第4章电极过程

合集下载

电极过程动力学 ppt课件

电极过程动力学  ppt课件

§1.1 电极过程动力学的发展
电化学科学的发展大致可以分为三个阶段:电化学热 力学、电化学动力和现代电化学。
电化学热力学研究的是处在平衡状态的电化学体系, 涉及的主要问题是电能和化学能之间的转换的规律。
从19世纪末到20世纪初,在热力学基本原理被牢固地 确立后,用热力学方法研究电化学现象成了电化学研 究的主流,取得了重大的进展,使“电化学热力学” 这部分内容趋于成熟,成为物理化学课程的经典组成 部分。
研究电极过程动力学的首要目的在于找出整个电极过程的控制步 骤,并通过控制步骤来影响整个电极过程的进行速度,而这又建立 在对电极过程基本历程的分析和弄清个分步骤动力学特征的基础 之上。
电极的极化
处在热力学平衡状态的电极体系,因正、负方向的反应速度相等, 净反应速度等于零.相应的平衡电极电势可由Nernst公式计算.当 有外电流通过时,净反应速度不等于零,即原有的热力学平衡受到 破坏,致使电极电势偏离平衡电势,这种现象在化学上称为电极的” 极化现象” 。
“电极/溶液”界面上的电场强度常用界面上的相间电势差---电极电势表 示,
随着电极电势的改变,不仅可以连续改变电极反应的速度,而且可
以改变电极反应的方向。以后还将看到,即使保持电极电势不变,改变
界面层中的电势分布也会对电极反应速度有一定的影响。因而研究“电
极/溶液”界面的电性质,即电极、溶液两相间的电势差以及界面层中的
电化学—研究载流子(电子、空穴、离子)在电化学 体系(特别是离子导体和电子导体的相界面及其邻近 区域)中的运输和反应规律的科学。
电化学所研究的内容有:
(1)电解质溶液理论(离子水化、离子互吸、离子缔合及电导 理论等);
(2)电化学平衡(可逆电池、电极电位、电动势与热力学函数 间关系等);

第四章电化学腐蚀反应动力学详解

第四章电化学腐蚀反应动力学详解
面的因素:
a)腐蚀的驱动力——腐蚀电池的起始电势差 0,C 0, A
b)腐蚀的阻力——阴、阳极的极化率 PC 和 PA ,以及欧姆电阻 R
三项阻力中任意一项都可能明显地超过另两项,在腐蚀过程中对速度起 控制作用,称为控制因素。利用极化图可以非常直观地判断腐蚀的控制 速度。
欧姆电势降与阴极(或阳极)极化曲线加和起来,如图中的 0,C A线, 然后与阳极极化曲线 0,AS 相交于A点,则点A对应的电流I1就是这
种情况下的腐蚀电流。
0,C 0,A C A I1R I1PC I1PA I1R
I1
0,C
PC
0,A
PA R

I corr
0,C 0,A
PC PA R
则阳极极化 阴极极化
A E Ei Ee (4.1a) c E Ee Ei (4.1b)
对不可逆电极存在一个稳态的电位Es,也使用电极极化一词。这时,极化值 的大小用类似式(4.1)的方程式表示
E Ei Es (4.2)
极化的结果:阴极极化使电极电位负移,阳极极化使电极电位正移。 当电流通过电极时,电极上产生两种相反的作用:
铜不溶于还原性酸,因为铜的平衡电势高于氢的平衡电势,不能形成氢阴极 构成腐蚀电池,但铜可溶于含氧酸或氧化性酸中,因为氧的平衡电势比铜高, 可构成阴极反应,组成腐蚀电池。酸中含氧量多,氧去极化容易,腐蚀电流 较大,而氧少时,氧去极化困难,腐蚀电流较小。见图4.10
铜在非含氧酸中是耐蚀的,但当溶液中含氰化物时,可与铜离子配合形成配 合离子,铜的电势向负方向移动,这样铜就可能溶解在还原酸中。见图4.10
图4.7 氧化性酸对铁的腐蚀
图4.8 金属平衡电极电位对腐蚀电流的影响
图4.9 钢在非氧化酸中的腐蚀极化图

应用电化学-第4章

应用电化学-第4章
第4章
不可逆电极过程
第4章 不可逆电极过程
主要内容
4.1 极化现象 4.2 极化曲线与极化度 4.3 极化曲线的测量
4.1 极化现象
4.1.1 极化的定义 4.1.2 极化的原因
4.1.1 极化的定义
在有限的电流通过时,电极系统的电 极电位偏离其平衡电极电位值的现象,称 为电极的极化现象。 任何电极系统,只要有宏观的净的电 流流过,就不可能处于平衡状态,即偏离 其平衡状态,发生极化。动力学中研究的 电极系统就是处于这种非平衡的状态!
η 浓差 = ϕ − ϕ 平衡
4.1.2 极化的原因
(2)活化极化(电化学极化)
在有限电流通过电极时,由于电化学反 应进行的迟缓造成电极上带电程度与可逆状 态下不同,从而导致的电极电位偏离其平衡 电极电位的现象,叫做“ 活化极化” 。 此时,电极表面的电化学过程的平衡状 态被打破。“ 活化过电位η活化” 是电极活化 极化程度的度量。
动电位扫描法测量极化曲线 控制电位以一定的速率(扫描速度)进行 线性扫描,同时记录相应的电流,绘成极化曲 线。 过去采用信号源对恒电位仪施加电位信 号,用X-Y记录仪记录极化曲线。现在均采用 自动化仪器,电脑自动控制,记录并输出数字 化的极化曲线。
4.3.1 极化曲线的测试方法
对于稳态极化曲线的测量,电位扫描速 率具有重要的影响。只有扫描速率足够的 慢,才能保证测量的是稳态极化曲线。 对于不同的体系可采用不同的扫描速 率,或通过实验来确定。方法是:不断降低 扫描速率测量极化曲线,当扫描速率降低到 一定的程度时,极化曲线不再变化,即可确 定扫描速率。 但扫描速率不能太慢,否则测量时间太 长,测量过程中体系变化太大。
4.2.2 极化度
4.2.2 极化度

