械工程及自动化学院
第五章
频率法
9
频率特性
幅频特性:输出与输入稳态振荡的振幅比。
A( )
Ac ( j ) Ar
相频特性:输出与输入稳态振荡的相位差角。
( j ) Ar sin(t ( j ))
结论:
线性定常系统对正弦输入信号的稳态反映为与输入 信号同频率的正弦信号。 振幅: Ac ( j ) Ar 相位: t ( j )
4
频率特性的概念
设系统结构如图,由劳斯判据知系统稳定。
给系统输入一个幅值不变频率不断增大的正弦, 曲线如下:
北京航空航天大学机械工程及自动化学院 第五章 频率法 19
对数频率特性曲线

自动控制原理第五章频域分析法

自动控制原理第五章频域分析法
一 由传递函数求系统的频率响应
第19页/共187页
频率特性
对应的幅值和相角:
同理,可求得对应于2的|G(j2)|和(j2) 。
若对取所有可能的值,则可得到一系列相应的幅值和相位。 其中幅值随频率变化而变化的特性称为系统的幅频特性。 相角随频率变化而变化的特性称为系统的相频特性。
第20页/共187页
每当ω增加十倍, L(ω)减少20dB负20分贝十倍频程 -20dB/ dec
第34页/共187页
5-3典型环节和开环系统频率特性
第35页/共187页
积分环节L(ω)
[-20]
[-20]
[-20]
第36页/共187页
5-3典型环节和开环系统频率特性
三、微分环节
幅频特性与ω成正比,相频特性恒为90°
第12页/共187页
5-2频率特性
以RC网络为例,说明频率特性的基本概念。
取拉氏变换,求网络的传递函数
如果输入为正弦量:
由电路分析,电路达到稳态时,输出也是以ω为角频率的正弦量。
在传递函数中G(s)中,只要令s=jω,则可由⑴式得到⑵式。
第13页/共187页
5-2频率特性
控制系统的三种数学模型:微分方程、传递函数、频率特性可以相互转换,它们的关系见右图。
交接频率将近似对数幅频特性曲线分为二段:低频段和高频段。
第41页/共187页
惯性环节G(jω)
φ(ω) = -tg-10.5 ω
ω
0
0.5
1
2
4
5
8
20
φo(ω)
A(ω)
0
1
-14.5
0.97
-26.6
0.89

自控原理课件 第5章-自动控制系统的频率分析

自控原理课件 第5章-自动控制系统的频率分析
52
γ和kg可以用来作为控制系统的开环频域性能指标。 在分析设计一个控制系统时,系统的性能常用γ与kg 的定量值来描述。 在使用时,γ和kg通常是成对使用的,但有时也 使用一个裕量指标,如用相角裕量γ来分析控制系统 的性能指标。这时对于系统的绝对稳定性的分析没 有什么影响,但是在γ较大,而kg较小的情况下。对 于系统动态性能的影响是很大的。
5
6
综上所述,求解系统频率特性主要有三种方法: (1)根据系统的微分方程求解稳态解。通过求解正 弦输入信号的稳态输出分量与输人情号的复数比得 到系统的频率特性。 (2)由于系统的频率特性是传递函数的特殊情况, 以s=jω代人传递函数,即得系统的 频率特性。 (3)通过实验方法测定。对于线性稳定系统,当输 入正弦信号的频率不断变化时,记录相应的输出, 绘出系统的幅频特性与相频特性,即得到系统的频 率特性。 注意:频率特性同传递函数一样,也是一种数学 模型,它也包含了系统的结构与参数,反映了系统 的结构性能。 7
49
50
51
2. 相角裕量 设幅频特性过零分贝时的频率为ωc,(幅值穿越频率),则定 义相角裕量γ为 γ=180º +φ(ωc) (5.34) 相角裕量γ指明了如果系统是不稳定系统,那么系统的 开环相频特性还需要改善多少量就成为稳定的了。如果系统 是不稳定的,与上述描述相反。 对于某一控制系统,若相角裕量γ大于零,幅值裕量kg大于1, 则系统稳定,并且γ和kg的值越大,系统稳定程度越好;苦γ 小于零,kg小于1,则系统不稳定。 一阶、二阶系统的γ总是大于零,而kg无穷大。因此, 理论上讲系统不会不稳定。但是,某些一阶和二阶系统的数 学模型是在忽略了一些次要因素后建立的,实际系统常常是 高阶的,其幅值裕度不可能无穷大。因此,开环增益太大, 系统仍可能不稳定。

