极坐标与参数方程数学讲义知识讲解
极坐标与参数方程讲义
极坐标与参数方程一、极坐标知识点1.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点0,叫做极点,自极点0引一条射线Ox,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可•但极坐标系和平面直角坐标系都是平面坐标系•(2)极坐标设M是平面内一点,极点0与点M的距离|0M|叫做点M的极径,记为;以极轴0X为始边,射线0M为终边的角XOM叫做点M的极角,记为•有序数对(,)叫做点M的极坐标,记作M (,).一般地,不作特殊说明时,我们认为0,可取任意实数•特别地,当点M在极点时,它的极坐标为(0,)(€ R).和直角坐标不同,平面内一个点的极坐标有无数种表示•如果规定0,0 2 ,那么除极点外,平面内的点可用唯一的极坐标(,)表示;同时,极坐标(,)表示的点也是唯一确定的•2.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:⑵互化公式:设M是坐标平面内任意一点,它的直角坐标是(x,y),极坐标是(,)(0),于是极坐标与直角坐标的互化公式如表:在一般情况下,由tan确定角时,可根据点M所在的象限最小正角注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2 ),(, ),(, ),都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,点M(,)可以表示为4 45(, 2 )或(, 2 )或(-, 等多种形式,其中,只有(,)的极坐标满足方4 4 4 4 4 4 4 4程、考点阐述考点1、极坐标与直角坐标互化例题1、在极坐标中,求两点 P(2,Q ), Q(2,-)之间的距离以及过它们的直线的极坐标方 程。
极坐标与参数方程讲义
解析几何之参数方程一、二次曲线参数方程1、圆的参数方程2、椭圆的参数方程3、双曲线的参数方程4、抛物线的参数方程二、直线的参数方程1、直线参数方程的推导问题:直线的参数方程中,参数t 的意义?(1)t 的符号:相对于()000,P x y 的位置;(2)t 的绝对值:0PP t =2、直线参数方程的变式:解析几何之极坐标一、极坐标系1、建系391,,2,,3,,4,4244A B C D ππππ⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2、点与其极坐标之间的对应关系3、对称点问题2 设点(),M ρθ,直线l 过极点且垂直于极轴,分别求点M 关于极轴,直线l ,极点的对称点的极坐标4、极坐标与直角坐标关系问题3 把下列点的极坐标化为直角坐标()22,,1,23A B π⎛⎫ ⎪⎝⎭问题4 把下列点的直角坐标化为极坐标()()1,1,1,A B π-问题5 分别求下列条件中AB 的中点M 的极坐标(1)24,,6,33A B ππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭;(2)24,,6,43A B ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭二、曲线的极坐标方程的概念1、概念2、极坐标方程与直角坐标方程的转化问题6 将下列极坐标方程化为直角坐标方程(1)1ρ=; (2)sin ρθ=; (3)cos 1ρθ=;(4)2cos 0ρθρ-=; (5)22sin 2a ρθ=(6)22cos 3sin 6cos 0m ρθρθθ+-=3、直线的极坐标方程4、圆的极坐标方程5、圆锥曲线统一方程【高考真题】1.在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为( )A .=0()cos=2R θρρ∈和B .=()cos=22R πθρρ∈和C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和2 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = ______ 3 在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________4 在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于_________ 5 在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为cos 4ρθ=的直线与曲线23x t y t⎧=⎪⎨=⎪⎩(为参数)相交于,A B 两点,则______AB = 6 已知曲线C 的参数方程为2cos 2sin x t y t⎧=⎪⎨=⎪⎩ (为参数),C 在点()1,1处的切线为,以坐标原点极点,x 轴的正半轴为极轴建立极坐标系,则的极坐标方程为_____________7设曲线C 的参数方程为2x ty t =⎧⎨=⎩(为参数),若以直角坐标系的原点为极点,x 轴的正为半轴为极轴建立极坐标系,则曲线c 的极坐标方程为__________8在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b θθ=⎧⎨=⎩()0a b ϕ>>为参数,.在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线与圆O 的极坐标方程分别为2sin 42m πρθ⎛⎫+= ⎪⎝⎭()m 为非零常数与b ρ=.若直线经过椭圆C 的焦点,且与圆O 相切,则椭9在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛⎫==-= ⎪⎝⎭. (1)求1C 与2C 交点的极坐标;(2)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为()3312x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值.10.