电化学原理知识点

电化学原理知识点

电化学原理知识点————————————————————————————————作者:————————————————————————————————日期:电化学原理第一章 绪论两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。

第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。

三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。

电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。

腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。

阳极:发生氧化反应的电极 原电池(-)电解池(+) 阴极:发生还原反应的电极 原电池(+)电解池(-) 电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。

分类:1.弱电解质与强电解质—根据电离程度2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。

水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。

可分为原水化膜与二级水化膜。

活度与活度系数: 活度:即“有效浓度”。

活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。

规定:活度等于1的状态为标准态。

对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。

离子强度I :离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: 注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。

电导:量度导体导电能力大小的物理量,其值为电阻的倒数。

符号为G ,单位为S ( 1S =1/Ω)。

影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。

第四章电催化与电催化电极

第四章电催化与电催化电极
方式二:电化学脱附步骤
在电极表面上,由另一个H3O+ 离子在吸附氢原子的位置上 放电,从而直接生成氢分子,并从电极表面上脱附下来:
MH+H3O+ +e→H2+H2O+M (酸性介质) MH+H2O+e→H2+M+OH - (中性或碱性介质)
㈡析氢机理
⒈迟缓放电理论: 电化学反应是整个析氢反应过程的控制步骤。
能催化电极反应的或者说对电极反应起加速作用 的物质称为电催化剂。
2、电催化的本质:
通过改变电极表面修饰物(或表面状态)或溶液相中的修 饰物,大范围的改变反应的电极电势与反应速率,使电极除具 有电子传递功能外,还能促进和选择电化学反应.
3、电催化反应的共性
反应过程包含两个以上的连续步骤,且在电极表面生成化学 吸附中间产物。许多由离子生成分子或使分子降解的电极反 应都属于此类反应。分成两类:
吸附机理分为两类:
2.反应物首先在电极上进行解离式或缔合式化学吸附,随后 吸附中间物或吸附反应物进行电子传递或表面化学反应。
例如甲酸的电化学氧化:
HC 2 M O M O H H M COOH
M H M H e
M CO M O C 2 H O H e 或
HCOOH M M CO H2O M H2O M OH H e M CO M OHCO2 H e
目前已知的电催化剂主要为过渡金属及其化合物。
设计关键:选择过渡金属中心原子
特点:过渡金属的原子结构中都含有空余的d轨道和未成对 的d电子,通过催化剂与反应物的接触,催化剂空余d轨道上 将形成各种特征的吸附键,达到分子活化的目的,从而降低了 复杂反应的活化能。
主要为含有Ti, Ir, Pt, Ni, Ru等金属或合金及其氧化物。如 RuO2/Ti电极, RuO2-TiO2电极, Pt/Ti电极,Pt/GC电极

电化学原理-第四章-电极过程概述

电化学原理-第四章-电极过程概述
阴极极化时,
c 平 c
阳极极化时,
a a 平
⑵极化值
实际遇到的电极体系,在没有电流通过时,并不都 是可逆电极。在电流为零时,测得的电极电位可能是可 逆电极的平衡电应,也可能是不可逆电极的稳定电位。 因而,又往往把电极在没有电流通过时的电位统称为静 止电位。把有电流通过时的电极电位(极化电位)与静止 电位的差值称为极化值。

为此,对一个具体的电极过程.可以考虑按照以下四个
方面去进行研究。
1.
弄清电极反应的历程。也就是整个电极反应过程包括哪 些单元岁骤,这些单元步骤是以什么方式(串联还是并 联)组合的,及其组合顺序。
2.
找出电极过程的速度控制步骤。混和控制时,可以不只
有一个控制步骤。
3.
测定控制步骤的动力学参数。当电极过程处于稳态时,
化学反应(电池反应)过程至少包含阳极反应过程、 阴极反应过程和反应物质在溶液中的传递过程(液 相传质过程)等三部分。
ce
c
a
阴极:cathode
c
a
阳极:anode
ae
电极的极化:有电流通过电极 时,电极电位偏离平衡电位( 或稳定电位)的现象。 阴极极化:电极电位偏离平衡 电位向负移 阳极极化:电极电位偏离平衡 电位向正移 过电位:在一定电位下,电极 电位与平衡电位的差值
j净 j j逆
* *
* 为控制步骤的逆向反应绝对速度。由上式可知 式中 j逆
j净 j*逆
其它非控制步骤,比如电子转移步骤的绝对反应
速度为
(还原反应)和 j (氧化反应),由于 j 和 j 均比 j* 大得多,所以也比 j净 大得多。然而,对于
j

