二极管的伏安特性 (1)
晶体二极管伏安特性曲线学习教案(1)
晶体二极管伏安特性曲线学习教案一、教学内容本节课选自《电子技术基础》第四章第一节,详细内容为晶体二极管的伏安特性曲线。
通过本节课的学习,学生将掌握晶体二极管的伏安特性曲线的测量方法、曲线特点以及在实际应用中的重要性。
二、教学目标1. 理解晶体二极管伏安特性曲线的概念及测量方法;2. 能够分析晶体二极管伏安特性曲线的特点及其在实际应用中的作用;3. 学会使用实验仪器测量晶体二极管的伏安特性曲线,并具备一定的实验操作能力。
三、教学难点与重点教学难点:晶体二极管伏安特性曲线的测量方法及曲线特点分析。
教学重点:晶体二极管伏安特性曲线在实际应用中的重要性及其测量方法。
四、教具与学具准备1. 教具:晶体二极管、直流电源、电流表、电压表、可调电阻、实验电路板等;2. 学具:笔记本、铅笔、直尺、圆规等。
五、教学过程1. 实践情景引入(5分钟)利用多媒体展示实际电路中的晶体二极管,引导学生思考其工作原理。
2. 理论讲解(15分钟)介绍晶体二极管的基本原理、伏安特性曲线的概念及测量方法。
3. 例题讲解(10分钟)分析一个具体的晶体二极管伏安特性曲线的实例,讲解测量方法及曲线特点。
4. 随堂练习(15分钟)学生根据所给数据,绘制晶体二极管的伏安特性曲线。
5. 实验演示(15分钟)演示如何使用实验仪器测量晶体二极管的伏安特性曲线,并强调注意事项。
6. 学生实验(20分钟)学生分组进行实验,测量晶体二极管的伏安特性曲线。
7. 结果分析(10分钟)六、板书设计1. 晶体二极管伏安特性曲线的概念及测量方法;2. 晶体二极管伏安特性曲线的实例分析;3. 实验操作步骤及注意事项。
七、作业设计1. 作业题目:测量一个未知晶体二极管的伏安特性曲线,并分析其特点。
2. 答案:根据实验数据,绘制伏安特性曲线,分析曲线特点。
八、课后反思及拓展延伸1. 反思:本节课学生掌握了晶体二极管伏安特性曲线的测量方法及曲线特点,实验操作能力得到提高。
二极管的伏安特性
二极管的伏安特性伏安特性是指加在二极管两端的电压u与流过二极管的电流,之间的关系,即,I=f(U)。
2CPl2(普通型硅二极管)和2AP9(普通型锗二极管)的伏安特。
(1)正向特性。
二极管伏安特性曲线的第一象限称为正向特性,它表示外加正向电压时二极管的工作情况。
在正向特性的起始部分,由于正向电压很小,外电场还不足以克服内电场对多数载流子的阻碍作用,正向电流几乎为零,这一区域称为正向二极管的伏安特性曲线死区,对应的电压称为死区电压。
硅管的死区电压约为0.5V,锗管的死区电压约为0.2V。
当正向电压超过某一数值后,内电场就被大大削弱,正向电流迅速增大,二极管导通,这一区域称为正向导通区。
二极管一旦正向导通后,只要正向电压稍有变化,就会使正向电流变化较大,二极管的正向特性曲线很陡。
因此,二极管正向导通时,管子上的正向压降不大,正向压降的变化很小,一般硅管为o.7V左右,锗管为0.3V左右。
因此,在使用二极管时,如果外加电压较大,一般要在电路中串接限流电阻,以免产生过大电流烧坏二极管。
(2)反向特性。
二极管伏安特性曲线的第三象限称为反向特性,它表示外加反向电压时二极管的工作情况。
在一定的反向电压范围内,反向电流很小且变化不大,这一区域称为反向截止区。
这是因为反向电流是少数载流子的漂移运动形成的;一定温度下,少子的数目是基本不变的,所以反向电流基本恒定,与反向电压的大小无关,故通常称其为反向饱和电流。
当反向电压过高时,会使反向电流突然增大,这种现象称为反向击穿,这一区域称为反向击穿区。
反向击穿时的电压称为反向击穿电压,用%R表示。
各类二极管的反向击穿电压从几十伏到几百伏不等。
反向击穿时,若不限制反向电流,贝,J--极管的PN结会因功耗大而过热,导致PN结烧毁。
二极管基本知识
二极管根本知识1. 根本概念二极管由管芯、管壳和两个电极构成。
管芯就是一个PN结,在PN结的两端各引出一个引线,并用塑料、玻璃或金属材料作为封装外壳,就构成了晶体二极管,如下列图所示。
P区的引出的电极称为正极或阳极,N区的引出的电极称为负极或阴极。
