高考理科数学刷题练习压轴题(一)
高考理科数学总复习压轴题目自选练(一)
所以欲证 f(2-x1)+f(x1)>-1,
只需证 F(x)>F(1), x∈ (0,1),
F′(x)= f′(x)-f′(2- x)= 1+ ln x-x- [1+ln(2- x)-2+x] ,
整理得 F′(x)=ln x-ln(2- x)+2(1-x),x∈(0,1). 2 1-x 2
令 m(x)=F′(x),则 m′(x)= x 2-x >0,x∈(0,1),
中, R2=(R-1)2+22,解得 R=52,
所以球 O 的表面积为
4π×
5 2
2=25π,故选
B.
2x2-4x+1,x>0,
12.已知函数 f(x)= ex, x≤ 0,
则 y= f(x)(x∈ R)的图象上关于坐标
原点 O 对称的点共有 ( )
A.0 对
B.1 对
C.2 对
D.3 对
解析:选 C 由题意知, 函数 y=f(x)(x∈R)的图象上关于
P→F2= (2a- m,-
3m-
3a),所以
P→F1·P→F2= 4m2+6ma- a2=4
3 m+4a
2-143a2.
由于
m∈ [-a,0],可知当
m=-
3 4a
时,
P→F1·P→F2取得最小值,此时
3 yP= 4 a;当
m= 0 时, P→F1·P→F2取得最大值,此时
yP=
S2 3a.则S1=
2 对,故选 C. 16.(2019 ·广东百校联考 )已知双曲线 ax22-by22=1(a>0,b>0)的离心率为 2,F1,
F2 分别是双曲线的左、右焦点,点 M (-a,0), N(0,b),点 P 为线段 MN 上的动 点,当 P→F1·P→F2取得最小值和最大值时,△ PF1F2 的面积分别为 S1,S2,则 SS21= ________.
压轴题01 数列压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)
压轴题01数列压轴题题型/考向一:等差数列、等比数列性质的综合题型/考向二:以古文化、实际生活等情境综合题型/考向三:数列综合应用一、等差数列、等比数列的基本公式1.等差数列的通项公式:a n =a 1+(n -1)d ;2.等比数列的通项公式:a n =a 1·q n -1.3.等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;4.等比数列的求和公式:S na 1-a n q1-q ,q ≠1,二、等差数列、等比数列的性质1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列,有a m a n =a p a q =a 2k .2.前n 项和的性质(m ,n ∈N *):对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外).三、数列求和的常用方法热点一分组求和与并项求和1.若数列{c n }的通项公式为c n =a n ±b n ,或c nn ,n 为奇数,n ,n 为偶数,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列的通项公式中有(-1)n 等特征,根据正负号分组求和.热点二裂项相消法求和裂项常见形式:(1)分母两项的差等于常数1(2n -1)(2n +1)=1n (n +k )=(2)分母两项的差与分子存在一定关系2n (2n -1)(2n +1-1)=12n -1-12n +1-1;n +1n 2(n +2)2=141n 2-1(n +2)2.(3)分母含无理式1n +n +1=n +1-n .热点三错位相减法求和如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用其法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.○热○点○题○型一等差数列、等比数列性质的综合1.已知等比数列{}n a 满足123434562,4a a a a a a a a +++=+++=,则11121314a a a a +++=()A .32B .64C .96D .128【答案】B【详解】设{}n a 的公比为q ,则()234561234a a a a q a a a a +++=+++,得22q =,所以()()1051112131412341234264a a a a a a a a q a a a a +++=+++⨯=+++⨯=.故选:B2.已知等比数列{}n a 的公比0q >且1q ≠,前n 项积为n T ,若106T T =,则下列结论正确的是()A .671a a =B .781a a =C .891a a =D .9101a a =【答案】C3.已知等差数列n 满足15,36,数列n 满足12n n n n ++=⋅⋅.记数列{}n b 的前n 项和为n S ,则使0n S <的n 的最小值为()A .8B .9C .10D .11【答案】C【分析】设等差数列{}n a 的公差为d ,则由1536446a a a a =⎧⎨=+⎩得:111141624206a a da d a d =+⎧⎨+=++⎩,解得:1163a d =⎧⎨=-⎩,()1631319n a n n ∴=--=-+,则当6n ≤时,0n a >;当7n ≥时,0n a <;∴当4n ≤时,0n b >;当5n =时,0n b <;当6n =时,0n b >;当7n ≥时,0n b <;11613102080b =⨯⨯= ,213107910b =⨯⨯=,31074280b =⨯⨯=,474128b =⨯⨯=,()54128b =⨯⨯-=-,()()612510b =⨯-⨯-=,()()()725880b =-⨯-⨯-=-,()()()85811440b =-⨯-⨯-=-,()()()9811141232b =-⨯-⨯-=-,()()()101114172618b =-⨯-⨯-=-,532900S ∴=>,915480S =>,1010700S =-<,100S < ,当10n ≥时,0n b <,∴当10n ≥时,0n S <,则使得0n S <的n 的最小值为10.()()()()()()102120232022k k k k k k k T f a f a f a f a f a f a =-+-++- ,1,2k =,则1T ,2T 的大小关系是()A .12T >TB .12T T <C .12T T =D .1T ,2T 的大小无法确定()()101322022...a f a +-)()22023f a -1=125.数列n 满足12,21n n n ++=+∈N ,现求得n 的通项公式为n nn F A B ⎛=⋅+⋅ ⎝⎭⎝⎭,,A B ∈R ,若[]x 表示不超过x 的最大整数,则812⎡⎤⎛⎢⎥ ⎢⎥⎝⎭⎣⎦的值为()A .43B .44C .45D .46○热○点○题○型二以古文化、实际生活等情境综合6.小李年初向银行贷款M 万元用于购房,购房贷款的年利率为P ,按复利计算,并从借款后次年年初开始归还,分10次等额还清,每年1次,问每年应还()万元.A .10MB .()()1010111MP P P ++-C .()10110M P +D .()()99111MP P P ++-7.传说国际象棋发明于古印度,为了奖赏发明者,古印度国王让发明者自己提出要求,发明者希望国王让人在他发明的国际象棋棋盘上放些麦粒,规则为:第一个格子放一粒,第二个格子放两粒,第三个格子放四粒,第四个格子放八粒……依此规律,放满棋盘的64个格子所需小麦的总重量大约为()吨.(1kg麦子大约20000粒,lg2=0.3)A.105B.107C.1012D.1015次日脚痛减一半,六朝才得到其关,要见末日行里数,请公仔细算相还.”其意思为:有一个人一共走了441里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走的路程是()A.7里B.8里C.9里D.10里【答案】A【详解】设第六天走的路程为1a,第五天走的路程为2a……第一天走的路程记为6a,9.2022年10月16日上午10时,中国共产党第二十次全国代表大会在北京人民大会堂隆重开幕.某单位组织全体党员在报告厅集体收看党的二十大开幕式,认真聆听习近平总书记向大会所作的报告.已知该报告厅共有10排座位,共有180个座位数,并且从第二排起,每排比前一排多2个座位数,则最后一排的座位数为()A .23B .25C .27D .2910次差成等差数列的高阶等差数列.现有一个高阶等差数列的前6项分别为4,7,11,16,22,29,则该数列的第18项为()A .172B .183C .191D .211【答案】C【详解】设该数列为{}n a ,则11,(2)n n a a n n --=+≥,○热○点○题○型三数列综合应用11.在数列{}n a 中,11a =,11n n a a n +=++,则122022111a a a +++= ()A .20211011B .40442023C .20212022D .2022202312.已知正项数列{}n a 的前n 项和为n S ,且12a =,()()1133n nn n n n S S S S ++-=+,则2023S =()A .202331-B .202331+C .2022312+D .2023312+13.已知一族曲线n .从点向曲线n 引斜率为(0)n n k k >的切线n l ,切点为(),n n n P x y .则下列结论错误的是()A .数列{}n x 的通项为1n nx n =+B .数列{}n y 的通项为n yC .当3n >时,1352111nn nx x x x x x--⋅⋅⋅>+ Dnnxy <故D 正确.故选:B.14.在数列{}n a 中给定1a ,且函数()()311sin 213n n f x x a x a x +=-+++的导函数有唯一零点,函数()()()112πcos π2g x x x x =-且()()()12918g a g a g a +++= ,则5a =().A .14B .13C .16D .1915.已知函数()()*ln N f x nx x n =+∈的图象在点,fn n ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为n a ,则数列11n n a a +⎧⎫⎨⎩⎭的前n 项和n S 为()A .11n +B .()()235212n nn n +++C .()41nn +D .()()235812n nn n +++。
专题08-1立体几何问题第一季-2019年领军高考数学(理)压轴题必刷题(解析版)
专题08-1立体几何问题第一季1.正三棱柱中,所有棱长均为2,点分别为棱的中点,若过点作一截面,则截面的周长为()A.B.C.D.【答案】B【解析】在正三棱柱中,延长和交于点M,连接,交于点,分别连接,则过点的截面为四边形,如图所示,由,可得,由,则,解得,则,在直角中,,则,在直角中,,则,在直角中,,则,在中,,由余弦定理可得,即,所以截面的周长为,故选B.2.设正方体的棱长为,为的中点,为直线上一点,为平面内一点,则,两点间距离的最小值为()A.B.C.D.【答案】B【解析】结合题意,绘制图形结合题意可知OE是三角形中位线,题目计算距离最短,即求OE与两平行线的距离,,所以距离d,结合三角形面积计算公式可得,解得,故选B。
3.如图,在棱长为2的正方体中,分别是棱的中点,是底面内一动点,若直线与平面不存在公共点,则三角形的面积的最小值为A.B.1 C.D.【答案】C【解析】延展平面,可得截面,其中分别是所在棱的中点,直线与平面不存在公共点,所以平面,由中位线定理可得,在平面内,在平面外,所以平面,因为与在平面内相交,所以平面平面,所以在上时,直线与平面不存在公共点,因为与垂直,所以与重合时最小,此时,三角形的面积最小,最小值为,故选C.4.已知四面体,,则该四面体外接球的半径为()学科_网A.1 B.C.D.【答案】B【解析】设为的中点,由于三角形为直角三角形,故其外心为点,则球心在点的正上方,设球心为,作出图像如下图所示.其中,.由余弦定理得,.设外接球的半径为.在三角形中,由勾股定理得①.在三角形中,由余弦定理得②.在三角形中,由余弦定理可知,由于,则,所以,所以③.联立①②③可得.故选B.5.如图,在三棱锥A-BCD中,平面ABC⊥平面BCD,△BAC与△BCD均为等腰直角三角形,且∠BAC=∠BCD=90°,BC=2,点P是线段AB上的动点,若线段CD上存在点Q,使得异面直线PQ与AC成30°的角,则线段P A长的取值范围是()A.B.C.D.【答案】B【解析】以C为原点,CD为轴,CB为轴,过C作平面BCD的垂线为轴,建立空间直角坐标系,则,设,则,6.已知在长方体ABCD-A1B1C1D1中,AB=2,BC=2,CC1=3,长方体每条棱所在直线与过点C1的平面α所成的角都相等,则直线AC与平面α所成角的余弦值为()A.或1 B.或0 C.或0 D.或1【答案】A在直角△EGC1中,,GC1=2,,∴sin.∴直线AC与平面α所成角的余弦值为1,,故选:A.7.已知直三棱柱中的底面为等腰直角三角形,,点,分别是边,上动点,若直线平面,点为线段的中点,则点的轨迹为A.双曲线的一支(一部分)B.圆弧(一部分)C.线段(去掉一个端点)D.抛物线的一部分【答案】C【解析】如图作平面PQRK∥平面BCC1B1,可得到点M,N为平面PQRK与边,的交点,取MN的中点D,由对称性可知,在梯形NQRM中,D到底面ABC的距离DF始终为三棱柱高的一半,故Q落在到底面ABC距离为三棱柱高的一半的平面上,且与底面ABC平行.又D在底面的投影F始终在底面BC的高线AE上,即Q落在过底面BC的高线且与底面垂直的平面上,所以Q在两个面的交线上,又只能落在柱体内,故为线段OH,又直线平面,所以去掉O点,故选C.8.已知点在同一个球面上,,若四面体体积的最大值为10,则这个球的表面积是A.B.C.D.【答案】B【解析】由,可知,则球心在过中点与面垂直的直线上,因为面积为定值,所以高最大时体积最大,根据球的几何性质可得,当过球心时体积最大,因为四面体的最大体积为10,所以,可得,在中,,,得,球的表面积为,故选B.学科_网9.已知过球面上三点、、的截面到球心距离等于球半径的一半,且,,则球面面积为()A.B.C.D.【答案】C10.有四根长都为2的直铁条,若再选两根长都为的直铁条,使这六根铁条端点处相连能够焊接成一个对棱相等的三棱锥形的铁架,则此三棱锥体积的取值范围是A.B.C.D.【答案】B【解析】构成三棱锥的两条对角线长为a,其他各边长为2,如图所示,AD=BC=a,此时0<a<2.取BC中点为E,连接AE,DE,易得:BC⊥平面ADE,∴,当且仅当4即时,等号成立,∴此三棱锥体积的取值范围是故选:11.已知正三棱锥P—ABC(顶点在底面的射影是底面正三角形的中心)的侧面是顶角为30°腰长为2的等腰三角形,若过A的截面与棱PB,PC分别交于点D和点E,则截面△ADE周长的最小值是()A.B.2C.D.2【答案】D【解析】将三棱锥的侧面展开,如图则将求截面周长的最小值,转化成计算的最短距离,结合题意可知=,,所以,故周长最小值为,故选D.12.过棱长为1的正方体的一条体对角线作截面,则截得正方体的截面面积的最小值是A.1 B.C.D.【答案】D【解析】如图:在正方体中,取的中点,连接,过的平面截得正方体的截面中,当截面为菱形时,截面面积最小,,故选D.学_科网13.已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,,点在线段上,且,过点作球的截面,则所得截面圆面积的取值范围是()A.B.C.D.【答案】B【解析】画出图象如下图所示,其中是球心,是等边三角形的中心.根据等边三角形中心的性质有,,设球的半径为,在三角形中,由勾股定理得,即,解得,故最大的截面面积为.在三角形中,,由余弦定理得.在三角形中,,过且垂直的截面圆的半径,故最小的截面面积为.综上所述,本小题选B.14.正三棱锥的底面边长为,高为,它在六条棱处的六个二面角(侧面与侧面或者侧面与底面)之和记为,则在从小到大的变化过程中,的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大【答案】D15.已知中,,,将绕BC旋转得,当直线PC与平面P AB所成角的正弦值为时,P、A两点间的距离是()A.2 B.4 C.D.【答案】C【解析】画出图像如下图所示.设是的中点,则,过作交于,连接.由于,所以平面,所以,故平面,所以,结合,证得平面.故是直线与平面所成的角.故,.设,则,在直角三角形中,利用面积公式有,解得,即,故,.16.如图,在△ABC中,∠C=90°,PA⊥平面ABC,AE⊥PB于E,AF⊥PC于F,AP=AB=2,∠EAF=α,当α变化时,则三棱锥P﹣AEF体积的最大值是()A.B.C.D.【答案】C【解析】在中,,,底面,得,平面,可得,平面,平面,且面,三棱锥的高为定值,平面平面,中,,,∴当,即时,有最大值为,此时,三棱锥的体积的最大值为,故选C.17.如图所示,四边形ABCD为边长为2的菱形,∠B=60°,点E,F分别在边BC,AB上运动(不含端点),且EF//AC,沿EF把平面BEF折起,使平面BEF⊥底面ECDAF,当五棱锥B-ECDAF的体积最大时,EF的长为()A.1 B.C.D.【答案】B【解析】由可知三角形为等边三角形,设,等边三角形的高为,面积为,所以五边形的面积为,故五棱锥的体积为.令,解得,且当时,单调递增,时,单调递减,故在时取得极大值也即是最大值.故选B. 18.正方体ABCD-A1B1C1D1的棱长为1,平面A1B1C1D1内的一动点P,满足到点A1的距离与到线段C1D1的距离相等,则线段PA长度的最小值为()A.B.C.D.【答案】C【解析】如图,以A1D1的中点为原点,以A1D1为x轴建立如图所示的空间直角坐标系,则.由于动点P到点A1的距离与到线段C1D1的距离相等,所以点P在以点A1为焦点、以C1D1为准线的抛物线上.由题意得,在平面内,抛物线的方程为,设点P的坐标为,则,所以,又,所以当时,有最小值,且.故选C.19.如图,设梯形所在平面与矩形所在平面相交于,若,,,则下列二面角的平面角大小为定值的是( )A.B.C.D.【答案】D【解析】如图,在等腰梯形中,过作于,作于,连接,在梯形中,由,可得,由三角形直角三角形,且,可得,则,,即,则平面,为二面角的平面角,同理可得为二面角的平面角,平面平面,则二面角的平面角为,与均为等腰三角形,,,,即二面角为,故选D.20.如图,已知三棱锥,记二面角的平面角为,直线与平面所成的角为,直线与所成的角为,则()A.B.C.D.【答案】A【解析】不妨设三棱锥D-ABC是棱长为2的正四面体,取AB中点E,DC中点M,AC中点M,连结DE、CE、MN、EN,过D作DO⊥CE,交CE于O,连结AO,则∠DEC=α,∠DAO=β,∠MNE=γ,∴,,∴,取BC中点E,连结DE、AE,则DE⊥BC,AE⊥BC,又DE∩AE=E,∴BC⊥平面AED,∴BC⊥AD,∴γ=90°.∴γ≥α≥β.学_科网故选:A.。