自动控制原理简明版第5章频率法课件

自动控制原理简明版第5章频率法课件
03
相角裕度是指系统相角特性曲线在穿越频率处的相角与-180°之间的 差值,它反映了系统对相位滞后的容忍程度。
04
幅值裕度是指系统幅频特性曲线在穿越频率处的幅值与0dB之间的差 值,它反映了系统对幅值变化的容忍程度。
04
CATALOGUE
闭环系统性能分析
闭环系统时域性能指标
上升时间 峰值时间
超调量 调节时间
频率法校正设计
超前校正设计原理及方法
原理
通过引入一个相位超前的校正环节,以改善系统的动态性能。超前校正环节具有正的相角特性,可以 补偿系统中由于惯性环节、滞后环节等引起的相位滞后,从而提高系统的相位裕度和截止频率,使系 统具有更好的稳定性和快速性。
方法
超前校正设计通常包括确定超前校正环节的传递函数、选择适当的超前时间常数和超前角等步骤。具 体实现时,可以根据系统的性能指标要求,通过试凑法或解析法确定超前校正环节的参数。
对数频率特性曲线(Bode图)
包括对数幅频特性和对数相频特性两部分。对数幅频特性表示系统对正弦输入信号的放大倍数随频率变化的情况 ;对数相频特性表示系统对正弦输入信号的相位滞后随频率变化的情况。通过Bode图可以直观地了解系统的频 率响应特性。
03
CATALOGUE
频率域稳定性判据
奈奎斯特稳定判据
02 通过研究系统的频率特性,可以深入了解系统的 性能,并为系统设计提供指导。
03 频率法还可以用于控制系统的设计和优化,提高 系统的性能指标。
02
CATALOGUE
线性系统频率特性
传递函数与频率特性关系
传递函数定义
描述线性定常系统动态特性的数学模型,表达了系统输出 与输入之间的复数域关系。
频率特性定义

自动控制原理 第五章

自动控制原理 第五章
s j

Y ( j ) (见上面 A , A 的求法) R ( j )

Y (s)
R m G ( j ) e j s2 2
Y (s) G ( j ) e j R( s )
即系统正弦稳态响应与其输入量之比称为系统的频率特性。
3
自动控制原理:第五章 频域分析法
n ,
L( ) 20 lg n
4
40 lg
40dB dec n
n , L( ) 20 lg(2 ) ,为交接/转角频率。
7.二阶微分环节
14
自动控制原理:第五章 频域分析法
杨晨阳
杨晨阳
4. 惯性环节
1 1 j tg 1T G ( j ) e 2 2 1 j T 1 T
A( )
1 1 2T 2
, L( ) 20 lg 1 2 T 2 ;
( ) tg 1T
在系统输入端加一个正弦信号: r (t ) R m sin t
R( s) Rm s2 2 Rm ( s j )( s j )
(s)

系统输出: Y ( s)
Rm ( s p1 ) ( s pn ) ( s j )( s j )
极:
0 , G ( j 0) 1 e j 0
1 1 T T , G ( j) 0 e j 90
对:近似法
, G ( j ) 2 e j 45
T 1, L( ) 0dB T 1, L( ) 20 lg T 20dB / dec — 二直线交点为
G ( j ) 1 2 ( j