1.1 二极管的伏安特性二极管的伏安特性是指加在二极管两端电压和流过二极管的电流之间的关系,用于定性描述这两者关系的曲线称为伏安特性曲线。
通过晶体管图示仪观察到硅二极管的伏安特性如下列图所示。
1.2 正向特性1)外加正向电压较小时,二极管呈现的电阻较大,正向电流几乎为零,曲线OA段称为不导通区或死区。
一般硅管的死区电压约为0.5伏, 锗的死区电压约为0.2伏,该电压值又称门坎电压或阈值电压。
2)当外加正向电压超过死区电压时,PN结内电场几乎被抵消,二极管呈现的电阻很小,正向电流开场增加,进入正向导通区,但此时电压与电流不成比例如AB段。
随外加电压的增加正向电流迅速增加,如BC段特性曲线陡直,伏安关系近似线性,处于充分导通状态。
3)二极管导通后两端的正向电压称为正向压降(或管压降),且几乎恒定。
硅管的管压降约为0.7V,锗管的管压降约为0.3V。
1.3 反向特性1)二极管承受反向电压时,加强了PN结的内电场,二极管呈现很大电阻,此时仅有很小的反向电流。
如曲线OD段称为反向截止区,此时电流称为反向饱和电流。
实际应用中,反向电流越小说明二极管的反向电阻越大,反向截止性能越好。
一般硅二极管的反向饱和电流在几十微安以下,锗二极管那么达几百微安,大功率二极管稍大些。
2)当反向电压增大到一定数值时(图中D点),反向电流急剧加大,进入反向击穿区,D点对应的电压称为反向击穿电压。
二极管被击穿后电流过大将使管子损坏,因此除稳压管外,二极管的反向电压不能超过击穿电压。
2. 整流电路2.1 单向半波整流电路二极管就像一个自动开关,u2为正半周时,自动把电源与负载接通,u2为负半周时,自动将电源与负载切断。
二极管伏安特性
结论:二极管只能在正向电压的作用下才能工作,即二极管具有单向导电性
描述流过二极管的电流随其两端电压变化的特性就 是二极管的伏安特性,通常用伏安特性曲线来表示,如 图所示。
二极管的伏安特性
1 正向特性
iD
D
OD段称Байду номын сангаас正向特性。
UBR
C
OC段,正向电压较小,正
B
O
uD
向电流非常小,外电场还不
足以克服PN结内电场对多数
载流子的阻力,这一范围成
A
为“死区”相应电压称为死
区电压。只有当正向电压超
过某一数值时,才有明显的
正向电流,亦称开启电压。
CD段,当正向电压大于死区电压后,正向电流近似 以指数规律迅速增长,二极管呈现充分导通状态。
(2 )反向特性
OB段称为反向特性。这时二极
管加反向电压,反向电流很小。
当温度升高时,半导体中本征激发 UBR 增加,是少数载流子增多,故反向 B 电流增大,特性曲线向下降。
当二极管的正极接高电位,而负极接低电 位,指示灯发光。此时二极管两端施加的电 压是正向电压,二极管处于正向偏置状态, 简称正偏。二极管正偏时,当正向电压达到 某一数值时会使二极管导通,电流随电压的 上升迅速增大,二极管内部电阻变得很小, 进入正向导通状态。导通后二极管两端的正 向电压称正向压降。
二极管加正向电压
二极管的伏安特性
演示实验:
当二极管的正极接低电位,而 负极接高电位,指示灯不发光,说 明电路中没有电流通过或电流极小。 此时二极管两端施加的电压是反向 电压,二极管处于反向偏置状态, 简称反偏。二极管反偏时,内部呈 现很大的电阻值,几乎没有电流通 过,二极管的这种状态称为反向截 止状态。
二极管的伏安特性及主要参数电子元器件
二极管的伏安特性及主要参数 - 电子元器件1、伏安特性表达式二极管是一个非线性器件,其伏安特性的数学表达式为当,且时,;当,且时,。
在室温下,。
由此可看出二极管具有单向导电的特性。
2、伏安特性曲线二极管的伏安特性曲线如图1所示。
图 1 二极管的伏安特性曲线正向特性:小于死区电压(硅管是0.5V,锗管是0.1V)时,。
正向部分的开头阶段电流增加的比较慢。
在电流比较大时,二极管两端的电压随电流变化很小,称为导通电压(硅管:0.7V,锗管:0.3V)。
反向特性:当反向电压,且小于时,,反向饱和电流很小。
当反向电压的确定值达到后,反向电流会突然增大,二极管反向击穿。
