二维几何变换PPT课件
合集下载
第六讲二维及三维空间的变换概念及其矩阵表示-精品
20133152013315?几何变换二维变换齐次坐标系和二维变换的矩阵表示二维变换的复合窗口到视口的变换效率问题三维变换的矩阵表示三维变换的复合坐标系的变换二维及三维空间的变换概念矩阵表示三维视图二维三维空间的变换概念及其矩阵表示2013315几何变换本讲介绍计算机图形学经常用到的基本的二维和三维几何变换其中的平移变换比例变换和旋转变换对很多图形应用程序来说极其重要
现在考虑绕任意一点P1旋转物体的问题。 1)将P1点平移到原点; 2)旋转; 3)平移还原P1点。
2019/11/20
二维变换的复合(例二)
关于任意 点P1比例 变换一个 物体。
2019/11/20
二维变换的复合(小结)
假设我们想要使图中的房子以任意点P1为中心进行旋转、平移和缩放(比例)变换 。这时具体步骤与上述类似:先将点P1平移到原点,待完成比例变换和旋转变换后 再将房子从坐标原点平移到新的位置P2,因此记录变换的数据结构可以是包含比例 变换因子、旋转角、平移量和变换顺序的数据结构,或者只是简单地记录复合变换
过除以W)而得到形式为(x,y,1)的
坐标,因此,齐次化的点就形成
平面
了(x,y,W)空间中的一个平面,由等
式W=1定义。图中示出了这种联 系,注意:无穷远点没表示在该 平面中。
XYW齐次坐标系,其中示有W=1的平面和投影 到该平面上的点P(X,Y,W)
2019/11/20
二维变换的矩阵表示
平移变换
0, 10
1
绕x旋转
Rx()
0 0
0
cos sin
0
sin cos
0 0. 0
Байду номын сангаас
0 0 0 01
0 0
现在考虑绕任意一点P1旋转物体的问题。 1)将P1点平移到原点; 2)旋转; 3)平移还原P1点。
2019/11/20
二维变换的复合(例二)
关于任意 点P1比例 变换一个 物体。
2019/11/20
二维变换的复合(小结)
假设我们想要使图中的房子以任意点P1为中心进行旋转、平移和缩放(比例)变换 。这时具体步骤与上述类似:先将点P1平移到原点,待完成比例变换和旋转变换后 再将房子从坐标原点平移到新的位置P2,因此记录变换的数据结构可以是包含比例 变换因子、旋转角、平移量和变换顺序的数据结构,或者只是简单地记录复合变换
过除以W)而得到形式为(x,y,1)的
坐标,因此,齐次化的点就形成
平面
了(x,y,W)空间中的一个平面,由等
式W=1定义。图中示出了这种联 系,注意:无穷远点没表示在该 平面中。
XYW齐次坐标系,其中示有W=1的平面和投影 到该平面上的点P(X,Y,W)
2019/11/20
二维变换的矩阵表示
平移变换
0, 10
1
绕x旋转
Rx()
0 0
0
cos sin
0
sin cos
0 0. 0
Байду номын сангаас
0 0 0 01
0 0
计算机图形学-变换
1
第3章 变换
基本的二维几何变换 二维复合变换 其他二维变换 三维几何变换 OpenGL几何变换函数 三维图形的显示流程 投影 裁剪
2
几何变换
应用于对象几何描述并改变它的位置、方 向或大小的操作称为几何变换(geometric transformation) 基本的二维几何变换包括平移、旋转和缩 放
8
矩阵表示和齐次坐标
许多图形应用涉及到几何变换的顺序 需要用一个通式来表示平移、旋转和缩放
P M1 P M 2
将2×2矩阵扩充为3×3矩阵,可以把二维几 何变换的乘法和平移项组合为单一矩阵表示
9
二维平移矩阵
x 1 0 t x x y 0 1 t y y 1 0 0 1 1
三维坐标轴旋转
X轴坐标不变,循环替代x、y、z三个 轴可以得到绕x轴旋转的公式
z
y ' y cos z sin
y
z ' y sin z cos x' x
x
35
三维坐标轴旋转
y轴坐标不变,循环替代x、y、z三个 轴可以得到绕y轴旋转的公式
x
z
y
z ' z cos x sin x' z sin x cos y' y
glMatrixMode (GL_MODELVIEW); glColor3f (0.0, 0.0, 1.0); glRecti (50, 100, 200, 150); //显示蓝色矩形
glColor3f (1.0, 0.0, 0.0); glTranslatef (-200.0, -50.0, 0.0); glRecti (50, 100, 200, 150); //显示红色、平移后矩形
第3章 变换
基本的二维几何变换 二维复合变换 其他二维变换 三维几何变换 OpenGL几何变换函数 三维图形的显示流程 投影 裁剪
2
几何变换
