解析几何求轨迹方程的常用方法讲解
浅谈解析几何中如何求轨迹方程
动 M 轨 是 () 心 半 为 , 轴 争 点 的 迹 以, 中, 轴 争 半 为 的 a为 长 o 短
垂 直 的直 线 l l 若 l交 X 于 A ,: ,, 。 轴 点 , 交 Y轴 于 B点 , l : 求线 段 A B的
中点 M 的 轨迹 方 程 。 分析 l :设 M( Y , 由 已知 x,)
P运 动 的某 个 几 何 量 t以 此 量 作 为 参 变 数 , 别 建 立 P点 坐 标 。 分
x Y与该 参 数 t 函数 关 系 x f t ,= () 进 而 通 过 消参 化 为 轨 , 的 = () y g t , 迹 的 普通 方 程 F x y = 。 ( , )0
l上l 联 想 到 两 直 线 垂 直 的充 要 条 件 : , 一 1 即 可 列 出 轨 迹 方 。 : , kk : , 程 , 键 是 如 何 用 M 点 坐 标 表 示 A、 关 B两 点 坐 标 。事 实 上 , M 由
综 上 可 知 . M 的轨 迹 方 程 为 x 2 - = 。 点 + y5 O
{ ( ( 参 来表 若 判 轨 方程 示 种曲 t 数) 示, 要 断 迹 表 何 线, 爿 为
t= () y g t
分析 2 :解 法 1中在 利 用 k 2 l时 ,需 注 意 k、2 否 存 l一 k l 是 k 在 . 而 分 情 形讨 论 , 故 能否 避 开 讨 论 呢 ? 只需 利 用 AP B 为直 角 A
中 图 分 类 号 :G6 2 3
文 献标 识 码 :C
文 章 编号 : 6 2 1 7 ( 0 10 — 0 6 0 1 7 — 5 8 2 1 )6 0 9 — 2 即 点 B坐 标 可 表 为 ( x 2 .y 2一 a 2 )
解析几何求轨迹方程的常用方法
解析几何求轨迹方程的常用方法求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标〔x ,y 〕表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f 〔t 〕, y =g 〔t 〕,进而通过消参化为轨迹的普通方程F 〔x ,y 〕=0。
4. 代入法〔相关点法〕:如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,〔该点坐标满足某已知曲线方程〕,则可以设出P 〔x ,y 〕,用〔x ,y 〕表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用。
一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为〔-4,0〕,〔4,0〕,C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
例2: 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,假设b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
例谈动点的轨迹方程的四种求法
思路探寻求动点的轨迹方程问题经常出现在解析几何试题中,这类问题侧重于考查同学们的推理、分析以及运算能力.求解这类问题的主要方法有定义法、参数法、相关点法和交轨法.下面结合实例,谈一谈这四种方法的特点以及应用技巧.一、定义法定义法是指运用圆锥曲线的定义解题.若发现动点的轨迹形如椭圆、圆、双曲线、抛物线或其中的一部分曲线,就可以根据椭圆、圆、双曲线、抛物线的定义,确定定点、焦点、焦点与动点之间的关系,求得椭圆、圆、双曲线、抛物线方程中的各个参数,便可以快速确定曲线的轨迹方程.例1.如图1所示,已知圆C1:x2+(y+4)2=25和圆C2:x2+(y-4)2=1,某动圆C分别与圆C1和圆C2外切,求动圆圆心C的轨迹方程.图1解:由题意知两圆的圆心为C1(0,-4),C2(0,4),半径为r1=5,r2=1,设动圆C的半径为r,因为圆C分别与圆C1和圆C2外切,所以||CC1=r+5,||CC2=r+1,所以||CC1-||CC2=4<8,即点C到两定点C1、C2的距离之差为常数4,所以动圆圆心C的轨迹是以C1、C2为焦点的双曲线的上支,可得2a=4,2c=||C1C2=8,所以b2=c2-a2=12.所以动圆圆心C的轨迹方程是y24-x212=1(y≥2).结合图形分析动圆C与圆C1、圆C2的位置关系,即可发现||CC1=r+5,||CC2=r+1,即可得出||CC1-||CC2=4<8,由此可联想到双曲线的定义,即平面内到两定点的距离之差为定值的点的轨迹,确定动点的轨迹,求得a、b、c值,即可求得动点的轨迹方程.二、参数法参数法是解答数学问题的重要方法.若动点受某些变量的影响,而我们又无法确定这些变量的取值,则需运用参数法,即用参数表示出变量,设出直线的斜率、点的坐标、曲线的方程等,然后将其代入题设中,建立关系式,通过恒等变换消去参数,即可求得动点的轨迹方程.例2.已知抛物线y2=4px(p>0)的顶点为O,A,B是抛物线上的两个动点,且OA⊥OB,OM⊥AB于点M,求点M的轨迹方程.解:设M(x,y),直线AB的方程为y=kx+b,因为OA⊥OB,所以k=-xy,由ìíîy2=4px,y=kx+b,得k2x2+(2kb-4p)x+b2=0,所以x1x2=-b2k2,y1y2=-4pb k,因为OA⊥OB,所以y1y2=-x1x2,所以-4pbk=-b2k2,即b=-4kp,所以直线AB的方程为y=kx+b=k(x-4p),将k=-xy代入,得x2+y2-4px=0(x≠0),即所求点M的轨迹方程为x2+y2-4px=0(x≠0).