Ansys求解剪切锁定超弹性梁问题
ANSYS 入门教程 - 结构的弹性稳定性分析
ANSYS 入门教程- 结构的弹性稳定性分析2011-01-09 15:06:42| 分类:默认分类| 标签:|字号大中小订阅第7 章结构弹性稳定分析7.1 特征值屈曲分析的步骤7.2 构件的特征值屈曲分析7.3 结构的特征值屈曲分析一、结构失稳或结构屈曲:当结构所受载荷达到某一值时,若增加一微小的增量,则结构的平衡位形将发生很大的改变,这种现象叫做结构失稳或结构屈曲。
结构稳定问题一般分为两类:★第一类失稳:又称平衡分岔失稳、分枝点失稳、特征值屈曲分析。
结构失稳时相应的载荷可称为屈曲载荷、临界载荷、压屈载荷或平衡分枝载荷。
★第二类失稳:结构失稳时,平衡状态不发生质变,也称极值点失稳。
结构失稳时相应的载荷称为极限载荷或压溃载荷。
●跳跃失稳:当载荷达到某值时,结构平衡状态发生一明显的跳跃,突然过渡到非邻近的另一具有较大位移的平衡状态。
可归入第二类失稳。
★结构弹性稳定分析= 第一类稳定问题ANSYS 特征值屈曲分析(Buckling Analysis)。
★第二类稳定问题ANSYS 结构静力非线性分析,无论前屈曲平衡状态或后屈曲平衡状态均可一次求得,即“全过程分析”。
这里介绍ANSYS 特征值屈曲分析的相关技术。
在本章中如无特殊说明,单独使用的“屈曲分析”均指“特征值屈曲分析”。
7.1 特征值屈曲分析的步骤①创建模型②获得静力解③获得特征值屈曲解④查看结果一、创建模型注意三点:⑴仅考虑线性行为。
若定义了非线性单元将按线性单元处理。
刚度计算基于初始状态(静力分析后的刚度),并在后续计算中保持不变。
⑵必须定义材料的弹性模量或某种形式的刚度。
非线性性质即便定义了也将被忽略。
⑶单元网格密度对屈曲载荷系数影响很大。
例如采用结构自然节点划分时(一个构件仅划分一个单元)可能产生100% 的误差甚至出现错误结果,尤其对高阶屈曲模态的误差可能更大,其原因与形成单元应力刚度矩阵有关。
经验表明,仅关注第1 阶屈曲模态及其屈曲载荷系数时,每个自然杆应不少于 3 个单元。
ANSYS超弹性、粘超弹性模拟
2 3
单轴拉伸与压缩实验
11 2 12
1 W 1 W 2 I1 1 I 2
1 2 12 -
正交双轴拉伸实验
1 W 2 W 2 22 12 I1 I 2 1 W 2 W 1 22 12 I1 I 2
13
© 2011 ANSYS, Inc. September 2, 2013 Release 14.0
粘弹性模型 静态
其中剪切松弛模量的Prony级数表达式为
n t G t G0 i exp i 1 i
其中, G0——t = 0时的松弛模量 G∞——t =∞时的松弛模量
September 2, 2013
Release 14.0
粘弹性模型 动态 滞后
• 滞后:试样在交变应力作用下,应变变化落后于应力变化的 现象
(t ) 0 sin wt
σ(t) ε(t)
0 δ σ ε (粘弹性) π
(t ) 0 sin(wt )
3π ω t t
2π
材料的变形过程是可逆的,无其它不可逆伴随,变形过程中 的熵变为零,此种材料成为超弹性材料。
2
W W 1 B2 B pI I1 I 2
式中I──单位变形张量 p──球张量 Ii──为变形张量B的不变量 W──应变能函数 基于假设:各向同性、不可压缩
W W I1 , I 2 , I3
9
© 2011 ANSYS, Inc.
September 2, 2013
Release 14.0
粘弹性模型
钢筋混凝土梁的弹塑性分析ansys命令流
!(1)工作环境设置/FILENAME,RC-BEAM !指定工作文件名/TITLE,ALAL YSIS OF A RC-BEAM !指定图形标题!(2)进行前处理器/prep7!(3)定义单元类型ET,1,LINK8 !定义钢筋单元ET,2,SOLID65 !定义混凝土单元ET,3,MESH200 !用于拉伸成体单元KEYOPT,3,1,6!(4)定义钢筋截面积r,1,28.3r,2,50.3r,3,314.1!(5)为solid65单元定义一个实参数组r,4,!(6)定义混凝土材料MP,EX,2,2.55E10MP,PRXY,2,0.3TB,CONC,2,1,9, !定义混凝土的破坏参数TBDA TA,,0.3,0.55,1.55E6,-1,,TBDA TA,,,,0.6!(7)定义钢筋材料模型及参数mp,ex,2,2e5 !纵向受拉钢筋材料mp,prxy,2,0.3tb,bkin,2,1,2,1tbdata,,350mp,ex,3,2e5 !横向箍筋,架立钢筋材料mp,prxy,3,0.25tb,bkin,3,1,2,1tbdata,,200!(8) 创建以及复制节点/pnum,node,1/pnum,elem,1n,1n,9,200fill,1,9ngen,11,9,1,9,1,,30ngen,11,99,1,99,1,,,-150/view,1,1,1,1!(9)建立箍筋单元type,1real,1mat,3!水平箍筋*do,i,11,16,1e,i,i+1e,i+(83-11),i+(83-11)+1*enddo!坚直箍筋*do,i,11,74,9e,i,i+9e,i+6,i+6+9*enddo!产生整个模型的箍筋egen,11,99,all!(10)建立架立筋以及纵筋单元!创建上部的架立钢筋单元*do,i,83,node(25,270,-1500+150),99 e,i,i+99e,i+6,i+6+99*enddo!纵向受拉钢筋单元的属性type,1real,3mat,2!创建纵筋单元*do,i,11,node(25,30,-1500+150),99 e,i,i+99e,i+3,i+3+99e,i+6,i+6+99*enddo/view,1,1,1,1/pnum,elem,0/pnum,node,0/eshape,1eplot!(11)建立混凝土剖面并划分网格k,1K,2,200,k,3,200,300k,4,,300a,1,2,3,4lsel,s,loc,y,0lsel,a,loc,y,300lesize,all,,,8lsel,alllsel,s,loc,x,0lsel,a,loc,x,200lesize,all,,,10type,3amesh,all!