应用于对象几何描述并改变它的位置、方 向或大小的操作称为几何变换(geometric transformation) 基本的二维几何变换包括平移、旋转和缩 放
8
矩阵表示和齐次坐标
许多图形应用涉及到几何变换的顺序 需要用一个通式来表示平移、旋转和缩放
P M1 P M 2
将2×2矩阵扩充为3×3矩阵,可以把二维几 何变换的乘法和平移项组合为单一矩阵表示
9
二维平移矩阵
x 1 0 t x x y 0 1 t y y 1 0 0 1 1
三维坐标轴旋转
X轴坐标不变,循环替代x、y、z三个 轴可以得到绕x轴旋转的公式
z
y ' y cos z sin
y
z ' y sin z cos x' x
x
35
三维坐标轴旋转
y轴坐标不变,循环替代x、y、z三个 轴可以得到绕y轴旋转的公式
x
z
y
z ' z cos x sin x' z sin x cos y' y
glMatrixMode (GL_MODELVIEW); glColor3f (0.0, 0.0, 1.0); glRecti (50, 100, 200, 150); //显示蓝色矩形
glColor3f (1.0, 0.0, 0.0); glTranslatef (-200.0, -50.0, 0.0); glRecti (50, 100, 200, 150); //显示红色、平移后矩形
计算机图形学之图形变换
4 T
3
2 p
1
0
012 34 567 8
线段和多边形的平移可以通过顶点的
平移来实现。同样线段和多边形的其它几 何变换也可以通过对顶点的几何变换来实 现。
2. 旋转变换(Rotation) 二维旋转有两个参数:
旋转中心: 旋转角:
?
6 P’
5
4
3
P
2
1
0
012 34 567 8
设OP与x轴的夹角为 则:
由于采用齐次坐标矩阵表示几何变换, 多个变换的序列相应地可以用矩阵链乘来表 示。
需要注意:先作用的变换其矩阵在右边, 后作用的变换其矩阵在左边。
变换函数
平移变换 void glTanslate{fd}(TYPE x, TYPE y, TYPE z);
旋转变换 void glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE z); 绕矢量v=(x,y,z)T逆时针方向旋转angle指定的角度。 旋转角度的范围是0~360度。当angle=0时, glRotate()不起作用。
二维旋转有两个参数: 旋转中心: 旋转角:
上述变换可以分解为三个基本变换:
•平移:
•旋转:
•平移: 回原位。
使旋转中心移到坐标原点; 使旋转中心再移
二维旋转有两个参数: 旋转中心: 旋转角:
因此上述变换可以写成矩阵乘积形式:
4. 5 基本三维几何变换(Basic three-dimensional geometric transformation)
1. 矩阵表示(Matrix representation) 前面三种变换都可以表示为如下的矩
阵形式
计算机图形学_ 二维图形变换_53 二维图形变换原理及齐次坐标_
普通坐标×h→齐次坐标 齐次坐标÷h→普通坐标 当h = 1时产生的齐次坐标称为“规格化坐标”,因为前n个 坐标就是普通坐标系下的n维坐标
为什么要采用齐次坐标?
在笛卡儿坐标系内,向量(x,y)是位于z=0的平面上的点 ;而向量(x,y,1)是位于z=1的等高平面上的点
对于图形来说,没有实质性的差别,但是却给后面矩阵运 算提供了可行性和方便性
假如变换前的点坐标为(x,y),变换后的点坐标为(x*,y* ),这个变换过程可以写成如下矩阵形式:
x*, y*x,
x* a1x b 1 y c1
y•M
x*, y*x
a1
y
1
b 1
c1
a2 b2 c2
上两式是完全等价的。对于向量(x,y,1),可以在几何意义 上理解为是在第三维为常数的平面上的一个二维向量。
这种用三维向量表示二维向量,或者一般而言,用一个n+1维 的向量表示一个n维向量的方法称为齐次坐标表示法
n维向量的变换是在n+1维的空间进行的,变换后的n维结果 是被反投回到感兴趣的特定的维空间内而得到的。
如n维向量(p1,p2,...,pn)表示为(hp1,hp2,...,hpn,h), 其中h称为哑坐标。 普通坐标与齐次坐标的关系为“一对多”:
变换图形就是要变换图形的几何关系,即改变顶点的坐 标;同时,保持图形的原拓扑关系不变
仿射变换(Affine Transformation或 Affine Map)是一 种二维坐标到二维坐标之间的线性变换 (1)“平直性”。即:直线经过变换之后依然是直线
(2)“平行性”。即:平行线依然是平行线,且直线上 点的位置顺序不变)
采用了齐次坐标表示法,就可以统一地把二维线形变换表示 如下式所示的规格化形式:
为什么要采用齐次坐标?