2020-2021新课标高考理科数学压轴大题24分提能培优一(3页)
2020-2021新课标高考理科数学压轴大题24分提能培优一压轴大题24分提高练(一)20.(12分)中共十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了更好地制定2019年关于加快提升农民年收入,力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入(单位:千元)并制成如下频率分布直方图:(1)根据频率分布直方图,估计50位农民的年平均收入x(单位:千元)(同一组数据用该组数据区间的中点值表示).(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布N(μ,σ2),其中μ近似为年平均收入x,σ2近似为样本方差s2,经计算得s2=6.92.利用该正态分布,解决下列问题:①在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?②为了调研“精准扶贫,不落一人”的落实情况,扶贫办随机走访了1 000位农民.若每个农民的年收入相互独立,问:这1 000位农民中年收入不少于12.14千元的人数最有可能是多少?附:参考数据与公式 6.92≈2.63,若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)≈0.682 7;P (μ-2σ<X ≤μ+2σ)≈0.954 5;P (μ-3σ<X ≤μ+3σ)≈0.997 3.解:(1)x =12×0.04+14×0.12+16×0.28+18×0.36+20×0.10+22×0.06+24×0.04=17.40(千元).(2)由题意,X ~N (17.40,6.92).①P (X >μ-σ)≈12+0.682 72≈0.841 4,μ-σ≈17.40-2.63=14.77,即最低年收入大约为14.77千元.②由P (X ≥12.14)=P (X ≥μ-2σ)≈0.5+0.954 52≈0.977 3,得每个农民的年收入不少于12.14千元的事件的概率为0.977 3,记这1 000位农民中年收入不少于12.14千元的人数为ξ,则ξ~B (103,p ),其中p =0.977 3,于是恰好有k 位农民的年收入不少于12.14千元的事件的概率是P (ξ=k )=C k 103p k (1-p )103-k ,从而由P (ξ=k )P (ξ=k -1)=(1 001-k )×p k ×(1-p )>1,得k <1 001p , 而1 001p =978.277 3,所以,当0≤k ≤978时,P (ξ=k -1)<P (ξ=k ),当979≤k ≤1 000时,P (ξ=k -1)>P (ξ=k ),由此可知,在所走访的1 000位农民中,年收入不少于12.14千元的人数最有可能是978.21.(12分)已知函数f (x )=a (ln x +2x )-e x -1x 2(a ∈R ,a 为常数)在(0,2)内有两个极值点x 1,x 2(x 1<x 2).(1)求实数a 的取值范围;(2)求证:x 1+x 2<2(1+ln a ).解:(1)由f (x )=a (ln x +2x )-e x -1x 2,可得f ′(x )=(2-x )(e x -1-ax )x 3,记h (x )=e x-1-ax ,x >0,由题意,知y =h (x )在(0,2)内存在两个零点.∵h ′(x )=e x -1-a ,则当a ≤0时,h ′(x )>0,h (x )在(0,2)上单调递增,h (x )至多有一个零点,不合题意.当a >0时,由h ′(x )=0,得x =1+ln a ,由1+ln a >0,得a >1e .①若1+ln a <2且h (2)>0,即1e <a <e 2时,h (x )在(0,1+ln a )上单调递减,在(1+ln a,2)上单调递增,则h (x )min =h (1+ln a )=-a ln a ,当1e <a ≤1时,h (x )min =-a ln a ≥0,不合题意,舍去.当1<a <e 2时,h (x )min =-a ln a <0,且h (2)>0,x →0时h (x )>0,从而h (x )在(0,1+ln a )和(1+ln a,2)上各有一个零点.∴y =h (x )在(0,2)上存在两个零点.②若1+ln a ≥2,即a ≥e 时,h (x )在(0,2)上单调递减,h (x )至多有一个零点,舍去.③若1+ln a <2且h (2)≤0,即e 2≤a <e 时,h (x )在(0,1+ln a )上有一个零点,而在(1+ln a,2)上没有零点,舍去.综上可得,1<a <e 2,即实数a 的取值范围为(1,e 2).(2)证明:令H (x )=h (x )-h (2+2ln a -x ),0<x <1+ln a ,则H ′(x )=h ′(x )+h ′(2+2ln a -x )=e x -1-a +e 2+2ln a -x -1-a =e x -1+a 2ex -1-2a ≥2a -2a =0, ∴H (x )在(0,1+ln a )上单调递增,从而H (x )<0,即h (x )-h (2+2ln a -x )<0,∴h (x 1)-h (2+2ln a -x 1)<0,而h (x 1)=h (x 2),且h (x )在(1+ln a,2)上单调递增, ∴h (x 2)<h (2+2ln a -x 1),x 2<2+2ln a -x 1,∴x 1+x 2<2(1+ln a ).。
2024年高考数学(新高考压轴卷)(全解全析)
2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。
高考数学理科总复习训练题:——压轴大题突破练1 Word版含答案
压轴大题突破练1.函数与导数1.设函数f (x )=x ln x +ax ,a ∈R .(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)求函数y =f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值; (3)若g (x )=f (x )+12ax 2-(2a +1)x ,求证:a ≥0是函数y =g (x )在x ∈(1,2)时单调递增的充分不必要条件.(1)解 由f (x )=x ln x +ax ,得f ′(x )=ln x +a +1.当a =1时,f ′(x )=ln x +2,f (1)=1,f ′(1)=2,求得切线方程为y =2x -1.(2)解 令f ′(x )=0,得x =e-(a +1). ∴当e -(a +1)≤1e ,即a ≥0时,x ∈⎣⎢⎡⎦⎥⎤1e ,e 时f ′(x )≥0恒成立,f (x )单调递增, 此时f (x )min =f ⎝ ⎛⎭⎪⎫1e =a -1e . 当e -(a +1)≥e ,即a ≤-2时,x ∈⎣⎢⎡⎦⎥⎤1e ,e 时f ′(x )≤0恒成立,f (x )单调递减,此时f (x )min =f (e)=a e +e.当1e <e -(a +1)<e ,即-2<a <0时,x ∈⎣⎢⎡⎭⎪⎫1e ,e -(a +1)时f ′(x )<0,f (x )单调递减;当x ∈(e -(a +1),e)时,f ′(x )>0,f (x )单调递增,此时f (x )min =f (e-(a +1))=-e -(a +1).(3)证明 g ′(x )=f ′(x )+ax -(2a +1)=ln x +ax -a =ln x +a (x -1),∴当a ≥0时,x ∈(1,2)时,ln x >0,a (x -1)≥0, g ′(x )>0恒成立,函数y =g (x )在x ∈(1,2)时单调递增,充分条件成立;又当a =-12时,代入g ′(x )=ln x +a (x -1) =ln x -12x +12. 设h (x )=g ′(x )=ln x -12x +12,x ∈(1,2),则h ′(x )=1x -12=2-x 2x>0恒成立, ∴当x ∈(1,2)时,h (x )单调递增.又h (1)=0,∴当x ∈(1,2)时,h (x )>0恒成立.而h (x )=g ′(x ),∴当x ∈(1,2)时,g ′(x )>0恒成立,函数y =g (x )单调递增,∴必要条件不成立.综上,a ≥0是函数y =g (x )在x ∈(1,2)时单调递增的充分不必要条件.2.设函数f (x )=e x -|x -a |,其中a 是实数.(1)若f (x )在R 上单调递增,求实数a 的取值范围;(2)若函数有极大值点x 2和极小值点x 1,且f (x 2)-f (x 1)≥k (x 2-x 1)恒成立,求实数k 的取值范围.解 (1)因为f (x )=e x -|x -a |=⎩⎪⎨⎪⎧ e x -x +a ,x ≥a ,e x +x -a ,x <a ,则f ′(x )=⎩⎪⎨⎪⎧ e x -1,x ≥a ,e x +1,x <a ,因为f (x )在R 上单调递增,所以f ′(x )≥0恒成立,当x <a 时,f ′(x )=e x +1≥1>0恒成立,当x ≥a 时,f ′(x )=e x-1≥0恒成立, 故应f ′(a )≥0,即a ≥0.(2)由(1)知当a ≥0时,f (x )在R 上单调递增,不符合题意,所以有a <0.此时,当x <a 时,f ′(x )=e x +1≥1>0,f (x )单调递增,当x ≥a 时,f ′(x )=e x -1,令f ′(x )=0,得x =0,所以f ′(x )<0在(a,0)上恒成立,f (x )在(a,0)上单调递减,f ′(x )>0在(0,+∞)上恒成立,f (x )在(0,+∞)上单调递增,所以f (x )极大=f (a )=e a ,f (x )极小=f (0)=1+a ,即a <0符合题意.由f (x 2)-f (x 1)≥k (x 2-x 1)恒成立,可得e a -a -1≥ka 对任意a <0恒成立,设g (a )=e a -(k +1)a -1,求导,得g ′(a )=e a -(k +1),①当k ≤-1时,g ′(a )>0恒成立,g (a )在(-∞,0)上单调递增,又因为g (-1)=1e+k <0,与g (a )>0矛盾;②当k ≥0时,g ′(a )<0在(-∞,0)上恒成立,g (a )在(-∞,0)上单调递减,又因为g (0)=0,所以此时g (a )≥0恒成立,符合题意;③当-1<k <0时,g ′(a )>0在(-∞,0)上的解集为(ln(k +1),0),即g (a )在(ln(k +1),0)上单调递增,又因为g (0)=0,所以g (ln (k +1))<0不符合题意. 综上,实数k 的取值范围为[0,+∞).3.(·江苏泰兴中学质检)已知函数f (x )=13x 3-mx 2-x +13m ,其中m ∈R . (1)求函数y =f (x )的单调区间;(2)若对任意的x 1,x 2∈[-1,1],都有|f ′(x 1)-f ′(x 2)|≤4,求实数m 的取值范围;(3)求函数f (x )的零点个数.解 (1)f ′(x )=x 2-2mx -1,由f ′(x )≥0,得x ≤m -m 2+1或x ≥m +m 2+1;故函数f (x )的单调增区间为(-∞,m -m 2+1),(m +m 2+1,+∞),由f ′(x )<0,得m -m 2-1<x <m +m 2+1,故函数f (x )的单调减区间为(m -m 2+1,m +m 2+1).(2)“对任意的x 1,x 2∈[-1,1],都有|f ′(x 1)-f ′(x 2)|≤4”等价于“函数y =f ′(x ),x ∈[-1,1]的最大值与最小值的差小于等于4”.对于f ′(x )=x 2-2mx -1,对称轴x =m .①当m <-1时,f ′(x )的最大值为f ′(1),最小值为f ′(-1),由f ′(1)-f ′(-1)≤4,即-4m ≤4,解得m ≥-1,舍去;②当-1≤m ≤1时,f ′(x )的最大值为f ′(1)或f ′(-1),最小值为f ′(m ),由⎩⎪⎨⎪⎧ f ′(1)-f ′(m )≤4,f ′(-1)-f ′(m )≤4,即⎩⎪⎨⎪⎧ m 2-2m -3≤0,m 2+2m -3≤0,解得-1≤m ≤1;③当m >1时,f ′(x )的最大值为f ′(-1),最小值为f ′(1),由f ′(-1)-f ′(1)≤4,即4m ≤4,解得m ≤1,舍去.综上,实数m 的取值范围是[-1,1].(3)由f ′(x )=0,得x 2-2mx -1=0,因为Δ=4m 2+4>0,所以y =f (x )既有极大值也有极小值.设f ′(x 0)=0,即x 20-2mx 0-1=0,x 20=2mx 0+1,则f (x 0)=13x 30-mx 20-x 0+13m =-13mx 20-23x 0+13m =-23x 0(m 2+1), 所以极大值f (m -m 2+1)=-23(m -m 2+1)(m 2+1)>0, 极小值f (m +m 2+1)=-23(m +m 2+1)(m 2+1)<0, 故函数f (x )有三个零点.4.已知函数f (x )=x 3+ax 2-a 2x +2,a ∈R .(1)若a <0,试求函数y =f (x )的单调递减区间;(2)若a =0,且曲线y =f (x )在点A ,B (A ,B 不重合)处切线的交点位于直线x =2上,证明:A ,B 两点的横坐标之和小于4;(3)如果对于一切x 1,x 2,x 3∈[0,1],总存在以f (x 1),f (x 2),f (x 3)为三边长的三角形,试求正实数a 的取值范围.(1)解 函数f (x )的导函数f ′(x )=3x 2+2ax -a 2=3(x +a )⎝ ⎛⎭⎪⎫x -a 3. 因为a <0,由f ′(x )<0,解得a 3<x <-a . 所以函数y =f (x )的单调递减区间为⎝ ⎛⎭⎪⎫a 3,-a . (2)证明 当a =0时,f (x )=x 3+2.设在点A (x 1,x 31+2),B (x 2,x 32+2)处的切线交于直线x =2上一点P (2,t ).因为y ′=3x 2,所以曲线y =f (x )在点A 处的切线斜率为k =3x 21,所以在点A 处的切线方程为y -(x 31+2)=3x 21(x -x 1).因为切线过点P ,所以t -(x 31+2)=3x 21(2-x 1),即2x 31-6x 21+(t -2)=0.同理可得2x 32-6x 22+(t -2)=0,两式相减得2(x 31-x 32)-6(x 21-x 22)=0,即(x 1-x 2)(x 21+x 1x 2+x 22)-3(x 1-x 2)(x 1+x 2)=0,因为x 1-x 2≠0,所以x 21+x 1x 2+x 22-3(x 1+x 2)=0,即(x 1+x 2)2-x 1x 2-3(x 1+x 2)=0. 因为x 1x 2≤⎝ ⎛⎭⎪⎫x 1+x 222,且x 1≠x 2, 所以x 1x 2<⎝ ⎛⎭⎪⎫x 1+x 222. 从而上式可以化为(x 1+x 2)2-⎝ ⎛⎭⎪⎫x 1+x 222-3(x 1+x 2)<0,即(x 1+x 2)(x 1+x 2-4)<0. 解得0<x 1+x 2<4,即A ,B 两点的横坐标之和小于4.(3)解 由题设知,f (0)<f (1)+f (1),即2<2(-a 2+a +3),解得-1<a <2.又因为a >0,所以0<a <2.因为f ′(x )=3(x +a )⎝ ⎛⎭⎪⎫x -a 3, 所以当x ∈⎝ ⎛⎭⎪⎫0,a 3时,f ′(x )<0,f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫a 3,1时,f ′(x )>0,f (x )单调递增. 所以当x =a 3时,f (x )有最小值f ⎝ ⎛⎭⎪⎫a 3=-527a 3+2. 从而条件转化为⎩⎪⎨⎪⎧ f ⎝ ⎛⎭⎪⎫a 3=-527a 3+2>0, ①f (0)<2⎝ ⎛⎭⎪⎫-527a 3+2, ②f (1)<2⎝ ⎛⎭⎪⎫-527a 3+2. ③由①得a <33235;由②得a <335,再根据0<a <2,得0<a <335.不等式③化为1027a 3-a 2+a -1<0. 令g (a )=1027a 3-a 2+a -1,则g ′(a )=109a 2-2a +1>0,所以g (a )为增函数. 又g (2)=-127<0,所以当a ∈⎝ ⎛⎭⎪⎪⎫0,335时,g (a )<0恒成立,即③成立. 所以a 的取值范围为⎝ ⎛⎭⎪⎪⎫0,335.。
高考数学压轴题系列训(共六套)(含答案及解析详解)
高考数学压轴题系列训练一(含答案及解析详解)1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,1222a MF MF =++(222222211321a ab ac ∴=∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分)对于双曲线,1222a MF MF '=-=2222221321a abc a '∴=-'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1112312322DC AP x CH a x a ∴==+=-=-+()()()2222221112121132344-23246222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)2.(14分)已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n ,不等式1120111111n n n ab b b +≤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。
高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷理科