自动控制原理第五章频率法

自动控制原理第五章频率法

频率响应的分析方法
频域分析法
通过求解系统的传递函数,得到系统的频率响应曲线,进而分析 系统的动态性能。
时域分析法
通过求解系统的微分方程,得到系统的时域响应,进而分析系统 的动态性能。
根轨迹法
通过绘制系统的极点轨迹图,分析系统的稳定性,并得到系统的 频率响应特性。
03
频率响应的特性
稳定性分析
判断系统稳定性的依据
频率响应是指控制系统对不 同频率输入信号的输出响应 特性。
频率响应的测量方法
通过测量控制系统在不同频 率下的输出信号,可以得到 系统的频率响应特性。
频率响应的分析
通过对频率响应的分析,可 以了解系统的动态特性和稳 定性。
控制系统中的稳定性分析
稳定性定义
如果一个系统受到扰动 后能够回到原来的平衡 状态,则称该系统是稳 定的。
频率特性的表示方法
极坐标图
01
通过极坐标图表示频率特性的幅度和相位角。
Bode图
02
通过Bode图表示频率特性的对数幅度和相位角随频率的变化关
系。
Nyquist图
03
通过Nyquist图表示频率特性的极点和零点随频率的变化关系。
02
频率响应分析
频率响应的定义
01
频率响应是指在稳态下,线性定常系统对不同频率的正弦输 入的稳态输出。
频率响应的极点和零点位置。
稳定裕度
衡量系统稳定性的指标,包括相位裕度和幅值 裕度。
稳定判据
基于频率响应的极点和零点位置,判断系统是否稳定的准则。
动态特性分析
动态响应过程
系统受到正弦波输入信号后,频率响应随时 间变化的过程。
动态性能指标
衡量系统动态响应性能的指标,如超调和调 节时间、峰值时间等。

自动控制原理第5章 频率特性分析法

自动控制原理第5章 频率特性分析法

Kce jt

Kce jt
Kc

Gs s
X
j s

j s
j
s j

G j
2j
X
Kc

Gs s
X
j s

j s

j
s j

G
j
2j
X
e e G j G s s j G j G j jG j B() j
知识要点
频率特性是一种数学模型,主要包括三种图形:
幅相频率特性曲线(又称极坐标或Nyquist曲线), 利用Nyquist稳定判据可由开环频率特性判别闭环系 统的稳定性
对数频率特性曲线(又称Bode图),用相位裕度和幅 值裕度来反映系统的相对稳定性。
对数幅相频率特性曲线(又称Nichols曲线),利用 等M圆和等N圆可由开环频率特性求闭环频率特性, 进而定性或定量分析系统的时域响应。
G(s)

N(s) D(s)


s

p1


s
N(s)
p2


s

pn

设 pi互不相同的实数
若: x(t) X sin t,
则X (s)

X s2 2

s
X
js
j
Y (s)

s

N (s)
p1 s

pn


s

X
j s

j
第一节 频率特性的基本概念
一、频率特性的定义
R
+
+

自动控制原理第五章频率分析法

自动控制原理第五章频率分析法

回章首
回节首
12
(2) 频率特性与微分方程的关系 已知线性定常系统的微分方程为
a y
i0 i n
n
(i )
(t ) b j x( j ) (t )
j 0
m
(5-15)
类似于拉氏变换将微分方程两边作傅氏变换可得
[ai ( j) ] Y ( j) [b j ( j) j ] X ( j)
bm s m bm1s m1 ... b1s b0 G( s) n s an 1s n 1 ... a1s a0
这是一个复自变量s的复变函数。 由于 s j ,令s的实部为零时,就可以得到另外一个复 变函数G(j),表为
G( j) G(s) |s j
(5-1)
复变函数G(j)的自变量为频率,因此将其称为频率特性。
回章首
4
G(j) 以实部和虚部可以表为
G( j) P() (j)的实部;
Q() Im[G( j)] ,为G(j)的虚部。
另外还可以用G(j)的模和幅角来表示为
因此,当频率 从-0及从0++时,G(j)正负频率 的曲线是实轴对称的。通常只画出正频率的曲线即可, 即图中的实线所示。 同理,幅频特性A()是的偶函数,而相频特性() 是的奇函数。
回章首 回节首
16
G(j)的极坐标图绘制时需要取的增量逐点作出,因 此不便于徒手作图。一般情况下,依据作图原理,可以粗 略地绘制出极坐标图的草图。在需要准确作图时,可以借 助于计算机辅助绘图工具来完成G(j)的极坐标图绘制。 G(j)的极坐标图经常用于频域稳定性分析的作图中。
(5-5)
回章首
回节首
8
RC网络频率特性的两条曲线A()和()如图5-3所示。