在笛卡儿坐标系内,向量(x,y)是位于z=0的平面上的点 ;而向量(x,y,1)是位于z=1的等高平面上的点
对于图形来说,没有实质性的差别,但是却给后面矩阵运 算提供了可行性和方便性
假如变换前的点坐标为(x,y),变换后的点坐标为(x*,y* ),这个变换过程可以写成如下矩阵形式:
x*, y*x,
x* a1x b 1 y c1
y•M
x*, y*x
a1
y
1
b 1
c1
a2 b2 c2
上两式是完全等价的。对于向量(x,y,1),可以在几何意义 上理解为是在第三维为常数的平面上的一个二维向量。
这种用三维向量表示二维向量,或者一般而言,用一个n+1维 的向量表示一个n维向量的方法称为齐次坐标表示法
n维向量的变换是在n+1维的空间进行的,变换后的n维结果 是被反投回到感兴趣的特定的维空间内而得到的。
如n维向量(p1,p2,...,pn)表示为(hp1,hp2,...,hpn,h), 其中h称为哑坐标。 普通坐标与齐次坐标的关系为“一对多”:
变换图形就是要变换图形的几何关系,即改变顶点的坐 标;同时,保持图形的原拓扑关系不变
仿射变换(Affine Transformation或 Affine Map)是一 种二维坐标到二维坐标之间的线性变换 (1)“平直性”。即:直线经过变换之后依然是直线
(2)“平行性”。即:平行线依然是平行线,且直线上 点的位置顺序不变)
采用了齐次坐标表示法,就可以统一地把二维线形变换表示 如下式所示的规格化形式:
图像的几何变换ppt课件
在下面的算法中直接采用了前一种做法。实际上,这 也是一种插值算法, 称为最邻近插值法(Nearest Neighbor Interpolation)。
17
ppt课件.
2、图像比例缩放
最简单的比例缩小是当 fx=fy=1/2时,图像被缩到一 半大小,此时缩小后图像中的(0, 0)像素对应于原图 像中的(0, 0)像素; (0, 1)像素对应于原图像中的(0, 2)像素; (1, 0)像素对应于原图像中的(2, 0)像素, 依此类推。
因此,2D图像中的点坐标(x, y)通常表示成齐次坐标 (Hx, Hy, H),其中H表示非零的任意实数,当H=1 时,则(x, y, 1)就称为点(x, y)的规范化齐次坐标。
由点的齐次坐标(Hx, Hy, H)求点的规范化齐次坐标(x, y, 1),可按如下公式进行:
x Hx y Hy
11
H
比例缩放前后两点P0(x0, y0)、P(x, y)之间的 关系用矩阵形式可以表示为:
x
fx
0
0
x
0
y 0
fx
0
y
0
1
0
0
0
1
其中fx,fy>1为放大, fx,fy<1 为缩小。
15
ppt课件.
2、图像比例缩放
放大 后
(x , y) (x0 , y0)
O
x
缩放 前
6
多见于影视特技及广告的制作。
ppt课件.
1.1齐次坐标
设点P0(x0,y0)进行平移后,移到P(x,y),其中x方向的 平移量为x,y方向的平移量为y。那么,点P(x,y) 的坐标为:
x x0 x y y0 y
计算机图形学 5.1二维变换
a11b13 a12b23 a13b33 a 21b13 a 22b23 a 23b33 (5-1) a n1b13 a n 2 b23 a n3b33
由线性代数知道,矩阵乘法不满足交换律,只有左矩 阵的列数等于右矩阵的行数时,两个矩阵才可以相乘。 特别地,对于二维变换的两个3×3的方阵A和B,矩阵 相乘公式为:
5.1.1 规范化齐次坐标
为了使图形几何变换表达为图形顶点集合矩阵与 某一变换矩阵相乘的问题,引入了规范化齐次坐标。 所谓齐次坐标就是用n+1维矢量表示n维矢量。 例如,在二维平面中,点P(x,y)的齐次坐标表示为 (wx,wy,w)。类似地,在三维空间中,点P(x,y,z) 的齐次坐标表示为(wx,wy,wz,w)。这里,w为任一 不为0的比例系数,如果w=1就是规范化的齐次坐标。 二维点P(x,y)的规范化齐次坐标为〔x,y,1〕,三维 点P(x,y,z)的规范化齐次坐标为〔x,y,z,1〕。不 能写成下标形式,w和x,w和y,w和z是乘法的关系。 定义了规范化齐次坐标以后,图形几何变换可以 表示为图形顶点集合的规范化齐次坐标矩阵与某一变换 矩阵相乘的形式。
x1 x P 2 xn y1 y2 yn 1 1 1
变换后图形顶点集合的规范化齐次坐标矩阵为:
x'1 x' ' P 2 x' n y '1 y' 2 y'n 1 1 1
a b 二维变换矩阵为: T c d l m