(12)拉伸形成混凝土单元type,2real,3mat,1extopt,esize,20extopt,aclear,1vext,all,,,,,-1500/pnum,mat,1/pnum,node,0/pnum,elem,0eplotallsel!(13)合并压缩节点编号nummrg,allnumcmp,alleplot!(14)施加支座约束nsel,s,loc,y,0nsel,r,loc,z,-1500+75d,all,uyd,all,ux!(15)施加对称面约束asel,s,loc,z,0da,all,symm!(16)施加载荷nsel,allnsel,s,loc,y,300nsel,r,loc,z,-450d,all,uy,-30allsel!(17)退出前处理器fini!(18) 进入求解器/solu!(19)求解器选项设置nlgeom,onnsubst,200outres,all,allneqit,50pred,oncnvtol,f,,0.05,2,0.5allsel!(20)求解并退出求解器solvefini!(21)进入通用处理器并读入最后一个子步的结果/post1set,last!(22)后处理操作plnsol,u,y,0,1/device,vector,1plcrack,0,0!(23)退出通用后处理器finish。
梁ansys分析实例讲解
在ANSYS显示窗口选择编号为1的关键点,定义 位移(自由度)
选择Main Menu→Solution→Define Loads→Apply→Structural→Force/Moment→On KP
在ANSYS显示窗口选择编号为2的关键点,定义 载荷FY=-8000 FX=5000
Solution→Current LS(Load Step)
Preprocessor→Meshing→Mesh→Lines 拾取L1, 划分网格结束!
File→Save as (存盘)。
5.加载求解:
选择Main Menu→Solution→Analysis Type→New Analysis,在New Analysis中 选择Static(静态)
→Add→Real Constants for BEAM 3 Area(截面积):0.006655 TZZ(惯性力矩):0.00019 HEIGHT(高度):0.32
3.定义材料性能参数
Preprocessor→Material Props(材料性 能)→Material Model(材料模型)
Active CS(coordinate system)
输入关键点(KP)序号(number)及坐 标(X,Y,Z)
1(0,0,0)
2(1,0,0)
PlotCtrls(显示控制)→Numbering(编号 显示) 选中KP和LINE,使其状态Off变为 On。
Preprocessor→Modeling→Creat→Lines→ lines→In Active CS
挠度与荷载大小、构件截面尺寸以及构件 的材料物理性能有关。
求解步骤
1.定义工作文件名和工作标题(英文 only) File→Change Jobname File→Change Title
ANSYS简单框架问题及梁板
01简单框架问题及梁板复合计算(ANSYS)ANSYS 9.0版本启动的时候首先出现如下图所示的对话框,其中第一页提示用户选择需要的ANSYS功能模块,用户需要根据其购买的ANSYS模块和计算的问题内容来选择。
选择功能模块选择启动对话框的第二个页面,这里ANSYS提示用户给出操作所在的文件夹以及相应的任务名称。
而后ANSYS的计算过程及结果都存放在该文件夹中,一般都以任务命作为文件名,以扩展名表示文件的类型。
例如,在本次分析中,任务名为Case01,那么ANSYS的计算结果,一般会以Case01.rst文件的形式存放在D:\AnsysWork\Book\case01\文件夹中文件夹及任务名称以上设置好后点击“Run”按钮,就进入ANSYS的主操作界面,ANSYS操作界面主要包括以下4部分:(1)ANSYS窗口顶部菜单,提供一些常用功能开关选项;(2)ANSYS窗口顶部工具栏,提供一些常用功能件,比如打开文件、保存文件等;(3)在工具栏右侧为命令输入栏,ANSYS的所有操作都可以通过输入一定格式的命令来完成,ANSYS称其这套命令体系为APDL语言;(4)ANSYS窗口中央左侧为ANSYS的主菜单,ANSYS图形界面分析(GUI)的大部分功能都由这部分菜单完成。
主菜单中最常用的几个模块为前处理模块(Preprocessor),求解模块(Solution),通用后处理模块(General Postproc)和时程后处理模块(TimeHist Postproc);(5)ANSYS窗口中央右侧为ANSYS的显示窗口,GUI界面的各种操作和结果都在该窗口显示顶部菜单顶部工具栏命令输入栏主菜单显示窗口首先要选择分析所用的单元类型。
在本次分析中,我们将用到在土木工程中最常用的两种单元:三维梁单元Beam 188 和三维壳单元 Shell 63。
一般结构中梁柱可以用梁单元模拟,而剪力墙和楼板则可以用壳单元模拟。
ANSYS13.0 Workbench 结构非线性培训 超弹性
3. O.H. Yeoh, “Phenomenological Theory of Rubber Elasticity,” Comprehensive Polymer Science, ed. G. Allen, Elsevier, Oxford, 1996, Chapter 12.
– di 反比于体积模量. 默认地, 如曲线拟合(下一部分)中没引入体积试验数据, 则材料
假定为完全不可压缩的 (di=0).
N
iai
o
i 1
2
o
2 d1
... 体积容差
• 体积协调约束中的容差(vtol)可通过 Command Objects放松.
为接受后续的solc,,,vtol手动激活 Mixed u-P 是必要的
参考文献
一些关于橡胶机理的参考文献:
1. R.S. Rivlin, “Large Elastic Deformations,” Rheology: Theory & Applications - Vol. 1, ed. F.R. Eirich, Academic Press, Inc., New York, 1956, Chapter 10.