李狄-电化学原理-第四章-电极过程概述

李狄-电化学原理-第四章-电极过程概述
动力粘滞系数
u0
x

扩散层:根据扩散 传质理论,紧靠电 极表面附近,有一 薄层,此层内存在 反应粒子的浓度梯 度,这层叫做扩散 层。
1 Di B 10
1 3
B

u0
x
扩散层的有效厚度
c c 有效= dc dx x 0
ci
D
c i0

0

s
L
D y u
对流扩散过程特征


由于扩散层中有一定强度对流存在,扩 散特性的影响相对减小 ; 改变搅拌速度和溶液粘度均可影响 i ; 电极表面各处对流影响不同 ,i 和 分布 不均匀。
三. 旋转圆盘电极(RDE)
旋转圆盘电极的主要应用



通过控制转速来控制扩散步骤控制的电 极过程的速度; 通过控制转速,获得不同控制步骤的电 极过程,便于研究无扩散影响的单纯电 化学步骤; 通过控制转速,模拟不同 值的扩散控 制的电极过程 。
d c J 1 J 2 Di 2 dx dx c d 2c D ∴ t dx
Fick Ⅱ 定律
2
S1
S2
扩散方向
dx
二.平面电极上的非稳态扩散

初始条件:
t 0

ci x , 0 c
0 i
边界条件1:
x
ci ,t c
0 i
1.完全浓差极化

边界条件 2:
第四节 非稳态扩散过程(暂态扩散)

稳态和暂态的区别:扩散层中的反应粒子 浓度是否与时间有关,即
稳态:
ci f x
暂态:
ci f x, t

第4章 扩散控制的电极反应动力学

第4章 扩散控制的电极反应动力学
第四章:扩散控制的电极反应动力学
4.1 扩散控制
在上一节讨论的快速电极反应、即可逆电极反 应中,电极电位和电活性物质的表面浓度始终维持
Nerst关系,这时,电极反应的速度v就完全由反应
物移向电极表面或者生成物移开电极表面的质传递
速度vmt所决定
v v mt
i nFA
1. 质传递类型
溶液中的质传递有三种形式:
上式两边微分并代入
DO i s C C O O nFA (t )
不考虑对流和电迁移,对于还原反应 物质传递的速度与电极表面的浓度梯度成正比
cO x v mt (0) x x 0
式中的x是与电极表面的距离。
稳态下扩散层厚度不随时间变化
cO c O 1
cs
2
O
0
x
图 1.4.1 电极上的浓度分布;x=0相当于电极表面 (1)在csO约为cO /2的电势下的浓度分布。 (2)在csO0, i = il的电势下的浓度分布。
s nFADO cO i cO 1 d cO

同样对于阳极反应:
c c i DR nFA d
s R
( 2)
s nFADO cO i cO 1 d cO
当 c 0 或者 c c
s O
s O
O
c c c
eq
il,c
log[(il,c – i)/(i-il,a)]

(-)
eq
(-)

O'
RT mO RT il,c i ln ln nF m R nF i il,a
il,c i ln i i l , a

电化学原理第四章.

电化学原理第四章.

07:10:45
二、电极极化的原因
未通电时,两类导体中无电子流动,仅有电极/溶液界面上一 定的氧化与还原反应的动态平衡及由此所建立的相间电位( 平衡电位)。有电流流动时,界面上有一定的净电极反应, 使由一类和二类导体构成的导电方式可相互转化,需反应足 够快,才不致使电荷在电极表面积累造成相间电位差变化, 以保持未通电时的平衡状态。
当电极反应达到稳定状态时,外电流将全部消耗于反应电 极,故实验测得的外电流密度值就代表了电极反应速度。
07:10:45
1 dc j n线实际上反映了电极反应速度与电极电位(或 过电位)之间的特征关系。 极化曲线上某点的斜率 d / dj(或dy / dj) 称为该电流密 度下的极化度。有电阻量纲,有时也称作反应电阻。实际中 常用某一种电流密度范围内的平均极化性能,故称平衡极化 度 的概念。
07:10:45
三、极化曲线 极化曲线 反映过电位随电流密度变化的关系曲线,见图4.1 。电流零时电极电位为静止电位,随I增大,电极电位逐渐向 负移。 可从极化曲线求得任一电流的过电位η或极化值Δ。 也可了解整个电极过程电极电位变化趋势和比较不同电极过 程的极化规律。如在图4.1中,在氰化镀锌溶液中测得的极化 曲线2比在简单的锌盐溶液中测得的极化曲线1陡得多,得锌 电极在溶液2比在溶液1中易极化。
07:10:45
因电极反应是有电子参与的氧化还原反应,故可用电流密 度来表示电极反应的速度, 设电极反应为 O + ne ≒ R (4.1) 按异相化学反应速度的表示方法,该电极反应速度为 1 dc v (4.2) s dt v为电极反应速度;S为电极表面的面积;C为反应物浓度; T为反应时间 由法拉第定律,电极有一摩尔物质还原或氧化,需通过 nF 电量。 n 为电极反应中一个反应粒子所消耗的电子数,即( 4.1 )中参与电极反应的电子数 n,故可把电极反应速度用电 流密度表示为