解答本题主要运用了参数法,即先引入参数x、y,49k 、b 、x 1、x 2、y 1、y 2,设出动点M 的坐标、直线AB 的方程以及A 、B 两点的坐标;然后将直线与抛物线的方程联立,根据一元二次方程的根与系数的关系建立关系式;最后通过恒等变换消去参数,得到关于x 、y 的方程,即为动点的轨迹方程.三、相关点法若两个动点之间存在某种特定的关系,则可以采用相关点法求解.先分别设出两个动点的坐标,并根据二者之间的关系,用所求动点的坐标表示另一个动点的坐标;然后根据另一个动点的几何关系,建立关于所求动点坐标的关系式,从而求得动点的轨迹方程.运用相关点法解题,要注意寻找两个动点之间的联系,并确定另一个动点所满足的几何关系.例3.如图2所示,在圆x 2+y 2=4上任意选取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,求线段PD中点M 的轨迹方程.图2解:设点M (x ,y ),P (x 0,y 0),因为M 为线段PD 的中点,所以ìíîïïx =x 0,y =y 02,得{x 0=x ,y 0=2y ,又因为点P (x 0,y 0)在圆x 2+y 2=4上,所以x 02+y 02=4,将{x 0=x ,y 0=2y ,代入上述方程中,得x 24+y 2=1,所以点M 的轨迹为一个椭圆,其方程为x 24+y 2=1.本题中P 、M 均为动点,且点M 随着点P 的运动而变化,需采用相关点法求解,先分别设出P 、M 两点的坐标;然后用M 点的坐标表示P 的坐标;再将其代入点P 的轨迹方程,即可确定点M 的轨迹及其方程.四、交轨法当问题中所求的动点为两条动曲线的交点时,往往需采用交轨法,即将两条动曲线的方程联立,消去其中的参数,得到的关于x 、y 的方程即为所求的动点的轨迹方程.例4.如图3所示,已知双曲线C :y 24-x 23=1与y轴交于点A 1(0,-2)与点A 2(0,2),直线l :y =m 与双曲线交于点P ,Q ,直线A 1P 与直线A 2Q 相交于点M ,试求点M 的轨迹方程.图3解:设P (x 1,m ),Q (-x 1,m ),M (x ,y ),因为点P 在双曲线上,所以m 24-x 123=1.当x 1≠0时,直线PA 1的方程为y +2=m +2x 1x ,直线QA 2的方程为y -2=2-m x 1x,可得y 2-4=4-m 2x 12x 2,所以x 12=3m 2-124,将其代入y 2-4=4-m 2x 12x 2,得y 2-4=-43x 2,化简整理得y 24+x 23=1.当x 1=0时,点M 的坐标满足方程y 24+x 23=1.综上所述,点M 的轨迹方程为y 24+x 23=1.仔细分析题意可知,M 为直线A 1P 与直线A 2Q 的交点,且点A 1、A 2、P 、Q 都满足双曲线的方程,于是采用交轨法,求得两动直线A 1P 与A 2Q 的方程,再将两方程联立,消去参数,即可求出交点M 的轨迹方程.总之,求动点的轨迹方程,关键是要根据题目中的几何条件,寻找动点的横坐标与纵坐标之间的关系,建立关于动点的横坐标与纵坐标的方程.求动点的轨迹方程的方法很多,同学们需熟练掌握一些常用方法的特点、适用情形、解题思路,才能将其灵活地应用于解题中.(作者单位:江苏省南通市海门实验学校)思路探寻50。
求轨迹方程的几种常用方法
求轨迹方程的几种常用方法求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有:1直接法:若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。
从而得到轨迹方程,这种求轨迹方程的方法称作直接法。
例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。
解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0),B (a,0)。
设动点C为(x, y),••• | AC |2 |BC |2 |AB|2,a)2y2]2h(x a)2y2]24a2,即x2由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点,故所求方程为x2y2a2( x a )。
2•代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。
例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。
解:设 A (a,0) , B (0, b), M (x, y),一方面,. 另一方面,36 , M分AB的比为1,2评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。
此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。
3.几何法:求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。
高中数学求轨迹方程的六种常用技法
求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。
学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。
本文通过典型例子阐述探求轨迹方程常用技法。
1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。
例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。
解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。
2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。
