函数的单调性与最值ppt
合集下载
函数的单调性和最值PPT精品课件
函数单调性的定义可以通过函数的导数来判断。如果函数的导数大于0,则函数在该区间内单调递增;如 果函数的导数小于0,则函数在该区间内单调递减。
函数单调性的性质
函数单调性具有传递性,即如果函数 在区间I上单调递增,且在区间J上单 调递增,则函数在区间I和J的交集上 也是单调递增的。
函数单调性具有相对性,即如果函数 在区间I上单调递增,且另一个函数在 区间J上单调递增,则这两个函数在区 间I和J的交集上也是单调递增的。
求函数最值的方法
配方法:将函数进行配方,利用二次 函数的性质求最值。
导数法:求出函数的导数,令导数为 0,解出极值点,再比较区间端点和
极值点的函数值,得到最值。
判别式法:对于一些特殊的分式函数, 通过判别式法求最值。
实际问题的解决
利用函数的单调性和最值解决实际问 题,如最大利润、最小成本等问题。
通过建立数学模型,将实际问题转化 为数学问题,利用函数的单调性和最 值求解。
函数的拐点
定义
函数图像上凹凸性发生变化的点,即二阶导数由正变负或由负变正的点。
判断方法
求函数二阶导数,令其等于0,然后检查三阶导数在该点的符号,以确定函数在拐点左 侧是凹还是凸。
极值和拐点的应用
优化问题
通过找到函数的极值点,可以确定使目标函数 取得最大或最小值的自变量取值。
动态分析
拐点可以用于分析经济、物理等系统的变化趋 势和稳定性。
单调性在生活中的应用
单调性在经济学中有着广泛的应用,例如在股票价格、商品价格和供需关系等方面的分析中,可以利用单调性来判断市场的 变化趋势。
单调性在物理学中也有着重要的应用,例如在研究物体的运动规律、热量传递和电磁场等方面,可以利用单调性来分析物理 现象的变化趋势。
函数单调性的性质
函数单调性具有传递性,即如果函数 在区间I上单调递增,且在区间J上单 调递增,则函数在区间I和J的交集上 也是单调递增的。
函数单调性具有相对性,即如果函数 在区间I上单调递增,且另一个函数在 区间J上单调递增,则这两个函数在区 间I和J的交集上也是单调递增的。
求函数最值的方法
配方法:将函数进行配方,利用二次 函数的性质求最值。
导数法:求出函数的导数,令导数为 0,解出极值点,再比较区间端点和
极值点的函数值,得到最值。
判别式法:对于一些特殊的分式函数, 通过判别式法求最值。
实际问题的解决
利用函数的单调性和最值解决实际问 题,如最大利润、最小成本等问题。
通过建立数学模型,将实际问题转化 为数学问题,利用函数的单调性和最 值求解。
函数的拐点
定义
函数图像上凹凸性发生变化的点,即二阶导数由正变负或由负变正的点。
判断方法
求函数二阶导数,令其等于0,然后检查三阶导数在该点的符号,以确定函数在拐点左 侧是凹还是凸。
极值和拐点的应用
优化问题
通过找到函数的极值点,可以确定使目标函数 取得最大或最小值的自变量取值。
动态分析
拐点可以用于分析经济、物理等系统的变化趋 势和稳定性。
单调性在生活中的应用
单调性在经济学中有着广泛的应用,例如在股票价格、商品价格和供需关系等方面的分析中,可以利用单调性来判断市场的 变化趋势。
单调性在物理学中也有着重要的应用,例如在研究物体的运动规律、热量传递和电磁场等方面,可以利用单调性来分析物理 现象的变化趋势。
函数的单调性与最值-PPT
30
∴当 x= 时,函数3
2
g(取x)=得- x32最 小2x =值1 ,
5 3
,m12即-4m(32m2+53 1)·(4m2-3)≥0,
解得m≤
或m≥ .3
2
3 2
31
27
正解:
由不等式x2-4x+3>0,得函数的定义域为
(-∞,1)∪(3,+∞).