坐标系与参数方程:在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为(2,)4π,直线的极坐标方程为cos()4a πρθ-=,且点A 在直线上. (1)求a 的值及直线的直角坐标方程;(2)圆C 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.11.已知曲线1C 的参数方程为45cos 55sin x t y t=+⎧⎨=+⎩(为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=.(Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标()0,02ρθπ≥≤≤.12在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.13将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C(1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.。
极坐标系与参数方程知识点总结
千里之行,始于足下。
极坐标系与参数方程知识点总结极坐标系和参数方程是数学中的两种常用的描述曲线的方法。
它们可以用来描述平面内的曲线,其优点是能够更简洁地描述某些特殊形状的曲线,且能够涵盖直角坐标系不能完全表示的曲线。
下面将对极坐标系和参数方程进行详细的介绍和总结。
一、极坐标系:极坐标系是一种用极角和极径来表示平面上的点的坐标系统。
其中,极径表示原点与点之间的距离,极角表示极径与一个固定轴之间的夹角。
极坐标系的坐标表示通常用 (r,θ) 表示,其中 r 是极径,θ是极角。
在极坐标系中,曲线方程可以用极坐标 (r,θ) 表示。
例如,直线的极坐标方程可表示为 r = a / cos(θ - α),其中 a 是直线与极径轴的交点到原点的距离,α是直线与极径轴的夹角。
另外,许多曲线在极坐标系中的方程具有简洁的形式。
例如,圆的极坐标方程是 r = a,椭圆的极坐标方程是 r = a / (1 - εcosθ),其中 a 是椭圆焦点到原点的距离,ε是椭圆的离心率。
极坐标系的优点是能够更简洁地表示某些特殊形状的曲线,如圆、椭圆和螺线等。
然而,极坐标系也有一些限制,例如不能表示某些直线和许多多重曲线。
因此,在具体问题中选择使用直角坐标系还是极坐标系要根据具体情况来定。
二、参数方程:第1页/共2页锲而不舍,金石可镂。
参数方程是一种用参数来表示曲线上的点的坐标的方法。
其中,参数是一个实数变量,曲线上的每个点都可以由参数的函数表示。
参数方程通常以向量形式表示,例如(x(t), y(t)),其中 x(t) 和 y(t) 是参数 t 的函数。
通过参数方程,可以更灵活地描述曲线。
例如,直线的参数方程可以表示为 x(t) = a + mt,y(t) = b + nt,其中 a、b 是直线上的一个点的坐标,m、n 是直线的斜率。
另外,许多曲线在参数方程中具有简洁的形式,如抛物线的参数方程是 x(t) = a + t,y(t) = b + t²。
极坐标与参数方程基本知识点
极坐标与参数方程基本知识点一、极坐标知识点1.伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点),(y x P 对应到点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
2.极坐标系的概念:在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.3.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。
有序数对),(θρ叫做点M 的极坐标,记为),(θρM .极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。
极点O 的坐标为)R )(,0(∈θθ.4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。
如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。
5.极坐标与直角坐标的互化:(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式6.曲线的极坐标方程:1.直线的极坐标方程:若直线过点00(,)M ρθ,且极轴到此直线的角为α,则它的方程为:sin()sin()ρθ-α=ρθ-α几个特殊位置的直线的极坐标方程(1)直线过极点 (2)直线过点M(a,0)且垂直于极轴 (3)直线过(,)2M b π且平行于极轴 方程:(1))R (∈=ραθ 或写成及 (2)a =θρcos (3)ρsinθ=b2.圆的极坐标方程: 若圆心为00(,)M ρθ,半径为r 的圆方程为:2222cos()0r ρρρθθρ--+-=几个特殊位置的圆的极坐标方程(1)当圆心位于极点,r 为半径 (2)当圆心位于)0,(a C (a>0),a 为半径 (3)当圆心位于)2,(πa C )0(>a ,a 为半径方程:(1)r =ρ (2)θρcos 2a = (3)θρsin 2a = 7.在极坐标系中,)0(≥=ραθ表示以极点为起点的一条射线;)R (∈=ραθ表示过极点的一条直线.二、参数方程知识点1.参数方程的概念:在平面直角坐标系中,若曲线C 上的点(,)P x y 满足()()x f t y f t =⎧⎨=⎩,该方程叫曲线C 的参数方程,变量t 是参变数,简称参数。
极坐标与参数方程知识讲解修订版
