石墨烯调研报告92页PPT

合集下载

石墨烯精品PPT课件

石墨烯精品PPT课件
富勒烯,1996诺贝尔化学奖
• C元素的同素异形体 石墨(Graphite)——
层状结构,每一层中的碳按六方 环状排列,上下相邻层通过平行 网面方向相互位移后再叠置形成 层状结构,位移的方位和距离不 同就导致不同的多型结构。
金刚石(Diamond)—— 四面体结构,四个碳原子占 据四面体的顶点。
石墨烯的基本知识
2004 年 首 次 制 成 石 墨 烯 材 料 。 这是目前世界上最薄的材料, 仅有一个原子厚。石墨烯的 发现推翻了所谓“热力学涨 落不允许二维晶体在有限温 度下自由存在”的原有认知, 震撼了整个物理界。
2010年10月5日,瑞典皇家科学院在斯德哥尔摩宣布, 将2010年诺贝尔物理学奖授予英国曼彻斯特大学科 学家A. K. Geim和K. S. Novoselov,以表彰他们在石 墨烯材料方面的卓越研究。
石墨烯 基本概念
石墨烯 神奇特性 石墨烯
新闻时讯
石墨烯 制备方法
石墨烯 研究进展
G 制造天梯 的材料?
它是已发现强度最高的材料,比钻石还 坚硬,是最好的钢铁强度的100多倍。
八大预言
太空梯
千年虫
太空卫士
通讯卫星
太空核动力
预防地震
大脑备份
人体冷冻术
《天堂的喷泉》讲述了两 千年前,在赤道附近的岛 国塔普罗巴尼发生了一场 血腥的宫廷政变,暴君卡 利达萨借机上台。此人并 不满足于人间的欢乐,他 要在高山之巅建造天国, 向天神挑战,由是诞生了 “天堂的喷泉”。
远远超过了电子在一般导体中的运动速度(非常高的电子迁移率)。
石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的 情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面 就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。

石墨烯研究报告PPT

石墨烯研究报告PPT

三、石墨烯特性 : 电子运输 在发现石墨烯以前,大多数(如果不是所有的话)物理学 家认为,热力学涨落不允许任何二维晶体在有限温度下存在。 所以,它的发现立即震撼了凝聚态物理界。虽然理论和实验界 都认为完美的二维结构无法在非绝对零度稳定存在,但是单层 石墨烯在实验中被制备出来。这些可能归结于石墨烯在纳米级 别上的微观扭曲。 石墨烯还表现出了异常的整数量子霍尔行为。其霍尔电导 =2e²/h,6e²/h,10e²/h.... 为量子电导的奇数倍, 且可以在室温下观测到。这个行为已被科学家解释为“电子在 石墨烯里遵守相对论量子力学,没有静质量”。
四、制备方法 化学解理法 化学解理法是将氧化石墨通过热还原的方法制备石墨烯 的方法,氧化石墨层间的含氧官能团在一定温度下发生反应, 迅速放出气体,使得氧化石墨层被还原的同时解理开,得到 石墨烯。这是一种重要的制备石墨烯的方法,天津大学杨全 红等用低温化学解理氧化石墨的方法制备了高质量的石墨烯。
上图为高定向热解石墨(HOPG),下图为从HOPG撕出来,置于厚度300 nm的 二氧化矽表面的石墨片烯。左下角浅色三角形为单层石墨片烯,其余为1 - 5层不等。
三、石墨烯特性 电子的相互作用 利用世界上最强大的人造辐射源,美国加州大学、哥伦比 亚大学和劳伦斯·伯克利国家实验室的物理学家发现了石墨烯特 性新秘密:石墨烯中电子间以及电子与蜂窝状栅格间均存在着 强烈的相互作用。 科学家借助了美国劳伦斯伯克利国家实验室的“先进光源 (ALS)”电子同步加速器。这个加速器产生的光辐射亮度相 ALS 当于医学上X射线强度的1亿倍。科学家利用这一强光源观测发 现,石墨烯中的电子不仅与蜂巢晶格之间相互作用强烈,而且 电子和电子之间也有很强的相互作用。