设u=x2-4x+3,则 y log1 u 又u=x2-4x+3=(x-2)2-1,2
故由二次函数的性质知:
当x≥2时,u=x2-4x+3为增函数; 当x<2时,u=x2-4x+3为减函数.
因为函数定义域为(-∞,1)∪(3,+∞) 且 y log1 u 为减函数,
减函数 增函数
增函数 增函数 减函数 减函数
4
基础达标
• (教材改编题)下列函数中,在区间(0,2)上为 增函数的是( B )
A. y=-x+1 C. y=x2-4x+5
B. y= x D. y= 2
x
解析: 结合函数的图象可知只有选项B对应的函数满足题意.
5
2. (教材改编题)f(x)=4x2-mx+5在[-2,+∞)
22
由②得0<x2+5x+4≤
1 4
∴
5 10 2
≤x<-4或-1<x≤
5 1,0 ④
2
由③、④得原不等式的解集为
{x x 5或 5 10 x 4或 1 x 5 10 或x 0}
2
2
.
23
题型四 函数的最值 【例4】 已2 知函数f(x)对于任意x,y∈R,总有 f(x)+f(y)=3f(x+y),且当x>0时,f(x)<0, (1)求证:f(x)在R上是减函数; (2)求f(x)在[-3,3]上的最大值和最小值.
高考数学专题复习《函数的单调性与最大值》PPT课件
解 当a>0时,f(x)在(-1,1)上单调递减,当a<0时,f(x)在(-1,1)上单调递增.证明
如下:
(方法1 定义法)任取x1,x2∈(-1,1),且x1<x2,
因为
-1+1
1
f(x)=a(
)=a(1+ ),则
-1
-1
1
1
( 2 - 1 )
f(x1)-f(x2)=a(1+ )-a(1+ )=
(-1)-
(方法2 导数法) f'(x)=
2
(-1)
=
-
(-1)2
,所以当a>0时,f'(x)<0,当a<0
时,f'(x)>0,即当a>0时,f(x)在(-1,1)上单调递减,当a<0时,f(x)在(-1,1)上单调
递增.
解题心得1.判断函数单调性的四种方法:
(1)定义法;
(2)图像法;
3
∴f(-2)<f(- )<f(-1).故选
2
D.
f(x)在(-∞,-1]上是增函数,
3 1
4.(2020 全国 2,文 10)设函数 f(x)=x - 3 ,则 f(x)(
)
A.是奇函数,且在(0,+∞)上单调递增 B.是奇函数,且在(0,+∞)上单调递减
C.是偶函数,且在(0,+∞)上单调递增 D.是偶函数,且在(0,+∞)上单调递减
3.若f(x)满足f(-x)=f(x),且在(-∞,-1]上是增函数,则(
3
A.f(-2)<f(-1)<f(2)
3
B.f(-1)<f(-2)<f(2)
函数的单调性极值与最值课件
2) 对常见函数, 极值可能出现在导数为 0 或
y
不存在的点.
x1 , x4 为极大点
x 2 , x5 为极小点
x3 不是极值点
o a x1 x2 x3 x4 x5 b x
机动 目录 上页 下页 返回 结束
定理 1 (极值第一判别法)
设函数 f (x)在 x0 的某邻域内连续, 且在空心邻域 内有导数, 当x由小到大通过 x0 时,
x2
2
x1
)2
[
f
(1)
f (2 )]
当 f (x) 0时,
f
( x1
) 2
f
(
x2
)
f (x1 x2 ),
2
说明 (1) 成立; (2) 证毕
机动 目录 上页 下页 返回 结束
推论
如果在区间(a,b)内恒有f ''(x) 0(或f ''(x) 0). 且使得f ''(x) 0的点只是一些离散的点,则函 数曲线y f (x)在区间(a,b)内上凹(或下凹)
综上,f (x)在(0,1)内只有一个零点,即方 程f (x)=0,亦即xex 2在(0,1)内仅有一个实根.