极坐标与参数方程知识讲解修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】参数方程和极坐标系一、 知识要点(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.(二)常见曲线的参数方程如下:1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论.○1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2.○2.线段AB 的中点所对应的参数值等于2BA t t +. 2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数) (或 θθsin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 00⎩⎨⎧+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数) (或 θθec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:pty pt x 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数).J3.2极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。
(完整版)极坐标与参数方程知识点总结大全
极坐标与参数方程一、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.练习1.若直线的参数方程为,则直线的斜率为( )12()23x tt y t=+⎧⎨=-⎩为参数A .B .C .D .2323-3232-2.下列在曲线上的点是( )sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数A .B .C .D .1(,231(,)42-3.将参数方程化为普通方程为( )222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数A .B .C .D .2y x =-2y x =+2(23)y x x =-≤≤2(01)y x y =+≤≤注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。
应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。
3.圆的参数方程如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周运动,设,则。
这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是转过的角度(称为旋转角)。
圆心为,半径为的圆的普通方程是,它的参数方程为:。
4.椭圆的参数方程以坐标原点为中心,焦点在轴上的椭圆的标准方程为其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为其中参数仍为离心角,通常规定参数的范围为∈[0,2)。
艺术生高考数学专题讲义考点60极坐标与参数方程
艺术生高考数学专题讲义考点60极坐标与参数方程一、极坐标与参数方程的基本概念及性质1.极坐标:在平面直角坐标系中,以极轴为基准,通过极径和极角来确定一个点的坐标。
极坐标中,点的坐标表示为(r,θ),其中r为极径,θ为极角。
2.参数方程:用一个参数t表示自变量,由参数方程可以将二维平面上的点的坐标表示为一对关于参数t的函数。
一般形式为{x=f(t),y=g(t)}。
二、极坐标和参数方程的转化1. 极坐标转参数方程:通过极坐标的关系式,将r和θ用参数t表示,并转化为参数方程。
例如,直角坐标系中的点{(x,y)}可以用极坐标{(r,θ)}表示,其中x=r cosθ,y=r sinθ。
将x和y分别用参数t表示,可得到参数方程{x=f(t), y=g(t)}。
2. 参数方程转极坐标:反过来,将参数方程中的x和y分别转化为极坐标中的r和θ。
例如,参数方程{x=f(t), y=g(t)}可以表示为极坐标{(r, θ)},其中r²=f²(t)+g²(t),tanθ=g(t)/f(t)。
1.圆的极坐标和参数方程:极坐标:r=a;参数方程:{x=a cosθ, y=a sinθ}。
2.直线的极坐标和参数方程:极坐标:θ=α;参数方程:{x=a sec(θ-α), y=a tan(θ-α)}。
3.椭圆的极坐标和参数方程:极坐标:r=a√(1-ε²cos²θ);参数方程:{x=a cosθ, y=b sinθ}。
4.渐近线的极坐标和参数方程:极坐标:θ=π±α;参数方程:{x=a cos(θ±α), y=a sin(θ±α)}。
四、极坐标与参数方程的应用1.曲线的表示:极坐标和参数方程可以用来表示一些特殊的曲线,如圆、椭圆、双曲线等。
通过改变参数的取值范围和数值,可以得到不同形状的曲线。
2.确定曲线的方程:已知一些特征点的极坐标或参数方程,可以借助与直角坐标系的关系,确定曲线的方程。
极坐标与参数方程ppt课件
• 3.直线的极坐标方程:若直线过点M(ρ0,θ0),且极 轴到此直线的角为α,则它的方程为:
• ρsin(θ-α)=ρ0sin(θ0-α). • 几个特殊位置的直线的极坐标方程 • (1)直线过极点:θ=θ0和θ=π+θ0; • (2)直线过点M(a,0)且垂直于极轴:ρcosθ=a;
若 M1,M2 是 l 上的两点,其对应参数分别为 t1,t2,则 (1)M1,M2 两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0 +t2cos α,y0+t2sin α). (2)|M1M2|=|t1-t2|. (3)若线段 M1M2 的中点 M 所对应的参数为 t,则 t=t1+2 t2, 中点 M 到定点 M0 的距离|MM0|=|t|=t1+2 t2. (4)若 M0 为线段 M1M2 的中点,则 t1+t2=0.
[解] (1)直线 l 的普通方程为 xsin α-ycos α+cos α=0. 曲线 C 的极坐标方程为 ρcos2θ=4sin θ, 即 ρ2cos2θ=4ρsin θ,∵ρcos θ=x,ρsin θ=y, ∴曲线 C 的直角坐标方程为 x2=4y.
x=tcos α, (2)将 l: y=1+tsin α 代入曲线 C∶x2=4y 中, 得 t2cos2α-4tsin α-4=0.
意判断点P所在的象限(即角θ的终边的位置),以 便正确地求出角θ. • (2)注意“双坐标系”是直角坐标与极坐标互化的 前提.若要判断曲线的形状,通常是先将极坐标 方程化为直角坐标方程,再判断.
(3)极坐标系中两点间的距离公式:已知点 A(ρ1,θ1),
B(ρ2,θ2),那么|AB|= ρ12+ρ22-2ρ1ρ2cosθ1-θ2.