击穿后,当反向电流在很大范围内变化时,二极管两端的电压几乎不变,击穿后的反向特性有稳压性。
击穿电压低于4伏的击穿主要是齐纳击穿;击穿电压大于6伏的击穿为雪崩击穿;击穿电压介于4伏与6伏之间时,两种击穿都可能发生,也可能同时发生。
二极管发生反向击穿时,假如回路中的限流电阻能将反向电流限制在允许的范围内,二极管不会损坏。
当反向电压降低后,管子仍可以恢复到原来的状态,这就是电击穿。
假如限流电阻太小,使反向电流超过其允许值,则二极管会发生热击穿,造成永久性损坏。
3、温度对二极管特性的影响温度上升时,二极管的正向伏安特性曲线左移,正向压降减小;温度每上升1℃,正向电压降将降低2~2.5mV。
二极管的反向饱和电流也随温度的转变而转变,当温度每上升10 ℃左右时,反向饱和电流将将增大一倍。
击穿电压也受温度的影响,击穿电压小于4伏时,有负的温度系数;击穿电压大于6伏时,有正的温度系数;击穿电压介于4伏与6伏之间时,温度系数较小。
4、主要参数二极管的主要参数有:①额定整流电流IF ;②反向击穿电压U(BR);③最高允许反向工作电压UR;④反向电流IR;⑤正向电压降UF;⑥最高工作频率fM。
二极管伏安特性
二极管伏安特性
二极管伏安特性是衡量二极管的电特性指标,它是指将电流从零到最大至,电压会变成多少的情况。
二极管的伏安特性是由当前的特性和二极管结构的特性决定的。
随着电流的增加,二极管的电压会逐渐增加,这个过程中所形成的折线图,就是二极管的伏安特性图。
二极管伏安特性的特点是,当恒定电流通过二极管时,电压呈现负斜率,而电流更改时,压降不会立即变动,只有在达到一定以上级别时候,会发生变化。
二极管伏安特性对于了解二极管的动态特性有重要的誊录作用,其伏安曲线用来表示电流和电压关系,可以用来准确地测量二极管的特性参数,同时也被用来分析二极管的电路及其性能。
二极管的伏安特性受到温度的影响,温度的升高会导致正向击穿击穿晶体管的压降值减小,导致正向漏电流增加,硅锗电流也减小。
此外,温度的升高也会对二极管的能量效率有很大的负面影响,使用的热能因此耗费会增加,二极管的耐温设备因此受到限制。
由于二极管具有重要的应用价值,因此,我们需要理解并估算二极管的伏安特性,以更好地提高其使用寿命和可靠性,更有效地提高设备性能。
二极管伏安特性分析
一、二极管伏安特性分析1.二极管静态特性i随着正向电压增大到门槛电压U to(二极管开启电压),二极管导通。
ii电压U f为二极管导通时的正向电压降iii当承受反向电压时,二极管截至,只有微小的少子漂移运动形成的反向漏电流。
iv当反向电压过大,二极管会反向击穿,普通二极管将不可逆损坏。
v稳压二极管则是利用二极管的反向击穿工作。
将稳压二极管并联在负载两端二极管反向击穿后,电流虽然在很大范围内变化,但是稳压二极管两端的电压则在很小的范围内变化,起到稳定负载两端电压的作用。
2.二极管动态特性关断过程i. tF前,二极管由于存在空间电荷区,可以看作有并联一个结电容,二极管开通时,电容两端电压等于二极管两端电压(二极管导通电压)。
ii .tF时,二极管接反向电压,此时二极管并没有马上截止,二极管结电容向二极管放电,空间电荷区开始变宽。
此时,二极管继续导通,但是电压降低,电流减小。
iii. t0时,二极管正偏继续导通,t0~t1阶段,虽然电流降到0,但是电容上的正电荷仍然存在,二极管正偏。
t0~t1阶段是去除电容上的正电荷,t1时,二极管开始截止。
iv. t1时,二极管截止,t1~t2阶段反向电压对结电容(耗尽层)充电,直到二极管完全承受外部所加的反向电压,进入稳定的反向截止状态。
开通过程i. 当加正向电压时,开始对电容充电,继续增加电压推动耗尽层变窄,t fr时进入稳定的正向导通状态。
此时i F和u F满足二极管的伏安特性。
3.温度对二极管伏安特性的影响随着温度升高,其正向特性曲线左移,即正向压降减小;反向特性曲线下移,即反向电流增大。
温度升高,本征激发产生的少子浓度增加,导致内电场的电位差降低,所以二极管正向导通电压降低。