3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。
例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。
解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。
所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。
例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。
轨迹方程的求法
轨迹方程求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、交轨法,待定系数法。
求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、已知直角坐标系中,点Q (2,0),圆C 的方程为221x y +=,动点M 到圆C 的切线长与MQ 的比等于常数()0λλ>,求动点M 的轨迹。
◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得PM . 试建立适当的坐标系,并求动点P 的轨迹方程.2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
例2、动圆过定点,02p ⎛⎫ ⎪⎝⎭,且与直线2p x =-相切,其中0p >.求动圆圆心C 的轨迹的方程.◎◎ 已知圆C 的方程为 (x-2)2+y 2=100,点A 的坐标为(-2,0),M 为圆C 上任一点,AM 的垂直平分线交CM 于点P ,求点P 的方程。
◎◎已知A 、B 、C 是直线l 上的三点,且|AB|=|BC|=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.三、代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x ’,y ’)的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将x ’,y ’表示为x,y 的式子,再代入Q 的轨迹方程,然而整理得P 的轨迹方程,代入法也称相关点法。
例3、P 是椭圆191622=+y x 上的动点, 作PD ⊥y 轴, D 为垂足, 求PD 中点的轨迹方程.◎◎已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT 求点T 的轨迹C 的方程.练习:1、方程y=122+--x x 表示的曲线是: ( )A 、双曲线B 、半圆C 、两条射线D 、抛物线2. 抛物线的准线l 的方程是y =1, 且抛物线恒过点P (1,-1), 则抛物线焦点弦的另一个端点Q 的轨迹方程是( ).A. (x -1)2=-8(y -1)B. (x -1)2=-8(y -1) (x ≠1)C. (y -1)2=8(x -1)D. (y -1)2=8(x -1) (x ≠1)3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( )A 、x 2+y 2=1B 、x 2+y 2=1(x ≠±1)C 、x 2+y 2=1(x ≠1)D 、y=21x -4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( )A 、x 2+y 2=2(x+y)B 、x 2+y 2=2|x+y|C 、x 2+y 2=2(|x|+|y|)D 、x 2+y 2=2(x -y)5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆B 、中心在(5,0)的椭圆C 、中点在原点的双曲线D 、中心在(5,0)的双曲线6、已知圆x 2+y 2=4,过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是 ( )A 、(x -2)2+y 2=4B 、(x -2)2+y 2=4(0≤x <1)C 、(x -1)2+y 2=4D 、(x -1)2+y 2=4(0≤x <1)7 . P 是椭圆191622=+y x 上的动点, 作PD ⊥y 轴, D 为垂足, 则PD 中点的轨迹方程为( ). A. 116922=+y x B. 196422=+y x C. 14922=+y x D. 19422=+y x 8、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( )A 、抛物线B 、圆C 、双曲线的一支D 、椭圆9、点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是:( )A 、y 2=12xB 、y 2=12x(x>0)C 、y 2=6xD 、y 2=6x(x>0)10、已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC=60°,当B 、C 在圆上运动时,BC 中点的轨迹方程是 ( )A 、x 2+y 2=21B 、x 2+y 2=41C 、x 2+y 2=21(x<21)D 、x 2+y 2=41(x<41) 11、抛物线过点M (2,-4),且以x 轴为准线,此抛物线顶点的轨迹方程是 ( )A 、(x -2)2+(y+4)2=16 (0)y ¹B 、(x -2)2+4(y+2)2=16 (0)y ¹C 、(x -2)2-(y+4)2=16D 、(x -2)2+4(y+4)2=1612、中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为 ( ) 222222222222A. 1 B. 1 C. 1 D.12575752525757525x y x y x y x y +=+=+=+= 13、已知⊙O :x 2+y 2=a 2, A(-a, 0), B(a, 0), P 1, P 2为⊙O 上关于x 轴对称的两点,则直线AP 1与直线BP 2的交点P 的轨迹方程为 ( )A 、x 2+y 2=2a 2B 、x 2+y 2=4a 2C 、x 2-y 2=4a 2D 、x 2-y 2=a 214、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹方程为 。