极坐标和参数方程知识点总结
千里之行,始于足下。
极坐标和参数方程知识点总结极坐标是一种表示平面上点位置的坐标系统,它是由点到原点的距离(称为极径)和点与极轴的夹角(称为极角)所确定的。
在极坐标系中,每个点的坐标可以表示为(r,θ)的形式,其中r为极径,θ为极角。
参数方程是一种用一对参数变量来表示曲线上的点的坐标的方法。
对于平面上的曲线,常用的参数方程形式为x=f(t)和y=g(t),其中t为参数变量,f(t)和g(t)分别表示x和y的函数关系。
以下是极坐标和参数方程的一些重要知识点总结:1. 极坐标的转换关系:- 直角坐标到极坐标的转换:x=r*cos(θ),y=r*sin(θ)- 极坐标到直角坐标的转换:r=sqrt(x^2+y^2),θ=tan^(-1)(y/x)2. 常见曲线的极坐标方程:- 直线:θ=常数- 圆:r=常数- 椭圆:r=a*b/sqrt(b^2*cos^2(θ)+a^2*sin^2(θ))3. 参数方程的表示方式:- 曲线方程:(x,y)=(f(t),g(t))- 曲线长度的计算公式:L=∫sqrt((dx/dt)^2+(dy/dt)^2)dt4. 参数方程的性质:- 曲线方向:随着参数变量的增大,曲线的运动方向- 曲线对称性:参数方程对称性特点取决于函数f(t)和g(t)的对称性第1页/共2页锲而不舍,金石可镂。
- 曲线切线方向:曲线上某点的切线方向由参数方程的导数决定5. 参数方程与极坐标之间的关系:- 参数方程可以转换为极坐标方程,极径r=f(t),极角θ=g(t)- 极坐标方程可以转换为参数方程,x=f(θ)*cos(θ),y=f(θ)*sin(θ)需要注意的是,极坐标和参数方程在一些问题中可以更方便地描述曲线的特性,而在其他问题中直角坐标系可能更适用。
因此,在应用中需要根据具体问题选择合适的坐标系表示。
极坐标与参数方程基本知识点精编版
极坐标与参数方程基本知识点一、极坐标知识点1.伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点),(y x P 对应到点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
2.极坐标系的概念:在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.3.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。
有序数对),(θρ叫做点M 的极坐标,记为),(θρM .极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。
极点O 的坐标为)R )(,0(∈θθ.4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。
如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。
5.极坐标与直角坐标的互化:(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式6.曲线的极坐标方程:1.直线的极坐标方程:若直线过点00(,)M ρθ,且极轴到此直线的角为α,则它的方程为:sin()sin()ρθ-α=ρθ-α几个特殊位置的直线的极坐标方程(1)直线过极点 (2)直线过点M(a,0)且垂直于极轴 (3)直线过(,)2M b π且平行于极轴 方程:(1))R (∈=ραθ 或写成及 (2)a =θρcos (3)ρsinθ=b 2.圆的极坐标方程: 若圆心为00(,)M ρθ,半径为r 的圆方程为:2222cos()0r ρρρθθρ--+-=几个特殊位置的圆的极坐标方程(1)当圆心位于极点,r 为半径 (2)当圆心位于)0,(a C (a>0),a 为半径 (3)当圆心位于)2,(πa C )0(>a ,a 为半径方程:(1)r =ρ (2)θρcos 2a = (3)θρsin 2a =7.在极坐标系中,)0(≥=ραθ表示以极点为起点的一条射线;)R (∈=ραθ表示过极点的一条直线.二、参数方程知识点1.参数方程的概念:在平面直角坐标系中,若曲线C 上的点(,)P x y 满足()()x f t y f t =⎧⎨=⎩,该方程叫曲线C 的参数方程,变量t 是参变数,简称参数。
极坐标与参数方程,知识点
坐标系与参数方程知识点一、极坐标系1. 极坐标系的概念如图所示,一条射线就是一个极坐标系。
其中射线的端点叫做极点,这条射线叫做极轴。
设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.2. 在极坐标系里,(,) , (,2) , (,)ρθρθπρθπ±-±都表示同一点的坐标3. 极坐标系中两点之间的距离 设()()2211,,,θρθρB A ,则()221212122cos AB ρρρρθθ=+--4.极坐标和直角坐标的互化5.常见曲线的极坐标方程曲线图形极坐标方程直角坐标方程圆心在极点,半径为r 的圆r ρ=222x y r +=圆心为(,0)r ,半径为r 的圆2cos r ρθ= 222() x r y r -+=圆心为(,)2r π,半径为r 的圆2sin r ρθ= 222() x y r r +-=点M 直角坐标(,)x y极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩ 222tan x y y x ρθ⎧=+⎪⎨=⎪⎩过点(,0)a ,与极轴垂直的直线cos a ρθ= x a =过点(,)2a π,与极轴平行的直线sin a ρθ=y a =过极点,倾斜角为α的直线θα=tan y x α=二、参数方程1.