• 高弹体是一种聚合物, 具有如下性能
– 高弹体包括天然和合成橡胶, 它是非晶态的, 由 长的分子链组成
• 分子链高度扭转、卷曲, 且在未变形状态下取向任 意
• 在拉伸载荷作用下, 这些分子链部分变得平直、不 扭曲
• 去除载荷后, 这些分子链恢复最初的形态
ANSYS 梁的分析技巧
第一,定义单元与材料常数。
第二,如果是要求自己定义的特殊形状,则要先用平面单元划一个截面网格,然后再用SECWRITE,NANME,SECT,,1.命令保存截面网格。
然后把界面网格以及实体信息删除。
第三,读入自定义的截面信息。
或者读入软件里定义的截面信息并划分网格。
第四,建立梁的轴向线,然后对其进行线的网格划分。
这样在在PLOTCONTRAL 里可以看到梁的实体网格。
第五,约束和载荷施加。
第六,计算
第七,后处理。
绘剪力和弯矩图。
先在General postproc/element table/define talble/by sequence num/smisc/。
其中的I、J等设置可看梁单元的参数表。
list result/element table data可列表结果。
Contour plot/line elem res可在云图上显示剪力图和弯矩图。
弹性力学ansys求解实例详解
ANSYS 上机实验报告一、题目描述如图1所示,一简支梁横截面是矩形,其面积202.0m A =,对弯曲中性轴的惯性矩451067.6m I zz -⨯=,高m h 2.0=,材料的pa E 11101.2⨯=,横向变形系数3.0=μ。
该梁的自重就是均布载荷N q 4000=和梁中点处的集中力N F 2000=,试讨论在均布荷载作用下,简支梁的最大挠度。
二、问题的材料力学解答由叠加法可知:梁上同时作用几个载荷时,可分别求出每一载荷单独作用时的变形,把各个形变叠加即为这些载荷共同作用时的变形。
在只有均布载荷q 作用时,计算简支梁的支座约束力,写出弯矩方程,利用EI M dxw d =22积分两次,最后得出: 铰支座上的挠度等于零,故有0=x 时,0=w ,因为梁上的外力和边界条件都对跨度中点对称,挠曲线也应对该点对称。
因此,在跨度中点,挠曲线切线的斜率等于零,即:2l x =时,0=dx dw ,把以上两个边界条件分别代入w 和0=dxdw 的表达式,可以求出243ql C -=,0=D ,于是得转角方程及挠曲线方程为: x ql x q x ql EIw ql x q x ql EI dx dw EI 2424122464343332--=--==θ (1) 在跨度中点,挠曲线切线的斜率等于零,挠度为极值,由(1)中式子可得:即EIql w q c 3845)(4-=。
在集中力F 单独作用时,查材料力学中梁在简单载荷作用下的变形表可得EIFl w F c 48)(3-=。
叠加以上结果,求得在均布载荷和集中力共同作用下,梁中点处的挠度是EIFl EI ql w w w F c q c c 483845)()(34--=+=,将各参数代入得m w c 410769.0-⨯=三、问题的ansys 解答3.1建立几何模型此问题为可采用Beam 分析,所以该几何模型可用线表示。
命令流为:K ,1,0,0 !建立关键点1,为结构的A 点;K ,2,1,0 !建立关键点2,为结构的C 点;K ,3,2,0 !建立关键点3,为结构的B 点;L ,1,2 !建立线1,为结构的AC ;L ,2,3 !建立线2,为结构的CB ;3.2网格划分具体操作是Main Menu >Preprocessor >Meshing >MeshTool ,在弹出的对话框中设定单元类型Lines ,设定单元密度为0.05m ,指定网格划分对象,然后划分网格如图33.3加载求解根据问题的约束及荷载,对有限元模型施加边界条件及作用力。
ansys高级非线性分析-第六章_超弹性解读
September 30, 2001 Inventory #001491 6-7
超弹性
... 延伸率的定义
Training Manual
Advanced Structural Nonlinearities 6.0
• 举例说明主延伸率的定义, 考虑一个薄正方形橡胶薄板进行双向拉 伸,主延伸率 l1 和 l2 描述了平面内变形特征,另一方面, l3 定义 厚度变化 (t/to),另外, 若材料假设为完全不可压缩, 则 l3 等于l-2.