高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷(理科)一、选择题共8小题.每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1.已知集合{}()(){}320,130A x x B x x x =∈+>=∈+->R R ,则A∩B=( ) A .(),1-∞-B .21,3⎛⎫--⎪⎝⎭C .2,33⎛⎫- ⎪⎝⎭D .()3,+∞ 2.设不等式组0202x y ≤≤⎧⎨≤≤⎩,表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A .4πB .22π-C .6πD .44π- 3.设,a b ∈R .“0a =”是“复数a bi +是纯虚数”的( ) A .充分而不必要条件B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.执行如图所示的程序框图,输出的S 值为( ) A .2B .4C .8D .165.如图,,9 0ACB CD AB ︒=⊥于点D ,以BD 为直径的圆与BC 交于点E .则( )A .CE CB AD DB ⋅=⋅B .CE CB AD AB ⋅=⋅C .2AD AB CD ⋅=D .2CE EB CD ⋅=6.从0,2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( ) A .24B .18C .12D .67.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+B .30+C .56+D .60+8.某棵果树前n 年的总产量Sn 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,则m 的值为( ) A .5B .7C .9D .11二.填空题共6小题.每小题5分.共30分.9.直线21x t y t =+⎧⎨=--⎩(t 为参数)与曲线3cos 3sin x y αα=⎧⎨=⎩(α为参数)的交点个数为.10.已知{}n a 是等差数列,n S 为其前n 项和.若1231,2a S a ==,则2a =. 11.在ABC 中,若12,7,cos 4a b c B =+==-,则b =. 12.在直角坐标系xOy 中.直线l 过抛物线24y x =的焦点F .且与该抛物线相交于A 、B 两点.其中点A 在x 轴上方.若直线l 的倾斜角为60︒.则OAF 的面积为.13.己知正方形ABCD 的边长为1,点E 是AB 边上的动点.则DE CB ⋅的值为. 14.已知()()()23,()22xf x m x m x mg x =-++=-,若同时满足条件:①,()0x f x ∀∈<R 或()0g x <; ②(),4,()()0x f x g x ∃∈-∞-<. 则m 的取值范围是.三、解答题公6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.已知函数()sin cos sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递增区间.16.如图1,在Rt ABC 中,90C ︒∠=,3,6BC AC ==,,D E 分别是,AC AB 上的点,且DE ∥,2BC DE =,将ADE 沿DE 折起到1A DE 的位置,使1A C CD ⊥,如图2.(1)求证:1A C ⊥平面BCDE ;(2)若M 是1A D 的中点,求CM 与平面1A BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面1A DP 与平面1A BE 垂直?说明理由.17.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨);“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾 400 100 100 可回收物 30 240 30 其他垃圾202060(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,,a b c ,其中0,600a a b c >++=.当数据,,a b c 的方差2s 最大时,写出,,a b c 的值(结论不要求证明),并求此时2s 的值. (求:()()()2222121n S x x x x x x n ⎡⎤=-+-++-⎣⎦,其中x 为数据12,,,n x x x 的平均数)18.已知函数()()23()10,f x ax a g x x bx =+>=+.(1)若曲线()y f x =与曲线()y g x =在它们的交点()1,c 处具有公共切线,求,a b 的值;(2)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(),1-∞-上的最大值.19.已知曲线()()()22:528C m x m y m -+-=∈R(1)若曲线C 是焦点在x 轴点上的椭圆,求m 的取值范围;(2)设4m =,曲线C 与y 轴的交点为,A B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点,M N ,直线1y =与直线BM 交于点G .求证:,,A G N 三点共线.20.设A 是由m×n 个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s (m ,n )为所有这样的数表构成的集合.对于A ∈S (m ,n ),记ri (A )为A 的第ⅰ行各数之和(1≤ⅰ≤m ),Cj (A )为A 的第j 列各数之和(1≤j≤n );记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.(1)如表A,求K(A)的值;1 1 ﹣0.80.1 ﹣0.3 ﹣1(2)设数表A∈S(2,3)形如1 1 ca b ﹣1求K(A)的最大值;(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值.北京市高考数学试卷(理科)参考答案与试题解析一、选择题共8小题.每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1.(•北京)已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},则A∩B=()A.(﹣∞,﹣1)B.(﹣1,)C.﹙,3﹚D.(3,+∞)【分析】求出集合B,然后直接求解A∩B.【解答】解:因为B={x∈R|(x+1)(x﹣3)>0﹜={x|x<﹣1或x>3},又集合A={x∈R|3x+2>0﹜={x|x},所以A∩B={x|x}∩{x|x<﹣1或x>3}={x|x>3},故选:D.2.(•北京)设不等式组,表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A. B.C.D.【分析】本题属于几何概型,利用“测度”求概率,本例的测度即为区域的面积,故只要求出题中两个区域:由不等式组表示的区域和到原点的距离大于2的点构成的区域的面积后再求它们的比值即可.【解答】解:其构成的区域D如图所示的边长为2的正方形,面积为S1=4,满足到原点的距离大于2所表示的平面区域是以原点为圆心,以2为半径的圆外部,面积为=4﹣π,∴在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率P=故选:D.3.(•北京)设a,b∈R.“a=0”是“复数a+bi是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用前后两者的因果关系,即可判断充要条件.【解答】解:因为a,b∈R.“a=O”时“复数a+bi不一定是纯虚数”.“复数a+bi是纯虚数”则“a=0”一定成立.所以a,b∈R.“a=O”是“复数a+bi是纯虚数”的必要而不充分条件.故选B.4.(•北京)执行如图所示的程序框图,输出的S值为()A.2 B.4 C.8 D.16【分析】列出循环过程中S与K的数值,不满足判断框的条件即可结束循环.【解答】解:第1次判断后S=1,k=1,第2次判断后S=2,k=2,第3次判断后S=8,k=3,第4次判断后3<3,不满足判断框的条件,结束循环,输出结果:8.故选C.5.(•北京)如图,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC交于点E.则()A.CE•CB=AD•DB B.CE•CB=AD•AB C.AD•AB=CD2D.CE•EB=CD2【分析】连接DE,以BD为直径的圆与BC交于点E,DE⊥BE,由∠ACB=90°,CD⊥AB于点D,△ACD∽△CBD,由此利用三角形相似和切割线定理,能够推导出CE•CB=AD•BD.【解答】解:连接DE,∵以BD为直径的圆与BC交于点E,∴DE⊥BE,∵∠ACB=90°,CD⊥AB于点D,∴△ACD∽△CBD,∴,∴CD2=AD•BD.∵CD2=CE•CB,∴CE•CB=AD•BD,故选A.6.(•北京)从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中奇数的个数为()A.24 B.18 C.12 D.6【分析】分类讨论:从0、2中选一个数字0,则0只能排在十位;从0、2中选一个数字2,则2排在十位或百位,由此可得结论.【解答】解:从0、2中选一个数字0,则0只能排在十位,从1、3、5中选两个数字排在个位与百位,共有=6种;从0、2中选一个数字2,则2排在十位,从1、3、5中选两个数字排在个位与百位,共有=6种;2排在百位,从1、3、5中选两个数字排在个位与十位,共有=6种;故共有3=18种故选B.7.(•北京)某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6B.30+6C.56+12D.60+12【分析】通过三视图复原的几何体的形状,利用三视图的数据求出几何体的表面积即可.【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S底==10,S后=,S右==10,S左==6.几何体的表面积为:S=S底+S后+S右+S左=30+6.故选:B.8.(•北京)某棵果树前n年的总产量Sn与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高,则m的值为()A.5 B.7 C.9 D.11【分析】由已知中图象表示某棵果树前n年的总产量S与n之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.【解答】解:若果树前n年的总产量S与n在图中对应P(S,n)点则前n年的年平均产量即为直线OP的斜率由图易得当n=9时,直线OP的斜率最大即前9年的年平均产量最高,故选C二.填空题共6小题.每小题5分.共30分.9.(•北京)直线(t为参数)与曲线(α为参数)的交点个数为2.【分析】将参数方程化为普通方程,利用圆心到直线的距离与半径比较,即可得到结论.【解答】解:直线(t为参数)化为普通方程为x+y﹣1=0曲线(α为参数)化为普通方程为x2+y2=9∵圆心(0,0)到直线x+y﹣1=0的距离为d=∴直线与圆有两个交点故答案为:210.(•北京)已知﹛an﹜是等差数列,sn为其前n项和.若a1=,s2=a3,则a2=1.【分析】由﹛an﹜是等差数列,a1=,S2=a3,知=,解得d=,由此能求出a2.【解答】解:∵﹛an﹜是等差数列,a1=,S2=a3,∴=,解得d=,a2==1.故答案为:1.11.(•北京)在△ABC中,若a=2,b+c=7,cosB=﹣,则b=4.【分析】根据a=2,b+c=7,cosB=﹣,利用余弦定理可得,即可求得b的值.【解答】解:由题意,∵a=2,b+c=7,cosB=﹣,∴∴b=4故答案为:412.(•北京)在直角坐标系xOy中.直线l过抛物线y2=4x的焦点F.且与该抛物线相交于A、B两点.其中点A在x轴上方.若直线l的倾斜角为60°.则△OAF的面积为.【分析】确定直线l的方程,代入抛物线方程,确定A的坐标,从而可求△OAF的面积.【解答】解:抛物线y2=4x的焦点F的坐标为(1,0)∵直线l过F,倾斜角为60°∴直线l的方程为:,即代入抛物线方程,化简可得∴y=2,或y=﹣∵A在x轴上方∴△OAF的面积为=故答案为:13.(•北京)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为1.【分析】直接利用向量转化,求出数量积即可.【解答】解:因为====1.故答案为:114.(•北京)已知f(x)=m(x﹣2m)(x+m+3),g(x)=2x﹣2,若同时满足条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣∞,﹣4),f(x)g(x)<0.则m的取值范围是(﹣4,﹣2).【分析】①由于g(x)=2x﹣2≥0时,x≥1,根据题意有f(x)=m(x﹣2m)(x+m+3)<0在x>1时成立,根据二次函数的性质可求②由于x∈(﹣∞,﹣4),f(x)g(x)<0,而g(x)=2x﹣2<0,则f(x)=m(x﹣2m)(x+m+3)>0在x∈(﹣∞,﹣4)时成立,结合二次函数的性质可求【解答】解:对于①∵g(x)=2x﹣2,当x<1时,g(x)<0,又∵①∀x∈R,f(x)<0或g(x)<0∴f(x)=m(x﹣2m)(x+m+3)<0在x≥1时恒成立则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面则∴﹣4<m<0即①成立的范围为﹣4<m<0又∵②x∈(﹣∞,﹣4),f(x)g(x)<0∴此时g(x)=2x﹣2<0恒成立∴f(x)=m(x﹣2m)(x+m+3)>0在x∈(﹣∞,﹣4)有成立的可能,则只要﹣4比x1,x2中的较小的根大即可,(i)当﹣1<m<0时,较小的根为﹣m﹣3,﹣m﹣3<﹣4不成立,(ii)当m=﹣1时,两个根同为﹣2>﹣4,不成立,(iii)当﹣4<m<﹣1时,较小的根为2m,2m<﹣4即m<﹣2成立.综上可得①②成立时﹣4<m<﹣2.故答案为:(﹣4,﹣2).三、解答题公6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(•北京)已知函数f(x)=.(1)求f(x)的定义域及最小正周期;(2)求f(x)的单调递增区间.【分析】通过二倍角与两角差的正弦函数,化简函数的表达式,(1)直接求出函数的定义域和最小正周期.(2)利用正弦函数的单调增区间,结合函数的定义域求出函数的单调增区间即可.【解答】解:=sin2x﹣1﹣cos2x=sin(2x﹣)﹣1 k∈Z,{x|x≠kπ,k∈Z}(1)原函数的定义域为{x|x≠kπ,k∈Z},最小正周期为π.(2)由,k∈Z,解得,k∈Z,又{x|x≠kπ,k∈Z},原函数的单调递增区间为,k∈Z,,k∈Z 16.(•北京)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(1)求证:A1C⊥平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.【分析】(1)证明A1C⊥平面BCDE,因为A1C⊥CD,只需证明A1C⊥DE,即证明DE⊥平面A1CD;(2)建立空间直角坐标系,用坐标表示点与向量,求出平面A1BE法向量,=(﹣1,0,),利用向量的夹角公式,即可求得CM与平面A1BE所成角的大小;(3)设线段BC上存在点P,设P点坐标为(0,a,0),则a∈[0,3],求出平面A1DP法向量为假设平面A1DP与平面A1BE垂直,则,可求得0≤a≤3,从而可得结论.【解答】(1)证明:∵CD⊥DE,A1D⊥DE,CD∩A1D=D,∴DE⊥平面A1CD,又∵A1C⊂平面A1CD,∴A1C⊥DE又A1C⊥CD,CD∩DE=D∴A1C⊥平面BCDE(2)解:如图建系,则C(0,0,0),D(﹣2,0,0),A1(0,0,2),B(0,3,0),E(﹣2,2,0)∴,设平面A1BE法向量为则∴∴∴又∵M(﹣1,0,),∴=(﹣1,0,)∴∴CM与平面A1BE所成角的大小45°(3)解:设线段BC上存在点P,设P点坐标为(0,a,0),则a∈[0,3]∴,设平面A1DP法向量为则∴∴假设平面A1DP与平面A1BE垂直,则,∴3a+12+3a=0,6a=﹣12,a=﹣2∵0≤a≤3∴不存在线段BC上存在点P,使平面A1DP与平面A1BE垂直17.(•北京)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨);“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400 100 100可回收物30 240 30其他垃圾20 20 60(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.(求:S2=[++...+],其中为数据x1,x2, (x)的平均数)【分析】(1)厨余垃圾600吨,投放到“厨余垃圾”箱400吨,故可求厨余垃圾投放正确的概率;(2)生活垃圾投放错误有200+60+20+20=300,故可求生活垃圾投放错误的概率;(3)计算方差可得=,因此有当a=600,b=0,c=0时,有s2=80000.【解答】解:(1)由题意可知:厨余垃圾600吨,投放到“厨余垃圾”箱400吨,故厨余垃圾投放正确的概率为;(2)由题意可知:生活垃圾投放错误有200+60+20+20=300,故生活垃圾投放错误的概率为;(3)由题意可知:∵a+b+c=600,∴a,b,c的平均数为200∴=,∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≥a2+b2+c2,因此有当a=600,b=0,c=0时,有s2=80000.20.(•北京)设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合.对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.(1)如表A,求K(A)的值;1 1 ﹣0.80.1 ﹣0.3 ﹣1(2)设数表A∈S(2,3)形如1 1 ca b ﹣1求K(A)的最大值;(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值.【分析】(1)根据ri(A),Cj(A),定义求出r1(A),r2(A),c1(A),c2(A),c3(A),再根据K(A)为|r1(A)|,|R2(A)|,|R3(A)|,|C1(A)|,|C2(A)|,|C3(A)|中的最小值,即可求出所求.(2)先用反证法证明k(A)≤1,然后证明k(A)=1存在即可;(3)首先构造满足的A={ai,j}(i=1,2,j=1,2,…,2t+1),然后证明是最大值即可.【解答】解:(1)由题意可知r1(A)=1.2,r2(A)=﹣1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=﹣1.8∴K(A)=0.7(2)先用反证法证明k(A)≤1:若k(A)>1则|c1(A)|=|a+1|=a+1>1,∴a>0同理可知b>0,∴a+b>0由题目所有数和为0即a+b+c=﹣1∴c=﹣1﹣a﹣b<﹣1与题目条件矛盾∴k(A)≤1.