a11b11 a12b21 a13b31 a11b12 a12b22 a13b32 a b a b a b a 21b12 a 22b22 a 23b32 21 11 22 21 23 31 a n1b11 a n 2 b21 a n3b31 a n1b12 a n 2 b22 a n3b32
第4章二维变换
• 性质
U •V = V •U U •V = 0 ⇔ U ⊥ V U •U = 0 ⇔ U = 0
变换的数学基础(3/4) 变换的数学基础
– 矢量的长度
• 单位矢量 • 矢量的夹角
2 U = U • U = u x + u y + u z2 2
U •V cos θ = U •V
– 矢量的叉积
i U ×V = ux vx
– 在世界坐标系( 在世界坐标系(WCS)中指定的矩形区域 , ) 用来指定要显示的图形 。
2. 视区
– 在设备坐标系(屏幕或绘图纸) 在设备坐标系(屏幕或绘图纸)上指定的矩形区域 , 用来指定窗口内的图形在屏幕上显示的大小及位置。 用来指定窗口内的图形在屏幕上显示的大小及位置。
3. 窗口到视区的变换
P′=P+Tm 等价于
[x’ y’]=[x y] +[Mx My]
图形变换的特点( 4.3.1 图形变换的特点(续)
比例变换 P′=P×Ts
Sx 0 Ts= 0 Sy Sx、Sy分别表示比例因子。 cosθ sinθ Tr= -sinθ cosθ θ>0时为逆时针旋转 θ<0时为顺时针旋转
旋转变换 P'=P×Tr
变换后的 顶点坐标
P
变换前的 顶点坐标
•
T2D
二维变换矩阵
二维变换矩阵中: a b 是对图形进行缩放、旋转、对称、错切等变换。 c d [ l m] 是对图形进行平移变换
• 计算机图形场景中所有图形对象的空间定位和定义,包括观 计算机图形场景中所有图形对象的空间定位和定义, 察者的位置视线等,是其它坐标系的参照。 察者的位置视线等,是其它坐标系的参照。
2.模型坐标系(Modeling Coordinate System,也称局部坐标系) 模型坐标系
《从二维到三维》ppt课件
6
图中运用投影的手法,利用光影效果,在平面设计中这类的表现形式会经 常被采用,阴影的手法表现文字的立体感,具有较强的视觉冲击力。
7
三维空间:
8
包豪斯?
• 包豪斯是德国魏玛市的 “公立包豪斯学校”的简称,后改 称“设计学院”
• 她的成立标志着现代设计教育的诞生,对世界现代设计的 发展产生了深远的影响,包豪斯也是世界上第一所完全为 发展现代设计教育而建立的学院。
12
立体三维的要素:点、线、面、体
• 点:最活跃的设计元素
13
线:最具表现力的设计元素
14
线:最具表现力的设计元素
15
面:最稳定的设计元素
16
面:最稳定的设计元素
17
体:
18
19
点、线、面、体在空间中的综合运用
20
三维立体素描
21
如何立体素描?
• 立体感表现手法:立体感是指物体自身三维空间的体感表 现,因此立体感又称“体积感”。静物写生中,物体的立 体感主要通过以下因素在二维空间的画面上暗示出来的, 即物体不同方向体面的缩形,不同方向体面的明暗色调层 次和在光线照射下物体的投影。
9
• 魏玛包豪斯大学(Bauhaus-Universitaet Weimar)是位于 德国魏玛的一所艺术设计类大学。该校是世界现代设计的 发源地,对世界艺术与设计的推动有着巨大的贡献,她也 是世界上第一所完全为发展设计教育而建立的学院。
10
在造型的表现上,包豪斯构 成的主要表现形式体现出荷 兰风格派的主张。 “一切 作品都要尽量简化为最简单 的几何图形,如立方体、圆 锥体、球体、长方体,或是 正方形、三角形、圆形、长 方形等进行实践……”
• (2) “对比看”的方法。一次将两个类似的目标频繁对 照着看。用于“测量”和确定比例、明暗、形状等物体形
图中运用投影的手法,利用光影效果,在平面设计中这类的表现形式会经 常被采用,阴影的手法表现文字的立体感,具有较强的视觉冲击力。
7
三维空间:
8
包豪斯?
• 包豪斯是德国魏玛市的 “公立包豪斯学校”的简称,后改 称“设计学院”
• 她的成立标志着现代设计教育的诞生,对世界现代设计的 发展产生了深远的影响,包豪斯也是世界上第一所完全为 发展现代设计教育而建立的学院。
12
立体三维的要素:点、线、面、体
• 点:最活跃的设计元素
13
线:最具表现力的设计元素
14
线:最具表现力的设计元素
15
面:最稳定的设计元素
16
面:最稳定的设计元素
17
体:
18
19
点、线、面、体在空间中的综合运用
20
三维立体素描
21
如何立体素描?