Training Manual
Advanced Structural Nonlinearities 6.0
• 由于材料的不可压缩性, 把应变能函数分解为偏差项(下标d 或‘bar’ )和体积项(下标b),结果, 体积项仅为体积比J 的函数。
W Wd I1 , I 2 Wb J
W Wd l1 , l2 , l3 Wb J
– 与塑性不同, 超弹性不定义为速率公式
D :
– 相反, 总应力与总应变的关系由应变能势 (W)来定义。
September 30, 2001 Inventory #001491 6-6
超弹性
... 延伸率的定义
详细讨论应变能势的不同形式之前,先定义一些术语: • 延伸率(或只是‘延伸’) 定义为:
l2 l L L o
l3 t t l2 o
l1 l L L o
September 30, 2001 Inventory #001491 6-8
超弹性
... 应变不变量的定义
• 三个应变不变量一般用于定义应变能密度函数。
2 2 I1 l1 l2 l 2 3 2 2 2 2 2 I 2 l1 l2 l2 l l 2 3 3 l1 2 2 2 I 3 l1 l2 l3
1-练习-剪切锁定
或命令输入方法:
– – –
/SOLU NLGEOM, NSUBST,
ON 10,
1e3,
1
提示: 如果想检查中间结果(例如画出力-挠度响应曲 线), 可存储所有子步的输出。
September 30, 2001 Inventory #001492 W1-6
练习1: 剪切锁定
...超弹性梁
求解前, 看一下模型的网格、边界条件和载荷。
Workshop Supplement
Advanced Structural Nonlinearities 6.0
每个梁的端部被约束。完全约束端部的所有自由度会使模型趋于过分约束, 因此约 束每个梁X=0 处的所有 UX和底部 UY 。 施加的剪切载荷是作用于SURF153 表面效应单元面2 上的压力,该 0.01单位压力 将作为一个随动力, 总是与梁的端部相切。
练习1
剪切锁定
参考: 培训手册 单元技术 (2-17)
练习1: 剪切锁定
超弹性梁
目的 • • • • 比较关于剪切锁定的不同单元公式。
Workshop Supplement
Advanced Structural Nonlinearities 6.0
目标
使用三种单元公式求解梁的非线性分析: B-Bar、URI和增强应变。 二维平面应变 PLANE182单元, 30x1 悬臂梁 (3个) 使用非线性超弹材料 (2项 Mooney-Rivlin) 模型描述
3
• 验证 KEYOPT(1) 列
提示: 单元类型 1 应选择 “Full Integration”, 即 BBar 方法。 单元类型 2 应选择 “Reduced Integr”, 即URI 公式。 单元类型 3 应选择 “Enhanced Strain” 公式 。
ANSYS有限元分析——ANSYS梁问题实例
41
荷载 加施 梁给
束 约 的 向 方 y和 x加 施1 点 节 给
51
61
KO→ smeti llA tceles → ulos noitcaer→ stluseR tsil→ corptsoP lareneG :uneM niaM SYSNA 力束约、01
71
KO→ demrofednU + feD tceles → …epahS demrofeD→ stluseR tolP→ corptsoP lareneG :uneM niaM SYSNA 图形变的构结、11
2
。 切 剪 虑 考 不 般 一 � 梁 称 对 面 截 等 性 弹 维 二 、2 。移位角的轴Z绕及移位线的向方y,x沿即�度由自 个 三 有 点 节 个 每 的 元 单 。 元 单 轴 单 的 用 作 弯 、 压 、 拉 受 承 可 、1 3MAEB •
3
。 切 剪 虑 考 不 般 一 � 梁 称 对 面 截 等 性 弹 维 三 、2 。移位角的轴个三z,y,x绕 和 移 位 线 的 向 方 个 三 z 、y 、 x � 度 由 自 个 六 有 上 点 节 个 每 在 元 单 种 这 。 元 单 力 受 轴 单 的 扭 、 弯 、 压 、 拉 受 承 于 用 可 种 一 是 、1 4MAEB •
11
KO→ 02:VIDN tupni→ teS :labolG )slortnoC eziS( → looT hseM→ gnihseM→ rossecorperP :uneM niaM SYSNA 元单分划、7 KO→ )0,02(2 ,)0,0(1�点键关个两接连次依→ senil thgiartS→ senil→ seniL→ etaerC→ gniledoM→ rossecorperP :uneM niaM SYSNA 梁成生 KO→)0,02(2,)0,0(1:tupni�标坐的点个两入输次依→ SC evitcA nI→ stniopyeK→ etaerC→ gniledoM→ rossecorperP :uneM niaM SYSNA 点键关成生 型模何几成生6
ansys超弹性分析练习十三
Advanced Structural Nonlinearities 6.0
–
Main Menu > Preprocessor > Material Props > Material Models … • 选择“Structural > Nonlinear > Elastic > Hyperelastic > Ogden > 2 terms” • “mu_1” 输入“80.194”, “a_1”输入“2”, “a_2” 输入“-2”, 其它空白。 • 点击 [OK] • 选择“Material > Exit” TB, HYPER, TBDATA, 1, 1, 1, 2, OGDEN 80.194, 2, 0, -2
提示: 记录最大 von Mises 应力(约149),画出其它 感兴趣的量, 如静水压力。
September 30, 2001 Inventory #001492 W10-9
练习 13: 超弹性键盘
…超弹性模型
7. 图示等效应变模型
使用GUI菜单方法:
Workshop Supplement
Advanced Structural Nonlinearities 6.0
–
Main Menu > General Postproc > Plot Results > Contour Plot > Element Solu • • 选择 “Elastic Strain > von Mises elastic strain” 点击 [OK] 图示等效应变