二、二极管的主要参数1.最大整流电流I FI F是二极管长期运行时允许通过的最大正向平均电流,其值与PN结面积及外部散热条件有关2.最高反向工作电压U RU R是二极管工作时允许加的最大反向电压,一般为击穿电压(U BR)的一半。
二极管的伏安特性实验报告
二极管的伏安特性实验报告二极管的伏安特性实验报告引言:二极管是一种常见的电子元件,具有非常重要的应用价值。
它是一种具有单向导电性的电子器件,能够将电流限制在一个方向上流动。
本实验旨在通过测量二极管在不同电压下的电流变化,探究其伏安特性,并分析其在电子设备中的应用。
实验装置:本实验所需的装置主要包括:二极管、直流电源、电阻、万用表等。
实验过程:1. 首先,将二极管与直流电源和电阻连接起来,组成一个电路。
2. 调节直流电源的电压,从0V开始逐渐增加,每次增加一个固定的电压值。
3. 在每个电压值下,使用万用表测量二极管的电流,并记录下来。
4. 根据测得的电压和电流数据,绘制伏安特性曲线图。
实验结果:根据实验数据绘制的伏安特性曲线图显示,二极管的伏安特性呈现出明显的非线性特性。
在正向偏置时,电流随着电压的增加而迅速增大;而在反向偏置时,电流保持在一个极低的水平上。
讨论与分析:1. 正向偏置时,二极管的导通特性使得电流能够顺利通过。
当电压增加到二极管的正向压降(正向电压)时,电流急剧增加,呈指数增长。
这是由于二极管内部的PN结在正向偏置下形成了导电通道,电流能够自由地流动。
这种特性使得二极管在电子设备中广泛应用于整流、放大、开关等电路中。
2. 反向偏置时,二极管的导通特性被阻断,电流无法通过。
在反向电压下,二极管的电流仅仅是由于少量的载流子扩散而产生的,因此电流非常微弱。
这种反向电流被称为反向饱和电流。
反向偏置使得二极管具有了单向导电性,可以用于保护电路免受反向电压的损害。
3. 二极管的伏安特性曲线图中,还可以观察到一个重要的参数——二极管的截止电压。
截止电压是指当二极管的电压低于一定值时,电流基本上为零。
截止电压是二极管的重要参数之一,它决定了二极管在电路中的工作状态和特性。
结论:通过本次实验,我们深入了解了二极管的伏安特性及其在电子设备中的应用。
二极管具有单向导电性,能够将电流限制在一个方向上流动。
它在正向偏置下具有导通特性,在反向偏置下具有阻断特性。
二极管伏安特性曲线的研究
二极管伏安特性曲线的研究一、设计目的电路中有各种电学元件,如晶体二极管和三极管,光敏和热敏元件等。
人们通常需要了解它们的伏安特性,以便正确的选用它们。
通常以典雅为横坐标,电流为纵坐标作出元件的电压——电流关系曲线,叫做该元件的伏安特性曲线。
该设计通过测量二极管的伏安特性曲线,了解二极管的导电性的实质,使我们在设计电路时能够准确的选择二极管。
二、设计原理1、二极管的伏安特性(1)二极管的伏安特性方程为:式中,Is为反向饱和电流,室温下为常数;u为加在二极管两端电压;UT 为温度的电压当量,当温度为室温27℃时,UT≈26mV。
当PN结正向偏置时,若u≥UT,则上式可简化为:IF≈ISeu/UT。
当PN结反向偏置时,若︱u︱≥UT,则上式可简化为:IR≈-IS。
可知- IS 与反向电压大小基本无关,且IR越小表明二极管的反向性能越好。
对二极管施加正向偏置电压时,则二极管中就有正向电流通过,随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近其导通电压时,电流急剧增加,二极管导通后,电压少许变化,电流的变化都很大。
对上述二种器件施加反向偏置电压时,二极管处于截止状态,其反向电压增加至该二极管的击穿电压时,电流猛增,二极管被击穿,在二极管使用中应竭力避免出现击穿观察,这很容易造成二极管的永久性损坏。
所以在做二极管反向特性时,应串入限流电阻,以防因反向电流过大而损坏二极管。
二极管伏安特性示意图1、2所示。
图1锗二极管伏安特性图2硅二极管伏安特性2、二极管的伏安特性曲线下面我们以锗管为例具体分析,其特性曲线如图3所示,分为三部分:图3 半导体二极管(硅管)伏安特性:(a)正向特性①OA段为死区,此时正偏电压称为死区电压Uth,硅管0.5V,锗管0.1V。