• 立体感表现手法:立体感是指物体自身三维空间的体感表 现,因此立体感又称“体积感”。静物写生中,物体的立 体感主要通过以下因素在二维空间的画面上暗示出来的, 即物体不同方向体面的缩形,不同方向体面的明暗色调层 次和在光线照射下物体的投影。
9
• 魏玛包豪斯大学(Bauhaus-Universitaet Weimar)是位于 德国魏玛的一所艺术设计类大学。该校是世界现代设计的 发源地,对世界艺术与设计的推动有着巨大的贡献,她也 是世界上第一所完全为发展设计教育而建立的学院。
10
在造型的表现上,包豪斯构 成的主要表现形式体现出荷 兰风格派的主张。 “一切 作品都要尽量简化为最简单 的几何图形,如立方体、圆 锥体、球体、长方体,或是 正方形、三角形、圆形、长 方形等进行实践……”
• (2) “对比看”的方法。一次将两个类似的目标频繁对 照着看。用于“测量”和确定比例、明暗、形状等物体形
几何图形PPT课件
面积计算公式
面积 = (底 × 高) / 2,其中底和高是 任意两边及其之间的距离。
周长计算公式
周长 = 三边之和。
四边形
定义
四边形是由四条边和它们之间的角组成的平面图形。
性质
四边形可以分为平行四边形、梯形、菱形等不同类型;四 边形的内角和等于360度。
面积计算公式
面积 = (底 × 高) / 2,其中底和高是任意一边及其对角线长 度。
度量单位的换算与计算
度量单位换算
将一种度量单位转换为另一种度量单位,如将厘米转换为米或将千克转换为吨等。
计算方法
根据度量单位的不同,采用不同的计算方法,如乘法、除法、开方等。
06 几何图形的拓展知识
几何图形的对称性
01
02
03
轴对称
图形关于某一直线对称, 如等腰三角形、矩形、正 多边形等。
中心对称
。
图案设计
各种图案和花纹的创作都离不 开几何图形,如纺织品、壁纸 、地毯等。
工程绘图
工程绘图和机械制图都以几何 图形为基础,用于描述物体的 形状和尺寸。
数学教育
几何图形是数学教育中的重要 内容,有助于培养学生的逻辑
思维和空间想象力。
02 平面几何图形
圆形
定义
性质
圆是一种平面图形,由所有到定点距离等 于定长的点组成。
面积计算公式
面积 = π × 长轴^2 / 2,其中长轴是椭圆上距离最远的两点之间的距 离。
周长计算公式
周长 = 4a,其中 a 为椭圆的长轴长度。
三角形
定义
三角形是由三条边和它们之间的角组 成的平面图形。
性质
三角形具有稳定性,是轴对称图形; 三角形的内角和等于180度,且任意 两边之和大于第三边。
计算机图形学-二维图形变换与裁剪ppt课件
计算机图形学二维图形变换与 裁剪
图形变换
2
观察与思考
零件三视图
3
观察与思考
三视图投影示意图
4
图形变换
从不同角度观察物体,会看到不同的形状 形状的变化可以通过图形变换来实现 图形变换是计算机图形学的基础内容之一 通过图形变换 可由简单图形生成复杂图形 可用二维图形表示三维形体 可对静态图形经过快速变换而获得图形的动 态显示效果
13
数学基础(4)
矩阵的乘法
a b 11 a 12 a 13 11 b 12 b 13 A B a a a b b b 21 22 23 21 22 23 a b 31 a 32 a 33 31 b 32 b 33
矩阵的数乘
a ka 11 a 12 a 13 11 ka 12 ka 13 k a a a ka ka ka 21 22 23 21 22 23 a ka 31 a 32 a 33 31 ka 32 ka 33
y1 y2 yn
z1 z2 zn
10
数学基础 1
设有两个矢量
u x U u y u z
vx V v y vz
矢量和
u x vx U V u v y y u z vz
a b a b a b a b a b a b a b a b a b 11 11 12 21 13 31 11 12 12 22 13 32 11 13 12 23 13 33 a b a b a b a b a b a b a b a b a b 21 1122 2123 3121 1222 2223 3221 1322 2323 33 a b a b a b a b a b a b a b a b a b 31 11 32 21 33 31 31 12 32 22 33 32 31 13 32 23 33 33
图形变换
2
观察与思考
零件三视图
3
观察与思考
三视图投影示意图
4
图形变换
从不同角度观察物体,会看到不同的形状 形状的变化可以通过图形变换来实现 图形变换是计算机图形学的基础内容之一 通过图形变换 可由简单图形生成复杂图形 可用二维图形表示三维形体 可对静态图形经过快速变换而获得图形的动 态显示效果
13
数学基础(4)
矩阵的乘法
a b 11 a 12 a 13 11 b 12 b 13 A B a a a b b b 21 22 23 21 22 23 a b 31 a 32 a 33 31 b 32 b 33