和命令输入方法:
–
PLESOL,EPEL,EQV
或命令输入方法:
– – – –
ANSYS弹性及塑性(详细、全面)1讲解
ANSYS弹性及塑性(详细、全⾯)1讲解⽬录什么是塑性 (1)路径相关性 (1)率相关性 (1)⼯程应⼒、应变与真实应⼒、应变 (1)什么是激活塑性 (2)塑性理论介绍 (2)屈服准则 (2)流动准则 (3)强化准则 (3)塑性选项 (5)怎样使⽤塑性 (6)ANSYS输⼊ (7)输出量 (7)程序使⽤中的⼀些基本原则 (8)加强收敛性的⽅法 (8)查看结果 (9)塑性分析实例(GUI⽅法) (9)塑性分析实例(命令流⽅法) (14)弹塑性分析在这⼀册中,我们将详细地介绍由于塑性变性引起的⾮线性问题--弹塑性分析,我们的介绍⼈为以下⼏个⽅⾯:什么是塑性塑性理论简介ANSYS程序中所⽤的性选项怎样使⽤塑性塑性分析练习题什么是塑性塑性是⼀种在某种给定载荷下,材料产⽣永久变形的材料特性,对⼤多的⼯程材料来说,当其应⼒低于⽐例极限时,应⼒⼀应变关系是线性的。
另外,⼤多数材料在其应⼒低于屈服点时,表现为弹性⾏为,也就是说,当移⾛载荷时,其应变也完全消失。
由于屈服点和⽐例极限相差很⼩,因此在ANSYS程序中,假定它们相同。
在应⼒⼀应变的曲线中,低于屈服点的叫作弹性部分,超过屈服点的叫作塑性部分,也叫作应变强化部分。
塑性分析中考虑了塑性区域的材料特性。
路径相关性:即然塑性是不可恢复的,那么这种问题的就与加载历史有关,这类⾮线性问题叫作与路径相关的或⾮保守的⾮线性。
路径相关性是指对⼀种给定的边界条件,可能有多个正确的解—内部的应⼒,应变分布—存在,为了得到真正正确的结果,我们必须按照系统真正经历的加载过程加载。
率相关性:塑性应变的⼤⼩可能是加载速度快慢的函数,如果塑性应变的⼤⼩与时间有关,这种塑性叫作率⽆关性塑性,相反,与应变率有关的性叫作率相关的塑性。
⼤多的材料都有某种程度上的率相关性,但在⼤多数静⼒分析所经历的应变率范围,两者的应⼒-应变曲线差别不⼤,所以在⼀般的分析中,我们变为是与率⽆关的。
⼯程应⼒,应变与真实的应⼒、应变:塑性材料的数据⼀般以拉伸的应⼒—应变曲线形式给出。
利用ANSYS对木梁进行弹性分析
利用ANSYS对木梁进行弹性分析1 引言木材是一种非常有效的建筑材料。
然而一直以来,木材材性因不同树种和产地,其差别和离散性很大,对木材的研究多以试验为主。
也正因为木材的特殊材性,这种材料的延性也很少被了解,理论分析及利用ANSYS有限元模拟的研究也很少见。
本文以木梁为研究对象,利用通用有限元软件ANSYS对木梁进行了弹性分析,对木梁的设计有一定的指导作用。
2 模型的建立本文的木梁模型如图1所示,截面为40mm×80mm,长度是1520mm。
加载位置及支座处用40mm×40mm×8mm钢片做垫块。
图1 模型示意图3 有限元计算模型的建立木材和垫块均采用SOLID45单元。
因为SOLID45单元是八节点三维实体单元,每一个节点具有三个自由度:x、y和z方向平移。
单元的几何形状、结点位置和单元坐标系如图2所示。
该单元具有塑性、蠕变、膨胀、应力强化以及大变形大应变和模拟各向异性等功能,所以本文木材单元采用SOLID45各向异性塑性材料实体单元。
计算中,考虑垫块是为了防止应力集中。
为防止应力集中和附加变形,如图2所示在支座处只约束垫块中线处y方向的位移,让垫块可以自由绕z轴旋转,减少垫块对木纤维多余的约束作用,模拟铰支座。
图2 木材梁底座的约束模型以及材料、单元定义完成后,开始进行网格划分。
在木梁和垫块不同单元交界的地方,必须保证不同单元间有共同节点以达到两者的节点变形协调,采用先划分体单元,然后将节点合并。
用边界长度为20mm的单元来划分网格。
划分单元后,每个单元都有自己的单元坐标系。
由于木材属于正交异性材料,材性的确定与单元坐标系有关,只能通过局部坐标系定义单元坐标系的方向。
先要定义一局部坐标系,然后通过局部坐标系来定义单元坐标系的方向。
建成后的模型如图3所示。
图3 木材梁的有限元模型图4 木梁顶部的载荷4 木梁的线弹性分析图4给出了模型的载荷施加方式,其木材弹性特性见表1所示。
ANSYS基坑弹性地基梁全程序即详解6页word文档
/prep7L1=30 !设置变量L2=30h=-25K, 1, 0, 0, 0,K, 2, L1, 0, 0,K, 3, L1, L2, 0,K, 4, 0, L2, 0,KWPA VE, 1 !将工作平面原点定义在1号点RECTNG, 0, L1, 0, L2,wpro, , -90, !将工作平面绕X轴Z到Y方向90度RECTNG, 0, L1, 0, -h,KWPA VE, 4 !将工作平面原点定义在4号点RECTNG, 0, L1, 0, -h,wpro, , ,90 !将工作平面绕y轴x到z方向90度RECTNG, 0, L2, 0, -h,KWPA VE, 3 !将工作平面原点定义在3号点RECTNG, 0, L2, 0, -h,AGLUE, all !粘结所有面ET, 1, SHELL43 !ET,ITYPE,Ename,KOPT1,~,KOPT6,INOPR(定义单元)!KOPT1~KOPT6为元素特性编码!shell43 4 节点塑性大应变单元ET, 2, COMBIN14 !COMBIN14弹簧-阻尼器Spring-Damper MPTEMP,,,,,,,, !删除系统中已存在的温度表MPTEMP, 1, 0 !定义一个温度表MPDATA, EX, 1, , 2.4E10 !指定与温度相应的材料性能数据弹性模量MPDATA, PRXY, 1, , 0.15 !主泊松比ESIZE, 1, 0 !指定单元边长AMESH, ALL !划分面生成面单元NSEL, S, LOC, Z, 0 !选择一组节点子集创建新集ESLN, S !选择已选节点上的单元NSEL, S, LOC, Z, -1 !选择z坐标值为-1的---ESLN, U !从已选集中删除此时剩下只支撑板CM, STRUT, ELEM !将选择集命名STRUT生成元件alls !all sel 全选CMSEL, U, STRUT !去除STRUT元件CM, W ALL, ELEM !将选择集命名wall生成元件NSEL, S, LOC, X, 0.1, L1-0.1 !选择一组节点子集创建新集NPLOT !显示节点NSEL, R, LOC, Y, 0 !从当前集选择一组节点子集ESLN, S !从已选集中选择NSEL, S, LOC, Y, 1 !从当前集选择一组节点子集ESLN, U !