易知当a=b=0时,k(A)=1存在∴k(A)的最大值为1(3)k(A)的最大值为.首先构造满足的A={ai,j}(i=1,2,j=1,2,…,2t+1):,.经计算知,A中每个元素的绝对值都小于1,所有元素之和为0,且,,.下面证明是最大值.若不然,则存在一个数表A∈S(2,2t+1),使得.由k(A)的定义知A的每一列两个数之和的绝对值都不小于x,而两个绝对值不超过1的数的和,其绝对值不超过2,故A的每一列两个数之和的绝对值都在区间[x,2]中.由于x >1,故A的每一列两个数符号均与列和的符号相同,且绝对值均不小于x﹣1.设A中有g列的列和为正,有h列的列和为负,由对称性不妨设g<h,则g≤t,h≥t+1.另外,由对称性不妨设A的第一行行和为正,第二行行和为负.考虑A的第一行,由前面结论知A的第一行有不超过t个正数和不少于t+1个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于x﹣1(即每个负数均不超过1﹣x).因此|r1(A)|=r1(A)≤t•1+(t+1)(1﹣x)=2t+1﹣(t+1)x=x+(2t+1﹣(t+2)x)<x,故A的第一行行和的绝对值小于x,与假设矛盾.因此k(A)的最大值为.18.(•北京)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a、b的值;(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(﹣∞,﹣1)上的最大值.【分析】(1)根据曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,可知切点处的函数值相等,切点处的斜率相等,故可求a、b的值;(2)根据a2=4b ,构建函数,求导函数,利用导数的正负,可确定函数的单调区间,进而分类讨论,确定函数在区间(﹣∞,﹣1)上的最大值.【解答】解:(1)f(x)=ax2+1(a>0),则f'(x)=2ax,k1=2a,g(x)=x3+bx,则g′(x)=3x2+b,k2=3+b,由(1,c)为公共切点,可得:2a=3+b ①又f(1)=a+1,g(1)=1+b,∴a+1=1+b,即a=b,代入①式可得:.(2)由题设a2=4b ,设则,令h'(x)=0,解得:,;∵a>0,∴,x (﹣∞,﹣﹣))h′(x)+ ﹣+h(x)极大值极小值∴原函数在(﹣∞,﹣)单调递增,在单调递减,在)上单调递增①若,即0<a≤2时,最大值为;②若<﹣,即2<a<6时,最大值为③若﹣1≥﹣时,即a≥6时,最大值为h (﹣)=1综上所述:当a∈(0,2]时,最大值为;当a∈(2,+∞)时,最大值为.19.(•北京)已知曲线C:(5﹣m)x2+(m﹣2)y2=8(m∈R)(1)若曲线C是焦点在x轴点上的椭圆,求m的取值范围;(2)设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.【分析】(1)原曲线方程,化为标准方程,利用曲线C是焦点在x轴点上的椭圆可得不等式组,即可求得m的取值范围;(2)由已知直线代入椭圆方程化简得:(2k2+1)x2+16kx+24=0,△=32(2k2﹣3),解得:,设N(xN,kxN+4),M(xM,kxM+4),G(xG,1),MB方程为:,则,从而可得,=(xN,kxN+2),欲证A,G,N三点共线,只需证,共线,利用韦达定理,可以证明.【解答】(1)解:原曲线方程可化简得:由题意,曲线C是焦点在x轴点上的椭圆可得:,解得:(2)证明:由已知直线代入椭圆方程化简得:(2k2+1)x2+16kx+24=0,△=32(2k2﹣3)>0,解得:由韦达定理得:①,,②设N(xN,kxN+4),M(xM,kxM+4),G(xG,1),MB方程为:,则,∴,=(xN,kxN+2),欲证A,G,N三点共线,只需证,共线即成立,化简得:(3k+k)xMxN=﹣6(xM+xN)将①②代入可得等式成立,则A,G,N三点共线得证.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
2023-2024学年高考数学专项复习——压轴题(附答案)
决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。
高考数学压轴题100题汇总(含答案)
高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。
2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。
答案:an = 2n + 1。
3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。
答案:三角形ABC的面积为12。
4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。
答案:k = ±√3/3,b = ±√6/3。
5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。
答案:f'(x) = 2x/(x^2 + 1)ln2。
6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。
答案:向量a和向量b的夹角为arccos(1/√5)。
7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。
答案:矩阵A的逆矩阵为[4 2; 3 1]。
8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。
答案:f(x)的零点为x = 1和x = 3。
9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。
答案:f(x)在区间[0, π/2]上的最大值为√2。
10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。
答案:f(x)的顶点坐标为(2, 0)。
高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。
答案:f'(x) = e^x 2。
12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 2,极值为f(2) = 0。
高考数学高三模拟考试试卷压轴题高考数学试卷理科001
高考数学高三模拟考试试卷压轴题高考数学试卷(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知i是虚数单位,则(﹣1+i)(2﹣i)=()A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i2.(5分)设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(∁RS)∪T=()A.(﹣2,1] B.(﹣∞,﹣4] C.(﹣∞,1] D.[1,+∞)3.(5分)已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy4.(5分)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)某程序框图如图所示,若该程序运行后输出的值是,则()A.a=4 B.a=5 C.a=6 D.a=76.(5分)已知,则tan2α=()A.B.C. D.7.(5分)设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有则()A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC8.(5分)已知e为自然对数的底数,设函数f(x)=(ex﹣1)(x﹣1)k(k=1,2),则()A.当k=1时,f(x)在x=1处取得极小值B.当k=1时,f(x)在x=1处取得极大值C.当k=2时,f(x)在x=1处取得极小值D.当k=2时,f(x)在x=1处取得极大值9.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.10.(5分)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则()A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)设二项式的展开式中常数项为A,则A=.12.(4分)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于 cm3.13.(4分)设z=kx+y,其中实数x,y满足,若z的最大值为12,则实数k=.14.(4分)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种(用数字作答)15.(4分)设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于.16.(4分)△ABC中,∠C=90°,M是BC的中点,若,则sin∠BAC=.17.(4分)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,an;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.19.(14分)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若,求a:b:c.20.(15分)如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M 是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.21.(15分)如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.22.(14分)已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,求|f(x)|的最大值.高考数学试卷(理科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知i是虚数单位,则(﹣1+i)(2﹣i)=()A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i【分析】直接利用两个复数代数形式的乘法法则,以及虚数单位i的幂运算性质,运算求得结果.【解答】解:(﹣1+i)(2﹣i)=﹣2+i+2i+1=﹣1+3i,故选:B.【点评】本题主要考查两个复数代数形式的乘法,虚数单位i的幂运算性质,属于基础题.2.(5分)设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(∁RS)∪T=()A.(﹣2,1] B.(﹣∞,﹣4] C.(﹣∞,1] D.[1,+∞)【分析】先根据一元二次不等式求出集合T,然后求得∁RS,再利用并集的定义求出结果.【解答】解:∵集合S={x|x>﹣2},∴∁RS={x|x≤﹣2},T={x|x2+3x﹣4≤0}={x|﹣4≤x≤1},故(∁RS)∪T={x|x≤1}故选:C.【点评】此题属于以一元二次不等式的解法为平台,考查了补集及并集的运算,是高考中常考的题型.在求补集时注意全集的范围.3.(5分)已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy【分析】直接利用指数与对数的运算性质,判断选项即可.【解答】解:因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选:D.【点评】本题考查指数与对数的运算性质,基本知识的考查.4.(5分)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】φ=⇒f(x)=Acos(ωx+)⇒f(x)=﹣Asin(ωx)(A>0,ω>0,x∈R)是奇函数.f(x)为奇函数⇒f(0)=0⇒φ=kπ+,k∈Z.所以“f(x)是奇函数”是“φ=”必要不充分条件.【解答】解:若φ=,则f(x)=Acos(ωx+)⇒f(x)=﹣Asin(ωx)(A>0,ω>0,x∈R)是奇函数;若f(x)是奇函数,⇒f(0)=0,∴f(0)=Acos(ω×0+φ)=Acosφ=0.∴φ=kπ+,k∈Z,不一定有φ=“f(x)是奇函数”是“φ=”必要不充分条件.故选:B.【点评】本题考查充分条件、必要条件和充要条件的判断,解题时要认真审题,仔细解答,注意三角函数性质的灵活运用.5.(5分)某程序框图如图所示,若该程序运行后输出的值是,则()A.a=4 B.a=5 C.a=6 D.a=7【分析】根据已知流程图可得程序的功能是计算S=1++…+的值,利用裂项相消法易得答案.【解答】解:由已知可得该程序的功能是计算并输出S=1++…+=1+1﹣=2﹣.若该程序运行后输出的值是,则 2﹣=.∴a=4,故选:A.【点评】本题考查的知识点是程序框图,其中分析出程序的功能是解答的关键.6.(5分)已知,则tan2α=()A.B.C. D.【分析】由题意结合sin2α+cos2α=1可解得sinα,和cosα,进而可得tanα,再代入二倍角的正切公式可得答案.【解答】解:∵,又sin2α+cos2α=1,联立解得,或故tanα==,或tanα=3,代入可得tan2α===﹣,或tan2α===故选:C.【点评】本题考查二倍角的正切公式,涉及同角三角函数的基本关系,属中档题.7.(5分)设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有则()A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC【分析】设||=4,则||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得||2﹣(a+1)||+a≥0恒成立,只需△=(a+1)2﹣4a=(a﹣1)2≤0即可,由此能求出△ABC是等腰三角形,AC=BC.【解答】解:设||=4,则||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,=||•||=||2﹣(a+1)||,•=﹣a,于是•≥••恒成立,整理得||2﹣(a+1)||+a≥0恒成立,只需△=(a+1)2﹣4a=(a﹣1)2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC.故选:D.【点评】本题主要考查了平面向量的运算,向量的模及向量的数量积的概念,向量运算的几何意义的应用,还考查了利用向量解决简单的几何问题的能力8.(5分)已知e为自然对数的底数,设函数f(x)=(ex﹣1)(x﹣1)k(k=1,2),则()A.当k=1时,f(x)在x=1处取得极小值B.当k=1时,f(x)在x=1处取得极大值C.当k=2时,f(x)在x=1处取得极小值D.当k=2时,f(x)在x=1处取得极大值【分析】通过对函数f(x)求导,根据选项知函数在x=1处有极值,验证f'(1)=0,再验证f(x)在x=1处取得极小值还是极大值即可得结论.【解答】解:当k=1时,函数f(x)=(ex﹣1)(x﹣1).求导函数可得f'(x)=ex(x﹣1)+(ex﹣1)=(xex﹣1),f'(1)=e﹣1≠0,f'(2)=2e2﹣1≠0,则f(x)在在x=1处与在x=2处均取不到极值,当k=2时,函数f(x)=(ex﹣1)(x﹣1)2.求导函数可得f'(x)=ex(x﹣1)2+2(ex﹣1)(x﹣1)=(x﹣1)(xex+ex﹣2),∴当x=1,f'(x)=0,且当x>1时,f'(x)>0,当x0<x<1时(x0为极大值点),f'(x)<0,故函数f(x)在(1,+∞)上是增函数;在(x0,1)上是减函数,从而函数f(x)在x=1取得极小值.对照选项.故选:C.【点评】本题考查了函数的极值问题,考查学生的计算能力,正确理解极值是关键.9.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.【分析】不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,∴双曲线C2的离心率e===.故选:D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.10.(5分)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则()A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°【分析】设P1是点P在α内的射影,点P2是点P在β内的射影.根据题意点P1在β内的射影与P2在α内的射影重合于一点,由此可得四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角,根据面面垂直的定义可得平面α与平面β垂直,得到本题答案.【解答】解:设P1=fα(P),则根据题意,得点P1是过点P作平面α垂线的垂足∵Q1=fβ[fα(P)]=fβ(P1),∴点Q1是过点P1作平面β垂线的垂足同理,若P2=fβ(P),得点P2是过点P作平面β垂线的垂足因此Q2=fα[fβ(P)]表示点Q2是过点P2作平面α垂线的垂足∵对任意的点P,恒有PQ1=PQ2,∴点Q1与Q2重合于同一点由此可得,四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角∵∠P1Q1P2是直角,∴平面α与平面β垂直故选:A.【点评】本题给出新定义,要求我们判定平面α与平面β所成角大小,着重考查了线面垂直性质、二面角的平面角和面面垂直的定义等知识,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)设二项式的展开式中常数项为A,则A=﹣10.【分析】先求出二项式展开式的通项公式,再令x的系数等于0,求得r的值,即可求得展开式中的常数项的值.【解答】解:二项式的展开式的通项公式为Tr+1=••(﹣1)r•=(﹣1)r••.令=0,解得r=3,故展开式的常数项为﹣=﹣10,故答案为﹣10.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.12.