例6 设f (x)在[a, b]上连续,且在(a, b)内f ''(x) 0,
证明 f (x) f (a) 在(a, b)内单调增加. xa
证明 设F (x) f (x) f (a) , x (a,b) xa
而F ' (x)
f ' (x)(x a) f ' ( )(x a)
(x a)2
f ' (x) f ' ( ) 0,
xa F (x) f (x) f (a) 在(a,b)内单调递增.
课件(人教A版数学理)第二章-第二节函数的单调性与最值全篇
【规范解答】(1)选D.解x<g(x)=x2-2得x2-x-2>0,
则x<-1或x>2.因此x≥g(x)=x2-2的解为:-1≤x≤2.
于是f(x)=
x2 x2, x2 x2,
x<1或x>2, 1x2,
当x<-1或x>2时,f(x)=(x1)2 7>2.
24
当-1≤x≤2时,f(x)= (x 1)2 9,
3.函数的最值
前提
设函数y=f(x)的定义域为I,如果存在M∈R
满足 条件
①对于任意的x∈I,都有 _f_(_x_)_≤__M_ ②存在x0∈I,使得f_(_x_0_)_=_M_
①对于任意的x∈I,都有 _f_(_x_)_≥__M_ ②存在x0∈I,使得_f_(_x_0)_=_M_
结论 M是f(x)的_最__大__值
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2024/10/202024/10/202024/10/202024/10/2010/20/2024
▪ 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2024年10月20日星期日2024/10/202024/10/202024/10/20
(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点 值,求出最值. 【提醒】在求函数的值域或最值时,应先确定函数的定义域.
第二节 函数的单调性与最值
1.增函数、减函数
一般地,设函数f(x)的定义域为I,区间D⊆I,如果对于任意x1, x2∈D,且x1<x2,则有: (1)f(x)在区间D上是增函数⇔_f_(_x_1)_<_f_(_x_2_)_; (2)f(x)在区间D上是减函数⇔_f_(_x_1)_>_f_(_x_2_)_. 2.单调性、单调区间 若函数y=f(x)在区间D上是_增__函__数__或_减__函__数__,则称函数y=f(x) 在这一区间具有(严格的)单调性,_区__间__D_叫做y=f(x)的单调区间.
ppt-0302--函数单调性与极值、最值
y
b a
2 2
x y
(X
x).
令Y=0,得切线在x轴上的截距 X
a
2
.
x
令X=0,得切线在y轴上的截距 Y b2 . y
可知切线与两个坐标轴所围成的三角形面积为
S 1 XY a2b2 .
2
2xy
yb a
a2
x2 ,
S
a2b2 2xb a2 b2
a
(0 x a).
但是S最小当且仅当其分母 2bx a2 x2最大. a
令f (x) 0, 得到f (x)的驻点x1 1,x2 4.
f (1) 11,f (1) 41,f (2) 2,
6
6
3
可知f (x)在[1,2]上的最大值点为x 1,
最大值为f (1) 11. 6
最小值点为x 1,最小值为f (1) 41. 6
2
例6 设f (x) 1 2 (x 2)3,求f (x)在[0,3]上的最大值与 3
令y 0得驻点x1 1,x2 0,x3 3. y 12x2 16x 12.
y |x1 12 16 12 16 0
y |x0 12 0 y |x3 48 0
可知x1 1为函数的极小值点,
相应的极小值为y
| x 1
7. 3
x2 0为函数的极大值点,
相应极小大值为y |x0 0.
又因a,b为正常数,x a2 x2 0,
所以S最小当且仅当u x2 (a2 2x2 )最大.由于
u 2a2x 4x3 2x(a2 2x2 ),
令u 0,解出在(0,a)内的唯一驻点x0
2 a. 2
此时y0
2 b. 2
S a2b2 ab.