自动控制原理05第五章频率响应法c2精品PPT课件

自动控制原理05第五章频率响应法c2精品PPT课件

x 0 G(jx)K
Im
0 0
-1
K Re
6
例题3:绘制
G(S)
K
的幅相曲线。
S(T1S1)T(2S1)
解: G(j)j(T1jK 1)T (2j1)
起点: G(j0) 9o0 终点: G(j)09o03
求交点: G (j)K [ ( T 1 (T 12 T 22 ) 1 )T j((2 1 2 2 T 1T 1 )22)]
S 转折频率:0.5 2 30
斜率: -20 +20 -20
20
例3 某系统开环传递函数 (标准化求K值,叠加法)
G(S)S(S32)(013S(S212)S2)
绘出对数幅频特性和对数相频特性图。
解:频率特性: G (j)j(1 2j 7 1 .)5((1 31 2(jj 1 ))2j1)
(1)比例 2l0 g K 2l0 g 7 .5 1.5 7 d B ()00
0
[-60]
0.1 0.2
12
10 20
10
-20
-40
低频段:10 S2
0.1 为60db 1 为20db
-40
转折频率:1 2 20
-8018
斜率: -20 +20 -40
G (s)H (s)S2(S 1 1)(- 0 (2 S 1 + )(02 1 2S 1 2)•2 S 01)
()1()2()3()4()5() =00+(-tg10.5)900•2tg1tg110(.00.0255)2 =-tg10.5tg1tg110(.00.0255)2
起点: G(j0) 9o0 终点: G(j)09o02
求交点:
G (j) K [ ( T 1 T 2 T 1 T 2 ( T 1 2 2 )2 1 j ) ( ( 1 T 2 2 T 1 2 T 2 1 ) 2 T 1 2 T 2 2 ) ]