(4分)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于24 cm3.【分析】先根据三视图判断几何体的形状,再利用体积公式计算即可.【解答】解:几何体为三棱柱去掉一个三棱锥后的几何体,底面是直角三角形,直角边分别为3,4,侧面的高为5,被截取的棱锥的高为3.如图:V=V棱柱﹣V棱锥==24(cm3)故答案为:24.【点评】本题考查几何体的三视图及几何体的体积计算.V椎体=Sh,V柱体=Sh.考查空间想象能力.13.(4分)设z=kx+y,其中实数x,y满足,若z的最大值为12,则实数k=2.【分析】先画出可行域,得到角点坐标.再对k进行分类讨论,通过平移直线z=kx+y得到最大值点A,即可得到答案.【解答】解:可行域如图:由得:A(4,4),同样地,得B(0,2),z=kx+y,即y=﹣kx+z,分k>0,k<0两种情况.当k>0时,目标函数z=kx+y在A点取最大值,即直线z=kx+y在y轴上的截距z最大,即12=4k+4,得k=2;当k<0时,①当k>﹣时,目标函数z=kx+y在A点(4,4)时取最大值,即直线z=kx+y在y轴上的截距z最大,此时,12=4k+4,故k=2.②当k时,目标函数z=kx+y在B点(0,2)时取最大值,即直线z=kx+y在y轴上的截距z最大,此时,12=0×k+2,故k不存在.综上,k=2.故答案为:2.【点评】本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义.14.(4分)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有480种(用数字作答)【分析】按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.【解答】解:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.当C在左边第1个位置时,有A,当C在左边第2个位置时,A和B有C右边的4个位置可以选,有A A,当C在左边第3个位置时,有A A+A A,共为240种,乘以2,得480.则不同的排法共有480种.故答案为:480.【点评】本题考查排列、组合的应用,关键在于明确事件之间的关系,同时要掌握分类讨论的处理方法.15.(4分)设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于不存在.【分析】由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).利用根与系数的关系可得y1+y2=4m,利用中点坐标公式可得=2m,x0=my0﹣1=2m2﹣1.Q (2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).再利用两点间的距离公式即可得出m及k,再代入△判断是否成立即可.【解答】解:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).∴y1+y2=4m,∴=2m,∴x0=my0﹣1=2m2﹣1.∴Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).∵|QF|=2,∴,化为m2=1,解得m=±1,不满足△>0.故满足条件的直线l不存在.故答案为不存在.【点评】本题综合考查了直线与抛物线的位置关系与△的关系、根与系数的关系、中点坐标关系、两点间的距离公式等基础知识,考查了推理能力和计算能力.16.(4分)△ABC中,∠C=90°,M是BC的中点,若,则sin∠BAC=.【分析】作出图象,设出未知量,在△ABM中,由正弦定理可得sin∠AMB=,进而可得cosβ=,在RT△ACM中,还可得cosβ=,建立等式后可得a=b,再由勾股定理可得c=,而sin∠BAC═=,代入化简可得答案.【解答】解:如图设AC=b,AB=c,CM=MB=,∠MAC=β,在△ABM中,由正弦定理可得=,代入数据可得=,解得sin∠AMB=,故cosβ=cos(﹣∠AMC)=sin∠AMC=sin(π﹣∠AMB)=sin∠AMB=,而在RT△ACM中,cosβ==,故可得=,化简可得a4﹣4a2b2+4b4=(a2﹣2b2)2=0,解之可得a=b,再由勾股定理可得a2+b2=c2,联立可得c=,故在RT△ABC中,sin∠BAC====,另解:设∠BAM为α,∠MAC为β,正弦定理得BM:sinα=AM:sin∠BBM:sinβ=AM又有sinβ=cos∠AMC=cos(α+∠B),联立消去BM,AM得sin∠Bcos(α+∠B)=sinα,拆开,将1化成sin2∠B+cos2∠B,构造二次齐次式,同除cos2∠B,可得tanα=,若,则cos∠BAM=,tan∠BAM=,解得tan∠B=,cosB=易得sin∠BAC=.另解:作MD⊥AB交于D,设MD=1,AM=3,AD=2,DB=x,BM=CM=,用△DMB和△CAB相似解得x=,则cosB=,易得sin∠BAC=.故答案为:【点评】本题考查正弦定理的应用,涉及三角函数的诱导公式以及勾股定理的应用,属难题.17.(4分)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于2.【分析】由题意求得=,||==,从而可得===,再利用二次函数的性质求得的最大值.【解答】解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为 2.【点评】本题主要考查两个向量的数量积的运算,求向量的模,利用二次函数的性质求函数的最大值,属于中档题.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,an;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.【分析】(Ⅰ)直接由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式an可求;(Ⅱ)利用(Ⅰ)中的结论,得到等差数列{an}的前11项大于等于0,后面的项小于0,所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|an|的和.【解答】解:(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.当d=﹣1时,an=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.当d=4时,an=a1+(n﹣1)d=10+4(n﹣1)=4n+6.所以an=﹣n+11或an=4n+6;(Ⅱ)设数列{an}的前n项和为Sn,因为d<0,由(Ⅰ)得d=﹣1,an=﹣n+11.则当n≤11时,.当n≥12时,|a1|+|a2|+|a3|+…+|an|=﹣Sn+2S11=.综上所述,|a1|+|a2|+|a3|+…+|an|=.【点评】本题考查了等差数列、等比数列的基本概念,考查了等差数列的通项公式,求和公式,考查了分类讨论的数学思想方法和学生的运算能力,是中档题.19.(14分)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若,求a:b:c.【分析】(1)ξ的可能取值有:2,3,4,5,6,求出相应的概率可得所求ξ的分布列;(2)先列出η的分布列,再利用η的数学期望和方差公式,即可得到结论.【解答】解:(1)由题意得ξ=2,3,4,5,6,P(ξ=2)==;P(ξ=3)==;P(ξ=4)==;P(ξ=5)==;P(ξ=6)==.故所求ξ的分布列为ξ 2 3 4 5 6P(2)由题意知η的分布列为η 1 2 3PEη==Dη=(1﹣)2+(2﹣)2+(3﹣)2=.得,解得a=3c,b=2c,故a:b:c=3:2:1.【点评】本题主要考查随机事件的概率和随机变量的分布列、数学期望等概念,同时考查抽象概括、运算能力,属于中档题.20.(15分)如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M 是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.【分析】(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ.根据平行线分线段成比例定理结合三角形的中位线定理证出四边形OPQF是平行四边形,从而PQ∥OF,再由线面平行判定定理,证出PQ∥平面BCD;(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH.根据线面垂直的判定与性质证出BM⊥CH,因此∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°.设∠BDC=θ,用解直角三角形的方法算出HG和CG关于θ的表达式,最后在Rt△CHG中,根据正切的定义得出tan∠CHG==,从而得到tanθ=,由此可得∠BDC.【解答】(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ∵△ACD中,AQ=3QC且DF=3CF,∴QF∥AD且QF=AD∵△BDM中,O、P分别为BD、BM的中点∴OP∥DM,且OP=DM,结合M为AD中点得:OP∥AD且OP=AD∴OP∥QF且OP=QF,可得四边形OPQF是平行四边形∴PQ∥OF∵PQ⊄平面BCD且OF⊂平面BCD,∴PQ∥平面BCD;(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH∵AD⊥平面BCD,CG⊂平面BCD,∴AD⊥CG又∵CG⊥BD,AD、BD是平面ABD内的相交直线∴CG⊥平面ABD,结合BM⊂平面ABD,得CG⊥BM∵GH⊥BM,CG、GH是平面CGH内的相交直线∴BM⊥平面CGH,可得BM⊥CH因此,∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°设∠B DC=θ,可得Rt△BCD中,CD=BDcosθ=2cosθ,CG=CDsinθ=sinθcosθ,BG=BCsinθ=2sin2θRt△BMD中,HG==;Rt△CHG中,tan∠CHG==∴tanθ=,可得θ=60°,即∠BDC=60°【点评】本题在底面为直角三角形且过锐角顶点的侧棱与底面垂直的三棱锥中求证线面平行,并且在已知二面角大小的情况下求线线角.着重考查了线面平行、线面垂直的判定与性质,解直角三角形和平面与平面所成角求法等知识,属于中档题.21.(15分)如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.【分析】(1)由题意可得b=1,2a=4,即可得到椭圆的方程;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.利用点到直线的距离公式和弦长公式即可得出圆心O 到直线l1的距离和弦长|AB|,又l2⊥l1,可得直线l2的方程为x+kx+k=0,与椭圆的方程联立即可得到点D的横坐标,即可得出|PD|,即可得到三角形ABD的面积,利用基本不等式的性质即可得出其最大值,即得到k的值.【解答】解:(1)由题意可得b=1,2a=4,即a=2.∴椭圆C1的方程为;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.又圆的圆心O(0,0)到直线l1的距离d=.∴|AB|==.又l2⊥l1,故直线l2的方程为x+ky+k=0,联立,消去y得到(4+k2)x2+8kx=0,解得,∴|PD|=.∴三角形ABD的面积S△==,令4+k2=t>4,则k2=t﹣4,f(t)===,∴S△=,当且仅,即,当时取等号,故所求直线l1的方程为.【点评】本题主要考查了椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,同时考查了推理能力和计算能力及分析问题和解决问题的能力.22.(14分)已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,求|f(x)|的最大值.【分析】(1)求出原函数的导函数,求出函数取x=1时的导数值及f(1),由直线方程的点斜式写出切线方程;(2)求出原函数的导函数,分a≤0,0<a<1,a≥1三种情况求|f(x)|的最大值.特别当0<a<1时,仍需要利用导数求函数在区间(0,2)上的极值,然后在根据a的范围分析区间端点值与极值绝对值的大小.【解答】解:(1)因为f(x)=x3﹣3x2+3ax﹣3a+3,所以f′(x)=3x2﹣6x+3a,故f′(1)=3a﹣3,又f(1)=1,所以所求的切线方程为y=(3a﹣3)x﹣3a+4;(2)由于f′(x)=3(x﹣1)2+3(a﹣1),0≤x≤2.故当a≤0时,有f′(x)≤0,此时f(x)在[0,2]上单调递减,故|f(x)|max=max{|f(0)|,|f(2)|}=3﹣3a.当a≥1时,有f′(x)≥0,此时f(x)在[0,2]上单调递增,故|f(x)|max=max{|f(0)|,|f(2)|}=3a﹣1.当0<a<1时,由3(x﹣1)2+3(a﹣1)=0,得,.所以,当x∈(0,x1)时,f′(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,f′(x)<0,函数f(x)单调递减;当x∈(x2,2)时,f′(x)>0,函数f(x)单调递增.所以函数f(x)的极大值,极小值.故f(x1)+f(x2)=2>0,.从而f(x1)>|f(x2)|.所以|f(x)|max=max{f(0),|f(2)|,f(x1)}.当0<a<时,f(0)>|f(2)|.又=故.当时,|f(2)|=f(2),且f(2)≥f(0).又=.所以当时,f(x1)>|f(2)|.故.当时,f(x1)≤|f(2)|.故f(x)max=|f(2)|=3a﹣1.综上所述|f(x)|max=.【点评】本题考查了利用导数研究曲线上某点处的切线方程,考查了利用导数求闭区间上的最值,考查了分类讨论的数学思想方法,正确的分类是解答(2)的关键,此题属于难题.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
2021-2022年高考压轴卷数学(理科)含解析
2021年高考压轴卷数学(理科)含解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知,其中是实数,是虚数单位,则的共轭复数为()A. B. C. D.2.已知函数,,且,,,则的值为A.正B.负C.零D.可正可负3.已知某几何体的三视图如下,则该几何体体积为()A.4+ B.4+ C.4+ D.4+4.如图所示为函数π()2sin()(0,0)2f x xωϕωϕ=+>≤≤的部分图像,其中A,B两点之间的距离为5,那么( )A.-1 B.C.D.15.(5分)已知两条不重合的直线m、n和两个不重合的平面α、β,有下列命题:①若m⊥n,m⊥α,则n∥α;②若m⊥α,n⊥β,m∥n,则α∥β;③若m、n是两条异面直线,mα,nβ,m∥β,n∥α,则α∥β;④若α⊥β,α∩β=m,nβ,n⊥m,则n⊥α.其中正确命题的个数是()A.1B.2C.3D.46.设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为A. B.C. D.7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是()A.B.C.D.8.已知定义在R上的偶函数f(x)满足f(1+x)=f(1﹣x),且x∈[0,1]时,,则方程在区间[﹣3,3]上的根的个数为()A.5B.4C.3D.2二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡的相应位置.9.已知集合{}{}22,1,3,3,21,1A a aB a a a=+-=--+,若,则实数的值为________________.10.已知如图所示的流程图(未完成),设当箭头a指向①时输出的结果S=m,当箭头a指向②时,输出的结果S=n,求m+n的值.11.若是等差数列的前项和,且,则的值为.12.展开式中有理项共有项.13.在平面直角坐标系中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是_______14.设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.15.已知向量)4cos,4(cos),1,4sin3(2xxnxm==.记(I)求的周期;(Ⅱ)在ABC中,角A、B、C的对边分别是a、b、c,且满足(2a—c)B=b,若,试判断ABC的形状.16.在一次对某班42名学生参加课外篮球、排球兴趣小组(每人参加且只参加一个兴趣小组)情况调查中,经统计得到如下2×2列联表:(单位:人)篮球排球总计男同学16 6 22女同学8 12 20总计24 18 42(Ⅰ)据此判断是否有95%的把握认为参加“篮球小组”或“排球小组”与性别有关? (Ⅱ)在统计结果中,如果不考虑性别因素,按分层抽样的方法从两个兴趣小组中随机抽取7名同学进行座谈.已知甲、乙、丙三人都参加“排球小组”. ①求在甲被抽中的条件下,乙丙也都被抽中的概率;②设乙、丙两人中被抽中的人数为X ,求X 的分布列及数学期望E(X). 下面临界值表供参考:0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828参考公式:2()()()()()n ad bc K a b c d a c b d -=++++命题意图:考查分类变量的独立性检验,条件概率,随机变量的分布列、数学期望等,中等题.17.已知正四棱柱中,. (Ⅰ)求证:;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在点,使得平面平面,若存在,求出的值;若不存在,请说明理由.18.已知椭圆的左右焦点分别为,点为短轴的一个端点,. (Ⅰ)求椭圆的方程;(Ⅱ)如图,过右焦点,且斜率为的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为. 求证: 为定值.19.已知数列的各项均为正数,记,,342(),1,2,n C n a a a n +=+++= .(Ⅰ)若,且对任意,三个数组成等差数列,求数列的通项公式.(Ⅱ)证明:数列是公比为的等比数列的充分必要条件是:对任意,三个数组成公比为的等比数列.20.已知函数().(Ⅰ)当时,求的图象在处的切线方程;(Ⅱ)若函数在上有两个零点,求实数的取值范围;(Ⅲ)若函数的图象与轴有两个不同的交点,且, 求证:(其中是的导函数).xx北京市高考压轴卷数学理word版参考答案1.