函数的单调性与最大(小)值PPT课件
∴f(x)在[-1,0]上是增函数,在(-∞,-1]上是减函数. 又x∈[0,1],u∈[-1,0]时,恒有f(x)≥f(u),等号只在x=u=0时取到,故
f(x)在[-1,1]上是增函数. (3)由(2)知函数f(x)在(0,1)上递增,在[1,+∞)上递减,则f(x)在x=1处
可取得最大值. ∴f(1)=, ∴函数的最大值为 ,无最小值.
x≤1,
.是
,
上的减函数, 那么a的取值范围是(
)
A.(0,1)
C.
1 7
,
1 3
B.
0,
1 3
D.
1 7
,1
[错解]依题意应有
3a 1 0, 0 a 1,
解得0
a
1 3
,
选B.
[剖析] 本题的错误在于没有注意分段函数的特点,只保证了函数
在每一段上是单调递减的,没有使函数f(x)在(-∞,1]上的最小值
【典例2】利用定义判断函数f x x x2 1在区间
R上的单调性.
[错解]设x1, x2 R,且x1 x2 ,则f x2 f x1
(x2 x22 1) (x1 x12 1)
x2 x1 ( x22 1 x12 1),
因为x1 x2 ,则x2 x1 0,且 x22 1 x12 1 0,
(2)在解答过程中易出现不能正确构造f(x2-x1)的形式或不能将不 等式右边3转化为f(2)从而不能应用函数的单调性求解,导致此 种错误的原因是没有熟练掌握单调性的含义及没弄清如何利 用题目中的已知条件或者不能正确地将抽象不等式进行转化.
错源一不注意分段函数的特点
【典例1】已知f
x
(3a 1)x 4a, logax, x 1
高一数学必修一 函数的单调性与最值 PPT课件 图文
和最小值。
x 1
课堂练习
课本第38页 练习1、5题
课堂小结
函数的单调性一般是先根据图象判断,再利 用定义证明.画函数图象通常借助计算机,求函 数的单调区间时必须要注意函数的定义域,单调 性的证明一般分五步:
取 值 → 作 差 → 变 形 → 定 号 → 判断
课后作业 课本第45页 习题1.3(A组) 第3﹑4 ﹑ 5 题
(2)存在 x 0 I,使f( 得 x 0)M .
那么,我们称M是函数y=f(x)的最大值 (maximum value)
思考:你能仿照函数最大值的定义,给出函数 y=f(x)的最小值的定义吗?
例3.“菊花”烟花是最壮观得烟花之一,制t果)烟4花.9距t2 地1面.4 7的t高18
③变形(通常是因式分解和配方);
④定号(即判断差 f(x1)f(x2)的正负);
⑤判断(即指出函数f(x)在给定的区间D上的
单调性).