求轨迹方程的常用方法(经典)
求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。
)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
高中数学解析几何|求轨迹方程方法最全总结
高中数学解析几何|求轨迹方程方法最全总结一、直接法若动点运动的条件是一些较为明确的几何量的等量关系,而这些条件易于表达成关于x,y的等量关系式,可以较为容易地得到轨迹方程(即遵循求轨迹方程的一般程序),这种方法我们一般称之为直接法.用直接发求轨迹方程一般都要经过建系、设点、列式、化简、验证这五个环节.二、定义法若动点轨迹的条件符合某一基本而常见轨迹的定义(如圆、椭圆、双曲线、抛物线等)已从定义来确定表示其几何特征的基本量而直接写出其轨迹方程,或从曲线定义来建立等量关系式从而求出轨迹方程.三、代入法若动点运动情况较为复杂,不易直接表述或求出,但是能够发现形成轨迹的动点P(x,y)随着另一动点Q (X,Y)的运动而有规律的运动,而且动点Q的运动轨迹方程已经给定或极为容易求出,故只要找出两动点P,Q之间的等量关系式,用x,y表示X,Y再代入Q的轨迹方程整理即得动点P的轨迹方程,称之为代入法,也叫相关点法.四、参数法若动点运动变化情况较为复杂,动点的纵坐标之间的等量关系式难以极快找到,可以适当引入参数,通过所设参数沟通动点横坐标之间的联系,从而得到轨迹的参数方程进而再消去所设参数得出轨迹的(普通)方程,称之为参数法.点悟:注意落实好图形特征信息提供的解题方向,前提是自信,实力是运算过关.本题还可有一些较为简捷的解法,不妨试试五、交轨法若所求轨迹可以看成是某两条曲线(包括直线)的交点轨迹时,可由方程直接消去参数,也可引入参数来建这两条动曲线之间的联系,再消参而得到轨迹方程,称之为交轨法.可以认为交轨法是参数法的一种特殊情况.点悟:交轨是一种动态解题策略,注意特殊或极限情况处理. 六、几何法认真分析动点运动变化规律,可以发现图形明显的几何特征,利用有关平面几何的知识将动点运动变化规律与动点满足的条件有机联系起来,再利用直接法得到动点的轨迹方程,称之为几何法.七、点差法涉及与圆锥曲线中点弦有关的轨迹问题时,常可以把两端点设为(x1,y1),(x2,y2),代入圆锥曲线方程,然后作差法求出曲线的轨迹方程,此法称之为点差法,也叫平方差法.运用此法要注意限制轨迹方程中变量可能的取值范围.点悟:上述方法是通过设直线AB的方程引入参数b得到动点M 轨迹的参数方程再消去参数得到普通方程,注意参数的取值范围,因而轨迹是一条线段.本题较为简捷的求法还可考虑点差法:。
几种常见求轨迹方程的方法
几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1:(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵kOM·kAM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P,当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0) ∵BP∶PA=1∶2,且P为线段AB 的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y 轴上,所以可设双曲线方ax2-4b2x+a2b2=0 ∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根.∴△=1664-4Q4b2=0,即a2=2b.(以下由学生完成) 由弦长公式得:即a2b2=4b2-a2.。
求点的轨迹方程的六种常见方法讲解
变式:外切改为相切呢?
相关点法
• 如果动点P(x,y)依赖于已知曲线上另一动点Q (u,v)(这种点叫相关动点)而运动,而Q点的坐标u、 v可以用动点P的坐标表示,则可利用点Q的轨迹方程, 间接地求得P点的轨迹方程.这种求轨迹方程的方法 叫做变量代换法或相关点法.此类问题的难度属中档 水平,可能在选择题或填空题出现,也可能在解答 题中出现,属于小题中较难的题目但属于大题中较 易的题目。
整理得
x2 1
(y a)2 a2
1.
2
当a2 1 时,点P的轨迹为圆弧,所以不存在符合题意的两点 2
当a2 1 时,点P的轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长. 2
当a2 1 时,点P到椭圆两个焦点( 1 a2 , a)和( 1 a2 , a)的距离之和为定值 2.
• 以下举一个例子说明:
6.几何法
【例8】已知圆的方程为x2 y2 6x 6y 14 0,求过点A(3, 5)的直线 交圆的弦的中点的轨迹.
解:圆的方程为(x 3)2 ( y 3)2 4,则圆心C的坐标为(3,3).
设过点A的直线交圆于P、Q两点,M (x, y)是PQ的中点,连CM,则CM PQ,故有:
五类参数:点坐标,斜率,比例,角度,长度等
且 BE CF DG .P为GE与OF的交点(如图). BC CD DA
问:是否存在两个定点,使P到这两点的距离的和为定值?若存在, 求出这两点的坐标及此定值;若不存在,请说明理由.
