太赫兹波

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太赫兹检测技术

1 太赫兹波简介

电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。电磁辐射可以按照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等等。

太赫兹波(Terahert或称太赫兹辐射、T-射线、亚毫米波、远红外,简称THz) 通常指频率在0.1~10THz (1THz=1012Hz)范围内的电磁辐射。若以应用频率范围的载体为坐标,则太赫兹波位于“雷达”与“人”之间。是电磁波谱上由电子学向光子学过渡的特殊区域,也是宏观经典理论向微观量子理论的过渡区域。

图1 电磁波谱图

Fig1 Electromagnetic spectrum

THz波在无线电物理领域称为亚毫米波,在光学领域则习惯称之为远红外辐射;从能量辐射上看,其大小在电子和光子之间。在电磁频谱上,THz波段两侧的红外和微波技术已经很成熟,但是THz技术还不完善。究其原因是因为此频段既不完全适和用光学理论来处理,也不完全适合用微波理论来研究,缺乏有效的产生和检测THz波的手段,从而形成了所说的“THz空隙”。

2 THz辐射研究的发展历史与现状

上世纪九十年代以后,超快激光技术的迅速发展,为太赫兹脉冲的产生提供了稳定、可靠的激发光源。太赫兹波段各种技术的研究才蓬勃发展起来。与此同时,半导体物理的研究和材料加工工艺的改进也日趋完善,人们在选择与太赫兹辐射研究相关的半导体材料过程中发现半导体材料有着尤为重要的研究价值,且它们都是常用的半导体材料;同时通过掺杂工艺,改善半导体材料的性质,如载流子迁移率、寿命和阻抗都可以控制调整以适应光电器件的要求,这些半导体制作工艺上的发展促进了相关科学技术的发展。

2.1 THz辐射的特点

THz技术之所以引起人们广泛的关注,主要是由于太赫兹电磁波独有的特点,各种物质

在这一频段的独特响应及其在特定领域中的不可替代性[1]。与其他波段的电磁波相比,脉冲宽带THz电磁波具有如下特点:

(1)高透射性:太赫兹对许多介电材料和非极性物质具有良好的穿透性,可对不透明物体进行透视成像,是X射线成像和超声波成像技术的有效互补,可用于安检或质检过程中的无损检测。

(2)低能量性:太赫兹光子能量为4.1meV(毫电子伏特),只是X射线光子能量的108分之一。太赫兹辐射不会导致光致电离而破坏被检物质,非常适用于针对人体或其他生物样品的活体检查。进而能方便地提取样品的折射率和吸收系数等信息。

(3)吸水性:水对太赫兹辐射有极强的吸收性,因为肿瘤组织中水分含量与正常组织明显不同,所以可通过分析组织中的水分含量来确定肿瘤的位置。

(4)瞬态性:太赫兹脉冲的典型脉宽在皮秒数量级,可以方便地对各种材料包括液体、气体、半导体、高温超导体、铁磁体等进行时间分辨光谱的研究,而且通过取样测量技术,能够有效地抑制背景辐射噪声的干扰。

(5)相干性:太赫兹的相干性源于其相干产生机制。太赫兹相干测量技术能够直接测量电场的振幅和相位,从而方便地提取样品的折射率、吸收系数、消光系数、介电常数等光学参数。

(6)指纹光谱:太赫兹波段包含了丰富的物理和化学信息。大多数极性分子和生物大分子的振动和转能级跃迁都处在太赫兹波段,所以根据这些指纹谱,太赫兹光谱成像技术能够分辨物体的形貌,分析物体的物理化学性质,为缉毒、反恐、排爆等提供相关的理论依据和探测技术。