②AB段为缓冲区。
③BC段为正向导通区。
当u≥Uth时,二极管才处于完全导通状态,导通电压UF基本不变。
硅管为0.7~0.8V,一般取0.7V,锗管为0.2~0.3V,通常取0.2V。
(完整版)实验3半导体二极管伏安特性的研究
实验3 半导体二极管伏安特性的研究世界上的物质种类繁多,但就其导电性能来说,大体上可分为导体、绝缘体和半导体三类。
某些物质,如硅、锗等,它们的导电性能介于导体和绝缘体之间,被称为半导体。
半导体之所以引起人们极大的兴趣,原因并不在于它具有一定的导电能力,而在于它具有许多独特的性质。
同一块半导体材料,它的导电能力在不同的条件下会有非常大的差别,比如,在很纯的半导体中掺入微量的其他杂质,它的导电性能将有成千上万倍地增加,并且可以根据掺入杂质的多少来控制半导体的导电性能。
人们正是利用半导体的这种独特的性质做出了各种各样的半导体器件。
本实验通过对常用的半导体器件—二极管特性的研究,了解PN结的特性、结构和工作原理,并测量二极管的部分参数。
【实验目的】1、了解PN结产生的机理和它的作用。
2、学习测量二极管伏安特性曲线的方法。
3、通过实验,加深对二极管单向导电特性的理解。
【仪器用具】HG61303型数字直流稳压电源、GDM-8145型数字万用表、滑线变阻器、FBZX21型电阻箱、C31-V型电压表、C31-A型电流表、FB715型物理设计性实验装置、可调电阻及导线若干、普通二极管、发光二极管、稳压二极管等【实验原理】1.电学元件的伏安特性在某一电学元件两端加上直流电压,在元件内就会有电流通过,通过元件的电流与其两端电压之间的关系称为电学元件的伏安特性。
一般以电压为横坐标,电流为纵坐标作出元件的电压-电流关系曲线,称为该元件的伏安特性曲线。
对于碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流与加在元件两端的电压成正比,即其伏安特性曲线为一通过原点的直线,这类元件称为线性元件,如图3-1的直线a。
至于半导体二极管、稳压管、三极管、光敏电阻、热敏电阻等元件,通过元件的电流与加在元件两端的电压不成线性关系变化,其伏安特性为一曲线,这类元件称为非线性元件,如图3-1的曲线b、c。
伏安法的主要用途是测量研究非线性元件的特性。
二极管伏安特性
二极管的伏安特性图5 二极管的伏安特性曲线半导体二极管最重要的特性是单向导电性。
即当外加正向电压时,它呈现的电阻(正向电阻)比较小,通过的电流比较大,当外加反向电压时,它呈现的电阻(反向电阻)很大,通过的电流很小(通常可以忽略不计)。
反映二极管的电流随电压变化的关系曲线,叫做二极管的伏安特性,如图5所示。
(1)正向特性当外加正向电压时,随着电压U的逐渐增加,电流I也增加。
但在开始的一段,由于外加电压很低。
外电场不能克服PN结的内电场,半导体中的多数载流子不能顺利通过阻挡层,所以这时的正向电流极小(该段所对应的电压称为死区电压,硅管的死区电压约为0~0.5伏,锗管的死区电压约为0~0.2伏)。
当外加电压超过死区电压以后,外电场强于PN结的内电场,多数载流子大量通过阻挡层,使正向电流随电压很快增长。
即:当V>0,二极管处于正向特性区域。
正向区又分为两段:当0<V<Vth时,正向电流为零,Vth称为死区电压或开启电压。
当V>Vth时,开始出现正向电流,并按指数规律增长。
(2)反向特性当外加反向电压时,所加的反向电压加强了内电场对多数载流子的阻挡,所以二极管中几乎没有电流通过。
但是这时的外电场能促使少数载流子漂移,所以少数载流子形成很小的反向电流。
由于少数载流子数量有限,只要加不大的反向电压就可以使全部少数载流子越过PN结而形成反向饱和电流,继续升高反向电压时反向电流几乎不再增大。
当反向电压增大到某一值(曲线中的D点)以后,反向电流会突然增大,这种现象叫反向击穿,这时二极管失去单向导电性。
所以一般二极管在电路中工作时,其反向电压任何时候都必须小于其反向击穿时的电压。
即:当V<0时,二极管处于反向特性区域。
反向区也分两个区域:当VBR<V<0时,反向电流很小,且基本不随反向电压的变化而变化,此时的反向电流也称反向饱和电流IS。