自动控制原理第五章--频率法

自动控制原理第五章--频率法
G(s) s G(s) 1 Ts
G(s) T 2s2 2Ts 1
频率特性分别为:
G( j ) j G( j ) 1 jT G( j ) 1 T 2 2 j2T
① 纯微分环节: G( j ) j
A() , ()
2
P() 0, Q()
微分环节的极坐标图为 正虚轴。频率从0→∞ 特性曲线由原点趋向虚 轴的+∞。
当 o 时,误差为:2 20lg 1 T 22 20lgT
T L(),dB 渐近线,dB0.1 0.2来自0.5 1 2 510
-0.04 -0.2 -1 -3 -7 -14.2 -20.04
0
0
0 0 -6 -14
-20
最大误差发生在
o
处,为
1 T
误差,dB
0 -1
-0.04 -0.2 -1 -3 -1 -0.2
时:A() 0,() 90
P() 0,Q() 0
2. 对数频率特性
A( ) K 1 T 2 2
G(s) K Ts 1
G( j ) K jT 1
( ) tg1T
①对数幅频特性:L() 20lg A() 20lg K 20lg 1 T 2 2
为了图示简单,采用分段直线近似表示。
二、频率特性的表示方法:
工程上常用图形来表示频率特性,常用的有:
1.幅相频率特性图,极坐标图,也称乃奎斯特(Nyquist) 图。是以开环频率特性的实部为直角坐标横坐标,以其
虚部为纵坐标,以 为参变量的幅值与相位的图解表示
法。
它是在复平面上用一条曲线表示 由 0 时的频
率特性。即用矢量 G( j)的端点轨迹形成的图形。 是
R Ar0o ,C Ac
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相频特性:
纵坐标(),横坐标 为,坐标轴均采用 线性分度
2)极坐标图
( j) A()e j() ( j) ( j) A
频率特性可以表示成模为A和相角为(按反时针方向为正) 的矢量。
极坐标图(又称为幅相特性 图、奈奎斯特图、Nyquist 图):
:0 ∞,模值A和相 角随之变化,矢量端点在 复平面的轨迹。
对数幅频特性: L() 20lg M() 20lg 1 20lg
幅相曲线
伯德图
5.2.3 微分环节
传递函数: G(s) s 频率特性: G(j) j
对数幅频特性:L() 20lg G j 20lg 对数相频特性: 90
幅相曲线 伯德图
5.2.4 惯性环节(一阶环节)
c(t) Ac1 sin(t 1)
r(t) Ar sint
Ar=1, =1
c(t) Ac2 sin(t 2 )
r(t) Ar sint
Ar=1, =10
c(t) Ac3 sin(t 3)
r(t) Ar sint
Ar=1, =50
c(t) Ac4 sin(t 4 )
r(t) Ar sint
系统的频率响应定义为系统对正弦输入信号的稳态响应 The response of a linear system to a sinusoidal input is referred to as the system’s frequency response.
Example 5-1 二阶系统对正弦输入信号的响应 Response of second-order system to sinusoidal input
e j[t( j )]
e j[t( j )]
(
j )
Ar
cos[t
(
j)
2
]
( j) Ar sin[t ( j)] Ac sin(t )
系统对正弦响应输入作用的响应的稳态输出是与输入
同频率的正弦振荡。
振幅
Ac | ( j) | Ar
相位
t t ( j)
幅频特性——输出与输入稳态振荡的振幅比
表示为复数函数:
A()e j ()
称上式为振幅相位频率特性,简称幅相特性,并有下列关系:
(s) |s j ( j) A()e j()
5.2 典型环节的频率特性 Frequency responses of typical transfer functions
5.2.1 放大环节
传递函数: G(s)=K
所对应的频率。
总结:
频率特性包括幅频特性A()和相频特性 (),幅频特性 A()为正弦输入下输出、输入稳态振荡的振幅比Ac/Ar;相 频特性()为正弦输入下输出、输入稳态振荡的相位差。其
数学上的定义分别为:
A() ( j) (s) s j
() ( j) (s) |s j
若以A()为模、 ()为幅角,则频率特性可以用模幅式
第五章 频率分析法
Chapter 5 Frequency Response Methods
ASM XY-Stage动态建模与参数化分析
对Y轴模型25个参数、X轴模型38个参数进行了全面仿真分析, 结果已成功应用于ASM新型22g/1m的XY-Stage的改进设计!
ASM XY-Stage动态建模与参数化分析 ——刘强、齐畅提出“宽频多模态运动耦合分析建模方法”
圆心:(1/2,j0) 半径:1/2
1 时, G 1 , 45
T
2
幅相曲线
5.2.5 一阶微分环节 传递函数: G(s) s 1
频率特性: G j j 1
幅频特性: A() G( j) ( j) 1 22 1 相频特性: () G( j) arctan()
对数幅频特性:
II)对数渐近幅频曲线