从已选集中删除ENSYM, , , , ALL !反转壳单元法线方向NSEL, S, LOC, Y, 0.1, L2-0.1 !选择一组节点子集创建新集NPLOT !显示节点NSEL, R, LOC, X, 0 !从当前集选择一组节点子集ESLN, S !从已选集中选择NSEL, S, LOC, X, 1 !从当前集选择一组节点子集ESLN, U !从已选集中删除ENSYM , , , , ALL !反转壳单元法线方向ALLSNUMCMP, ALL !所有实体进行重新编号!直接生成节点*DO, i, 1, L1-1 ! 从1到29进行循环CSYS, 0 !激活默认笛卡尔坐标系N, 100000+2*i-1, i, 0, -1 ! 节点编号后面为坐标N, 100000+2*i, i, 2.5, -1 ! 节点编号后面为坐标*enddo*DO, i, 1, L1-1 ! 从1到29进行循环!Modeling>Creat>Elements>Elem AttributesTYPE, 2 !设置单元类型属性指示器MAT , 1 !MP命令中的MA T即材料性能REAL, 0 !材料实常数ESYS, 0 !材料坐标系统属性指示器EN, 100000+i, 100000+2*i-1, 100000+2*i !根据给定的单元号和节点号生成单元*enddoNUMCMP , ALL !所有实体进行重新编号*DO, i, 1, L1-1CSYS, 0 !激活默认笛卡尔坐标系N, 100000+2*i-1, i, L2, -1N, 100000+2*i, i, L2-2.5, -1*enddo*DO, i, 1, L1-1TYPE, 2MAT , 1REAL, 0ESYS, 0EN, 100000+i, 100000+2*i-1, 100000+2*i*enddoNUMCMP , ALL !所有实体进行重新编号*DO, i, 1, L2-1CSYS, 0N, 100000+2*i-1, 0, i, -1N, 100000+2*i, 2.5, i, -1*enddo*DO, i, 1, L2-1TYPE, 2MAT , 1REAL, 0ESYS, 0EN, 100000+i, 100000+2*i-1, 100000+2*i*enddoNUMCMP , ALL !所有实体进行重新编号*DO, i, 1, L2-1CSYS, 0N,100000+2*i-1, L1, i, -1N,100000+2*i, L1-2.5, i, -1*enddo*DO, i, 1, L2-1TYPE, 2 $ MAT , 1 $ REAL , 0ESYS, 0EN, 100000+i, 100000+2*i-1, 100000+2*i*enddoNUMCMP , ALL !所有实体进行重新编号ESEL, S, TYPE, , 2 !选择单元类型号为2的单元EGEN, 25, 100000, ALL, , , , , , , , , , -1,ESEL, S, TYPE, , 2 !选择单元类型号为2的单元CM, SPRING, ELEM !生成一个叫SPRING由单元组成的元件ALLSALLSEL, ALL !选择所有实体NUMMRG, NODE, 0.01, 0.01, LOW !节点合并距离小于0.01则同保留编号底的点NUMCMP, ALL !所有实体进行重新编号*DO, i, 1, 25NSEL, S, LOC, Z, -1*i !从当前集选择一组节点子集深度-1以下ESLN, S !从已选集中选择NSEL, R, TYPE, , 2 !选择单元类型号为2的单元R, i, m1*i*b*h, , , !单位面积内受的力随深度增加而增加EMODIF, ALL, REAL, i, !对已存在单元进行修改*enddoR, 101, 0.6, 0.6, 0.6, 0.6, , !识别号+实常数R, 102, 0.1, 0.1, 0.1, 0.1, ,CMSEL, S, WALLEMODIF, ALL, REAL, 101, !将实常数101组赋给墙CMSEL, S, STRUTEMODIF, ALL, REAL, 102, !赋值给支撑NSEL, S, LOC, Z-25 !约束墙底竖向位移D, ALL, , , , , , UZ, , , , ,CMSEL, S, SPRING !选择土弹簧单元NSLE, S !以下命令从已选弹簧集合中选CMSEL, S, WALL !在已选集中选墙单元NSLE, U !从集合中删除刚选择的单元,即与墙有关的单元D, ALL, , , , , , ALL, , , , , !约束土弹簧单元端点的所有位移ALLSSA VE/SOLUALLSANTYPE, STATIC, NEW !分析模式静力NROPT, FULL !指定计算模式*AFUN, DEG !指定角度单位为度Q=2.0E4 !Q为超载GAMA1=0.9E4 !浮重度FAI1=20 !内摩擦角C1=10e3 !粘聚力m1=1500e3 !比例系数b=1 !单元宽度h=1 !墙体单元高度!无支撑开挖1m 坑内水位-1.0 坑外0NSEL, S, LOC, Z, 0, -0.9 !0到0.9的位置即开挖面以上ESLN, S !以下命令在当前集里选择CMSEL, R, wall !在当前集选wll 单元NSLE, S !以下命令在当前集里选择*GET, ZMIN, NODE, , MNLOC, Z, , , , !墙最浅节点处的位置*GET, ZMAX, NODE, , MXLOC, Z, , , , !墙最深节点处的位置LOCZ1=abs (ZMAX) !取绝对值LOCZ2=abs (ZMIN)KA= (TAN(45.0 - FAI1/2))**2 !主动土压力系数!采用水土分算PA1=(Q + GAMA1*LOCZ1)*KA-2.0*C1*SQRT(KA) !最深主动土压力公式* IF , PA1, LT, 0, THEN !去除小于零值的可能PA1=0*ENDIFPA2=10*1E3*LOCZ1 !水压力计算PA=PA1+PA2 !总应力SA1=(Q+GAMA1*LOCZ2)*KA-2*C1*SQRT(KA)SA2=10*1E3*LOCZ2WA=SA2SA=SA1+SA2pressure=SASLZER=ZMAXSLOPE=(SA-PA)/(LOCZ2-LOCZ1) !增长率SFGRAD, PRES, 0, z, SLZER, SLOPE !沿z方向从-1m开始的面力减少SFE, all, 1, PRES, , -PA, , , !alls!