矩阵的数乘
a ka 11 a 12 a 13 11 ka 12 ka 13 k a a a ka ka ka 21 22 23 21 22 23 a ka 31 a 32 a 33 31 ka 32 ka 33
y1 y2 yn
z1 z2 zn
10
数学基础 1
设有两个矢量
u x U u y u z
vx V v y vz
矢量和
u x vx U V u v y y u z vz
a b a b a b a b a b a b a b a b a b 11 11 12 21 13 31 11 12 12 22 13 32 11 13 12 23 13 33 a b a b a b a b a b a b a b a b a b 21 1122 2123 3121 1222 2223 3221 1322 2323 33 a b a b a b a b a b a b a b a b a b 31 11 32 21 33 31 31 12 32 22 33 32 31 13 32 23 33 33
二维图形几何变换-PPT
cos sin 0
sin cos 0
0
0 1
旋转变换
简化计算(θ很小)
1 0
x' y' 1 x y 1 1 0
0 0 1
对称变换
对称变换后得图形就是原图形关于某一轴线或原点得镜像。
Y
Y
Y
X (a)关于x轴对称
X (b)关于y轴对称
X (c)关于原点对称
对称变换
对称变换后得图形就是原图形关于某一轴线或原点得镜像。
光栅变换
任意角度得Байду номын сангаас栅旋转变换:
旋转的 象素阵列
A
1A 3
光栅网格
2
n
Gray(A)=∑ [Gray(i) × A在i上得覆盖率](Gray(x)表示某点得灰度等级)
i=1 Gray(A)=Gray(1) × A在1上得覆盖率+ Gray(2) × A在2上得覆盖率+ Gray(3) × A在3上得覆盖率
光栅变换
光栅比例变换:
n
∑ [Gray(i) × Si] Gray(A)= i=1
n
∑ Si
i=1
缩小时原图 中的相应象 素区域
(a)Sx=1/2,Xy=1/2
(b)原图
12
1
43
2
放大时原图 中的相应象 素区域
(a)Sx=1,Xy=3/2
G=(G1+G2+G3+G4)/4
G=(G1×S1 + G2×S2)/(S1 + S2)
O
x0
x
图6-9 坐标系间的变换
坐标系之间得变换
分析: y
y'
p,也即p' x'
[课件]计算机图形学--二维几何变换PPT
2018/12/2 34
连续旋转变换
应用于点P的两个连续旋转,得到的点P’的 坐标可计算为 P’ = R(θ2)[ R(θ1)P]= [R(θ2)R(θ1)]P 可以证明:两个连续旋转是可叠加的 R(θ2)*R(θ1)= R(θ1+θ2) 则P’的坐标可计算为 P’ = R(θ1+θ2)P
Other Transformations
大多数图形软件包中包含了平移、旋转和 缩放这些基本变换。有些软件包还提供一 些有用的其它变换,如反射(Reflection)和 错切(Shear)
2018/12/2
28
Reflection对称变换
对称变换后的图形是原图形关于某一轴线或原点 ty)P
2018/12/2 25
对于绕坐标原点的旋转变换
可简写为:P’ = R(θ)P
2018/12/2 26
对于相对于坐标原点在X和Y方向上的缩放变换
可简写为:P’ =S(sx , sy)P T、R和S分别时平移、旋转、缩放变换距阵
2018/12/2 27
2018/12/2
9
标准的旋转是当基准点在坐标 原点时,即物体绕坐标原点的 旋转。点P绕原点逆时针旋转θ, 得到P’点。则P和P’的坐标之 间的关系,如图,可如下表示 x’=rcos(θ+Ψ) =rcosθcosΨ - rsinθsinΨ y’=rsin(θ+Ψ) =rsinθcosΨ + rcosθsinΨ
P2 M 1 P1 M 2
21
齐次坐标:
是Maxwell.E.A在1946年从几何的角度提出来
的,它的基本思想是把一个n维空间的几何问 题转换到n+1维空间中去, 从形式上来说,就是用一个n+1维的向量表示 一个n维向量的方法,即n+1维向量表示n维空 间中的点。
连续旋转变换
应用于点P的两个连续旋转,得到的点P’的 坐标可计算为 P’ = R(θ2)[ R(θ1)P]= [R(θ2)R(θ1)]P 可以证明:两个连续旋转是可叠加的 R(θ2)*R(θ1)= R(θ1+θ2) 则P’的坐标可计算为 P’ = R(θ1+θ2)P
Other Transformations
大多数图形软件包中包含了平移、旋转和 缩放这些基本变换。有些软件包还提供一 些有用的其它变换,如反射(Reflection)和 错切(Shear)