参数方程的概念在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩,并且对于t 的每一个值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,变量t 叫做参数.2.常见曲线的参数方程曲线普通方程参数方程()t 为参数经过点000(,)M x y ,倾斜角为α的直线 00tan ()y y x x α-=-00cos sin x x t y y t αα=+⎧⎨=+⎩经过点000(,)M x y ,与向量(,)a l m =平行的直线00x x y y l m--=00x x lty y mt=+⎧⎨=+⎩ 圆心为坐标原点,半径为r 的圆222x y r +=cos sin x r ty r t=⎧⎨=⎩ 圆心为(,)a b ,半径为r 的圆222()()x a y b r -+-=cos sin x a r ty b r t =+⎧⎨=+⎩以坐标原点为中心的椭圆22221x y a b += cos sin x a ty b t=⎧⎨=⎩三、平面解析几何初步1. 直线的倾斜角和斜率的概念倾斜角:当直线l 与x 轴相交,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;当直线与x 轴平行或重合时,规定它的倾斜角为0;倾斜角范围为[0,)π;斜率:2111221221-(,)(,)-=+=≠y y A x y B x y y kx x x x b x k 直线上两点,其则斜率 ,中,, 斜率k 的值决定了这条直线相对于x 轴的倾斜程度。
极坐标与参数方程知识点解析
极坐标知识要点:1. 极坐标系的建立:在平面内取一个定点O ,叫做极点;引一条射线Ox ,叫做极轴;选定一个长度单位和角度单位(通常取弧度)及它的正方向(通常取逆时针方向)。
2. 极坐标系内一点的极坐标的规定:对于平面上任意一点M ,用ρ表示线段OM 的长度,用θ表示以射线Ox 为始边,射线OM 为终边所成的角,ρ叫做点M 的极径,θ叫做点M 的极角,有序实数对(),ρθ叫做M 的极坐标。
①要素:极点、极轴、长度单位、角度单位和正方向;②平面内点的极坐标用(),ρθ表示,极点的极坐标为()0,θ,θ可为任意值。
3.极坐标系下点与它的极坐标的对应情况:① 给定(),ρθ,就可以在极坐标平面内确定唯一的一点M 。
② 给定平面上一点M ,但却有无数个极坐标与之对应。
原因在于:极角有无数个,其坐标为(),2()k k Z ρθπ+∈。
如果限定0,02ρθπ≥≤<,那么除极点外,平面内的点就可以和极坐标一一对应了。
4. 曲线的极坐标方程与极坐标方程的曲线:一般地,如果一条曲线上任意一点都有一个极坐标适合方程(),0fρθ=的点在曲线上,那么这个方程成为这条曲线的极坐标方程,这条曲线成为这个极坐标方程的曲线。
5. 极坐标与直角坐标的互化:设点M 的直角坐标是(),x y ,极坐标是(),ρθ,则()222,tan 0cos ,sin yx y x x y xρθρθρθ=+=≠⇔==。
互化公式的三个前提条件:限定0,02ρθπ≥≤<① 极点与直角坐标系的原点重合;② 极轴与直角坐标系的x 轴的正半轴重合; ③ 两种坐标系的单位长度相同。
6. 圆的极坐标方程的表示方法:(1) 圆心在极点、半径为r 的圆的极坐标方程:r ρ=(r 为常数)(2) 圆心在极轴上且过极点的半径为a 的圆的极坐标方程:2cos a ρθ=。
(3) 圆心在点0,2π⎛⎫⎪⎝⎭处且过极点的圆的方程:[)()2sin ,0,a ρθθπ=∈7. 直线极坐标方程的表示方法:(1) 过极点且极角为α的一条射线方程:θα=;(2) 过点A (),0(0)a a >且垂直于极轴的直线l 的极坐标方程:cos a ρθ=;(3) 设点P 的极坐标为(),0a ,则过点P 且与极轴所成角为α的直线l 的极坐标方程:()sin sin a ραθα-=;(4) 设点P 的极坐标为()11,ρθ,则过点P 且与极轴所成角为α的直线l 的极坐标方程:()()11sin sin ραθραθ-=-8. 曲线极坐标方程的求法:可先写出曲线在直角坐标系中的方程,再通过cos ,sin x y ρθρθ==将直角坐标系中的方程化为极坐标方程。
极坐标和参数方程知识点总结
极坐标和参数方程知识点总结在数学的广阔天地中,极坐标和参数方程是两个独具特色且非常有用的工具。
它们为我们解决各类几何和物理问题提供了新的视角和方法。
接下来,让我们一同深入探索极坐标和参数方程的奥秘。
一、极坐标极坐标是一种用距离和角度来表示平面上点的位置的坐标系统。
在极坐标系中,一个点由极径和极角来确定。
1、极坐标的定义极径:表示点到极点(通常是坐标原点)的距离,用符号ρ 表示。
极角:表示极径与极轴(通常是 x 轴正半轴)所成的角,用符号θ 表示。