开挖面以下加载NSEL, S, LOC, Z, -1.1, -24.9ESLN, SGMSEL, R, wallNSLE, S*GET, ZMIN, NODE, , MNLOC, Z, , , ,*GET, ZMAX, NODE, , MXLOC, Z, , , ,SLZER=ZMAXSLOPE=0SFGRAD, PRES, O, z, SLZER, SLOPESFE, all, 1, PRES, , -pressure, , , !alls !将集合扩大到全集cmsel, S, strut !选择内支撑全部杀死EKILL, ALLallsNSEL, S, LOC, Z, 0.1, -1.1ESLN, SESEL, R, TYPE, , 2 !选择单元类型号为2的单元EKILL, ALL*do, i, 2, 25z=i-1 !开挖了1m 要在被动区减去相应的土压力K=m1*z*b*hR, i, K, , ,*enddoTIME, 1 !载荷步1allssolveNSEL, S, LOC, Z, 0, -4.9ESLN, SCMSEL, R, wallNSLE, S*GET, ZMIN, NODE, , MNLOC, Z, , , ,*GET, ZMAX, NODE, , MXLOC, Z, , , ,LOCZ1=abs (ZMAX)LOCZ2=abs (ZMIN)KA= (TAN(45.0 - FAI1/2))**2PA1=(Q + GAMA1*LOCZ1)*KA-2.0*C1*SQRT(KA)* IF , PA1, LT, 0, THENPA1=0*ENDIFPA2=10*1E3*LOCZ1PA=PA1+PA2SA1=(Q+GAMA1*LOCZ2)*KA-2*C1*SQRT(KA)SA2=10*1E3*LOCZ2WA=SA2SA=SA1+SA2pressure=SASLZER=ZMAXSLOPE=(SA-PA)/(LOCZ2-LOCZ1)SFGRAD, PRES, 0, z, SLZER, SLOPESFE, all, 1, PRES, , -PA, , ,allsNSEL, S, LOC, Z, -5.1, -24.9ESLN, SGMSEL, R, wallNSLE, S*GET, ZMIN, NODE, , MNLOC, Z, , , ,*GET, ZMAX, NODE, , MXLOC, Z, , , ,SLZER=ZMAXSLOPE=0SFGRAD, PRES, O, z, SLZER, SLOPESFE, all, 1, PRES, , -pressure, , ,allscmsel, s, strutealive, ALLallsNSEL, S, LOC, Z, 0.1, -5.1ESLN, SESEL, R, TYPE, , 2 !选择单元类型号为2的单元EKILL, ALL*do, i, 6, 25z=i-5K=m1*z*b*hR, i, K, , ,*enddoTIME, 2allssolve。
ANSYS命令流学习笔记17-超弹性材料分析及WB-ABAQUS分析对比
ANSYS命令流学习笔记17-超弹性材料分析及WB-ABAQUS 分析对⽐! ANSYS 命令流学习笔记17-超弹性材料分析及WB-ABAQUS 分析对⽐ !学习重点:⾮线性材料建⽴在线性材料的基础上,理解好线性才⾏,在概念上就能理解好⾮线性材料。
但是⾮线性的计算⼜是另外⼀个概念,先学习材料部分知识吧。
理解应⼒应变的张量形式、应变能函数、⾼度⾮线性下应变能函数形式。
!1、应变张量张量最初是⽤来表⽰弹性介质中各点应⼒状态的,在三维坐标下,应⼒和应变的状态可以⽤9个分量来表⽰,超弹性材料主要使⽤应变张量及应变张量不变量这两个概念。
任意⼀点的应变状态可由矩阵表⽰:??z zy zxyz y yx xz xy x εγγγεγγγε存在三个相互垂直的⽅向。
在这三个⽅向上没有⾓度偏转,只有轴向的应变,该正应变称为主应变,此三⽅向成为主⽅向。
此时,该点应⼒状态由矩阵表⽰:但是应变张量表达中,某⼀点的应变状态矩阵,和坐标⽅向的选取有着很⼤关系。
为了表达坐标⽆关的某点应变状态,定义应变张量不变量I 1、I 2、I 3 ,分别为应变张量的第⼀,第⼆和第三不变量。
由下式表⽰:取= 1/3*I 1,将应变张量可以分解为应变球张量和应变偏张量,分别对应应变的形状改变部分和体积改变部分。
+---=m mm m z zyzx yzmy yxxzxy m x ijεεεεεγγγεεγγγεεε000000?=321000000εεεεij m ε!2、应变能函数⼀维应变能函数:⼀维应变能密度函数:W 或U 函数形式能够确定的话,应⼒与应变之间的关系也就完全确定了,反之应变应⼒关系确定可以反推应变能密度函数。
可以认为应变能密度函数是材料本构关系的⼀种表达形式。
!3、应变能函数形式(1)延伸率、不变量、体积⽐在确定应变能函数形式之前,⾸先要确定应变能函数的变量。
⾸先定义延伸率λ:其中,E ε⼀般称为⼯程应变或名义应变。
(此外,⼀般说的⼯程应⼒,真实应⼒)。
基于ANSYS的剪切弹性梁受力变形分析
基于ANSYS的剪切弹性梁受力变形分析1.导入需要分析的图第1步:把三维图从PROE中导入到ANSYS2.设置计算类型及材料参数第2步:定义单元类型选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令,打开Element Type对话框。
单击Add按钮,设置参数如下图:第3步:设置材料参数选择Main Menu→Preprocessor→Material Props→Material Models命令,打开Define Material Model Behavior对话框。
在Material Models Available 选项区中依次选Structural→Linear→Elastic→Isotropic命令(各向同性材料),设置参数如下图:然后在在Material Models Available选项区中依次选Structural→Density 命令,设置密度如下图:3.网格划分及边界条件定义第4步:设置网格划分选项选择Main Menu→Preprocessor→Meshing→Mesh Tool命令,打开Mesh Tool对话框,设置参数如下图:在Mesh Tool对话框中单击Mesh按钮,打开拾取对话框,单击Pick All 按钮,得到的网格划分如下图:第5步:定义位移约束Structural→Displacement→On Areas命令,打开拾取对话框。