2024版《石墨烯的研究》PPT课件

2024版《石墨烯的研究》PPT课件

目录•引言•石墨烯的基本性质•石墨烯的制备方法•石墨烯的应用领域•石墨烯的挑战与前景•结论引言石墨烯是一种由单层碳原子组成的二维材料。

石墨烯具有极高的电导率、热导率和机械强度等优异性能。

石墨烯的发现引起了科学界的广泛关注,被认为是未来材料科学的重要发展方向之一。

石墨烯的背景与概念0102 03推动材料科学的发展石墨烯作为一种新型材料,其研究有助于推动材料科学的发展,为制备更高性能的材料提供新的思路和方法。

促进相关产业的发展石墨烯的优异性能使其在电子、能源、生物等领域具有广泛的应用前景,其研究有助于促进相关产业的发展。

提高国家科技实力石墨烯作为一种具有重要战略意义的材料,其研究水平的提高有助于提高国家的科技实力和竞争力。

石墨烯的研究意义国内研究现状国内石墨烯研究起步较早,目前已经取得了一系列重要成果,包括石墨烯的制备、表征、应用等方面。

国外研究现状国外石墨烯研究也非常活跃,许多国际知名大学和科研机构都在开展石墨烯相关的研究工作。

发展趋势未来石墨烯的研究将更加注重应用基础研究,探索石墨烯在各个领域的应用潜力,同时加强石墨烯的规模化制备和产业化应用等方面的研究。

国内外研究现状及发展趋势石墨烯的基本性质石墨烯是由单层碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。

二维碳纳米材料石墨烯中的碳原子以六边形进行排列,每个碳原子与周围三个碳原子通过σ键相连,形成稳定的晶格结构。

碳原子排列方式石墨烯中碳-碳键长约为0.142nm ,每个晶格内有三个σ键,所有碳原子均为sp2杂化。

原子尺寸零带隙半导体石墨烯是一种零带隙半导体,其载流子在狄拉克点附近呈现线性色散关系,具有极高的载流子迁移率。

高电导率由于石墨烯中载流子的特殊性质,其电导率极高,甚至超过铜等传统导体。

量子霍尔效应在低温强磁场条件下,石墨烯会表现出量子霍尔效应,这是其独特电学性质之一。

石墨烯的强度极高,其抗拉强度是钢铁的数百倍,同时具有优异的韧性。

调研石墨烯报告

调研石墨烯报告

调研石墨烯报告石墨烯是一种特殊的碳材料,由具有六角形结构的碳原子单层构成。

它是目前已知的最薄、最强、最导电的材料之一,展现出许多惊人的物理、化学和电学特性。

石墨烯的独特结构和性能使其在各个领域都具有巨大的潜力,从电子学到材料科学,再到生物医学。

首先,石墨烯具有出色的导电性能。

石墨烯的电子移动速度是所有已知材料中最快的,达到光速的1/300。

这使得石墨烯成为制造高速电子器件和传输电子的理想材料。

此外,石墨烯的导电性能还能够通过化学修饰进行调控,可以根据需求设计出具有不同导电性能的石墨烯材料。

其次,石墨烯具有出色的力学性能。

石墨烯的抗拉强度是普通钢的200倍,同时又具有极高的柔韧性,可以以各种不同形式和尺寸制备成薄膜、纳米片或纳米纤维,被广泛应用于能量存储、传感器和可穿戴设备等领域。

此外,石墨烯还具有优异的热导性能和热稳定性,可以作为高效的散热材料。

另外,石墨烯还具有出色的光学性能。

石墨烯能够吸收几乎整个可见光谱和红外光谱,并且对紫外光谱具有较低的反射率。

这使得石墨烯在光电器件、光催化和光传感等领域具有广阔的应用前景。

此外,由于其出色的光学吸收能力,石墨烯还被用于太阳能电池和可穿戴设备的能源收集。

最后,石墨烯在生物医学领域也有广泛的应用。

石墨烯具有极高的生物相容性和生物降解性,可以作为药物传递和靶向治疗的载体。

此外,石墨烯还具有优异的生物传感性能,可以用于检测生物标志物和疾病诊断。

石墨烯的这些特性使其在癌症治疗、组织工程和生物传感器等领域具有巨大的应用潜力。

总之,石墨烯作为一种新兴材料,具有出色的导电、力学和光学性能,以及广泛的应用前景。

然而,目前石墨烯的大规模生产和商业应用仍面临一些挑战,如高成本、稳定性和制备技术等方面。

未来,随着技术的发展和成本的降低,石墨烯有望成为各个领域中的重要材料,并为人类带来更多的创新和突破。

2024石墨烯技术PPT课件

2024石墨烯技术PPT课件

contents •石墨烯概述•石墨烯制备方法•石墨烯表征技术•石墨烯应用领域•石墨烯产业发展现状与趋势•总结与展望目录石墨烯定义与结构定义结构石墨烯的每个碳原子与周围三个碳原子通过共价键连接,形成稳定的六边形结构。