高中化学选择性必修一第4章第1节 原电池

高中化学选择性必修一第4章第1节 原电池
7、负极:Al —3e -+4OH-=AlO2-+2H2O 正极: 2e-+2H2O= H2↑+ 2OH―
总反应: 2Al+2OH―+2H2O=2AlO2-+3H2↑
8、负极:Cu —2e -=Cu2+ 正极: 2H++NO3- +e-= H2O+NO2↑
总反应: Cu+4H++2NO3-=Cu2++2H2O+2NO2↑
第一节 原电池
一、原电池的工作原理
(一)定义:将化学能转化为电能的装置 注:原电池中的化学能并非全部转化为电能,有一部分 转化成热能等其他形式的能量
(二)本质:氧化还原反应
(三)工作原理:以铜-锌原电池为例
答:(1)锌铜原电池工作时,电子由锌片沿导线移向铜 片,阴离子(Cl-、SO42-)在电解质溶液中移向锌片,阳 离子(K+、Cu2+)移向铜片。
合OH-→沉淀M(OH)n
、遵守三大守恒:质量守恒、电荷守恒、 转移电子守恒 、两极反应式叠加得总反应式,总反应式减去其中一个
电极反应式,可得另一个电极的反应式 5、规律:①一般来说,金属作负极的原电池
负极:酸性或中性介质中:M—ne-=Mnn+
碱性介质中:M—ne-+nOH-=M(OH)n 正极:酸性介质中:2H++2e-=H2↑
(五)能否构成原电池的判断——四看
1、看电极——两极为导体且存在活泼性差异 (燃料电池的电极一般为惰性电极) 2、看溶液——两极插入电解质溶液中 3、看回路——形成闭合回路或两极直接接触 4、看本质——有无自发的氧化还原反应发生
例题:

第四章 电化学腐蚀动力学

第四章 电化学腐蚀动力学

(2)在溶液对流作用下,氧迁移到阴极表面
(3)在扩散层范围内,氧在浓度梯度作用下扩散到阴极表面,形 成吸附氧 (4)在阴极表面氧离子发生还原反应,氧的离子化
步骤(1)、(2)和(4)不成为控制步骤 通常步骤(3)速度最慢为控制步骤
吸氧腐蚀
吸氧腐蚀
氧的阴极反应的极化曲线
1
2 3
吸氧腐蚀
氧的阴极反应的极化曲线
阳极浓差极化(扩散步骤)
阳极溶解产生的金属离子,首先进入阳极表面附近的液层中,使 之与溶液深处产生浓度差。由于阳极表面金属离子扩散速度制约,阳 极附近金属离子浓度逐渐升高,相当于电极插入高浓度金属离子的溶 液中,导致电势变正,产生阳极极化。
阳极电阻极化
当金属表面有氧化膜,或在腐蚀过程中形成膜时,膜 的电阻率远高于基体金属,则阳极电流通过此膜时,使电 势显著变正,由此引起极化。 *通常只在阳极极化中发生
阴极极化原因
1 阴极活化极化
当阴极还原反应速率小于电子进入阴极的速率 电子在阴极堆积,电子密度增高 使阴极电位向负的方向移动,产生阴极极化
2 阴极浓差极化
*为什么阴极浓差极化比阳极浓差极化更加显著?(问题)
二、极化现象的本质
电子迁移的速度大于电极反应及相关步骤完成的速度 在阳极上,电子迅速转移,致使金属离子过剩从而在阳极上积
对流、扩散和电迁移
3 电迁移
对于带电荷的粒子,如果溶液中存在电场,在电场作用下将沿着 一定方向移动。
(2)浓差极化过电位
浓差极化极限电流密度iL(以阴极极化为例)

—扩散层厚度
iL
nFD

C
C—溶液本身氧浓度 D—扩散系数 F—法拉第常数 n—物质的克当量
温度降低,扩散系数D减小,iL减小,腐蚀速率变慢; 反应物浓度降低,腐蚀速率变慢; 通过搅拌或改变电极现状,减少扩散层厚度,增大iL,加速腐蚀。

高中化学选择性必修一第4章第2节 电解池 基础知识讲义

高中化学选择性必修一第4章第2节 电解池 基础知识讲义

第二节电解池一、电解池(一)电解的定义:使电流通过电解质溶液(或熔融电解质)而在阳极、阴极引起氧化还原反应的过程。

(二)电解池的定义:将电能转变为化学能的装置,也称电解槽(三)构成条件:两极一液一电源,氧化还原是条件注:电解法是一种强氧化还原手段,可以完成一个不自发的氧化还原反应1、两极(1)阴极——负极——阳离子——还原反应(2)阳极——正极——阴离子——氧化反应注:阳极分为两种:(1)活性电极:电极自身放电即电极自身发生氧化反应,如:Fe、Cu、Ag(2)惰性电极:电极自身不反应,由电解质中的阴离子发生氧化反应。

如:Au、Pt、C2、电解质溶液3、外接电源4、能发生氧化还原反应:可以是自发的反应,也可以是非自发的反应(四)工作原理(以电解CuCl2溶液为例)电极名称阴极阳极电极材料石墨石墨电极反应Cu2++2e-=Cu 2Cl-—2e-=Cl2↑反应类型还原反应氧化反应总反应CuCl2Cu+ Cl2↑反应现象有红色物质产生有刺激性气味的气体,使湿润的淀粉KI试剂变蓝电子流向负极→阴极,阳极→正极电流流向正极→阳极,阴极→负极离子走向阳离子→阴极,阴离子→阳极注:放电:离子得失电子发生氧化还原反应的过程(五)电极的放电顺序1、阳极:(1)活性电极:Fe、Cu、Ag。