2.2太赫兹的研究现状

THz波现象其实早已为人们所发现,然而早期因缺乏有效的THz波产生和探测技术,使得相关研究进展极其缓慢[2]。进入20世纪80年代后,激光技术的迅速发展为研究有效THz 波的产生和探测技术孕育了基础。据文献报道,1983年D.H.Anston[3]首次利用光学技术,通过超短激光脉冲激发光电导天线产生了相干脉冲宽带THz辐射。鉴于D.H.Auston做出的巨大贡献,光导天线后来常被称为“Auston switeh”。紧接着,D.Grischkowsky和D.H.Auston 等又开发出了基于超短激光脉冲激发光电导天线的THz时域光谱探测技术。这种基于基于超短激光脉冲激发光电导天线的THz波产生和探测技术至今仍然是实验设备应用的主流。1990-1992年,X.C.zhang和D.H.Auston[4]等又提出了原理上完全不同的THz波产生与探测方法一基于瞬态电光取样及其逆过程的THz产生与探测技术。

至此,THz波的产生与探测技术虽然还不成熟,但已经能够用于相关仪器的制造与生产,为科研人员研究THz波与物质相互作用提供了必备的实验手段。太赫兹科学和技术有极大的应用潜力,但目前还受太赫兹辐射源的限制,比如:产生的太赫兹辐射强度不高、带宽不够宽、能量转化效率低等因素,所以太赫兹领域的发展还需更大的努力。

3 太赫兹的产生和检测

3.1太赫兹波的产生

THz波的产生分为连续波的THz产生和THz脉冲的产生。产生连续THz波的方法主要有4种:(1)通过FTIR(Fourier Transform Infrared Spectrometer)使用热辐射源产生,如汞灯和SiC 棒;(2)是通过非线性光混频产生;(3)是通过电子振荡辐射产生,如反波管、耿式振荡器及肖特基二极管产生;(4)是通过气体激光器、半导体激光器、自由电子激光器等THz激光器直接产生。目前产生THz脉冲常用的方法有光导天线法、光整流法、THz参量振荡器法、空气等离子体法等,其中空气等离子体能产生相对较高强度的THz波而备受关注,此外,还可以用半导体表面产生THz波。

3.1.1 光导天线(PCA)产生THz脉冲

光导天线辐射机制是利用超快激光脉冲泵浦光导材料,在其内部产生电子空穴对,这些载流子在外加偏置电场作用下,做加速运动形成瞬态光电流,从而辐射出低频THz脉冲。PCA 由两个距离在um量级电极组成,此种THz辐射系统的性能取决于3个因素:光导体、天线的几何结构和泵浦激光的脉冲宽度,如图所示。光导是产生THz辐射的关键部件,对于性能良好的光导体来说,它应该具有载流子寿命极短,载流子迁移率高和介质耐击穿强度大等特点。目前应用于THz技术中最多的光导体材料是si和低温生长的GaAs(LT.GaAs)材料。

图2 光电导天线图

Fig2 Schematic diagram of photoconductive antenna

3.1.2 光整流产生THz脉冲

光整流方法是利用电光晶体作为非线性介质,使超快激光通过非线性节点材料进行二阶非线性光学过程或高阶非线性光学过程产生THz脉冲。光整流的物理过程是一个瞬间完成的过程,而产生的THz辐射强度与非线性介质的极化电场强度的低频部分对时间的二阶偏导数成正比。光整流的关键问题是位相匹配,它可以放大激光和THz脉冲在非线性介质中的相互作用,并且能影响光整流的产生效果。

3.1.3 空气等离子体产生THz脉冲

Cook和Hochstrasser等人最早发现将频率为60的飞秒脉冲和频率为2o9的倍频光聚焦在空气中,将空气电离可产生THz[5]。该方法与之前的在晶体中进行光整流产生THz波相比,不存在损伤阈值的问题,即对激光的强度没有限制。空气中产生THz波有3种结构,如图所示。图(a)是将波长为800 RE或400nm,脉宽为100fs的激光脉冲聚焦到空气中产生等离子体,从而辐射THz波;而图(b)较之于图(a)则是在聚焦透镜后添加了一块BBO晶体用于倍频;图(c)是利用分色镜将波长为800nm和400nm(基频波与二次谐波)的两束光混合在一起,通过干涉相长或干涉相消对THz辐射进行相干控制。

图3 空气产生Thz结构图

相关文档
最新文档