当V≥VBR时,反向电流急剧增加,VBR称为反向击穿电压。
在反向区,硅二极管和锗二极管的特性有所不同。
第一章 二极管讲解
i I S (e UT 1)
反向击穿 电压UBR
I
导通电压: 硅管0.6~0.8V, 锗管0.1~0.3V
U
开启电压Uon: 硅管0.5V,
锗管0.1V
4
三、二极管应用电路举例 理想二极管:开启电压=0 V,导通压降=0 V。
二极管:开启电压=0 .5V,导通压降0.7V(硅二极管) 1:二极管半波整流
2U
t
uo
2U
uD
t
t
2U
u u D2 D1 红色为正半周波形 u u D4 D3 绿色为负半周波形
4. 参数计算
(1) 整流电压平均值 Uo
(2)
1
Uo 0 2U sin
整流电流平均值 Io
td(t)
Io
Uo RL
2 2
0.9
U
RL
0.9U
(3) 流过每管电流平均值 ID
P 区中的电子和 N 区中的空穴(都是少子),数量有限, 因此由它们形成的电流很小。
PN 结具有单向导电性
25
PN结形成过程动画演示
PN结的单向导电性
•PN 结正向偏置
P 正N 负,导通
变薄
内电场被削弱,多子 的扩散加强,能够形 成较大的扩散电流。
-+
+
-+
P
-+
N
-+
外电场
R
限流电阻
内电场
E
+ +++++ + +++++ + +++++ + +++++
1n1202c二极管伏安特性曲线
1n1202c二极管伏安特性曲线
1、正向特性
另在二极管两端的正向电压(P为正、N为负)很小时(锗管小于0.1伏,硅管小于0.5伏),管子不导通处于“死区”状态,当正向电压起过一定数值后,管子才导通,电压再稍微增大,电流急剧暗加(见曲线I段)。
不同材料的二极管,起始电压不同,硅管为0.5-.7伏左右,锗管为0.1-0.3左右。
2、反向特性
二极管两端加上反向电压时,反向电流很小,当反向电压逐渐增加时,反向电流基本保持不变,这时的电流称为反向饱和电流(见曲线II段)。
不同材料的二极管,反向电流大小不同,硅管约为1微安到几十微安,锗管则可高达数百微安,另外,反向电流受温度变化的影响很大,锗管的稳定性比硅管差。
3、击穿特性
当反向电压增加到某一数值时,反向电流急剧增大,这种现象称为反向击穿(见曲线III)。
这时的反向电压称为反向击穿电压,不同结构、工艺和材料制成的管子,其反向击穿电压值差异很大,可由1伏到几百伏,甚至高达数千伏。
4、频率特性
由于结电容的存在,当频率高到某一程度时,容抗小到使PN结短路。
导致二极管失去单向导电性,不能工作,PN结面积越大,结电容也越大,越不能在高频情况下工作。
二极管的伏安特性曲线图解电子元器件
二极管的伏安特性曲线图解 - 电子元器件二极管的性能可用其伏安特性来描述。
在二极管两端加电压U,然后测出流过二极管的电流I,电压与电流之间的关系i=f(u)即是二极管的伏安特性曲线,如图1所示。
图1 二极管伏安特性曲线二极管的伏安特性表达式可以表示为式1-2-1(1)其中iD为流过二极管两端的电流,uD为二极管两端的加压,UT在常温下取26mv。
IS为反向饱和电流。
1、正向特性特性曲线1的右半部分称为正向特性,由图可见,当加二极管上的正向电压较小时,正向电流小,几乎等于零。
只有当二极管两端电压超过某一数值Uon时,正向电流才明显增大。
将Uon称为死区电压。
死区电压与二极管的材料有关。
一般硅二极管的死区电压为0.5V左右,锗二极管的死区电压为0.1V左右。
当正向电压超过死区电压后,随着电压的上升,正向电流将快速增大,电流与电压的关系基本上是一条指数曲线。
由正向特性曲线可见,流过二极管的电流有较大的变化,二极管两端的电压却基本保持不变。
通过在近似分析计算中,将这个电压称为开启电压。
开启电压与二极管的材料有关。
一般硅二极管的死区电压为0.7V左右,锗二极管的死区电压为0.2V左右。
2、反向特性特性曲线1的左半部分称为反向特性,由图可见,当二极管加反向电压,反向电流很小,而且反向电流不再随着反向电压而增大,即达到了饱和,这个电流称为反向饱和电流,用符号IS表示。