2、极坐标与直角坐标的转换(1)直角坐标转极坐标极径ρ =√(x²+ y²)极角θ = arctan(y / x) (需要根据点所在的象限确定θ 的取值)(2)极坐标转直角坐标x =ρ cosθy =ρ sinθ3、常见的极坐标曲线(1)圆圆心在极点,半径为 a 的圆的极坐标方程:ρ = a圆心在点(a, 0),半径为 a 的圆的极坐标方程:ρ =2a cosθ(2)直线过极点且与极轴夹角为α 的直线的极坐标方程:θ =α过点(a, 0) 且垂直于极轴的直线的极坐标方程:ρ cosθ = a4、极坐标的应用在物理学中,描述物体的平面运动轨迹,如圆周运动,极坐标常常能使问题简化。
二、参数方程参数方程是通过引入参数来表示曲线或曲面的方程。
1、参数方程的定义对于平面曲线,如果曲线上任意一点的坐标 x 和 y 都可以表示为某个变量 t 的函数,即 x = f(t),y = g(t),那么我们称这两个方程为该曲线的参数方程,t 称为参数。
2、参数方程的常见形式(1)直线的参数方程若直线过点(x₀, y₀),倾斜角为α,则直线的参数方程为:x = x₀+ t cosαy = y₀+t sinα (t 为参数)(2)圆的参数方程圆心在点(a, b),半径为 r 的圆的参数方程为:x = a +r cosθy = b +r sinθ (θ 为参数)(3)椭圆的参数方程焦点在 x 轴上的椭圆 x²/ a²+ y²/ b²= 1 的参数方程为:x =a cosθy =b sinθ (θ 为参数)3、参数的几何意义在直线的参数方程中,参数 t 通常具有几何意义,如表示直线上动点到定点的距离。
极坐标与参数方程讲义
极坐标与参数方程一、极坐标知识点 1.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数.特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.2.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 3.常见圆与直线的极坐标方程注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=. 二、考点阐述考点1、极坐标与直角坐标互化例题1、在极坐标中,求两点)4,2(),4,2(ππ-Q P 之间的距离以及过它们的直线的极坐标方程。
极坐标和参数方程知识点总结
极坐标和参数方程知识点总结一、极坐标基础知识极坐标是一种描述平面上点位置的方式,它由两个值组成:极径和极角。
极径表示点到原点的距离,而极角表示点到正半轴的夹角。
二、极坐标与直角坐标系的转换在直角坐标系中,一个点可以用它在x轴和y轴上的投影表示。
而在极坐标系中,一个点可以用它与原点的距离和与正半轴的夹角来表示。
两种坐标系之间可以通过以下公式进行转换:x=r*cosθy=r*sinθ其中,r为极径,θ为极角。
三、常见图形的极坐标方程1. 圆:r=a2. 点:r=03. 直线:θ=k4. 简单叶形线:r=a*cos(2θ)5. 简单心形线:r=a*(1-sinθ)四、参数方程基础知识参数方程是一种描述曲线运动状态的方式,它由两个函数组成:x(t)和y(t)。
这两个函数分别表示曲线上每个点在x轴和y轴上的位置。
五、参数方程与直角坐标系的转换在直角坐标系中,一个曲线可以用y=f(x)的形式表示。
而在参数方程中,一个曲线可以用x(t)和y(t)的形式表示。
两种坐标系之间可以通过以下公式进行转换:x=f(t)y=g(t)其中,t为参数。
六、常见图形的参数方程1. 直线:x=at+b,y=ct+d2. 圆:x=a+r*cosθ,y=b+r*sinθ3. 椭圆:x=a*cosθ,y=b*sinθ4. 双曲线:x=a*secθ,y=b*tanθ七、极坐标与参数方程的联系极坐标和参数方程都是描述曲线运动状态的方式。
它们之间有一定的联系,可以通过以下公式进行转换:r=sqrt(x^2+y^2)tanθ=y/x其中,r为极径,θ为极角。
极坐标与参数方程知识讲解
极坐标与参数方程知识讲解参数方程和极坐标系(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系 x 、y 之间关系的变 数叫做参变数,简称参数.(二)常见曲线的参数方程如下:1. 过定点(X o ,y o ),倾角为a 的直线:其中参数t 是以定点P (x o ,y o )为起点,对 应于t 点M (x, y )为终点的有向线段PM 的数量, 又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论.①.设A 、B 是直线上任意两点,它们对应的 参数分别为 t A 和 t B ,则 |AB = |t^t A= J (tBYA )' -4t A t B .2. 中心在(x o , y o ),半径等于r 的圆:知识要点X=X 0tcos :y = y 0(t 为参数)(2 .线段AB 的中点所对应的参数值等于t A t Bx =X Q r COST y = y 0 rsin3 •中心在原点,焦点在x 轴(或y 轴)上的 椭圆: 沃 •为参数)(或 )1y 二 bs iny = asi nr 丿中心在点(x0,y0)焦点在平行于x 轴的直线上 的椭圆的参数方程x]xo:cos[ X-为参数)y = y 0 +bsi na.焦点在x 轴(或y 轴)上的2、极坐标有四个要素:①极点;②极轴;③ 长度单位;④角度单位及它的方向.极坐标与直角 坐标都是一对有序实数确定平面上一个点,在极坐 标系下,一对有序实数 —对应惟一点P (,), 但平面内任一个点P 的极坐标不惟一.