1 T
,即T
1时
20lg A() 20lg T 2 2 1 20lg 1 0
1 T
,即T
1时
20lg A() 20lg T 2 2 1 20lg(T)
1 T
,20 lg T
20 lg1
0db
10 T
,20
lg
T
20 lg10
20db
10 T
0
,20
lg
T
20 lg102
2)对数坐标图(Logarithmic plot)(Bode plot) • 表达式
- 对数幅频特性(Logarithmic magnitude)L()
L() 20log A() 20log 1 20log 1
Tj 1
T 2 2 1
20lg1 20lg T 2 2 1
20lg T 2 2 1
频率特性: G(j)=K
幅频特性: M( ) G(j ) K
相频特性: () G(j) 0 对数幅频特性: L() 20lg M() 20lg K
幅相曲线
伯德图
5.2.2 积分环节
传递函数: G(s) 1
s
频率特性:G(j ) 1
j
幅频特性: M( ) G(j ) 1
相频特性: () G(j) 90
引入对数坐标优点:
• 十倍频程对应一个单位长度,可以表示更大频率范围的频率特性 • 幅值乘除转化为加减运算 • 可近似绘制止对数幅频曲线
对数相频曲线的纵坐标表示相频特性的函 数值,线性均匀分度,单位是度或弧度。
1
2
3
4
5
6
7
8
9
10
lg
0
0.301 0.477 0.602 0.699 0.778 0.845 0.903 0.954 1
Ar=1, =100
r(t) 系统 c(t)
Ar=Const.,= 1,2, 3…,测得: Ac1,Ac2, Ac3,... 1, 2, 3... 作曲线:A()——Ac/Ar-, ()
振幅频率曲线(幅频曲线) (Magnitude-Frequency)
0.707A(0)
相位频率曲线(相频曲线) (Phase angle-Frequency)
Sine Wave
Sum
1000 s(s+34.5)
Zero-Pole
Mux
Scope
Step
Scope1
二阶系统对正弦输入响应的仿真(SIMULINK 仿真)
不同频率正弦输入下的输出响应
1) Ar=1,1=1.0, (T1=2/1=6.28) 2) Ar=1,2=10, (T2=2/2=0.628) 3) Ar=1,3=50, (T3=2/3=0.1256) 4) Ar=1,4=100, (T4=2/4=0.0628)
Experiment and Simulation
‖—‖----Experimental,―*‖----Theoretical)
5.1 频率特性(Frequency Response) 5.1.1 频率特性的概念(Basis of Frequency Response)
r(t)
(s)
c(t)
r(t) Ar sint 系统的响应输出为c(t)
对数幅频和对数相频特性曲线
Bode Diagrams
From: U(1) 0
-5
Phase (deg); Magnitude (dB)
To: Y(1)
-10
-15 0
-20
-40
-60
-80
100
101
102
Frequency (rad/sec)
5.1.4 重要频域性能指标(Frequency-domain Specifications)
A()和 ()反映了系统在正弦信号作用下的稳态响应的情况。
频率特性(Frequency Response):
以信号的角频率为横坐标,以系统稳态输出对输入 的振幅比A(=Ac/Ar)和相位差角为纵坐标,绘出两条曲线: A()、(),即为系统的频率特性。
幅频特性(Magnitude-Frequency) A():
曲线特点:
0 , A() 1 0 () 0
存在谐振峰值
n时
谐振频率和谐振峰值: 令 dA() 0, 可得: d
A() Ac ( j) (s)
Ar
s j
相频特性——输出与输入稳态振荡的相位差角
() [t ( j)] t ( j) (s) |s j
动态数学模型
频率特性和传递函数、微分方程的置换关系图
5.1.3 频率特性图示法
1)直角坐标图
幅频特性:
纵坐标A(),横坐标 为,坐标轴均采用
线性分度
L() 20lg G j 20lg 2 1
对数相频特性:() arctan
特征点: 1 , L() 3dB, 45
一阶微分环节的伯德图 幅相曲线
5.2.6 振荡环节(二阶环节)
1)幅频特性A()和相频特性()
A()
()
二阶系统的幅相曲线(极坐标图) 二阶系统的幅频曲线和相频曲线
(
1 T
)
arct
an
1
4
频域性能分析: I) A(0)=1,零频时的振幅比,反映系统稳态精度,ess=0;
II) A()无谐振峰值,平稳性好;
III) b=1/T; T越大--> b越小,系统响应的快速性差。 在频率特性上的反映:A()随 的增加很快衰减。
ts 3T bts 3
时域与频域指标关系 频带宽则调节时间短
角频率—横坐标,纵坐标—振幅比
相频特性(Phase-Frequency)():
角频率—横坐标,纵坐标—相位差角
5.1.2 频率特性的数学意义(Mathematical meaning of frequency response)
相关文档
最新文档