这种结构使得石墨烯具有出色的力学、电学和热学性能。

石墨烯性质与特点力学性质石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,可以弯曲成各种形状而不断裂。

电学性质石墨烯具有优异的导电性能,电子在其中的移动速度极快,使得石墨烯成为理想的电极材料。

热学性质石墨烯具有极高的热导率,可以快速地将热量从一个区域传递到另一个区域,这使得石墨烯在散热领域具有广阔的应用前景。

光学性质石墨烯对光的吸收率很低,且透光性极好,这使得石墨烯在透明导电薄膜等领域具有潜在的应用价值。

石墨烯发现历程及意义发现历程石墨烯最初是由英国曼彻斯特大学的两位科学家通过机械剥离法从石墨中分离出来的。

这一发现引起了科学界的广泛关注,并开启了石墨烯研究的新篇章。

意义石墨烯的发现不仅打破了二维晶体无法稳定存在的传统认知,而且为材料科学、凝聚态物理以及电子器件等领域的发展带来了新的机遇。

石墨烯的优异性能使得它在能源、环保、医疗、航空航天等领域具有广阔的应用前景,有望引领新一轮的技术革命和产业变革。

机械剥离法01020304原理优点缺点应用领域化学气相沉积法在高温下,碳源气体在催化剂表面分解并沉积形成石墨烯。

可控制备大面积、高质量的石墨烯;与现有半导体工艺兼容。

设备成本高,制备过程中可能产生有毒气体。

透明导电薄膜、电子器件、传感器等。

原理优点缺点应用领域原理优点缺点应用领域氧化还原法利用溶剂将石墨剥离成单层或少层石墨烯,适用于大规模生产。

液相剥离法碳化硅外延法电弧放电法激光诱导法通过高温处理碳化硅晶体,使其表面外延生长出石墨烯,适用于制备高质量石墨烯。

利用电弧放电产生的高温高压条件,将石墨转化为石墨烯,但产量较低。

利用激光束照射石墨表面,诱导出石墨烯,但设备成本较高。

石墨烯调研报告

石墨烯调研报告

石墨烯的基本知识
单层 石墨烯
富勒烯
纳米碳管
石墨
A K Geim & K S Novoselov. Nature Materials, 2007, 6:183-191.
石墨烯的基本知识
石墨烯的稳定性
由于完美二维晶体不能在有限温度下稳定存在 ,近期理论模拟和透射电镜实验结果给出了可能的 解释,即石墨烯平面上存在纳米级别的微观扭曲。 解释,即石墨烯平面上存在纳米级别的微观扭曲。
石墨烯的基本知识
石墨烯的发现推翻了所谓“ 石墨烯的发现推翻了所谓“热 力学涨落不允许二维晶体在有 限温度下自由存在” 限温度下自由存在”*的原有认 震撼了整个物理界。 知,震撼了整个物理界。因此 其发现者A. 其发现者 K. Geim和K. S. 和 Novoselov获得了 获得了2008年诺贝尔 获得了 年诺贝尔 物理学奖的提名。 物理学奖的提名。
石墨烯的基本知识
石墨烯(Graphene) 石墨烯
2004年,曼彻斯特大 年 教授、 学Geim教授、Novoselov博 教授 博 士和同事以微机械剥离法剥 离层状石墨, 离层状石墨,发现了二维碳 原子平面结构——石墨烯。 石墨烯。 原子平面结构 石墨烯
3个 C 原子 6个 C 原子
高分辨STM图片 图片 高分辨 a) 石墨 b) 单层石墨烯
石墨烯的独特性质是由其独特的结构 所决定的。 所决定的。
石墨烯的基本知识
石墨烯
C原子外层 个电子通过 2杂化 原子外层3个电子通过 原子外层 个电子通过sp 形成强σ键 蓝 , 形成强 键(蓝),相邻两个键之 间夹角约为120°;第4个电子 间夹角约为 ° 个电子 为公共,形成弱π键 紫 , 为公共,形成弱 键(紫),为平 面结构。 面结构。