假如反向电压连续上升,当超过UBR以后,反向电流急剧增大,这种现象称为击穿,UBR称为反向击穿电压。
二极管图2 二极管的温度特性击穿后不再具有单向导电性。
应当指出,发生反向击穿不意味着二极管损坏。
实际上,当反向击穿后,只要留意把握反向电流的数值,不使其过大,即可避开因过热而烧坏二极管。
当反向电压降低后,二极管性能仍可能恢复正常。
3、温度对二极管伏安特性的影响温度上升,正向特性左移,反向特性下移;室温四周,温度每上升1℃;正向压降削减2-2.5mV;室温四周,温度每上升10℃,反向电流增大一倍。
2-2二极管的伏安特性
二极管的伏安特性及电流方程二极管的电流与其端电压的关系称为伏安特性。
()i f u =非线性u D (V)0.400.8-10i D (mA)51015(μA)-100.6-30-30硅二极管2CP10的伏安特性A V RDi Dv D(1)工作区的划分死区开启电压U th材料开启电压硅Si 0.5V 锗Ge0.1V当外加正向电压很低时,由于外电场还不能克服PN 结内电场对多数载流子扩散运动的阻力,故正向电流很小几乎为零。
这一区域称之为死区。
u D (V)0.400.8-10i D (mA)51015( A)-100.6-30-30(1)工作区的划分导通区导通压降U on外加正向电压超过死区电压时,内电场大大削弱,正向电流迅速增长,二极管进入正向导通区。
电压再继续增加时,电流迅速增大,而二极管端电压却几乎不变,此时二极管端电压称为导通压降。
材料导通压降硅Si 0.5~0.8V (0.7V )锗Ge0.1~0.3Vu D (V)0.400.8-10i D (mA)51015( A)-100.6-30-30(1)工作区的划分反向截止区反向饱和电流I s在二极管两端加反向电压时,将有很小的、由少子漂移运动形成的反向饱和电流(I s )通过二极管。
材料反向饱和电流硅Si 1µA 以下锗Ge几十µA★随温度的上升增长很快★在反向电压不超过某一范围时,反向电流的大小基本恒定u D (V)0.400.8-10i D (mA)51015( A)-100.6-30-30(1)工作区的划分反向击穿区反向击穿电压U BR外加反向电压超过反向击穿电压U BR 时,反向电流突然增大,二极管失去单向导电性,进入反向击穿区。
★电击穿(可逆)雪崩击穿(掺杂浓度低) 齐纳击穿(掺杂浓度高)★热击穿(不可逆)u D (V)0.400.8-10i D (mA)51015( A)-100.6-30-30(2)二极管的电流方程I/mAI/uA正向特性为指数曲线反向特性为横轴的平行线/(1)D Tu U D s i I e=-() (26mv)T kTU v q=常温TD U U s D eI i /≅正向偏置:sD I i -≅反向偏置:U th U on温度电压当量:T (℃)↑→在电压不变情况下电流↑ →正向特性左移;T (℃)↑→ 反向饱和电流I S ↑→ 反向特性下移(3)伏安特性受温度影响增大1倍/10℃u D (V)0.400.8-10i D (mA)51015( A)-100.6-30-30(4)二极管动态电阻和静态电阻—静态电阻DDDVRI(4)二极管动态电阻和静态电阻—动态电阻(内阻)DD DV r I ∆=∆二极管的伏安特性及电流方程(1)工作区的划分(3)二极管的电流方程(4)伏安特性受温度影响(5)二极管动态电阻和静态电阻I/mA I/uA U th U on (2)重要参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I
V
开始时处于5000Ω 开始时处于5000Ω位 5000
V
限流电阻箱 图1 二极管正向伏安特性测量线路
0
0.55 0.60 0.65
0.6800 0.7000
0.7200 0.7300 --1.999*
注意:部分仪器正向(0.6,1.999),测量到0.55V 注意:部分仪器正向(0.6,1.999),测量到0.55V ),测量到 不合适,要把电流降到千分位! 不合适,要把电流降到千分位!