请你归纳利用定义判断函数的单调性 的步骤。
3.判断函数单调性的方法步骤
利用定义证明函数f(x)在给定的区间D上的单 调性的一般步骤:
①任取x1,x2∈D,且 x1 x 2 ; ②作差 f(x1)f(x2) ;
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想 找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她 说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原 因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,
函数的单调性与最值课件
单调性的几何意义
函数在某区间内的单调性可以通过其图像在该区间的走向来直观地表现,即函 数图像在该区间内只上升或只下降。
判断函数单调性的方法
导数法
图像法
通过求函数的导数,分析导数的符号 变化,判断函数的单调性。当导数大 于0时,函数单调递增;当导数小于0 时,函数单调递减。
通过观察函数的图像,分析图像的单 调性。
的极值。
判断函数的零点
利用函数的单调性可以判 断函数是否存在零点,以
及零点的个数和位置。
02
函数的最值
函数最值的定义
函数最值
函数在某个区间内的最大值或最小值。
单调性
函数在某个区间内单调递增或单调递减的 性质。
单调性与最值的关系
单调性有助于确定函数的最值。
函数最值的求法
代数法
通过代数运算和不等式性质求最 值。
02
函数$f(x) = frac{1}{x}$在区间$(infty, 0)$和$(0, +infty)$上都是 单调递减的。
最值实例分析
函数$f(x) = x^2$在$x = 0$处取得最小值$f(0) = 0$,在$x = pm 1$处取得最大值$f(pm 1) = 1$。
函数$f(x) = frac{1}{x}$在$x = pm 1$处取得最小值$f(pm 1) = -1$,在$x = pm infty$处取得最大值$f(pm infty) = 0$。
单调性与最值关联的实例分析
对于函数$f(x) = x^2$,其在区间 $(-infty, 0)$上是单调递减的,并且 在$x = 0$处取得最小值。
对于函数$f(x) = frac{1}{x}$,其在区 间$(0, +infty)$上是单调递减的,并 且在$x = pm infty$处取得最大值。
函数在某区间内的单调性可以通过其图像在该区间的走向来直观地表现,即函 数图像在该区间内只上升或只下降。
判断函数单调性的方法
导数法
图像法
通过求函数的导数,分析导数的符号 变化,判断函数的单调性。当导数大 于0时,函数单调递增;当导数小于0 时,函数单调递减。
通过观察函数的图像,分析图像的单 调性。
的极值。
判断函数的零点
利用函数的单调性可以判 断函数是否存在零点,以
及零点的个数和位置。
02
函数的最值
函数最值的定义
函数最值
函数在某个区间内的最大值或最小值。
单调性
函数在某个区间内单调递增或单调递减的 性质。
单调性与最值的关系
单调性有助于确定函数的最值。
函数最值的求法
代数法
通过代数运算和不等式性质求最 值。
02
函数$f(x) = frac{1}{x}$在区间$(infty, 0)$和$(0, +infty)$上都是 单调递减的。
最值实例分析
函数$f(x) = x^2$在$x = 0$处取得最小值$f(0) = 0$,在$x = pm 1$处取得最大值$f(pm 1) = 1$。
函数$f(x) = frac{1}{x}$在$x = pm 1$处取得最小值$f(pm 1) = -1$,在$x = pm infty$处取得最大值$f(pm infty) = 0$。
单调性与最值关联的实例分析
对于函数$f(x) = x^2$,其在区间 $(-infty, 0)$上是单调递减的,并且 在$x = 0$处取得最小值。
对于函数$f(x) = frac{1}{x}$,其在区 间$(0, +infty)$上是单调递减的,并 且在$x = pm infty$处取得最大值。
函数的单调性与最值课件共20张PPT
那么就称函数f(x)在区间D上单 那么就称函数f(x)在区间D上单
调递增
调递减
∀x1,x2∈D 且 x1≠x2,有fxx11- -fx2x2>0(<0)或
(x1- x2)[f(x1)- f(x2)]>0(<0)⇔ f(x) 在区 间 D 上单 调递 增
(减).
复习回顾
图象 描述
自左向右看图象是上升的
解析
令
x2+4=t,则
t≥2,∴x2=t2-4,∴y= t2
+t 1=t+1 1,
t
设 h(t)=t+1,则 h(t)在[2,+∞)上为增函数, t
∴h(t)min=h(2)=52,∴y≤15=25(x=0 时取等号). 2
即 y 的最大值为2. 5
求函数最值的三种基本方法:
一.单调性法:先确定函数的单调性,再由单调性求最值. 二.图象法:先作出函数的图象,再观察其最高点、最低点,求出
自左向右看图象是下降的
复习回顾
(2)单调区间的定义 如果函数y=f(x)在区间D上_单__调__递__增__或_单__调__递__减__,那么就说函数y=f(x) 在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.