石墨烯调研报告

石墨烯调研报告

石墨烯调研报告嘿,朋友们!今天咱们来聊聊这个听起来超级酷的东西——石墨烯。

先来说说我是怎么跟石墨烯“结缘”的哈。

前阵子我去参加一个科技展会,在那看到了好多关于石墨烯的新奇玩意儿,当时就被深深吸引住了。

那到底什么是石墨烯呢?简单来说,石墨烯就是一种由碳原子以特殊方式排列形成的材料。

它薄得超乎想象,就像只有一层原子那么薄。

石墨烯的特性那可真是让人惊叹不已!它的导电性超强,比铜还好呢。

这意味着在电子领域,它能带来巨大的变革。

比如说,未来咱们的手机可能充电几秒钟就能充满,这得多爽啊!而且石墨烯的强度也高得离谱。

想象一下,用它做成的材料,又轻又坚固,要是用来造汽车、飞机,那得多牛!我就亲眼看到过一个展示,一块小小的石墨烯材料,居然能承受巨大的重量而不变形。

在能源领域,石墨烯也有大作为。

它可以用于制造超级电容器,让能源存储变得更高效。

说不定以后电动汽车的续航里程能大幅增加,咱们再也不用担心半路没电啦。

不过,石墨烯的大规模应用也面临一些挑战。

比如说,它的生产成本目前还比较高,制造工艺也还有待进一步完善。

科研人员们可是一直在努力攻克这些难题。

我听说有个科研团队,为了找到一种更高效、更经济的石墨烯生产方法,日夜不停地做实验,那股子认真劲儿真让人佩服。

在市场方面,石墨烯的发展前景那是相当广阔。

好多企业都纷纷投入到石墨烯的研发和应用中,各种创新产品层出不穷。

但同时,也有一些不良商家,打着石墨烯的旗号,卖一些名不副实的产品,这可给消费者带来了不少困扰。

总的来说,石墨烯就像一颗正在崛起的新星,虽然还面临一些挑战,但它的未来充满了无限可能。

我相信,在不久的将来,石墨烯一定会给我们的生活带来翻天覆地的变化。

就像我在展会上看到的那些令人惊艳的展示一样,石墨烯的神奇之处正一点点地展现出来,让我们拭目以待吧!。

石墨烯-PPT

石墨烯-PPT

4,电子的相互作用
石墨烯中电子间以及电子与蜂窝状栅格 间均存在着强烈的相互作用。 石墨烯中的电子不仅与蜂巢晶格之间相 互作用强烈,而且电子和电子之间也有很 强的相互作用。
5、其它特殊性质 ① 石墨烯具有明显的二维电子特性。 ② 在石墨烯中不具有量子干涉磁阻 ③ 石墨烯电子性质用量子力学的迪拉克方程来描 述比薛定谔方程更 ④ 好可控渗透性 ⑤ 离子导电体各向异性 ⑥ 超电容性 ………………
实现人类梦想
Dreams: Dreams:对于强度比世界上最好的钢铁还要高 上百倍的石墨烯,如果能加以利用, 上百倍的石墨烯,如果能加以利用,不仅可以造 出纸片般薄的超轻型飞机材料、超坚韧的防弹衣, 出纸片般薄的超轻型飞机材料、超坚韧的防弹衣, 甚至还可以制作23000英里长伸入太空的电梯, 23000英里长伸入太空的电梯 甚至还可以制作23000英里长伸入太空的电梯, 实现人类坐电梯进入太空的梦想。 实现人类坐电梯进入太空的梦想。 美国国家航空航天局(NASA)悬赏400万美金 美国国家航空航天局(NASA)悬赏400万美金 400 鼓励科学家们进行这种电梯的开发
二、石墨烯材料的制备
1、机械剥离法 通过机械力从新鲜石墨晶体的表面剥离石墨烯片层。 加热SiC SiC法 2、加热SiC法 通过加热单晶SiC脱除Si,在单晶(0001)面上分解出石墨烯片层。Berger 等人已经能可控地制备出单层. 或是多层石墨烯 。据预测这种方法很可能是 未来大量制备石墨烯的主要方法之一。 3、热膨胀法 4、化学法
三、石墨烯材料的性质
1、力学性质——比钻石还要硬 力学性质——比钻石还要硬 ——
数据转换分析:在石墨烯样品微粒开始碎裂前, 数据转换分析:在石墨烯样品微粒开始碎裂前,它们每 100纳米距离上可承受的最大压力居然达到了大约2.9微 纳米距离上可承受的最大压力居然达到了大约2.9 100纳米距离上可承受的最大压力居然达到了大约2.9微 牛。 据科学家们测算,这一结果相当于要施加55牛顿的 据科学家们测算,这一结果相当于要施加55牛顿的 55 压力才能使1米长的石墨烯断裂。 压力才能使1米长的石墨烯断裂。如果物理学家们能制 取出厚度相当于普通食品塑料包装袋的(厚度约100 100纳 取出厚度相当于普通食品塑料包装袋的(厚度约100纳 石墨烯, 米)石墨烯,那么需要施加差不多两万牛的压力才能将 其扯断。换句话说,如果用石墨烯制成包装袋, 其扯断。换句话说,如果用石墨烯制成包装袋,那么它 将能承受大约两吨重的物品。 将能承受大约两吨重的物品。 打个比方说单层石墨烯的强度, 打个比方说单层石墨烯的强度,就像把大象的重量 加到一支铅笔上, 加到一支铅笔上,才能够用这支铅笔刺穿仅像保鲜膜一 样厚度的单层石墨烯。 样厚度的单层石墨烯。