一个点可以 有无数个坐标,这些坐标又有规律可循的,PC',) (极点除外)的全部坐标为C',r + 2k :J 或((2k l ):),(k Z ).极点的极径为0,而极角任意取.若5. 线:顶点在原点, 焦点在X 轴正半轴上的抛物x =2pt 2y = 2pt (t 为参数, 4. 双曲线:(A 为参数) (或(二为参数) 中心在原点,P> 0)直线的参数方程和参数的几何意义过定点P (X o, y°),倾斜角为a的直线的参数方程是其阳瞌;(t为参数).J3.2极坐标系1、定义:在平面内取一个定点0,叫做极点,引一条射线Ox,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极坐标与参数方程一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程. 二、知识结构1.参数方程的概念在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的函数⎩⎨⎧==),(),(t g y t f x 并且对于t 的每一个允许值,由这个方程所确定的点),(y x M 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。
相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。
常见的曲线的参数方程2.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数,其几何意义是.....PM ..的数量...) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bt y y at x x 00(t 为参数,1tan t α=) ② 3.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) (3)抛物线 抛物线px y 22=的参数方程为()为参数t pt y pt x ⎩⎨⎧==2224.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.注意:①点),(θρP 与点),(1θρ-P 关于极点中心对称;②点),(θρP 与点),(2πθρ+-P 是同一个点;③如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示(即一一对应的关系);同时,极坐标),(θρ表示的点也是唯一确定的。
④极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的. P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.圆的极坐标方程①以极点为圆心,a 为半径的圆的极坐标方程是 a ρ=;②以(,0)a )0(>a 为圆心, a 为半径的圆的极坐标方程是 θρcos 2a =; ③以(,)2a π)0(>a 为圆心,a 为半径的圆的极坐标方程是θρsin 2a =;直线的极坐标方程①过极点的直线的极坐标方程是)0(≥=ραθ和(0)θπαρ=+≥.②过点)0)(0,(>a a A ,且垂直于极轴的直线l 的极坐标方程是a =θρcos . 化为直角坐标方程为x a =. ③过点(,)2A a π且平行于极轴的直线l 的极坐标方程是sin a ρθ=. 化为直角坐标方程为y a =.极坐标和直角坐标的互化(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位. (2)互化公式....(x,y)所在的象限确定 三、课前预习1.直线12+=x y 的参数方程是( )A 、⎩⎨⎧+==1222t y t x (t 为参数) B 、⎩⎨⎧+=-=1412t y t x (t 为参数)C 、 ⎩⎨⎧-=-=121t y t x (t 为参数) D 、⎩⎨⎧+==1sin 2sin θθy x (t 为参数) 答案:C2.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点的坐标的是( )A 、⎪⎭⎫⎝⎛-3,5π B 、⎪⎭⎫ ⎝⎛34,5πC 、⎪⎭⎫⎝⎛-32,5π D 、⎪⎭⎫ ⎝⎛--35,5π 答案:A3.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标系是( )A 、(1,)2πB 、(1,)2π- C 、 (1,0) D 、(1,π)解:将极坐标方程化为普通方程得:0222=++y y x ,圆心的坐标为)1,0(-,其极坐标为)23,1(π,选B 4.点()3,1-P ,则它的极坐标是 ( )A 、⎪⎭⎫⎝⎛3,2πB 、⎪⎭⎫ ⎝⎛34,2πC 、⎪⎭⎫⎝⎛-3,2πD 、⎪⎭⎫ ⎝⎛-34,2π 答案:C5.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩ (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( )A 、1B 、2C 、3D 、4 答案:A6.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A 、一条直线B 、两条直线C 、一条射线D 、两条射线 答案:D7.