y
DF
C
E P
G
A
O
Bx
解:根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在两点,
求轨迹方程的五种方法
求轨迹方程的五种方法1.直线轨迹方程的求解方法:直线的轨迹方程可以通过以下五种方法求解。
1.1斜率截距法:当直线已知斜率m和截距b时,可以使用斜率截距法求解。
直线的轨迹方程为:y = mx + b。
1.2点斜式方法:当直线已知斜率m和通过的一点(x1,y1)时,可以使用点斜式方法求解。
直线的轨迹方程为:(y-y1)=m(x-x1)。
1.3两点式方法:当直线已知通过的两点(x1,y1)和(x2,y2)时,可以使用两点式方法求解。
直线的轨迹方程为:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)。
1.4截距式方法:当直线已知x轴和y轴上的截距时,可以使用截距式方法求解。
直线的轨迹方程为:x/a+y/b=1,其中a和b分别为x轴和y轴上的截距。
1.5法向量法:当直线已知法向量n和通过的一点(x1,y1)时,可以使用法向量法求解。
直线的轨迹方程为:n·(r-r1)=0,其中n为法向量,r为直线上的任意一点的位置矢量,r1为通过的一点的位置矢量。
2.圆轨迹方程的求解方法:圆的轨迹方程可以通过以下五种方法求解。
2.1一般式方法:当圆的圆心为(h,k)且半径为r时,可以使用一般式方法求解。
圆的轨迹方程为:(x-h)²+(y-k)²=r²。
2.2标准式方法:当圆的圆心为(h,k)且半径为r时,可以使用标准式方法求解。
圆的轨迹方程为:(x-h)²+(y-k)²=r²。
2.3参数方程方法:当圆的圆心为(h,k)且半径为r时,可以使用参数方程方法求解。
圆的轨迹方程为:x = h + rcosθ,y = k + rsinθ,其中θ为参数。
2.4三点定圆方法:当圆已知经过三点(x1,y1),(x2,y2)和(x3,y3)时,可以使用三点定圆方法求解。
圆的轨迹方程为:(x-x1)(x-x2)(x-x3)+(y-y1)(y-y2)(y-y3)-r²(x+y+h)=0,其中h为x平方项和y平方项的系数之和。
求轨迹方程的五种方法
求轨迹方程的五种方法有五种方法可以求解轨迹方程,分别是:1.参数方程法2.一般方程法3.极坐标方程法4.隐函数方程法5.线性方程组法接下来将对这五种方法进行详细解释。
1.参数方程法:参数方程法是指将坐标轴上的点的位置用一个参数表示,通过参数的变化来表示轨迹。
例如,一个点在x轴上运动,其速度为v,经过时间t后的位置可以用参数方程表示为x = vt。
参数方程法可以很方便地描述物体的运动轨迹,特别适用于描述曲线的参数方程。
2.一般方程法:一般方程法是指将轨迹上的点的位置用一般方程表示。
例如,对于一个圆形轨迹x^2+y^2=r^2,其中r为半径,可以通过该一般方程来描述圆的轨迹。
一般方程法可以描述各种曲线轨迹,但是求解过程可能较为繁琐。
3.极坐标方程法:极坐标方程法是指将轨迹上的点的位置用极坐标系表示。
极坐标系由极径和极角两个参数组成,其中极径表示点到原点的距离,极角表示点在极坐标系中的方向角度。
通过给定极径和极角的值可以唯一确定一个点的位置。
例如,对于一个以原点为中心的圆形轨迹,可以用极坐标方程表示为r=R,其中R为圆的半径。
极坐标方程法适用于描述具有对称性的轨迹,如圆形、椭圆形等。
4.隐函数方程法:隐函数方程法是指将轨迹上的点的位置用隐函数方程表示。
隐函数方程是一个含有多个变量的方程,其中至少有一个变量无法用其他变量表示。
通过给定其他变量的值,可以计算出不能用其他变量表示的变量的值,从而确定轨迹上的点的位置。
例如,对于一个抛物线轨迹y = ax^2 + bx + c,其中a、b、c为常数,可以根据给定的x的值求解出y的值,从而确定轨迹上的点的位置。
5.线性方程组法:线性方程组法是指将轨迹上的点的位置用线性方程组表示。
线性方程组是由多个线性方程组成的方程组,其中每个方程的未知数是轨迹上的点的坐标。
通过求解线性方程组可以得到轨迹上的点的坐标。
线性方程组法适用于描述由多个轨迹组成的复杂图形,如多边形等。
以上就是求解轨迹方程的五种方法,分别是参数方程法、一般方程法、极坐标方程法、隐函数方程法和线性方程组法。
7.8解析几何中的轨迹问题
中国人民大学附属中学
求轨迹的一般方法 1.直接法:如果动点运动的条件就是一 些几何量的等量关系,这些条件简单明确, 易于表述成含x, y的等式,就得到轨迹方 程,这种方法称之为直接法。用直接法求 动点轨迹一般有建系,设点,列式,化简, 证明五个步骤,最后的证明可以省略,但
例4 经过抛物线y2=2p(x+2p) (p>0)的顶点A
作互相垂直的两直线分别交抛物线于B, C 两点,求线段BC的中点M轨迹方程。 解:A(-2p, 0), 设直线AB的方程为 y=k(x+2p) (k≠0). 与抛物线方程联立方程组 可解得B点的坐标为
1 y ( x 2 p) k
4
(2)当λ≠1时,方程化为
2 22 2 1 3 (x 2 ) y 2 2 表示一个 圆. 2 1 ( 1)
| AB | | BC | 2, m ,求 练习:已知△ABC中, | AC |
点A的轨迹方程,并说明轨迹是什么图形.