反应方式:M-ne-=M n+Fe-2e- =Fe2+、Cu-2e- =Cu2+、Ag-e- =Ag+(2)惰性电极:Au、Pt、C。

溶液中的阴离子放电常见放电顺序:活性电极>S2- >I- >Br- >Cl- >OH- >含氧酸根>F-2I-2e-=I2 2Br-2e-=Br22Cl-2e-=Cl22H2O—4e-=4H++O2↑2、阴极:常见阳离子放电顺序:金属活动性顺序的倒序Ag+>Hg2+>Fe3+>Cu2+>H+(酸)>Pb2+>Fe2+>Zn2+>H+(水)>Al3+>Mg2+>Na+>Ca2+>K+ 最常见的阴极产物有Ag、Cu、H2Ag++e-= Ag Cu2++2e-=Cu 2H++2e-=H2↑或2H2O+2e-=H2↑+2OH-注:在电镀时,通过控制条件,Fe2+和Zn2+的得电子能力会强于酸中的H+,即浓度越大,得电子能力越强(六)电解方程式的书写看电极→找离子→分阴阳→排顺序→写反应注:1、必须在总反应方程式的“==”上标明“通电”或“电解”2、只是电解质被电解,电解化学方程式中只写电解质及电解产物,无关的不写注:常考的电解池反应式:惰性电极的情况下,电解强碱、含氧酸、活泼金属含氧酸盐(KNO3、Na2SO4)、HCl、CuCl2、NaCl、MgCl2、CuSO4、AgNO31、惰性电极的情况下,电解强碱、含氧酸、活泼金属含氧酸盐(KNO3、Na2SO4):阴极:2H2O+2e-=H2↑+2OH- 阳极:2H2O—4e-=4H++O2↑总反应:2H2O电解2H2↑+O2↑2、惰性电极的情况下,电解HCl:阴极:2H++2e-=H2↑阳极:2Cl--2e-=Cl2↑总反应:2HCl电解H2↑+Cl2↑3、惰性电极的情况下,电解CuCl2溶液:阴极:Cu2++2e-=Cu 阳极:2Cl--2e-=Cl2↑总反应:CuCl2电解Cu+ Cl2↑4、惰性电极的情况下,电解NaCl溶液:阴极:2H2O+2e-=H2↑+2OH- 阳极:2Cl--2e-=Cl2↑总反应:2H2O+2Cl-电解Cl2↑+H2↑+2OH-5、惰性电极的情况下,电解MgCl2溶液:阴极:2H2O+2e-=H2↑+2OH- 阳极:2Cl--2e-=Cl2↑总反应:Mg2++2H2O+2Cl-电解Cl2↑+H2↑+ Mg (OH)26、惰性电极的情况下,电解CuSO4溶液:阴极:Cu2++2e-=Cu 阳极:2H2O—4e-=4H++O2↑总反应:2Cu2++2H2O电解2Cu+4H++O2↑7、惰性电极的情况下,电解AgNO3溶液:阴极:Ag++e-= Ag 阳极:2H2O—4e-=4H++O2↑总反应:4Ag++2H2O电解4Ag +4H++O2↑(八)电解池与原电池的比较原电池电解池能量转化化学能→电能电能→化学能反应能否自发进行自发进行的氧化还原反应非自发进行的氧化还原反应构成装置两极、电解质、导线两极、电解质、电源电极名称负极正极阴极(与负极相连)阳极(与正极相连)电极反应失电子—氧化反应得电子—还原反应得电子—还原反应失电子—氧化反应电子流向负极→外电路→正极负极→阴极,阳极→正极电流流向正极→外电路→负极正极→阳极,阴极→负极离子流向阳离子→正极,阴离子→负极阳离子→阴极,阴离子→阳极小结:原电池与电解池的电极反应:负阳氧,正阴还原电池的离子走向:正向正,负向负;电解池的离子走向:阴阳相吸二、电解原理的应用(一)氯碱工业——电解饱和食盐水制烧碱和氯气1、原理:阴极:2H2O+2e-=H2↑+2OH-阳极:2Cl-—2e-=Cl2↑总反应:2Cl―+2H2O电解2OH―+Cl2↑+H2↑2、现象及检验:阴极:有无色、无味气泡产生,滴加酚酞——变红阳极:有黄绿色、刺激性气味的气体产生,使湿润的淀粉KI试纸变蓝3、阳离子交换膜的作用(1)将电解池隔成阳极室和阴极室,只允许阳离子(Na+、H+)通过,而阻止阴离子(Cl-、OH-)和气体通过(2)既能防止阴极产生的H2和阳极产生的Cl2相混合,而引起爆炸,又能避免Cl2和NaOH 作用生成NaClO而影响烧碱的质量(二)电镀1、定义:利用电解原理在某些金属表面镀上一薄层其他金属或合金的加工工艺2、目的:使金属增强抗腐蚀能力,增加美观和表面硬度3、电镀池的构成:阴极:待镀金属——镀件阳极:镀层金属(通常是一些在空气或溶液里不易起变化的金属(如Cr、Ni、Ag和合金(如黄铜)))电解质溶液:含有镀层金属阳离子的电解质溶液——电镀液4、实例:铁上镀铜5、特点:一多一少一不变一多:阴极上有镀层金属沉积一少:阳极上镀层金属溶解一不变:电解质溶液浓度不变(三)电解精炼铜1、装置:如图2、原理:阳极:Cu—2e-=Cu2+(Zn—2e-=Zn2+、Fe—2e-=Fe2+、Ni—2e-=Ni2+)阳极泥成分:Au、Ag阴极:Cu2++2e-=Cu(电解质溶液浓度减小,因为m Cu(溶解)< m Cu(析出))(四)电冶金1、金属冶炼:使矿石中的金属离子获得电子变成金属单质的过程。