2018/12/2
28
Reflection对称变换
对称变换后的图形是原图形关于某一轴线或原点 ty)P
2018/12/2 25
对于绕坐标原点的旋转变换
可简写为:P’ = R(θ)P
2018/12/2 26
对于相对于坐标原点在X和Y方向上的缩放变换
可简写为:P’ =S(sx , sy)P T、R和S分别时平移、旋转、缩放变换距阵
2018/12/2 27
2018/12/2
9
标准的旋转是当基准点在坐标 原点时,即物体绕坐标原点的 旋转。点P绕原点逆时针旋转θ, 得到P’点。则P和P’的坐标之 间的关系,如图,可如下表示 x’=rcos(θ+Ψ) =rcosθcosΨ - rsinθsinΨ y’=rsin(θ+Ψ) =rsinθcosΨ + rcosθsinΨ
P2 M 1 P1 M 2
21
齐次坐标:
是Maxwell.E.A在1946年从几何的角度提出来
的,它的基本思想是把一个n维空间的几何问 题转换到n+1维空间中去, 从形式上来说,就是用一个n+1维的向量表示 一个n维向量的方法,即n+1维向量表示n维空 间中的点。
第4章 二维图形变换_几何变换
y=-x
y
几何关系
x' y y' x
o
x
矩阵形式
对称变换(5)
x
y 1 x
0 1 0 y 1 1 0 0 y x 1 0 0 1
2.错切变换(shear) (1)沿 x 轴方向关于 y 轴错切
将图形上关于y轴的平行线沿x方向推成θ角的
(4-1)
a b x ' y ' x y T x, y c d x ' ax cy a S x c 0 ' b 0 d S y y bx dy
矩阵形式
x
y x
Sx S y
y
2.旋转变换(rotation)
P
点P绕原点逆时针转θ度角 (设逆时针旋转方向为正方向)
P
x
旋转变换
几何关系
x r cos y r sin
(4-3)
x' r cos( ) r cos cos-r sin sin y ' r sin( ) r cos sin +r sin cos
4.齐次坐标表示
( x1 , x2 ,..., xn )
有n个分量的向量
(x1 , x2 ,..., xn , )
有n+1个分量的向量 哑元或标量因子
( x1 , x2 ,..., xn , )
( x1 / , x2 / ,..., xn / )
齐次坐标表示不是唯一的
1 规格化的齐次坐标
1 2 1 2 1 2 1 2
1
y
几何关系
x' y y' x
o
x
矩阵形式
对称变换(5)
x
y 1 x
0 1 0 y 1 1 0 0 y x 1 0 0 1
2.错切变换(shear) (1)沿 x 轴方向关于 y 轴错切
将图形上关于y轴的平行线沿x方向推成θ角的
(4-1)
a b x ' y ' x y T x, y c d x ' ax cy a S x c 0 ' b 0 d S y y bx dy
矩阵形式
x
y x
Sx S y
y
2.旋转变换(rotation)
P
点P绕原点逆时针转θ度角 (设逆时针旋转方向为正方向)
P
x
旋转变换
几何关系
x r cos y r sin
(4-3)
x' r cos( ) r cos cos-r sin sin y ' r sin( ) r cos sin +r sin cos
4.齐次坐标表示
( x1 , x2 ,..., xn )
有n个分量的向量
(x1 , x2 ,..., xn , )
有n+1个分量的向量 哑元或标量因子
( x1 , x2 ,..., xn , )
( x1 / , x2 / ,..., xn / )
齐次坐标表示不是唯一的
1 规格化的齐次坐标
1 2 1 2 1 2 1 2
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
P
y
记为:R(θ)
13
6.2 二维几何变换
放缩变换(scaling transformation)
将点P(x, y)在x方向, y方向分别放缩 sx 和 sy 倍,得到点
P´(x׳, y )׳ x' sx x
y'
sy
y
P S • P
S
sx
0
0
s
y
记为:S(sx, sy)
便于变换合成 连续变换时,可以先得到变换的矩阵
便于硬件实现
19
6.3 齐次坐标
变换的性质
平移和旋转变换具有可加性
T (t x2 , t y2 ) T (t x1 , t y1 ) T (t x1 t x2 , t y1 t y2 )
以坐标原点为放缩参照(基准)点 不仅改变了物体的大小和形状,也改变了它离原点的距离
14
6.2 二维几何变换
利用平矩移阵变计换算:变P换 P后的T (坐tx 标, t y时) ,平移、旋转和放缩变 换分别旋为转:变换:P' R( ) P
放缩变换:P' S(sx , sy ) P
运算不统一,如何统一运算?