选取约束面如下图:并设置参数如下图:第6步:施加载荷Structural→Pressure→On Areas命令,打开拾取对话框。
拾取凸台上表面,单击Apply PRES on Areas对话框,如下图:设置载荷为-500N选择PlotCtrls→Symbols命令,在弹出的Symbols对话框,选中相应选项;选择Utility Menu→Plt→Elements命令,可得到施加载荷和约束后的有限元模型,包括单元、约束、载荷等信息。
弹性力学ansys求解实例详解
弹性力学a n s y s求解实例详解Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】ANSYS 上机实验报告一、题目描述如图1所示,一简支梁横截面是矩形,其面积202.0m A =,对弯曲中性轴的惯性矩451067.6m I zz -⨯=,高m h 2.0=,材料的pa E 11101.2⨯=,横向变形系数3.0=μ。
该梁的自重就是均布载荷N q 4000=和梁中点处的集中力N F 2000=,试讨论在均布荷载作用下,简支梁的最大挠度。
二、问题的材料力学解答由叠加法可知:梁上同时作用几个载荷时,可分别求出每一载荷单独作用时的变形,把各个形变叠加即为这些载荷共同作用时的变形。
在只有均布载荷q 作用时,计算简支梁的支座约束力,写出弯矩方程,利用EI M dxw d =22积分两次,最后得出: 铰支座上的挠度等于零,故有0=x 时,0=w ,因为梁上的外力和边界条件都对跨度中点对称,挠曲线也应对该点对称。
因此,在跨度中点,挠曲线切线的斜率等于零,即:2l x =时,0=dx dw ,把以上两个边界条件分别代入w 和0=dxdw 的表达式,可以求出243ql C -=,0=D ,于是得转角方程及挠曲线方程为: x ql x q x ql EIw ql x q x ql EI dx dw EI 2424122464343332--=--==θ (1) 在跨度中点,挠曲线切线的斜率等于零,挠度为极值,由(1)中式子可得:即EIql w q c 3845)(4-=。
在集中力F 单独作用时,查材料力学中梁在简单载荷作用下的变形表可得EIFl w F c 48)(3-=。
叠加以上结果,求得在均布载荷和集中力共同作用下,梁中点处的挠度是EIFl EI ql w w w F c q c c 483845)()(34--=+=,将各参数代入得m w c 410769.0-⨯=三、问题的ansys 解答建立几何模型此问题为可采用Beam 分析,所以该几何模型可用线表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ansys求解剪切锁定超弹性梁问题
目的:比较关于剪切锁定的不同单元公式。
目标:使用三种单元公式求解梁的非线性分析: B-Bar、URI 和增强应变。
模型描述:二维平面应变 PLANE182 单元,300mmx10mm 悬臂梁 (3 个).使用非线性超弹材料 (2 项Mooney-Rivlin)
1. :选 PLANE182 (四边形 4 节点)
在 Option 中有三个梁单元模型,与 3 个不同单元公式对应(B-Bar, URI 和增强应变)。
Main Menu →Preprocessor →Element Type →Add/Edit/Delete …→选择“Type 1 PLANE182”→点击[Options] →验证单元选项, 然后点击[OK]→对单元类型 2 和 3 重复操作→选择[Close]
提示:
单元类型 1 应选择“Full Integration”, 即 B-Bar 方法。
单元类型 2 应选择“Reduced Integr”, 即 URI 公式。
单元类型 3 应选择“Enhanced Strain”公式。
2.
Main Menu →Preprocessor →Material Props →Material Models …→选择“Structural →Nonlinear→Elastic →Hyperelastic → Mooney-Rivlin → 2 parameters”→“C10”输入“8”→“C01”输入“2”→“d”输入“2e-4”→点击 [OK]→选择“Material → Exit”
提示:将比较使用超弹性材料特性的三种单元公式。
3.建立几何体并划分网格
建三个个矩形:Width=0.3m,Height=0.01m 划分网格:沿 x 方向,划分数=40,沿 y 方向,划分数=5
划分网格
这里需要注意,给每个几何面分配不同的单元类型
Main Menu: Preprocessor →Meshing → Mesh Tool → Element Attribute → Areas → Set → 选取相应的几何面 → OK → TYPE →分别选择不同的单元类型1/2/3
Main Menu: Preprocessor →Meshing → Mesh Tool → Size controls → Lines → Set,分别选中上边和左边,OK,NDIV填40或5,OK,
mesh,完成。
4 指定非线性分析的求解选项。
Main Menu→Solution→Analysis Type→Static →Sol’n Control …→选择“Analysis Options”下的“Large Displacement Static”→“Number of substeps”输入“10”→“Max no. of substeps”输入“1e3”→“Min no. of substeps”输入“1”→点击 [OK]
提示:如果想检查中间结果(例如画出力-挠度响应曲线), 可存储所有子步的输出。
2)每个梁的端部被约束。
完全约束端部的所有自由度会使模型趋于过分约束, 因此约束每个梁 X=0 处的所有 UX 和底部 UY 。
施加的剪切载荷是作用于 SURF153 表面效应单元面 2 上的压力,该 0.01单位压力将作为一个随动力, 总是与梁的端部相切。
提示:施加表面效应单元之前,要在前处理加上SURF152单元,并在梁端面创建面单元,此处不赘述。
5 查看结果
变形结果
查询 Y 向位移结果
Main Menu → General Postproc → Query Results →Subgrid Solu …→选择左侧“DOF Solution”, 然后选择右侧的“Translation UY”→
点击 [OK]→用拾取光标, 选择梁顶部的任意一个节点。
检查 von Mises 应力结果
更多精彩关注公众号:工科小学生。