电化学测量第4章暂态ppt课件

电化学测量第4章暂态ppt课件
• 电极的极化分为哪几种?各种极化有何特 点?他们分别受哪些因素影响?
• 请以图示的方法给出由稳态极化曲线求解 电化学动力学参数的原理,并说明其注意 事项。
4.3 电化学等效电路
• 4.3.1 电路模型的建立
4.3.2 电化学反应电阻
• 电化学反应电阻Rr,用以表示Faraday电流对电化 学极化过电势的关系
ic:由双电层的电荷改变引起 Non-Faradaic Current ir:由电极界面的电化学反应所产生 Faradaic Current
ic
dQ dt
d(Cd )
dt
Cd
d
dt
dCd dt
电化学反应迟缓; 反应物、产物在电极附 近的扩散迟缓
活性物质在电 极/溶液界面的 吸脱附
4.1 暂态与暂态电流-特点
• 定解的边界条件
假定扩散系数不变,即Di=常数
开始极化的瞬间(初始条件)
半无限扩散条件
ci (x, 0)=ciB ci (, t)=ciB
4.2.1 电势阶跃下的非稳态扩散电流
• 小幅度电势阶跃(未破坏平衡)
c0, t cS=const
• 大的电势阶跃(达完全浓度极化)
c0, t 0
解Fick第二定律,得反应粒子浓度
• 可用来研究快速电极过程,测定快速电极反应的 动力学参数;
• 有利于研究界面结构和吸附现象。也有利于研究 电极反应的中间产物及复杂的电极过程;
• 适合于那些表面状态变化较大的体系 。
4.5 电流阶跃法(Current Step)
• 4.5.1 电流阶跃下的电极响应特点
• 4.5.2 小幅度电流阶跃测量法 极限简化法、方程解析法
Rr
de

大学化学4.2 原电池和电极电势

大学化学4.2 原电池和电极电势

EFe3+/Fe2+
= Eθ F e3+ /F e2+
c(Fe3+) + 0.05917 lg c(Fe2+)
正极: Cr2O72-+6e-+14H+→ 2Cr3++7H2O
(-)Pt︱Fe2+(c1),Fe3+(c2)‖Cr2O72-(c3), Cr3+(c4), H+(c5)︱Pt(+)
20
负极: 4Cl- - 4e- → 2Cl2 正极: MnO42-+4e-+8H+→ Mn2++4H2O
(-)Pt︱Cl2(pCl2)︱Cl-(c1)‖MnO42-(c2), Mn2+(c3), H+(c4)︱Pt(+)
25
当溶解和沉积过程平衡时,
若溶解趋势大,则金属带负电荷, 溶液带正电荷(图1)。若沉积的趋 图1 势大,则金属带正电荷,溶液带 负电荷(图2)。两种电荷集中在固液界面附近形成了类似于电容器 一样的双电层。由于双电层的形 图2 成,在金属和溶液之间便存在一 个电势差。这就是该金属电极的 平衡电势,或称电极电势。
37
(5)电极反应中有H+、OH-时,电对有酸性
或碱性介质中两种不同的E值。
酸中:O2+4H++4e- 2H2O EθO2/H2O
碱中: O2+2H2O +4e-
4OH- EθO2/OH-
38
参比电极
标准氢电极是一理想参比电极,但制备和 使用很不方便,随时需要准备好一个纯净的氢 气源,并准确控制通入的气体压力为100kPa, 溶液若含有少量杂质As、S、Hg等会使铂黑铂电 极中毒失效。所以实际工作中常采用其它稳定 而又方便的电极(参比电极)作为间接比较的 标准。该参比电极的标准电极电势由标准氢电 极测得。

第四章电极过程概述

第四章电极过程概述
'

E c a 平) IR (

电解池: E V
' a平

c
c平
(
' a平

c平 '
) a 平 )(
’ c平
a

IR 溶液 (

a平
c) IR
E c a 平 ) IR (

' a平

四.电极过程的主要特征 电极反应是发生在电极/溶液界面,并随电子定向 流动的氧化还原反应。因此,它遵循一般氧化还原的 所有规律,同时也具备自己的特征: 1.氧化与还原反应分区进行,并伴随宏观电子的定 向流动(电能可利用)。 2.电极/溶液界面存在很强的电场~108V/cm,且 界面电场强度可在一定范围内发生变化。它的存在与 变化对电极反应的速度将产生非常大的影响。 3.电极反应由一系列遵循不同动力学规律的单元步 骤构成,其速度的大小由其反应活化能最大的分步骤 决定。
a. 研究电极与辅助电极构成极化回路,通过外电源 及可变电阻的调节,使研究电极以不同的电流密 度进行极化。 b. 研究电极与参考电极构成测量回路,测定在不同 极化电流密度下研究电极的电极电位。
V


参考
IR
由于电位测量仪的输入电阻很大(109Ω以上), 故通过测量回路的电流强度很小,故可认为参考电极 未发生极化(Ф 参= Ф 参平)。
IR为回路电阻产生的压降
IR I 测 I 极) R I 测 R (
' ''
R’:研究电极与盐桥间的溶液电阻,R’’:参考电极 系统的溶液电阻。
I测≤10-7A I极=10-3~10-1A, R’≈ R’’ 故有: I R = I极 R’ 若将R’变得很小,则可有: V测量=Φ 研 + 常数 实际测量,常采用鲁金毛细管来减小盐桥与研究电 极表面之间产生的溶液欧姆降。