10
6.2 二维几何变换
平移变换 (translation transformation)
将点P(x, y)在x轴方向、y轴方向分别平移距离tx,ty,得 到点P´(x׳, y)׳,则
x x tx
y
y ty
矩阵表示: P P T
P
x y
x
P
y
T
tx
t
y
记为:T(tx , ty)
n
cij ail blj l 1
性质:结合律和分配律(不满足交换律)
9
6.1 数学基础
矩阵(续)
矩阵的转置
a11 a12 a1n
A
a21
a22
a2n
am1
am2
amn
a11 a21 am1
AT
a12
a22
a
m
2
a1n
a2n
amn
矩阵的逆
n阶方阵A是可逆的,若存在另一个n阶方阵B,使得 AB=BA=In,称B是A的逆阵,记为B=A-1
U •V V •U
U •V 0 U V
U •U 0 U 0
5
6.1 数学基础
矢量的长度
U
U •U
ux2
u
2 y
uz2
单位矢量 U 1
矢量间的夹角 cos U •V
U •V
矢量的叉积
i U V ux
j uy
k uz
uyvz uz v x
uzv y uxvz
v x v y vz uxv y uyv x
15
6.3 齐次坐标
为什么需要齐次坐标?
对多个点计算多次不同的变换时,分别利用矩阵计算各 变换导致计算量大
运算表示形式不统一
平移为“+” 旋转和放缩为“·”
统一运算形式后,可以先合成变换运算的矩阵,再作用 于图形对象
16
6.3 齐次坐标
定义
Homogeneous Coordinate (x,y)点对应的齐次坐标定义为
第6章 图形几何变换
计算机图形学
计通学院 计算机科学系
1
本章目标
学习如何使图形运动
平移变换、旋转变换和放缩
学会复杂变换的分解与合成 学会使用OpenGL的几何变换函数
2
主要内容
数学基础 二维几何变换 齐次坐标 复合变换 其它变换 三维几何变换 图形对象的几何变换 OpenGL的几何变换函数
旋转变换(续)
x' r cos( )
y'
r
sin(
)
x' r cos cos r sin sin
y'
r
sin
cos
r
cos
sin
x' x cos y sin
y'
x
sin
y cos
x r cos
y
r
sin
矩阵表示为: P R • P
cos R sin
sin
cos
右手法则
6
6.1 数学基础
矩阵(Matrix)
m×n 阶矩阵
a11
A
a21
a12 a1n
a22
a2
n
am1
am2
amn
n阶方阵(m=n)
单位矩阵 n阶方阵,对角线元素为1,
1
In
0
0 1
0 0
其它元素为0
0 0 1
7
6.1 数学基础
矩阵(续)
行向量与列向量
( xh , yh , h) xh hx, yh hy, h 0
(x,y)点对应的齐次坐标为三维空间的一条直线
xh yh
hx hy
标准齐次坐标(x,y,1) zh h
h=0表示无穷远点
17
6.3 齐次坐标
二维变换的矩阵表示
平移变换
x 1 0
y
0
1
1 0 0
t t
x y
x y
记为
T
(t
x
,
t
y
)
x y
1 1
1
旋转变换
x cos
y
sin
1 0
sin cos
0
0 x
x
0
y
记为
R(
)
y
1 1
1
18
齐次坐标
放缩变换
x sx
y
0
0 sy
0 x
x
0
y
记为
S
(
s
x
,
s
y
)
y
1 0 0 11
1
变换具有统一表示形式的优点
11
6.2 二维几何变换
旋转变换(rotation transformation)
如
点P(x, y)的极坐标表示
(r为P 到原点的距离)
x r cos
y
r
sin
绕坐标原点(称为参照点,基准点)旋转角度θ (逆时
针为正,顺时针为负)
x' r cos( )
y'
r
sin(
)
12
6.2 二维几何变换
a1n b1n
a2n
b2n
am1 bm1
am2 bm2
amn
bmn
性质:结合律和交换律
8
6.1 数学基础
矩阵(续)
矩阵的数乘
ka11 ka12 ka1n
kA
ka21
ka22
ka2n
kam1
kam 2
kamn
矩阵的乘法
C (cij )m p Amn Bn p
3
6.1 数学基础
矢量(vector)
连接两个点的有向线段。又称向量 行向量和列向量两种表示
ux
U
u
y
uz
S s s s
x
y
z
矢量和
ux vx
U
V
u
y
v
y
uz vz
4
6.1 数学基础
矢量的数乘
kux
k
•U
ku
y
kuz
矢量的点积
运算 性质
U •V uxvx uyv y uzvz
当m=1时,A退化为行向量[a11, a12, …, a1n] 当n=1时, A退化为列向量[a11, a21, …, am1]T
矩阵的加法
A=(aij)m×n,B=(bij) m×n
A与B的和记为A+B
a11 b11
A
B
(aij
bij )mn
a21
b21
a12 b12
a22 b22