复习回顾 2.函数的最值
前提
设函数y=f(x)的定义域为I,如果存在实数M满足
专题一:判断、证明函数的单调性
例 1:(3)已知 f x 2x , x 2,6. (1)判断 f x 的单调性,并加以证明;(2)求 f x 的最值.
x 1
专题一:判断、证明函数的单调性 变式 3:讨论 f x ax a 0, 的单调性.
x 1
小结: 确定函数单调性的四种方法 (1)定义法;(2)导数法;(3)图象法;(4)性质法.
调递增
调递减
∀x1,x2∈D 且 x1≠x2,有fxx11- -fx2x2>0(<0)或
(x1- x2)[f(x1)- f(x2)]>0(<0)⇔ f(x) 在区 间 D 上单 调递 增
(减).
复习回顾
图象 描述
自左向右看图象是上升的
解析
令
x2+4=t,则
t≥2,∴x2=t2-4,∴y= t2
+t 1=t+1 1,
t
设 h(t)=t+1,则 h(t)在[2,+∞)上为增函数, t
∴h(t)min=h(2)=52,∴y≤15=25(x=0 时取等号). 2
即 y 的最大值为2. 5
求函数最值的三种基本方法:
一.单调性法:先确定函数的单调性,再由单调性求最值. 二.图象法:先作出函数的图象,再观察其最高点、最低点,求出
自左向右看图象是下降的
复习回顾
(2)单调区间的定义 如果函数y=f(x)在区间D上_单__调__递__增__或_单__调__递__减__,那么就说函数y=f(x) 在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.
复习回顾 2.函数的最值
前提
设函数y=f(x)的定义域为I,如果存在实数M满足
专题一:判断、证明函数的单调性
例 1:(3)已知 f x 2x , x 2,6. (1)判断 f x 的单调性,并加以证明;(2)求 f x 的最值.
x 1
专题一:判断、证明函数的单调性 变式 3:讨论 f x ax a 0, 的单调性.
x 1
小结: 确定函数单调性的四种方法 (1)定义法;(2)导数法;(3)图象法;(4)性质法.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)对于任意的 x I, 都有f x M
2存在x0 I, 使得f x0 M
y
O
x
y
O
x
y
O
x
y
O
x
y
O
x
y
O
x
y
O
x
y
O
x
y
O
x
函数y f x的最小值 :
设函数y f x的定义域为I, 如果存在 实数N满足N是y f x的最小值, 那么
1对于任意的 x I, 都有f x N
x1
2
最小值为 6
2、 已知函数f (x)在 ,2上单调递增, 在2,上单调递减
则f x有最大值, 为 f 2
例1、 已知函数y 2 x 2,6,
x 1 求函数的最大值和最小值.
y2 x
3
2 1 -3 -2 -1
1 23 -1 -2 -3
y 2 x 1
3 2 1 -3 -2 -1
1 2 34 5 6 -1 -2 -3
大致的图象 , 从图象上可以发现 f 2是函数的一个 最小值
2、 函数y x2 4x 2在区间3,5上的最小值为 -2
3、
函数f
x 1
1 x
2
在区间3,的最小值为3
小结
最大值
1、函数的最值:
最小值
2、函数的最值的求法
(1)、利用二次函数的性质(配方法)求函数的最值 (2)、利用图象求函数的最值 (3)、利用函数单调性求函数的最值
必做题
1、课本第39页A组第5题,习题B组第1题.
探究题
运用物理知识探究烟花 距地面的高度 h米与时间
t秒之间满足什么函数关 系?并给出合理的解释 。
点此播放讲课视频
感谢您的阅读!
为 了 便于学习和使用, 本文档下载后内容可 随意修改调整及打印。
学习永远不晚。 JinTai College
于是f x1 f x2 0, 即f x1 f x2
所以, 函数y 2 是区间2,6上的减函数
在x
x 1
2时取得最大值
,
最大值是
2
在x 6时取得最小值 , 最小值是 0、4
例2、“菊花”烟花是最壮观的烟花之一。 制造时 一般是期望在它达到最高点时爆裂。 如果烟
花距地面的高度h米与时间t秒之间的关系为
例1、 已知函数y 2 x 2,6,
x 1 求函数的最大值和最小值.