电化学 第4章 浓度极化解读

电化学 第4章 浓度极化解读

第4章 浓度极化(Concentration Polarization )(液相传质过程动力学 mass transfer process )电化学极化控制时,认为传质无限快,得失电子是慢步骤。

R e O O s −−→−+−−→←-电化学传质 (s -- surface )其中sO 是表面的反应粒子。

传质过程无限快,则在反应进行中。

反应粒子不断被消耗,但s o C 表面浓度不会下降,因为消耗多少,就能补充多少,因此总有0os o C C =。

当传质不快时,传质会成为慢步骤,即:R O O es −−→←−−→−-+传质这时,电化学步骤很快(0i 大,a k i i ≈)。

处于准平衡状态。

而传质速度慢,在反应中就会出现表面反应物浓度)(0o s o C C <↓的现象,[开始前,0o s o C C =,0R s R C C =]或产物↑s R C 。

sC 的改变将导致ϕ的变化(根据Nernst 方程),即出现浓度极化。

实际反应中,电化学极化和浓度极化还常常是同时存在的,交迭在一起,即出现混合控制的现象。

注意:前面讨论过,由于1ψ效应的存在,电极表面d 处的浓度0*oo C C ≠,而是符合玻尔兹曼分布[)exp(10*RT F z i i i C C ψ-=]。

这里的*oC 与s o C 并不是一个概念(虽然都未加区分地叫“表面浓度”)。

讨论1ψ效应时,未考虑传质的影响,*o C 与so C 不等是1ψ的存在引起的。

而若有0os o C C ≠,则是指传质速度慢引起的。

后面将说明*o C 、s o C 所在的具体位置并不相同(距电极的距离不同)。

反应物和产物在溶液中是如何传递的呢?4.1 液相传质过程的基本概念4.1.1 传质的三种方式:1、 对流:(强制或自发产生的电解质的流动)反应物(产物)随液体一起流动,这种传质方式即为对流。

这种方式的特点是:反应粒子与溶液整体间无相对运动。

对流的产生有两种情况: (1)、自然对流(自发产生):①反应进行中,溶液内部会出现局部的浓度与温度的变化(浓度大,密度大;温度高,密度小),从而引起各部分密度的差别。

第4章电极过程

第4章电极过程
24
5. 反应产物生成新相,如生成气体、固相沉积层等,称
为新相生成步骤。或者,反应产物是可溶性的,产物 粒子自电极表面向溶液内部或液态电极内部迁移,称 为反应后的液相传质步骤。 对于电极过程需要注意的是:
a) 对—个具体的电极过程来说,并不一定包含所有上述
五个单元步骤,可能只包含其中的若干个。但是,任 何电极过程都必定包括(1),(3),(5)三个单元步骤。
• 所以,过电位虽然是表示电极极化程度的重要参数,
但一个过电位值只能表示出某一特定电流密度下电 极极化的程度,而无法反映出整个电流密度范围内 电极极化的规律。
• 为了完整而直观地表达出一个电极过程的极化性能,
通常需要通过实验测定过电位或电极电位随电流密 度变化的关系曲线。这种曲线就叫做极化曲线。
14
与电子运动速度的矛盾实质上决定于控制步骤速度与电 子运动速度的矛盾,电极极化的特征因而也取决于控制 步骤的动力学特征。所以,习惯上常按照控制步骤的不 同将电极的极化分成不同类型。根据电极过程的基本历 程,常见的极化类型是浓差极化和电化学极化。
32
浓差极化
• 所谓浓差极化是指单元步骤(1),即液相传质步骤
表了电极反应速度。19来自• 由此可知,稳态时的极化曲线实际上反映了电极
反应速度与电极电位(或过电位)之间的特征关系。
• 因此,在电极过程动力学研究中,测定电极过程
的极化曲线是一种基本的实验方法。
20
• 极化度表示某一电流密度下电极极化程度变化的
趋势,因而反映了电极过程进行的难易程度:
– 极化度越大,电极极化的倾向也越大,电极反应速 度的微小变化就会引起电极电位的明显改变。或者 说,电极电位显著变化时,反应速度却变化甚微, 这表明电极过程不容易进行,受到的阻力比较大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 阴极极化: 电极电位偏离平衡电
位向负移称为阴极极化。
• 阳极极化: 电极电位偏离平衡电位
向正移称为阳极极化。
Cu CuSO4
8
• 在一定的电流密度下,电极电位与平衡电位的
差值称为该电流密度下的过电位,用符号 h 表
示。即