【答案】D【解析】1()1,2,1,12xx xi yi x yi=-=-∴==+故选D.2.【答案】B【解析】∵,∴函数在R上是减函数且是奇函数,∵,∴,∴,∴,∴,同理:,,∴.3.【答案】A【解析】该几何体是一个圆柱与一个长方体的组成,其中重叠了一部分,所以该几何体的体积为52213422πππ⨯⨯+-=+.故选A.4.【答案】A.【解析】5.【答案】C【解析】①若m⊥n,m⊥α,则n可能在平面α内,故①错误②∵m⊥α,m∥n,∴n⊥α,又∵n⊥β,∴α∥β,故②正确③过直线m作平面γ交平面β与直线c,∵m、n是两条异面直线,∴设n∩c=O,∵m∥β,mγ,γ∩β=c∴m∥c,∵mα,cα,∴c∥α,∵nβ,cβ,n∩c=O,c∥α,n∥α∴α∥β;故③正确④由面面垂直的性质定理:∵α⊥β,α∩β=m,nβ,n⊥m,∴n⊥α.故④正确故正确命题有三个,故选C6.【答案】C.【解析】由,得:,即,令,则当时,,即在是减函数,,,,在是减函数,所以由得,,即,故选7.【答案】C.【解析】设P(m,n ),=(﹣c﹣m,﹣n)•(c﹣m,﹣n)=m2﹣c2+n2,∴m2+n2=2c2,n2=2c2﹣m2①.把P(m,n )代入椭圆得b2m2+a2n2=a2b2②,把①代入②得m2=≥0,∴a2b2≤2a2c2,b2≤2c2,a2﹣c2≤2c2,∴≥.又m2≤a2,∴≤a2,∴≤0,a2﹣2c2≥0,∴≤.综上,≤≤,故选C.8.【答案】A.【解析】由f(1+x)=f(1﹣x)可得函数f(x)的图象关于x=1对称,方程在区间[﹣3,3]根的个数等价于f(x)与y=图象的交点的个数,而函数y=图象可看作y=的图象向下平移1个单位得到,作出它们的图象如图:可得两函数的图象有5个交点,故选A【解析】①若a-3=-3,则a=0,此时:}1,1,3{},3,1,0{--=-=B A ,,与题意不符,舍 ②若2a-1=-3,则a=-1,此时: }2,4,3{},3,1,0{--=-=B A ,,a=-1 ③若a2+1=-3,则a 不存在 综上可知:a=-1 10. 【答案】20.【解析】当箭头指向①时,计算S 和i 如下. i =1,S =0,S =1; i =2,S =0,S =2; i =3,S =0,S =3; i =4,S =0,S =4; i =5,S =0,S =5; i =6结束. ∴S=m =5.当箭头指向②时,计算S 和i 如下. i =1,S =0, S =1; i =2,S =3; i =3,S =6; i =4,S =10; i =5,S =15; i =6结束. ∴S=n =15. ∴m+n =20. 11. 【答案】44【解析】由83456786520S S a a a a a a -=++++==,解得,又由611111611211()114422a a a S a ⨯+====【解析】展开式通项公式为T r+1==若为有理项时,则为整数,∴r=0、6、12,故展开式中有理项共有3项, 故答案为:3 13.【答案】4.【解析】设过坐标原点的一条直线方程为,因为与函数的图象交于P 、Q 两点,所以,且联列解得22,2,,2P k Q k k k ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎝,所以()222122284PQ kk k k ⎛⎫⎛⎫=+=+≥ ⎪ ⎪ ⎪⎝⎭⎝⎭14. 【答案】【解析】(1)a=1时,代入题中不等式明显不成立.(2)a ≠1,构造函数y 1=(a ﹣1)x ﹣1,y 2=x 2﹣ax ﹣1,它们都过定点P (0,﹣1). 考查函数y 1=(a ﹣1)x ﹣1:令y=0,得M (,0), ∴a >1;考查函数y 2=x 2﹣ax ﹣1,显然过点M (,0),代入得:,解之得:a=,或a=0(舍去). 故答案为:15. 【解析】2311()3cos cos cos 4442222xx x x x f x +=++ (I )(Ⅱ 根据正弦定理知:()2cos cos (2sin sin )cos sin cos a c B b C A C B B C -=⇒-=12sin cos sin()sin cos 23A B B C A B B π⇒=+=⇒=⇒= ∵ ∴ 113sin 262263A A πππ+⎛⎫+++= ⎪⎝⎭或或而,所以,因此ABC 为等边三角形.……………12分 16. 【解析】(Ⅰ)由表中数据得K 2的观测值k 42×(16×12-8×6)224×18×20×2225255≈4.582>3.841. ……2分所以,据此统计有95%的把握认为参加“篮球小组”或“排球小组”与性别有关.……4分 (Ⅱ)①由题可知在“排球小组”的18位同学中,要选取3位同学. 方法一:令事件A 为“甲被抽到”;事件B 为“乙丙被抽到”,则 P(A∩B),P(A).所以P(B|A)P(A∩B )P(A)217×16 1136. ……7分方法二:令事件C 为“在甲被抽到的条件下,乙丙也被抽到”, 则P(C)217×161136.②由题知X 的可能值为0,1,2.依题意P(X0)3551;P(X1)517;P(X2)151.从而X 的分布列为……10分 于是E(X)0×3551+1×517+2×151175113. ……12分17. 【解析】证明:(Ⅰ)因为为正四棱柱,所以平面,且为正方形. ………1分 因为平面,所以. ………2分 因为,所以平面. ………3分因为平面,所以. ………4分 (Ⅱ) 如图,以为原点建立空间直角坐标系.则11(0,0,0),(2,0,0),(2,2,0),(0,2,0),(2,0,4),(2,2,4),D A B C A B………5分所以111(2,0,0),(0,2,4)D A DC ==-. 设平面的法向量. 所以 .即……6分 令,则. 所以.由(Ⅰ)可知平面的法向量为.……7分所以10cos ,5522DB <>==⋅n . ……8分 因为二面角为钝二面角,所以二面角的余弦值为. ………9分 (Ⅲ)设为线段上一点,且.因为2221222(,2,),(,2,4)CP x y z PC x y z =-=---.所以222222(,2,)(,2,4)x y z x y z λ-=---. ………10分 即.所以. ………11分 设平面的法向量. 因为4(0,2,),(2,2,0)1DP DB λλ==+,所以 .即3333420,1220y z x y λλ⎧+=⎪+⎨⎪+=⎩. ………12分 令,则.所以. ………13分若平面平面,则. 即,解得.所以当时,平面平面. ………14分18. 【解析】(Ⅰ)由条件…………2分故所求椭圆方程为. …………4分 (Ⅱ)设过点的直线方程为:. …………5分由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩可得:01248)34(2222=-+-+k x k x k …………6分因为点在椭圆内,所以直线和椭圆都相交,即恒成立. 设点,则34124,34822212221+-=+=+k k x x k k x x . …………8分因为直线的方程为:,直线的方程为:, ………9分 令,可得,,所以点的坐标. ………10分直线的斜率为12121()0222'31y y x x k +---=-122112121212()42()4x y x y y y x x x x +-+=⋅-++ 1212121223()4142()4kx x k x x k x x x x -++=⋅-++ …………12分 2222222241282341434341284244343k k k k k k k k k k k -⋅-⋅+++=⋅--⋅+++所以为定值. …………13分19. 【解析】 (Ⅰ) 因为对任意,三个数是等差数列,所以()()()()B n A n C n B n -=-. ………1分 所以, ………2分 即. ………3分所以数列是首项为1,公差为4的等差数列. ………4分 所以1(1)443n a n n =+-⨯=-. ………5分 (Ⅱ)(1)充分性:若对于任意,三个数组成公比为的等比数列,则()(),()()B n qA n C n qB n ==. ………6分所以[]()()()(),C n B n q B n A n -=-得即. ………7分因为当时,由可得, ………8分所以. 因为,所以.即数列是首项为,公比为的等比数列, ………9分 (2)必要性:若数列是公比为的等比数列,则对任意,有 . ………10分 因为,所以均大于.于是12)2311212(......(),()......n n n nq a a a a a a B n q A n a a a a a a +++++++===++++++ ………11分 231)342231231(......(),()......n n n n q a a a a a a C n q B n a a a a a a ++++++++++===++++++ ………12分即==,所以三个数组成公比为的等比数列.………13分综上所述,数列是公比为的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数组成公比为的等比数列. ………14分20. 【解析】(Ⅰ)当时,,,切点坐标为,切线的斜率,则切线方程为,即. ···························································································· 2分(Ⅱ),则22(1)(1)()2x x g x x xx-+-'=-=,∵,故时,.当时,;当时,.故在处取得极大值. ··················································································································· 4分 又,,,则,∴在上的最小值是. ··················································································································· 6分 在上有两个零点的条件是解得,∴实数的取值范围是. ··············································································································· 8分(Ⅲ)∵的图象与轴交于两个不同的点, ∴方程的两个根为,则两式相减得1212122(ln ln )()x x a x x x x -=+--.又,,则1212124()()2x x f x x a x x +'=-+++. 下证(*),即证明,,∵,∴,即证明在上恒成立.·································································································· 10分∵22222(1)2(1)114(1)()(1)(1)(1)t t t u t t t tt t t -+---'=+=-=+++,又,∴, ∴在上是增函数,则,从而知, 故(*)式<0,即成立………….12分。
高考数学高三模拟试卷试题压轴押题高三数学理科
高考数学高三模拟试卷试题压轴押题高三数学(理科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
把答案填在答题卡上对应题号后的框内,答在试卷上无效。
1. 已知复数1i2iz -=-(其中i 为虚数单位),则复数z 在坐标平面内对应的点在 A .第一象限B .第二象限C .第三象限D .第四象限 2.集合{|(x 1)(x 2)0},A {1,2}A x B =--==则满足条件的集合B 有A .1个B .2个C .3个D .4个3. 一首小诗《数灯》,诗曰:“远望灯塔高7层,红光点点倍加增,顶层数来有4盏,塔上共有多少灯?”答曰:A .252 盏B. 256盏C. 508 盏D. 512盏4.已知04πθ<<,则双曲线22221222222:1:1cos sin sin sin tan x y y x C C θθθθθ-=-=与的 A .离心率相等B. 焦距相等 C .实轴长相等D. 虚轴长相等5.在四边形ABCD 中,“R ∈∃λ,使得,AB DC AD BC λλ==”是“四边形ABCD 为平行四边形”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.已知点(,)(0,0)M a b a b >>是圆22:1C x y +=内任意一点,点(,)P x y 是圆上任意一点,则1ax by +-的值A .一定等于0B .一定是负数C .一定是正数D .可能为正数也可能为负数 7.一个棱锥的三视图如右图,则该棱锥的全面积是 A .64+B .224+C .624+D .24+8.斜率为1的直线l 经过抛物线24y x =的焦点F ,且与 抛物线相交于A 、B 两点,则线段AB 的长为 A. B. C..8 9.已知(0,)x π∈,且1cos()43x π-=,则tan x = A.9-77+-B. 18-77+- 第7题图侧视图 俯视图C.10. 已知数列{}n a 的前n 项和2211+⎪⎭⎫⎝⎛--=-n n n a S ,n n n n n n a a c a b -==+12,2,()*∈N n 则A .{}n b 是等差数列,{}n c 是等比数列; B.{}n b 是等比数列,{}n c 是等差数列; C .{}n b 是等差数列,{}n c 是等差数列; D. {}n b 是等比数列,{}n c 是等比数列.11. 方程[]x =x a +有解([]x 表示不大于x 的最大整数),则参数a 的取值集合是 A .{}01a a ≤< B.{}10a a -<≤ C.{}11a a -<< D. {},a a R a Z ∈∉12. 如果存在正实数a ,使得()f x a -为奇函数,()f x a +为偶函数,我们称函数()f x 为“和谐函数”.给出下列四个函数:①2()(1)5f x x =-+②()cos 2()4f x x π=- ③()sin cos f x x x =+④()ln|1|f x x =+,其中“和谐函数”的个数为 A. 1 B. 2 C. 3 D. 4二、填空题:本大题共4小题,每小题5分,共20分。
高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷 理科
高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷 (理科)一、选择题1、设i 为虚数单位,z 表示复数z 的共轭复数,若1z i =+,则zi z i+⋅=( ) A 、2- B 、2i - C 、2 D 、2i 2、“0x <”是“()ln 10x +<的 ( )A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分又不必要条件 3、如图所示,程序框图(算法流程图)的输出结果是( )A 、34B 、55C 、78D 、894、以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度。
已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( ) A、、5、,x y 满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若z y ax =-取得最大值的最优解不唯一,则实数a 的值为( ) A 、12或-1 B 、12或2 C 、2或1 D 、2或-1 6、设函数()f x 满足()()sin f x f x x π+=+,当0x π≤<时,()0f x =,则236f π⎛⎫=⎪⎝⎭( ) A 、12BC 、0D 、12-7、一个多面体的三视图如图所示,则该多面体的表面积为( ) A、21 B、18、21 D 、188、从正方体六个面的对角线中任取两条作为一对,其中所成的角为60o 的共有( )A 、24对B 、30对C 、48对D 、60对9、若函数()12f x x x a =+++的最小值为3,则实数a 的值为( )A 、5或8 B 、1-或5 C 、4-或-1 D 、8或-410、在平面直角坐标系xOy 中,已知向量,a b ,1,0a b a b ==⋅=,点Q 满足()2OQ a b =+,曲1 1 1 1 1 1线{}cos sin ,02C P OP a b θθθπ==+≤<,区域{}0,P r PQ R r R Ω=<≤≤<,若C ⋂Ω为两段分离的曲线,则( )A 、13r R <<<B 、13r R <<≤C 、13r R ≤<<D 、13r R <<< 二、填空题11、若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ个单位,所得的图像关于y 轴对称,则ϕ的最小正值为 。
高考数学高三模拟试卷试题压轴押题普通高等学校招生全国统一考试数学理工类
高考数学高三模拟试卷试题压轴押题普通高等学校招生全国统一考试数学(理工类) 本试卷分第一部分(选择题)和第二部分(非选择题)。
第一部分1至2页,第二部分3至4页,共4页.考生作答时,须将答案答在答题卡上及试题卷,草稿纸上答题无效,满分150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回. 参考公式:如果事件A 、B 互斥,那么球的表面积公式 P(A+B) =P(A)+P(B) 24s R π=如果事件A 、B 相互独立,那么其中R 表示球的半径 P(A·B)=P(A)·P(B)球的体积公式如果事件A 在一次试验中发生的概率是p ,那么243v R π=在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径n ()(1)(0,1,2,...)k kn k n P k C p p k n -=-=第一部分(选择题 共60分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上。
2.本部分共12小题,每小题5分,共60分。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5)4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是 (A)16(B)13 (C)12(D )23答案:B解析:从31.5到43.5共有22,所以221663P ==。