石墨烯材料PPT课件

石墨烯材料PPT课件

1985
第7页/共111页
石墨烯的晶格结构与其相应的倒格矢空间
第8页/共111页
石墨烯能带结构
第9页/共111页
石墨烯层数的表征方法
(1)扫描隧道显微镜(STM)
具有很高的空间分辨率,横向为 0.1~0.2nm,纵向可达0.001nm。
单层石墨烯厚度只有0.335nm
第10页/共111页
(2)原子力显微镜表征
石墨烯的组成与结构
第1页/共111页
石墨简介
石墨(graphite)是一种结晶形碳。 六方晶系,为铁墨色至深灰色。密度 2.25克/厘米3,硬度1.5,熔点3652℃, 沸点4827℃。质软,有滑腻感,可导 电。
化学性质不活泼,耐腐蚀,与酸、 碱等不易反应。在空气或氧气中加 强热,可燃烧并生成二氧化碳。强氧 化剂会将它氧化成有机酸。
研究人员发现单氢化及双氢化锯齿状边的石墨烯具有铁磁性。此外,通过对 石墨烯不同方向的裁剪及化学改性可以对其磁性能进行调控。研究表明分子在石 墨烯表面的物理吸附将改变其磁性能。例如氧的物理吸附增加石墨烯网络结构的 磁阻,位于石墨烯纳米孔道内的钾团簇将导致非磁性区域的出现。
第25页/共111页
石墨烯的优异特性
第27页/共111页
• 分数量子霍尔效应和异常量子霍尔效应
第28页/共111页
整数量子霍尔效应
1985年的诺贝尔物理学奖
量子霍尔效应只发生于二维导体。这效应促成了一种新度
量衡标准,称为电阻率量子(resistivity quantum)
h/e2;垂直于外磁场的载流导线,其横向电导率会呈现量
子化值。称这横向电导率为霍尔电导(Hall
第36页/共111页
•外延生长法

石墨烯PPT

石墨烯PPT
如果有五角元胞和七角元胞存在,那么他们构成石墨烯的缺陷 。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会 形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯;
可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管 、三维石墨)的基本单元
第8页,本讲稿共28页
第9页,本讲稿共28页
二、石墨烯材料的制备
兆赫(terahertz)领域。
第24页,本讲稿共28页
双层石墨烯可降低元器件电噪声
美国IBM公司T·J·沃森研究中心的科
学家,最近攻克了在利用石墨构建纳米 电路方面最令人困扰的难题,即通过将 两层石墨烯片叠加,可以将元器件的电 噪声降低10倍,由此可以大幅改善晶 体管的性能,这将有助于制造出比硅 晶体管速度快、体积小、能耗低的石 墨烯晶体管。
烯的厚度。
第12页,本讲稿共28页
3、热膨胀法
用酸进行插层反应得到膨胀率较低的石墨鳞片 ,鳞片的平均厚度约为30μm,横向尺寸在 400μm左右,这种石墨鳞片就是可膨胀石墨。将 这种可膨胀石墨放入微波或高温炉中加热,就可 以的到厚度为几纳米到几十个纳米的纳米石墨片 。
第13页,本讲稿共28页
4、化学法
第15页,本讲稿共28页
三、石墨烯材料的性质
1、力学性质——比钻石还要硬
数据转换分析:在石墨烯样品微粒开始碎裂前,它们每100纳
米距离上可承受的最大压力居然达到了大约2.9微牛。
据科学家们测算,这一结果相当于要施加55牛顿的压力才 能使1米长的石墨烯断裂。如果物理学家们能制取出厚度相当于 普通食品塑料包装袋的(厚度约100纳米)石墨烯,那么需要 施加差不多两万牛的压力才能将其扯断。换句话说,如果用 石墨烯制成包装袋,那么它将能承受大约两吨重的物品。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档