(1 m ) x (1 m ) y (2 2m ) x 1 m 0
练习2:已知曲线C:y=x2与直线l:x-y +2=0交于A, B两点,点P在曲线C上,且在 A,B之间,若点Q是线段AB的中点,试求 线段PQ的中点M的轨迹方程;
y x2 2 解:由 得 : x x 2 0 xA 1, xB 2 x y 2 0 1 5 ∴A(—1,1),B(2,4), Q , 2 2
5.点差法:
求圆锥曲线中点弦轨迹问题时,常把 两个端点设为(x1, y1),(x2, y2)并代入圆锥 曲线方程,然后作差求出曲线的轨迹方 程。
要注意“挖”与“补”。
求轨迹方程的常见方法
求轨迹方程的常见方法由运动轨迹求方程是解析几何的一类重要问题,下面谈谈求轨迹方程的几种常用方法。
一、直接法建立适当的座标系后,设动点为,根据几何条件寻求之间的关係式。
例1 已知动点m到椭圆的右焦点的距离与到直线x=6的距离相等,求点m的轨迹方程。
变式:已知点m与椭圆的左焦点和右焦点的距离之比为,求点m的轨迹方程。
变式2:在三角形abc中,b(-6,0), c(-6,0),直线ab,ac斜率乘积为,求顶点a的轨迹。
说明:求轨迹需要说明是什幺曲线并指出曲线的位置与大小,求轨迹方程怎不必说明。
二、定义法由题设所给动点满足的几何条件,经过化简变形,可以看出动点满足圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程。
例2 已知圆的圆心为m1,圆的圆心为m2,一动圆与这两个圆外切,求动圆圆心p的轨迹方程。
解:设动圆的半径为r,由两圆外切的条件可得:,。
∴动圆圆心p的轨迹是以m1、m2为焦点的双曲线的右支,c=4,a=2,b2=12。
故所求轨迹方程为。
三、待定係数法由题意可知曲线型别,将方程设成该曲线方程的一般形式,利用题设所给条件求得所需的待定係数,进而求得轨迹方程。
例3 已知双曲线中心在原点且一个焦点为f(,0),直线y=x-1与其相交于m、n两点,mn中点的横座标为,求此双曲线方程。
解:设双曲线方程为。
将y=x-1代入方程整理得。
由韦达定理得。
又有,联立方程组,解得。
∴此双曲线的方程为。
四、引数法选取适当的引数,分别用参数列示动点座标,得到动点轨迹的引数方程,再消去引数,从而得到动点轨迹的普通方程。
例4 过原点作直线l和抛物线交于a、b两点,求线段ab的中点m的轨迹方程。
解:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx。
把它代入抛物线方程,得。
因为直线和抛物线相交,所以△>0,解得。
设a(),b(),m(x,y),由韦达定理得。
由消去k得。
又,所以。
解析几何中的轨迹方程求解
解析几何中的轨迹方程求解轨迹方程是解析几何中的一个重要概念,它描述了一个点或物体在空间中移动时所形成的路径。
在解析几何中,通过求解轨迹方程,我们可以更好地理解点、线、平面和曲线的运动特性。
1. 轨迹方程的定义轨迹方程是描述一个点在空间中运动时其位置关系的方程。
它通常由坐标变量及其参数所组成,通过参数的变化,可以获得点在空间中的不同位置。
在解析几何中,常见的轨迹方程有直线方程、圆的方程、椭圆的方程、抛物线的方程和双曲线的方程等。
这些方程中的参数表示了轨迹的特性,例如直线的斜率、圆的半径等。
2. 求解轨迹方程的步骤对于不同的轨迹类型,求解轨迹方程的步骤可能略有不同。
下面以直线方程为例,介绍求解轨迹方程的一般步骤:步骤一:确定知识点首先,要明确已知的知识点或条件。
在求解直线方程的轨迹时,我们需要知道直线上的两个点或直线的斜率。
步骤二:列出方程根据已知的知识点,我们可以列出代表轨迹的方程。
对于直线轨迹,一般的方程形式为 y = mx + c,其中 m 表示直线的斜率,c 表示直线与 y 轴的截距。
步骤三:确定参数根据已知条件,确定方程中的参数。
对于直线方程,参数包括斜率m 和截距c。
步骤四:解方程将已知条件代入方程中,解方程获得未知参数的值。
解方程可以使用代数法、几何方法或数值计算等方法。
步骤五:得到轨迹方程将求解得到的参数代入方程中,得到轨迹方程。
轨迹方程表示了点在空间中的路径。
3. 轨迹方程的应用轨迹方程在解析几何中具有广泛的应用。
它可以用于描述物体的运动轨迹、分析几何特性以及解决实际问题。
例如,通过求解轨迹方程,我们可以计算一个物体在空间中的位置,预测其未来的位置,从而实现控制和导航。
轨迹方程也可以用来描述天体运动、流体力学等领域中的运动规律。
此外,轨迹方程还可以用于几何图形的设计和建模。
通过调整轨迹方程中的参数,我们可以创建出各种不同形状的曲线,用于艺术、设计和工程等领域。
4. 总结解析几何中的轨迹方程求解是一个重要的数学概念。
求轨迹方程的几种常用方法
求轨迹方程的几种常用方法求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有:1.直接法:若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。
从而得到轨迹方程,这种求轨迹方程的方法称作直接法。
例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。
解:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则有A (,0)a -,B (,0)a 。