2、复数1i i-+=(A)2i - (B )12i (C )0 (D )2i答案:A解析:12i i i i i-+=--=-3、1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 (A)12l l ⊥,23l l ⊥13l l ⇒ (B )12l l ⊥,23l l ⇒13l l ⊥ (C)233l l l ⇒1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 答案:B解析:A 答案还有异面或者相交,C 、D 不一定 4、如图,正六边形ABCDEF 中,BA CD EF ++=(A)0 (B)BE (C)AD (D)CF 答案D解析:BA CD EF BA AF EF BF EF CE EF CF ++=++=+=+= 5、5函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的(A)充分而不必要的条件 (B)必要而不充分的条件 (C)充要条件 (D)既不充分也不必要的条件答案:B解析:连续必定有定义,有定义不一定连续。
2023年高考数学理科模拟卷01(原卷版)--2023年高考数学压轴题专项训练(全国通用)
2023年高考模拟卷(一)理科数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2|230A x x x =∈--≤N ,2023{R |log 0}B x x =∈≤,则A B = ()A .](0,1B .[0,1]C .{1}D .∅2.a b >的一个充要条件是()A .11a b <B .22ac bc >C .22log log a b>D .1.7 1.7a b>3.已知向量()1,a m =,()1,0b =- ,且6-=⋅+ a b a b ,则a =r ()A B .CD .4.将顶点在原点,始边为x 轴非负半轴的锐角α的终边绕原点逆时针转过π4后,交单位圆于点3,5P y ⎛⎫- ⎪⎝⎭,那么cos α的值为()A .210B .25C .7210D .92105.中国古代数学著作《九章算术》是人类科学史上应用数学的最早巅峰.书里记载了这样一个问题“今有女子善织,日自倍,五日织五尺.问日织几何?”译文是“今有一女子很会织布,每日加倍增长,5天共织5尺,问每日各织布多少尺?”,则该女子第二天织布()A .531尺B .1031尺C .1516尺D .516尺6.立德学校于三月份开展学雷锋主题活动,某班级5名女生和2名男生,分成两个小组去两地参加志愿者活动,每小组均要求既要有女生又要有男生,则不同的分配方案有()种.A .20B .4C .60D .807.法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆()2222:10x y C a b a b +=>>的蒙日圆方程为2222x y a b +=+,现有椭圆222:116x y C a +=的蒙日圆上一个动点M ,过点M 作椭圆C 的两条切线,与该蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为41,则椭圆C 的长轴长为()A .5B .10C .6D .128.已知函数()sin()(0)f x x ωϕω=+>是在区间π5π,1836⎛⎫⎪⎝⎭上的单调减函数,其图象关于直线π36x =-对称,且f (x )的一个零点是7π72x =,则ω的最小值为()A .2B .12C .4D .89.在“2,3,5,7,11,13,17,19”这8个素数中,任取2个不同的数,则这两个数之和仍为素数的概率是()A .328B .528C .17D .31410.已知函数()()31bx f x a x x =-++的图象过点()0,1与93,4⎛⎫⎪⎝⎭,则函数()f x 在区间[]1,4上的最大值为()A .32B .73C .54D .8511.已知三棱锥-P ABC 的所有顶点都在球O 的表面上,ABC 是边长为若三棱锥-P ABC 体积的最大值是O 的表面积是()A .100πB .160πC .200πD .320π12.若存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,则实数a 的最小值为()A .2B .1ln2C .ln21-D .11ln2-第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.()22051001i 1i 12i i 1i 2⎡⎤-+⎛⎫⎛⎫+⋅+-=⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦____________14.已知,x y 都是正数,且2x y +=,则4121x y +++的最小值为__________.15.()()321x x +-展开式中2x 的系数为___________.16.已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是__________三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知正项数列{}n a 的前n 项和为n S ,11a =,数列{}n S 是公差为1的等差数列.(1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若存在*N n ∈,使得223n T λλ<-成立,求λ的取值范围.18.如图,在三棱台111ABC A B C -中,面11AAC C ABC ⊥面,145ACA ACB ∠=∠=,124AC BC ==(1)证明:111B C A B ⊥;(2)792,72AC =1AC ,求二面角11A BC B --的余弦值.19.安全教育越来越受到社会的关注和重视.为了普及安全教育,学校组织了一次学生安全知识竞赛,学校设置项目A “地震逃生知识问答”和项目B “火灾逃生知识问答”.甲、乙两班每班分成两组,每组参加一个项目,进行班级对抗赛.每一个比赛项目均采取五局三胜制(即有一方先胜3局即获胜,比赛结束),假设在项目A 中甲班每一局获胜的概率为23,在项目B 中甲班每一局获胜的概率为12,且每一局之间没有影响.(1)求乙班在项目A 中获胜的概率;(2)设乙班获胜的项目个数为X .求X 的分布列及数学期望.20.已知对称轴都在坐标轴上的椭圆C 过点12A ⎛ ⎝⎭与点()2,0B ,过点()1,0的直线l 与椭圆C 交于P ,Q 两点,直线BP ,BQ 分别交直线3x =于E ,F 两点.(1)求椭圆C 的标准方程;(2)PE QF ⋅是否存在最小值?若存在,求出最小值;若不存在,请说明理由.21.已知函数2()2(1)2ln f x x m x m x =-++-,()0,x ∈+∞.(1)讨论()f x 的单调区间;(2)当0m ≥时,试判断函数()f x 的零点个数解:请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin cos sin x y αααα=-⎧⎨=+⎩(α为参数),以O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πcos 6ρθ⎛⎫+= ⎪⎝⎭.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)P 为l 上一点,过P 作曲线C 的两条切线,切点分别为A ,B ,若3APB π∠≥,求点P 横坐标的取值范围.23.已知()3f x x a x =-+-()R a ∈.(1)若1a =,解不等式()9f x ≥;(2)当()0a t t =>时,()f x的最小值为3,若正数m ,n 满足m n t +=,证明:6≤.。
2023高考压轴卷——数学(理)(全国乙卷)含解析
KS5U2023全国乙卷高考压轴卷数学试题(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合1282x A x ⎧⎫=<<⎨⎬⎩⎭∣,{}1,0,1,2B =-,则A B = ()A.{}2 B.{}1,0- C.{}0,1,2 D.{}1,0,1,2-2.设命题:p x ∀∈R ,e 1x x ≥+,则p ⌝是()A.x ∀∈R ,e 1≤+x x B.x ∀∈R ,e 1x x <+C.x ∃∈R ,e 1≤+x x D.x ∃∈R ,e 1x x <+3.已知复数z 满足()1i 2i z -=-,则复数z 的虚部为()A.12B.1i 2C.32D.3i 24.已知△ABC 中,D 为BC 边上一点,且13BD BC =,则AD =()A.1233AC AB +B.2133AC AB +C.1344AC AB +D.3144AC AB +5.已知圆锥的底面半径为1,其侧面展开图为一个半圆,则该圆锥的体积为()A.6B.3π3C.D.π36.如图为甲,乙两位同学在5次数学测试中成绩的茎叶图,已知两位同学的平均成绩相等,则甲同学成绩的方差为()A.4B.2C.D.7.已知30,10,0,0,x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩则x +2y 的最大值为()A.2B.3C.5D.68.函数()4ee x xf x +-=-(e 是自然对数的底数)的图象关于()A.直线e x =-对称B.点(e,0)-对称C.直线2x =-对称D.点(2,0)-对称9.已知数列{}n a 的前n 项和122n n S +=-,若()*5,p q p q +=∈N ,则p q a a =()A.8B.16C.32D.6410.已知点(),P x y 到点()1F 和点)2F 的距离之和为4,则xy ()A.有最大值1B.有最大值4C.有最小值1D.有最小值4-11.如图,在正方体1111ABCD A B C D -中,点M ,N 分别是1A D ,1D B 的中点,则下述结论中正确的个数为()①MN ∥平面ABCD ;②平面1A ND ⊥平面1D MB ;③直线MN 与11B D 所成的角为45︒;④直线1D B 与平面1A ND 所成的角为45︒.A.1B.2C.3D.412.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并且是构成一般不动点定理的基石.简单地讲就是对于满足一定条件的连续函数()f x ,存在点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数.若函数()()e ln xf x x a x =-为“不动点”函数,则实数a 的取值范围是()A.(],0-∞ B.1,e⎛⎤-∞ ⎥⎝⎦C.(],1-∞ D.(],e -∞二、填空题:本题共4小题,每小题5分,共20分.13.已知函数()()2sin 0,08f x A x A πωω⎛⎫=+>> ⎪⎝⎭的图象关于点,22π⎛⎫⎪⎝⎭中心对称,其最小正周期为T ,且322T ππ<<,则ω的值为______.14.已知点()1,0A ,()2,2B ,C 为y 轴上一点,若π4BAC ∠=,则⋅= AB AC ______.15.3D 打印是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术.如图所示的塔筒为3D 线的一部分围绕其旋转轴逐层旋转打印得到的,已知该塔筒(数据均以外壁即塔筒外侧表面计算)的上底直径为6cm ,下底直径为9cm ,高为9cm ,则喉部(最细处)的直径为______cm .16.在数列{}n a 中,11a =,()()*212nn n a a n ++-=∈N .记n S 是数列{}n a 的前n 项和,则4n S =______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,()sin 2cos cos 02B C B C π⎛⎫+++= ⎪⎝⎭,(1)求证:B C =;(2)若3cos 5A =,ABC ∆的外接圆面积为254π,求ABC ∆的周长.18.研究表明,温度的突然变化会引起机体产生呼吸道上皮组织的生理不良反应,从而导致呼吸系统疾病的发生或恶化.某中学数学建模社团成员欲研究昼夜温差大小与该校高三学生患感冒人数多少之间的关系,他们记录了某周连续六天的温差,并到校医务室查阅了这六天中每天高三学生新增患感冒而就诊的人数,得到资料如下:日期第一天第二天第三天第四天第五天第六天昼夜温差x(℃)47891412新增就诊人数y(位)1y2y3y4y5y6y参考数据:6213160iiy==∑,()216256iiy y=-=∑.(1)已知第一天新增患感冒而就诊的学生中有7位女生,从第一天新增的患感冒而就诊的学生中随机抽取3位,若抽取的3人中至少有一位男生的概率为1724,求1y的值;(2)已知两个变量x与y之间的样本相关系数1516r=,请用最小二乘法求出y关于x的经验回归方程ˆˆˆy bx a=+,据此估计昼夜温差为15℃时,该校新增患感冒的学生数(结果保留整数).参考公式:()()()121ni iiniix x y ybx x==--=-∑∑,()()ni ix x y yr--=∑.19.如图,△ABC是正三角形,在等腰梯形ABEF中,//AB EF,12AF EF BE AB===.平面ABC⊥平面ABEF,M,N分别是AF,CE的中点,4CE=.(1)证明://MN平面ABC;(2)求二面角--M AB N的余弦值.20.已知函数()ln e 2e e xf x a x x a =+-+.(1)当e a =时,求曲线() y f x =在点()()1,1f 处的切线方程;(2)若a 为整数,当1x ≥时,()0f x ≥,求a 的最小值.21.已知椭圆()2222:10+x y C a b a b=>>的左焦点为F ,右顶点为A ,离心率为12,M 为椭圆C 上一动点,FAM△面积的最大值为332.(1)求椭圆C 的标准方程;(2)过点M 的直线:1l y kx =+与椭圆C 的另一个交点为N ,P 为线段MN 的中点,射线OP 与椭圆交于点D .点Q 为直线OP 上一动点,且2OP OQ OD ⋅=,求证:点Q 在定直线上.(二)选考题:共10分.请考生在22~23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为222x pty pt=⎧⎨=⎩(t 为参数),()2,4为曲线C 上一点的坐标.(1)将曲线C 的参数方程化为普通方程;(2)过点O 任意作两条相互垂直的射线分别与曲线C 交于点A ,B ,以直线OA 的斜率k 为参数,求线段AB 的中点M 的轨迹的参数方程,并化为普通方程.[选修4—5:不等式选讲](10分)23.已知函数()21f x x a x =++-.(1)当1a =时,求()f x 的最小值;(2)若0a >,0b >时,对任意[]1,2x ∈使得不等式()21f x x b >-+恒成立,证明:2211222a b ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭.【KS5U 答案1】C【分析】由指数函数的单调性得{}13A x x =-<<,后由交集定义可得KS5U 答案.【KS5U 解析】13128222132x x x -<<⇔<<⇔<-<<,则{}13A x x =-<<,又{}1,0,1,2B =-,则A B = {}0,1,2.故选:C【KS5U 答案2】D【分析】先仔细审题,抓住题目中的关键信息之后再动,原题让我们选择一个全称命题的否定,任意和存在是一对,要注意互相变化,大于等于的否定是小于.【KS5U 解析】x ∀∈R ,e 1x x ≥+的否定是x ∃∈R ,e 1x x <+.故选:D 【KS5U 答案3】A【分析】根据复数的除法运算可求得31i 22z =+,即可求得结果.【KS5U 解析】由()1i 2i z -=-可得()()()()222i 1i 2i 22i i i 31i 1i 1i 1i 1i 22z -+-+--====+--+-,所以复数z 的虚部为12.故选:A 【KS5U 答案4】A【分析】利用向量的线性运算即可求得.【KS5U 解析】在△ABC 中,BC AC AB=-.因为13BD BC =,所以()1133B AC AB D BC ==- .所以()112333AD AB BD AB A A C AB C AB =++-==+.故选:A 【KS5U 答案5】B【分析】由侧面展开图求得母线长后求得圆锥的高,再由体积公式计算.【KS5U 解析】设圆锥母线长为l ,高为h ,底面半径为1r =,则由2π1πl ⨯=得2l =,所以h ==所以2211ππ1π333V r h ==⨯=.故选:B .【KS5U 答案6】B【分析】由平均数相等求出m ,再求方差.【KS5U 解析】由80290392180290329189055m ⨯+⨯++++⨯+⨯++++==可得,8m =,即甲同学成绩的方差为()22221211225+++=,故选:B 【KS5U 答案7】C【分析】作出可行域,根据简单线性规划求解即可.【KS5U 解析】作出可行域如图:由2z x y =+可得:122zy x =-+,平移直线12y x =-经过点A 时,z 有最大值,由3010x y x y +-=⎧⎨-+=⎩解得(1,2)A ,max 145z =+=.故选:C【KS5U 答案8】D【分析】根据对称性进行检验.【KS5U 解析】由题意()()2e 2e 42e 42e 2e eee e x x x xf x -----+--++--=-=-,它与()f x 之间没有恒等关系,相加也不为0,AB 均错,而44(4)4(4)e e e e ()x x x x f x f x --+----+--=-=-=-,所以()f x 的图象关于点(2,0)-对称.故选:D .【KS5U 答案9】C【分析】当1n =时,由122n n S +=-可得1a ,当2n ≥时,1n n n a S S -=-,验证1a 是否适合可得通项公式,代入通项公式求解可得结果.【KS5U 解析】解:当1n =时,211222a S ==-=,当2n ≥时,()1122222n n n n n n a S S +-=-=---=,12a = ,符合上式,∴数列{}n a 的通项公式为:2n n a =,5222232p q q p q p a a +=⋅===,故选:C.【KS5U 答案10】A【分析】根据题意,求出点P 的轨迹方程,利用三角换元法即可求解.【KS5U 解析】因为点(),P x y 到点()1F 和点)2F 的距离之和为4,所以点P 的轨迹是以()1F ,)2F 为焦点的椭圆,且长轴长24a =,焦距21c b ==,所以点P 的轨迹方程为2214x y +=,设(2cos ,sin ),(02π)P θθθ≤≤,则[]2cos sin sin21,1xy θθθ==∈-,所以xy 有最大值1,故选:A.