解: 任取x1, x2是区间2,6上的任意两个实数, 且x1 x2, 则
f
x1
f
x2
2 x1 1
1x2 1
2x2 x1 x1 1x2 1
2 x1 x2 6 x2 x1 0, x1 1x2 1 0
2存在x0 I, 使得f x0 N
探究:函数单调性与函数的最值的关系
(1)、 若函数y f x在区间m, nm n上单调
递增, 则函数y f x的最值是什么?
y
当x m时,
f x有最小值f m
O
当x n时,
x f x有最大值f n
(2)、 若函数y f x在区间m, n上单调递减,
函数的单调性与最值
点此播放讲课视频
一、函数单调性的概念:
一般地,函数f(x)的定义域为I: 1. 如果对于属于定义域内某个区间D上的任意两个
自变量的值 称函数 f(x)在这个区间上是增函数。 2. 如果对于属于定义域内某个区间D上的任意两个
称函数 f(x)在这个区间上是减函数。 单调区间
在某区间上,
ht 4.9t 2 14.7t 18, 那么烟花冲出后什么
时候是它爆裂的最佳时刻?这时距地面的高
度是多少精确到1米?
t=1.5秒
29米
课下探究:
运用物理知识探究烟花 距地面的高度 h米与时间
t秒之间满足什么函数关 系?并给出合理的解释 。
点此播放讲课视频
练习:
1、 设f x是定义在区间 6,11上的函数 。 若f x在区间 6,2上递减, 在区间 2,11上递增, 画出f x的一个
增函数
y
图象上升
点此播放动画视频
o
减函数
y
x
图象下降。
o
x
三、用定义证明函数单调性的步骤是:
(1) 、 取 值 即取x1, x2是该区间内的任意两个 值且x1 x2
(2)、作差变形
即求f x1 f x2 ,通过因式分解 、 配方、 有理化等方法
(3)、定 号
即根据给定的区间和 x2 x1的符号确定 f x1 f x2 的符号
(4)、判 断
根据单调性的定义得结论
函数f x xx R 函数f x x2 1x R
3
2
3 2
1•
•1 12 3
-1 -2
-3 -4
x R y
2 1
O
点此播放讲课视频
ƒ(0)=1 x
1、对任意的x R 都有ƒ(x)≤1
2、存在0,使得ƒ(0)=1
函数y f x的最大值 : 设函数y f x的定义域为I, 如果存在 实数M是函数y f x的最大值, 那么
则函数y f x的最值是什么?
y
当x m时,
f x有最大值f m
当x n时,
f x有最小值f n
O
x
(3)、 若函数f x ax l2 ha 0, m l n,
则函数y f x在区间m, n上的最值是什么?
y
最大值为f l h
最小值为
f m, f n中的较小者
O
x
练习:
1
1、 函数y 1 x 2,6的最大值为
2存在x0 I, 使得f x0 M
y
O
x
y
O
x
y
O
x
y
O
x
y
O
x
y
O
x
y
O
x
y
O
x
y
O
x
函数y f x的最小值 :
设函数y f x的定义域为I, 如果存在 实数N满足N是y f x的最小值, 那么
1对于任意的 x I, 都有f x N
x1
2
最小值为 6
2、 已知函数f (x)在 ,2上单调递增, 在2,上单调递减
则f x有最大值, 为 f 2
例1、 已知函数y 2 x 2,6,
x 1 求函数的最大值和最小值.
y2 x
3
2 1 -3 -2 -1
1 23 -1 -2 -3
y 2 x 1
3 2 1 -3 -2 -1
1 2 34 5 6 -1 -2 -3
大致的图象 , 从图象上可以发现 f 2是函数的一个 最小值
2、 函数y x2 4x 2在区间3,5上的最小值为 -2
3、
函数f
x 1
1 x
2
在区间3,的最小值为3
小结
最大值
1、函数的最值:
最小值
2、函数的最值的求法
(1)、利用二次函数的性质(配方法)求函数的最值 (2)、利用图象求函数的最值 (3)、利用函数单调性求函数的最值
必做题
1、课本第39页A组第5题,习题B组第1题.