h = j - j平
• 过电位h 是表征电极极化程度的参数,在电极
过程动力学中有重要的意义。习惯上取过电位
为正值。
• 因此规定阴极极化时: h = j平 - jk • 阳极极化时: h = j a -j平
9
2、电极极化的原因
• 电极体系的组成:两类导体串联体系、两种载流子。 • 断路时,两类导体中都没有载流子的流动,只在电极
/溶液界面上有氧化反应与还原反应的动态平衡及由 此所建立的相间电位(平衡电位)。
例如,在硫酸镍溶液中镍 作为阴极通以不同电流密 度时,电极电位的变化如 表4.1所列。 镍电极的电位随电流密度 所发生的偏离平衡电位的 变化即为电极的极化。
15
3、极化曲线
• 实验表明,过电位值是随通过电极的电流密度不
同而不同的。一般情况下,电流密度越大,过电位 绝对值也越大。
• 所以,过电位虽然是表示电极极化程度的重要参数,
过,即外电流等于零。
Cu
CuSO4
6
电极的极化 如果电极上有电流通过时,就有净反应发 生,这表明电极失去了原有的平衡状态。 这时,电极电位将因此而偏离平衡电位。 这种有电流通过时电极电位偏离平衡电位 的现象叫做电极的极化。
7
• 实验表明,在电化学体系中,发生
电极极化时,阴极的电极电位总是 变得比平衡电位更负,阳极的电极 电位总是变得比平衡电位更正。
2. 电极过程动力学: 有关电极过程的历程、速度
及其影响因素的研究内容就称为电极过程动力 学。
5
4.1.2 电极的极化现象
1、什么是电极的极化现象
• 首先回顾可逆电极、平衡电极电位特征
➢ 处于热力学平衡状态 ➢ 氧化反应和还原反应速度相等 ➢ 电荷交换和物质交换都处于动态平衡之中 ➢ 因而净反应速度为零,电极上没有电流通
但一个过电位值只能表示出某一特定电流密度下电 极极化的程度,而无法反映出整个电流密度范围内 电极极化的规律。
• 为了完整而直观地表达出一个电极过程的极化性能,
通常需要通过实验测定过电位或电极电位随电流密 度变化的关系曲线。这种曲线就叫做极化曲线。
16
• 随着电流密度的增大,电极电位逐渐向负
偏移。这样,我们不仅可以从极化曲线上 求得任一电流密度下的过电位或极化值, 而且可以了解整个电极过程中电极电位变 化的趋势和比较不同电极过程的极化规律。
10
• 当电流通过电极时,就表明外线路和金属电极中有自由电子
的定向运动,溶液中有正、负离子的定向运动,以及界面上 有一定的净电极反应,使得两种导电方式得以相互转化。
• 这种情况下.只有界面反应速度足够快,能够将电子导电带
到界面的电荷及时地转移给离子导体,才不致使电荷在电极 表面积累起来,造成相间电位差的变化,从而保持住未通电 时的平衡状态。
17
极化曲线动力学基础
• 根据电极反应的特点,即它
是有电子参与的氧化还原反 应,故可用电流密度来表示 电极反应的速度。假设电极 反应为
On e R
• 按照异相化学反应速度的表
示方法,该电极反应速度为
v 1 dc S dt
式中v为电极反应速度;S为电极表面的面积;c为反应物浓 度,t为反应时间。
18
化作用的对立统一。
12
• 实验表明,电子运动速度往往是大于电极反应速度
的,因而通常是极化作用占主导地位。也就是说,有 电流通过时
– 阴极上,由于电子流入电极的速度大,造成负电荷的 积累;
– 阳极上,由于电子流出电极的速度大,造成正电荷积 累。
– 因此,阴极电位向负移动。阳极电位则向正移动,都 偏离了原来的平衡状态,产生所谓“电极的极化”现 象。
第四章 电极过程
1
4.1.1 电池反应和电极过程
☞应)过程至少包含阳极反应过程、 阴极反应过程和反应物质在溶液中的传递过程(液 相传质过程)等三部分。
2
三个过程的特点
• 串联:上述每一个过程传递净电量的速度都是相
等的,因而三个过程是串联进行的。
11
通过上述分析可以发现:
有电流通过时,产生了一对新的矛盾。
• 一方为电子的流动.它起着在电极表面积
累电荷,使电极电位偏离平衡状态的作用, 即极化作用;
• 另一方是电极反应,它起着吸收电子运动
所传递过来的电荷,使电极电位恢复平衡 状态的作用,可称为去极化作用。
• 电极性质的变化就取决于极化作用和去极
– 由于液相传质过程不涉及物质的化学变化, 而且对电化学反应过程有影响的主要是电极 表面附近液层中的传质作用。
• 着重研究:
– 阴极和阳极上发生的电极反应过程。 – 电极表面液层的传质
4
定义
1. 电极过程: 在电化学中、人们习惯把发生在电
极/溶液界面上的电极反应、化学转化和电极 附近液层中的传质作用等一系列变化的总和统 称为电极过程。
• 所以,过电位虽然是表示电极极化程度的重要参数,
但一个过电位值只能表示出某一特定电流密度下电 极极化的程度,而无法反映出整个电流密度范围内 电极极化的规律。
• 为了完整而直观地表达出一个电极过程的极化性能,
通常需要通过实验测定过电位或电极电位随电流密 度变化的关系曲线。这种曲线就叫做极化曲线。
14
• 根据法拉第定律,电极上有1摩尔物质还原或氧
• 相互独立:这三个过程又往往是在不同的区域进
行着,并有不同的物质变化(或化学反应)特征, 因而彼此又具有一定的独立性。
• 我们在研究一个电化学体系中的电化学反应时,
能够把整个电池反应分解成单个的过程加以研究, 以利于清楚地了解各个过程的特征及其在电池反 应中的作用和地位。
3
重点研究对象
• 较少研究溶液本体中的传质过程
• 总结:电极极化现象是极化与去极化两种矛盾作用
的综合结果,其实质是电极反应速度跟不上电子运动
速度而造成的电荷在界面的积累,即产生电极极化现
象的内在原因正是电子运动速度与电极反应速度之间
的矛盾。
13
3、极化曲线
• 实验表明,过电位值是随通过电极的电流密度不
同而不同的。一般情况下,电流密度越大,过电位 绝对值也越大。
相关文档
最新文档