报告要求
目的 原理 仪器 步骤 注意事项
报告要求
对Pn结的伏安特性有一些感性认识; Pn结的伏安特性有一些感性认识; 结的伏安特性有一些感性认识 测绘Pn结伏安特性曲线;学习使用电阻元件 测绘Pn结伏安特性曲线; Pn V—A特性实验仪。 特性实验仪。 — 特性实验仪
目的 原理 仪器 步骤 注意事项
报告要求
2、Pn结原理 Pn结原理
P区 区
耗尽层
N区 区
电位 (V) V0 P区 区 耗尽层 N区 区 P区 区 耗尽层 N区 区
VF
电位 (V) V0 -VF 电位 (V)
VF V0 +VF
目的 原理 仪器 步骤 注意事项
报告要求
1、Pn结的导电特性 Pn结的导电特性
放大
目的 原理 仪器 步骤 注意事项
V
电压表
20V 0
10k 1W 二极管 稳压二极管 12V 0.1A
+ +
电源指示 细调
0~15V 0~ 0.2V
+
+
-
被测元件
1 10x1000 2 10x(100+10)3
粗调
直流稳压电源
x1000
x100
x10
目的 原理 仪器 步骤 注意事项
报告要求
1、测绘二极管(正向、反向)伏安特性曲线(外接) 测绘二极管(正向、反向)伏安特性曲线(外接)
报告要求
2、Pn结伏安特性测量电路 Pn结伏安特性测量电路
mA V
开始时处于5000Ω位 开始时处于5000Ω 5000 限流电阻箱
目的 原理 仪器 步骤 注意事项
报告要求
电阻元件V— 特性实验仪 特性实验仪DH6102 电阻元件 —A特性实验仪
1k 1W
mA
电流表
2mA 20mA200mA 断 2V
目的 原理 仪器 步骤 注意事项
报告要求
关于数据采集: 关于数据采集:
1
0 -8 -7 -6 -5 -4 -3 -2 -1 -1 0
步骤 注意事项
报告要求
关于连线技巧: 关于连线技巧:
mA V
开始时处于5000Ω 开始时处于5000Ω位 5000 限流电阻箱
目的 原理 仪器 步骤 注意事项
报告要求
1、画出Pn结正向、反向特性图图,要求坐 画出Pn结正向、反向特性图图, Pn结正向 标纸规范作图。或计算机。 标纸规范作图。或计算机。 2、分析特性曲线,写出实验结论 分析特性曲线, 3、就实验原理、方法、仪器设计、调整以 就实验原理、方法、仪器设计、 及实验结果等方面写出实验总结与讨论! 及实验结果等方面写出实验总结与讨论!
关于调节技巧: 关于调节技巧: 特别事项: 电阻元件V 特别事项: 电阻元件V-A特性实验仪在测量中电流
不得大于2 mA.! 不得大于2 mA.!
目的 原理 仪器 步骤 注意事项
报告要求
数据记录注意事项:原始记录: 数据记录注意事项:原始记录: (1) 重笔涂抹。 (1)严禁撕扯挖补 ,重笔涂抹。 (2) (2)誊写数据 结束后先签字,后仪器归位。 结束后先签字,后仪器归位。
目的 原理 仪器 步骤 注意事项
报告要求
目的 原理 仪器 步骤 注意事项
报告要求
1、本次实验的内容是什么? 、本次实验的内容是什么? 2、测量 结的伏安特性时适合用 结的伏安特性时适合用mA表 、测量Pn结的伏安特性时适合用 表 内接还是外接?为什么? 内接还是外接?为什么?
目的 原理 仪器 步骤 注意事项