设动点C 为(,)x y ,∵222||||||AC BC AB +=,∴2224a +=,即222x y a +=.由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点,故所求方程为222x y a +=(x a ≠±)。
2.代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。
例2:已知一条长为6的线段两端点A 、B 分别在x 、y 轴上滑动,点M 在线段AB 上,且:1:2AM MB =,求动点M 的轨迹方程。
解:设A (,0)a ,B (0,)b ,M (,)x y ,一方面,∵||6AB =,∴2236a b +=, ①另一方面,M 分AB 的比为12,∴1022133122130121312a x a a xb y b y b ⎧+⨯⎪==⎪⎪+⎧=⎪⎪⇒⎨⎨⎪⎪=+⎩⎪==⎪+⎪⎩ ② ②代入①得:223()(3)362x y +=,即221164x y +=。
评注:本例中,由于M 点的坐标随着A 、B 的变化而变化,因而动点M 的坐标(,)x y 可以用A 、B 点的坐标来表示,而点M 又满足已知条件,从而得到M 的轨迹方程。
求曲线轨迹方程
=
=
此即点 M 的轨迹方程.
2
+
,
2
消去
-,
k,得 y2=p(x-2p),
2 2
,
2
,
对点训练3过圆O:x2+y2=4外一点A(4,0),作圆的割线,求割线被圆截得的弦
BC的中点M的轨迹方程.
解:设点M(x,y),B(x1,y1),C(x2,y2),直线AB的方程为y=k(x-4),
求轨迹方程的常用方法
代入法
参数法
交轨法
点差法
一、定义法
如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、
抛物线)的定义,则可先设出轨迹方程,再根据已知条件,确定方程中的常数,
即可得到轨迹方程.
例1.已知△ABC的顶点A,B的坐标分别为(-4,0),(4,0),C为动点,且满足sin A
A.圆
B.椭圆
C.双曲线
D.抛物线
答案:D
解析:=(-2-x,-y),=(3-x,-y),∴ ·=(-2-x)(3-x)+y2=x2-x-6+y2.
由条件,x2-x-6+y2=x2,整理得y2=x+6,此即点P的轨迹方程,
∴点P的轨迹为抛物线,故选D.
)
对点训练 2 动点 P(x,y)到两定点 A(-3,0)和 B(3,0)的距离的比等于 2 即
解:由题意,设 A
2
4
, ,B
2
4
, ,所以
4
4
kOA= ,kOB= ,
由 OA 垂直 OB 得 kOAkOB=-1,得 yAyB=-16p2,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何求轨迹方程的常用方法求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
例2: 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程.二:用直译法求轨迹方程例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?【变式】: 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程?三:用参数法求轨迹方程此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。
注意参数的取值范围。
例4.过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程。
例5: 过抛物线px y 22=(0>p )的顶点O 作两条互相垂直的弦OA 、OB ,求弦AB 的中点M 的轨迹方程.【变式】过圆O :x 2 +y 2= 4 外一点A (4,0),作圆的割线,求割线被圆截得的弦BC 的中点M 的轨迹。
四:用代入法求轨迹方程例6. 的的中点求线段为定点上的动点是椭圆点M AB ,a ,,A by a x B )02(12222=+轨迹方程。
例7: 如图,从双曲线1:22=-y x C 上一点Q 引直线2:=+y x l 的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.【变式】如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程五、用交轨法求轨迹方程例8.已知椭圆22221x y a b+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2,求A 1P 1与A 2P 2交点M 的轨迹方程.例9: 如右图,垂直于x 轴的直线交双曲线12222=-by a x 于M 、N 两点,21,A A 为双曲线的左、右顶点,求直线MA 1与N A 2的交点P 的轨迹方程,并指出轨迹的形状.六、用点差法求轨迹方程例10. 已知椭圆1222=+y x , (1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程;课后作业1.在ABC ∆中,B ,C 坐标分别为(-3,0),(3,0),且三角形周长为16,则点A 的轨迹方程是______________.2.两条直线01=--my x 与01=-+y mx 的交点的轨迹方程是 __________ .3.已知圆的方程为(x-1)2+y 2=1,过原点O 作圆的弦0A ,则弦的中点M 的轨迹方程是_____4.当参数m 随意变化时,则抛物线()yx m x m =+++-22211的顶点的轨迹方程为______。