探究题
运用物理知识探究烟花 距地面的高度 h米与时间
t秒之间满足什么函数关 系?并给出合理的解释 。
点此播放讲课视频
感谢您的阅读!
为 了 便于学习和使用, 本文档下载后内容可 随意修改调整及打印。
学习永远不晚。 JinTai College
于是f x1 f x2 0, 即f x1 f x2
所以, 函数y 2 是区间2,6上的减函数
在x
x 1
2时取得最大值
,
最大值是
2
在x 6时取得最小值 , 最小值是 0、4
例2、“菊花”烟花是最壮观的烟花之一。 制造时 一般是期望在它达到最高点时爆裂。 如果烟
花距地面的高度h米与时间t秒之间的关系为
例1、 已知函数y 2 x 2,6,
x 1 求函数的最大值和最小值.
解: 任取x1, x2是区间2,6上的任意两个实数, 且x1 x2, 则
f
x1
f
x2
2 x1 1
1x2 1
2x2 x1 x1 1x2 1
2 x1 x2 6 x2 x1 0, x1 1x2 1 0
2存在x0 I, 使得f x0 N
探究:函数单调性与函数的最值的关系
(1)、 若函数y f x在区间m, nm n上单调
递增, 则函数y f x的最值是什么?
y
当x m时,
f x有最小值f m
O
当x n时,
x f x有最大值f n
(2)、 若函数y f x在区间m, n上单调递减,
函数的单调性与最值
点此播放讲课视频
一、函数单调性的概念:
一般地,函数f(x)的定义域为I: 1. 如果对于属于定义域内某个区间D上的任意两个
自变量的值 称函数 f(x)在这个区间上是增函数。 2. 如果对于属于定义域内某个区间D上的任意两个
称函数 f(x)在这个区间上是减函数。 单调区间
在某区间上,
ht 4.9t 2 14.7t 18, 那么烟花冲出后什么
时候是它爆裂的最佳时刻?这时距地面的高
度是多少精确到1米?
t=1.5秒
29米
课下探究:
运用物理知识探究烟花 距地面的高度 h米与时间
t秒之间满足什么函数关 系?并给出合理的解释 。
点此播放讲课视频
练习:
1、 设f x是定义在区间 6,11上的函数 。 若f x在区间 6,2上递减, 在区间 2,11上递增, 画出f x的一个
增函数
y
图象上升
点此播放动画视频
o
减函数
y
x
图象下降。
o
x
三、用定义证明函数单调性的步骤是:
(1) 、 取 值 即取x1, x2是该区间内的任意两个 值且x1 x2
(2)、作差变形
即求f x1 f x2 ,通过因式分解 、 配方、 有理化等方法
(3)、定 号
即根据给定的区间和 x2 x1的符号确定 f x1 f x2 的符号
(4)、判 断
根据单调性的定义得结论
函数f x xx R 函数f x x2 1x R
3
2
3 2
1•
•1 12 3
-1 -2
-3 -4
x R y
2 1
O
点此播放讲课视频
ƒ(0)=1 x
1、对任意的x R 都有ƒ(x)≤1
2、存在0,使得ƒ(0)=1
函数y f x的最大值 : 设函数y f x的定义域为I, 如果存在 实数M是函数y f x的最大值, 那么
则函数y f x的最值是什么?
y
当x m时,
f x有最大值f m
当x n时,
f x有最小值f n
O
x
(3)、 若函数f x ax l2 ha 0, m l n,
则函数y f x在区间m, n上的最值是什么?
y
最大值为f l h
最小值为
f m, f n中的较小者
O
x
练习:
1
1、 函数y 1 x 2,6的最大值为