()124123x tt x ky k y t=-⎧+==⎨=+⎩若直线为参数与直线垂直,则常数( ) A 、-6 B 、16-C 、6D 、16答案:A8.极坐标方程4cos ρθ=化为直角坐标方程是( )A 、22(2)4x y -+= B 、224x y += C 、22(2)4x y +-= D 、22(1)(1)4x y -+-= 答案:A9.4sin()4x π=+与曲线122122x ty ⎧=-⎪⎪⎨⎪=+⎪⎩的位置关系是( ) A 、 相交过圆心 B 、相交 C 、相切 D 、相离答案:D10.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、双曲线的一支 C 、圆 D 、射线 答案:D11.在极坐标系中,圆2ρ=上的点到直线()6sin 3cos =+θθρ的距离的最小值是 . 答案:112.圆C :x =1+cos θy =sin θ⎧⎨⎩(θ为参数)的圆心到直线l:x =3ty =13t⎧-⎪⎨-⎪⎩(t 为参数)的距离为 。
答案:213.已知两曲线参数方程分别为sin x y θθ⎧=⎪⎨=⎪⎩(0)θπ<≤和254x t y t⎧=⎪⎨⎪=⎩ (t ∈)R ,它们的交点坐标为___________.答案:(1,5. 14.以直角坐标系的原点为极点,x 轴的正半轴为极轴,已知曲线1C 、2C 的极坐标方程分别为0,3πθθ==,曲线3C 的参数方程为2cos 2sin x y θθ=⎧⎨=⎩(θ为参数,且,22ππθ⎡⎤∈-⎢⎥⎣⎦),则曲线1C 、2C 、3C 所围成的封闭图形的面积是 . 答案:23π 四、典例分析考向一 极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化相关知识点:极点与原点重合,极轴与x 轴正半轴重合,长度单位相同.互化公式:⎩⎨⎧==θρθρsin cos y x 或 ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x yy x θρ 【例1 】(1)点M 的极坐标分别是(2,)2π,(4,)π,2(6,)3π,3(2,)4π换算成直角坐标依次是 , , ,(2)点M 的直角坐标分别是(2,0),(0,2)-,(2,2)--,(如果0,02ρθπ≥≤< 换算成极坐标依次是 , , ,【例2】在极坐标系中,过圆4cos =ρθ的圆心,且垂直于极轴的直线的极坐标方程为 .分析:由θρcos 4=得θρρcos 42=.所以x y x 422=+,22(2)4x y -+=圆心坐标(2,0) 过圆心的直线的直角坐标方程为2=x .直线的极坐标方程为2cos =θρ。
【变式1】在极坐标系中,圆心在()2,π且过极点的圆的方程为( B )A 、ρθ=22cosB 、ρθ=-22cosC 、ρθ=22sinD 、ρθ=-22sin分析:圆心在()2,π即指的是直角坐标系中的)02(,-圆的直角坐标方程:22(2x y +=。
圆的极坐标方程为ρθ=-22cos【变式2】已知曲线21,C C 的极坐标方程分别为θρθρcos 4,3cos ==(20,0πθρ<≤≥),则曲线1C 与2C 交点的极坐标为__ ___.解:曲线21,C C 的直角坐标方程分别为4)2(,322=+-=y x x ,且0≥y ,两曲线交点的 直角坐标为(3,3). 所以,交点的极坐标为⎪⎭⎫⎝⎛6,32π 【变式3】在极坐标系中,已知点A (1,43π)和B )4,2(π,则A 、B 两点间的距离是 .解:如图所示,在△OAB 中,65367,5||,4||πππ=-=∠==AOB OB OA 5sin 21=∠=⇒∆AOB OB OA S AOB 评述:本题考查极坐标及三角形面积公式,数形结合是关键。
考向二 曲线的参数方程,参数方程与普通方程的互化【例3】(1)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为 ( C )A 、22(1)(1)1x y -++=B 、22(1)(1)1x y +++=C 、22(1)(1)1x y ++-= D 、22(1)(1)1x y -+-=(2)参数方程⎪⎪⎩⎪⎪⎨⎧-=+=t t y tt x 11表示的曲线是( )A 、椭圆B 、双曲线C 、抛物线D 、圆答案:B【变式1】已知抛物线C 的参数方程为28,8.x t y t ⎧=⎨=⎩(t 为参数)若斜率为1的直线经过抛物线C 的焦点,且与圆()2224(0)x y r r -+=>相切,则r =________。
答案:2解:抛物线的标准方程为x y 82=,它的焦点坐标是)0,2(F ,所以直线的方程是2-=x y ,圆心到直线的距离为2【变式2】若直线340x y m ++=与圆⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是 (,0)(10,)-∞⋃+∞ .【变式3】直线2()1x tt y t=-+⎧⎨=-⎩为参数被圆22(3)(1)25x y -++=所截得的弦长为( )A、1404C分析:2101x t x y y t=-+⎧⇒++=⎨=-⎩, 22(3)(1)25x y -++=Q 得圆心到直线的距离d ==,∴弦长=【例4】已知点(,)P x y 是圆222x y y +=上的动点,求2x y +的取值范围。