5:点M 到点F (4,0)的距离比它到直线x +=50的距离小1,则点M 的轨迹方程为________。
6:求与两定点()()O O A 1030,、,距离的比为1:2的点的轨迹方程为_____________ 7.抛物线x y 42=的通径(过焦点且垂直于对称轴的弦)与抛物线交于A 、B 两点,动点C 在抛物线上,求△ABC 重心P 的轨迹方程。
8.已知动点P 到定点F (1,0)和直线x=3的距离之和等于4,求点P 的轨迹方程。
9.过原点作直线l 和抛物线642+-=x x y 交于A 、B 两点,求线段AB 的中点M 的轨迹方程。
10、已知定点A ( 3, 0 ),P 是圆x 2 + y 2 = 1上的动点,∠AOP 的平分线交AP 于M ,求M 点的轨迹。
11、已知常数0a >,经过定点(0,)A a -以(,)m a λ=为方向向量的直线与经过定点(0,)B a ,且以(1,2)n a λ=为方向向量的直线相交于点P,其中R λ∈. ⑴ 求点P的轨迹C的方程,它是什么曲线;⑵ 若直线:1l x y +=与曲线C相交于两个不同的点A、B,求曲线C的离心率的范围.12、过点(2,0)M -,作直线l 交双曲线221x y -=于A 、B 不同两点,已知OP OA OB =+。
(1)、求点P 的轨迹方程,并说明轨迹是什么曲线。
(2)、是否存在这样的直线,使||||?OP AB =若存在,求出l 的方程;若不存在,说明理由。
补充例题:1.过抛物线 y 2 = 4 p x ( p > 0 )的顶点作互相垂直的两弦OA 、OB ,求抛物线的顶点O 在直线AB 上的射影M 的轨迹。
2.已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l的对称点为Q ,F 2Q 交l 于点R(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值3.如图11-5-1,已知圆O :2225,x y += 点(3,0),(3,0)A B -,C 为圆O 上任意一点,直线CD 与BC 垂直,并交圆O 于另一点D . (1)求证:AD BC λ=;(2)若点P 在线段CD 上,且PAD PBC ∠=∠,求点P 的轨迹方程.P OxyABCD图11-5-1求轨迹方程的常用方法 答案例1:由,sin 45sin sin C A B =+可知1045==+c a b ,即10||||=+BC AC ,满足椭圆的定义。
令椭圆方程为12'22'2=+b y ax ,则34,5'''=⇒==b c a ,则轨迹方程为192522=+y x ()5±≠x ,图形为椭圆(不含左,右顶点)。
例2:解:如右图,以直线AB 为x 轴,线段AB 的中点为原 点建立直角坐标系. 由题意,b c a ,,构成等差数列,∴b a c +=2,即4||2||||==+AB CB CA ,又CA CB >,∴C 的轨迹为椭圆的左半部分.在此椭圆中,1,2='='c a ,3='b ,故C 的轨迹方程为)2,0(13422-≠<=+x x y x . 【变式】解:设动圆的半径为R ,由两圆外切的条件可得:,。
∴动圆圆心P 的轨迹是以M 1、M 2为焦点的双曲线的右支,c=4,a=2,b 2=12。
故所求轨迹方程为2:一动圆与圆O :122=+y x 外切,而与圆C :08622=+-+x y x 内切,那么动圆的圆心M 的轨迹是: A :抛物线B :圆 C :椭圆 D :双曲线一支 【解答】令动圆半径为R ,则有⎩⎨⎧-=+=1||1||R MC R MO ,则|MO|-|MC|=2,满足双曲线定义。
故选D 。
二:用直译法求曲线轨迹方程例3: 一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点P 的轨迹方程?解 设M 点的坐标为),(y x 由平几的中线定理:在直角三角形AOB 中,OM=,22121a a AB =⨯= 22222,a y x a y x =+=+∴M 点的轨迹是以O 为圆心,a 为半径的圆周. 【点评】此题中找到了OM=AB 21这一等量关系是此题成功的关键所在。
一般直译法有下列几种情况: 1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的CB yxO A方法求其轨迹。
2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。
3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。
4)借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.【变式2】: 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程?【解答】∵|P A |=2222)3(||,)3(y x PB y x +-=++代入2||||=PB PA 得222222224)3(4)3(2)3()3(y x y x y x y x +-=++⇒=+-++ 化简得(x -5)2+y 2=16,轨迹是以(5,0)为圆心,4为半径的圆.三:用参数法求曲线轨迹方程此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。