【KS5U 答案11】C【分析】建立空间直角坐标系,利用法向量的性质,结合空间向量夹角公式逐一判断即可.【KS5U 解析】建立如下图所示的空间直角坐标系,设该正方体的棱长为2,111(0,0,0),(2,0,2),(2,2,0),(0,0,2),(2,2,2),(1,0,1),(1,1,1)D A B D B M N ,由正方体的性质可知:1D D ⊥平面ABCD ,则平面ABCD 的法向量为1(0,0,2)DD =,(0,1,0)MN =,因为10D D MN ⋅= ,所以1D D MN ⊥ ,而MN ⊄平面ABCD ,因此MN ∥平面ABCD ,故①对;设平面1A ND 的法向量为(,,)m x y z = ,(1,1,1)DN =,1(2,0,2)DA = ,所以有1100(1,0,1)2200m DN m DN x y z m x z m DA m DA ⎧⎧⊥⋅=++=⎧⎪⎪⇒⇒⇒=-⎨⎨⎨+=⊥⋅=⎩⎪⎪⎩⎩,同理可求出平面1D MB 的法向量(1,0,1)n =,因为110m n ⋅=-= ,所以m n ⊥,因此平面1A ND ⊥平面1D MB ,故②正确;因为(0,1,0)MN =,11(2,2,0)B D =-- ,所以11cos ,2MN B D 〈〉=-,因为异面直线所成的角范围为(0,90] ,所以直线MN 与11B D 所成的角为45︒,故③正确;设直线1D B 与平面1A ND 所成的角为θ,因为1(2,2,2)D B =- ,平面1A ND 的法向量为(1,0,1)m =-,所以11162sin cos ,32D B m D B m D B mθ⋅=〈〉===≠⋅ ,所以直线1D B 与平面1A ND 所成的角不是45︒,因此④错误,一共有3个结论正确,故选:C 【KS5U 答案12】B【分析】根据题意列出关于0x 和a 的等式,然后分离参数,转化为两个函数有交点.【KS5U 解析】由题意得若函数()()e ln xf x x a x =-为不动点函数则满足()()00000e ln x f x x a x x =-=,即00ln 1x ae x =+,即00ln 1x x a e +=设()ln 1xx g x e+=,()()()()()21ln 1ln 1ln 1x x xx x x e e x x g x e e ''--+⋅-+'==设()()2111ln 1,0h x x h x x x x'=--=--<,所以()h x 在()0+∞,单调递减,且()10h =()0,1x ∈,()()0,0h x g x '>>所以()g x 在()01,上单调递增,()()()1,,0,0x h x g x ∞+<'∈<,所以()g x 在()1,+∞上单调递减,所以()1max ln111g x e e+==当()10,,ln 10,0,xx x e e ⎛⎫∈+<> ⎪⎝⎭则()0g x <,当()1,,ln 10,0,xx x e e⎛⎫∈+∞+>> ⎪⎝⎭则()0g x >所以()g x的图像为:要想00ln 1x x a e +=成立,则y a =与()g x 有交点,所以()max1a g x e≤=,故选:B 【KS5U 答案13】54【KS5U 解析】根据题意,()2sin cos 28242A A f x A x x ππωω⎛⎫⎛⎫=+=-++ ⎪ ⎪⎝⎭⎝⎭,因为图象关于点,22π⎛⎫⎪⎝⎭中心对称,分析可得22A =,所以4A =()2cos 224f x x πω⎛⎫=-++ ⎪⎝⎭,()2242k k πππωπ⨯+=+∈Z ,所以()14k k ω=+∈Z ,又因为最小正周期为T ,且322T ππ<<,所以可得23222πππω<<,则223ω<<,所以ω的值为1.【KS5U 答案14】5【分析】设(0,)C y ,利用余弦定理求C 点坐标,然后利用数量积的坐标表示求解即可.【KS5U 解析】设(0,)C y,所以AB ==AC ==,BC ==,因为π4BAC ∠=,所以由余弦定理得222π2cos 4BC AB AC AB AC =+-,即224851y y y -+=++3y =,所以(0,3)C ,所以(1,2)AB =,(1,3)AC =- ,所以1(1)235AB AC ⋅=⨯-+⨯= ,故KS5U 答案为:5【KS5U 答案15】【分析】由已知,根据题意,以最细处所在的直线为x 轴,其垂直平分线为y 轴建立平面直角坐标系,设出双曲线方程,并根据离心率表示出,a b 之间的关系,由题意底直径为6cm ,所以双曲线过点()3,m ,下底直径为9cm ,高为9cm ,所以双曲线过点9,92m ⎛⎫- ⎪⎝⎭,代入双曲线方程即可求解方程从而得到喉部(最细处)的直径.【KS5U 解析】由已知,以最细处所在的直线为x 轴,其垂直平分线为y 轴建立平面直角坐标系,设双曲线方程为()222210,0x y a b a b -=>>,由已知可得,c e a ==,且222c a b =+,所以224a b =,所以双曲线方程为222214x y a a-=,底直径为6cm ,所以双曲线过点()3,m ,下底直径为9cm ,高为9cm ,所以双曲线过点9,92m ⎛⎫-⎪⎝⎭,代入双曲线方程得:()222222914819414m a a m aa ⎧-=⎪⎪⎨⎪--=⎪⎩,解得:2m a =⎧⎪⎨=⎪⎩,所以喉部(最细处)的直径为cm.故KS5U答案为:【KS5U 答案16】242n n+【分析】根据当n 为奇数时,22n n a a +-=,当n 为偶数时,22n n a a ++=,分组求和即可.【KS5U 解析】由题知,11a =,2(1)2nn n a a ++-=,当n 为奇数时,22n n a a +-=,所以奇数项构成等差数列,首项为1,公差为2,当n 为偶数时,22n n a a ++=,所以2468......2a a a a =++==,所以4135412464(......)(......)n n n S a a a a a a a a -=+++++++++22(21)1222422n n n n n n -=⨯+⨯+⨯=+故KS5U 答案为:242n n+【KS5U 答案17】(1)见证明;(2)4.【分析】(1)由()sin 2cos cos 02B C B C π⎛⎫+++=⎪⎝⎭,利用诱导公式、两角和与差的正弦公式化简可得sin()0B C -=,从而可得结论;(2)利用圆的面积公式可求得三角形外接圆半径52R =,利用同角三角函数的关系与正弦定理可得2sin 4a R A ==,结合(1),利用余弦定理列方程求得b c ==,从而可得结果.【KS5U 解析】(1)∵sin()2cos cos 02B C B C π⎛⎫+++=⎪⎝⎭,∴sin()2sin cos 0B C B C +-=,∴sin cos cos sin 2sin cos 0B C B C B C +-=,∴cos sin sin cos 0B C B C -=,∴sin()0B C -=.∴在ABC ∆中,B C =,(2)设ABC ∆的外接圆半径为R ,由已知得2254R ππ=,∴52R =,∵3cos 5A =,0A π<<,∴4sin 5A =,∴2sin 4a R A ==,∵BC =,∴b c =,由2222cos a b c bc A =+-⋅得2261625b b =-,解得b =,∴4a b c ++=,∴ABC ∆的周长为4.【KS5U 答案18】(1)110y =,(2)33人【分析】(1)根据题意由1373C 1C y -求解;(2)根据样本相关系数1516r =,求得()()61i i i x x y y =--∑,再利用公式求得ˆˆ,b a 即可.【小问1KS5U 解析】解:∵1373C 171C 24y -=,∴()()11176571224y y y ⨯⨯=--,∴()()111127201098y y y --==⨯⨯,∴110y =.【小问2KS5U 解析】∵6154i i x ==∑,∴9=x ,∴()62164i i x x =-=∑.∵()()()()6611581616iiiii x x y y x x y y r =----==⨯∑∑,∴()()61815i i i x x y y =--=⨯∑,∴()()()12181515ˆ648niii ni i x x y y bx x ==--⨯===-∑∑.又∵()6666222221111266256iii i i i i i y y yy y y y y ====-=-⋅+=-=∑∑∑∑,解得22y =.∴1541ˆˆ22988ay bx =-=-⨯=,∴4115ˆ88yx =+,当15x =时,4115ˆ153388y=+⨯≈,∴可以估计,昼夜温差为15℃时,该校新增患感冒的学生数为33人.【KS5U 答案19】【分析】(1)取CF 的中点D ,连接DM ,DN ,证明平面//MND 平面ABC ,原题即得证;(2)取AB 的中点O ,连接OC ,OE .求出122AF EF EB AB ====,取EF 的中点P ,连接OP ,以O 为原点,OP ,OB ,OC 所在直线分别为x ,y ,z 轴,建立直角坐标系如图所示.利用向量法求解.【小问1KS5U 解析】解:取CF 的中点D ,连接DM ,DN ,∵M ,N 分别是AF ,CE 的中点,∴//DM AC ,//DN EF ,又∵DM ⊄平面ABC ,AC ⊂平面ABC ,∴//DM 平面ABC .又//EF AB ,∴//DN AB ,同理可得,//DN 平面ABC .∵DM ⊂平面MND ,DN ⊂平面MND ,DM DN D = ,∴平面//MND 平面ABC .∵MN ⊂平面MND ,∴//MN 平面ABC.【小问2KS5U 解析】取AB 的中点O ,连接OC ,OE .由已知得//,OA EF OA EF =,∴OAFE 是平行四边形,∴//,//OE AF OE AF .∵△ABC 是正三角形,∴OC AB ⊥,∵平面ABC⊥平面ABEF ,平面ABC ⋂平面ABEF AB =,∴OC ⊥平面ABEF ,又OE ⊂平面ABEF ,∴OC OE ⊥.设12AF EF EB AB a ====,OC =.在Rt COE 中,由222OC OE CE +=,解得2a =,即122AF EF EB AB ====,取EF 的中点P ,连接OP ,则OP AB ⊥,以O 为原点,OP ,OB ,OC 所在直线分别为x ,y ,z 轴,建立直角坐标系如图所示.则()0,2,0A -,(0,0,C,)E,31,22N ⎛ ⎝,()0,2,0OA =-,1,22ON ⎛= ⎝ ,由已知易得,平面ABM的一个法向量为(0,0,OC = ,设平面ABN 的法向量为(),,n x y z = ,则0,0,OA n ON n ⎧⋅=⎪⎨⋅=⎪⎩ 即20,310,22y x y z -=⎧+=⎩取2x =,则平面ABN 的一个法向量为()2,0,1n =-,∴cos ,5OC n OC n OC n ⋅==-,∵二面角--M AB N 为锐角,∴二面角--M AB N 的余弦值为55.【KS5U 答案20】(1)2e e y =-,(2)2【分析】(1)根据导数的几何意义求出切线的斜率及切点即可求解KS5U 答案;(2)根据导函数分子部分的最小值与零比较分类讨论,分别分e a ≥、2a =、1a ≤讨论即可.【小问1KS5U 解析】当e a =时,()2eln e 2e e xf x x =+-+,所以2(1)e e f =-,又因为()ee 2e xf x x=+-,其中0x >,则在点(1,(1))f 处的切线斜率(1)0k f '==,所以切线方程为2e e y =-【小问2KS5U 解析】由题知(e 2e)()x a x f x x+-'=,其中1x ≥,设()(e 2e)x g x a x =+-,则()(1)e 2e x g x x '=+-,可知()g x '为[1,)+∞上的增函数,则()(1)0g x g ''≥=,所以()g x 为[1,)+∞上的增函数,则min ()(1)e g x g a ==-.①当e 0a -≥,即e a ≥时,()0g x ≥,即()0f x '≥,所以()f x 为[1,)+∞上的增函数,则()(1)e e>0f x f a ≥=-,由于a 为整数,可知3a ≥时,()0f x ≥恒成立,符合题意.②当2a =时,()2ln e 2e 2e xf x x x =+-+,()2(e 2e)xg x x =+-,则()g x 的最小值为min ()(1)2e<0g x g ==-,又2(2)22(e 2e)>0g =+-,由于()g x 为[1,)+∞上的增函数,则存在0(1,2)x ∈使得0()0g x =(即02e 2e x x =-),当01x x <<时,()0g x <,即()0f x '<,()f x 为减函数;当0x x >时,()0g x >,即()0f x '>,()f x 为增函数,则00000001()()2ln e 2e 2e=2(ln e 2e)x f x f x x x x x x ==+-+--+极小值,其中0(1,2)x ∈,令1()ln e 2e(1<<2)u x x x x x =--+,则22211e 1()e=<2)x x u x x x x x-++'=+-,当12x <<时,()0u x '<,()u x 在(1,2)上单调递减,则1()(2)ln 202u x u >=->,即0()()0f x f x =>极小值.所以2a =也符合题意.③当1a ≤时,min ()(1)e<0g x g a ==-,由于()g x 为(1,)+∞上的增函数,则存在实数1m >,且(1,)x m ∈,使得()0g x <,即()0f x '<,故()f x 为(1,)m 上的减函数,则当(1,)x m ∈时,()(1)(1)e 0f x f a <=-≤,故1a ≤不符合题意,舍去.综上所述,a 的最小值为2.【KS5U 答案21】【分析】(1)按照题目所给的条件即可求解;(2)作图,联立方程,将M ,N ,P ,Q ,D 的坐标用斜率k 表示出来,(3)按照向量数量积的运算规则即可.【小问1KS5U 解析】设椭圆的半焦距为c ,由椭圆的几何性质知,当点M 位于椭圆的短轴端点时,FAM △的面积取得最大值,此时1()2FAMSa cb =+,1()22a cb ∴+=,()a c b ∴+=.由离心率12c a =得2a c =,b ∴=,解得1c =,2a =,b =,∴椭圆C 的标准方程为22143x y +=;【小问2KS5U解析】由题意作下图:设()11,M x y ,()22,N x y .由221143y kx x y =+⎧⎪⎨+=⎪⎩得()2234880k x kx ++-=.∵点(0,1)在这个椭圆内部,所以0∆>,122843k x x k +=-+,122843x x k =-+,()212122286224343k y y k x x k k ∴+=++=-+=++,∴点P 的坐标为2243,4343k k k ⎛⎫- ⎪++⎝⎭当0k ≠时,直线OP 的斜率为34k -,∴直线OP 的方程为34y x k =-,即43kx y =-,将直线OP 的方程代入椭圆方程得22943Dy k =+,2221643D k x k =+,设点4,3k Q y y ⎛⎫-⎪⎝⎭,由2OP OQ OD ⋅= 得22222443169433434343k kk y y k k k k ⎛⎫-⋅-+⋅=+ ⎪++++⎝⎭,化简得()222216916943343k k y k k ++⋅=++,化简得3y =,∴点Q 在直线3y =上,当直线l 的斜率0k =时,此时(0,1)P,D ,由2OP OQ OD ⋅=得(0,3)Q ,也满足条件,∴点Q 在直线3y =上;综上,椭圆C 的标准方程为22143x y +=,点Q 在直线3y =上.【KS5U 答案22】(1)2x y =,(2)221x y =-【分析】(1)根据曲线C 的参数方程为222x pty pt=⎧⎨=⎩(t 为参数),消去参数t 求解;(2)设OA 的斜率为k ,方程为y kx =,则OB 的方程为:1=-y x k,分别与抛物线方程联立,求得A ,B 的坐标,再利用中点坐标求解.【小问1KS5U 解析】解:因为曲线C 的参数方程为222x pt y pt =⎧⎨=⎩(t 为参数),消去参数t 可得:22x py =,将点()2,4代入可得12p =,所以曲线C 的普通方程为:2x y =;【小问2KS5U 解析】由已知得:OA ,OB 的斜率存在且不为0,设OA 的斜率为k ,方程为y kx =,则OB 的方程为:1=-y x k ,联立方程2,,y kx x y =⎧⎨=⎩可得:()2,A k k ,同理可得:211,B k k ⎛⎫- ⎪⎝⎭,设(),M x y ,所以2211,211,2x k k y k k ⎧⎛⎫=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩所以22214222x k y k=+-=-,所以221x y =-即为点M 轨迹的普通方程.【KS5U 答案23】【分析】(1)分段求解()f x 的最小值和范围,即可求得结果;(2)转化()21f x x b >-+为233a b x x +>-+,结合二次函数在区间上的最值,利用不等式,即可证明.【小问1KS5U 解析】当1a =时,()121f x x x =++-,当1x ≤-,()31f x x =-+,()min ()14f x f =-=;当11x -<<,()3f x x =-+,()()2,4f x ∈;当1x ≥,()31f x x =-,()min ()12f x f ==;∴当1a =时,()f x 的最小值为2.【小问2KS5U 解析】0a >,0b >,当12x ≤≤时,2211x a x x b ++->-+可化为233a b x x +>-+,令()233h x x x =-+,[]1,2x ∈,()()()max 121h x h h ===,∴1a b +>∴22222111()122222a b a b a b a b a b +⎛⎫⎛⎫+++=++++≥+++ ⎪ ⎪⎝⎭⎝⎭,当且仅当a b =时取得等号;又当1a b +>时,2()122a b a b ++++2>,故2211222a b ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭.。
数学高考压轴题含答案
数学高考压轴题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.3.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.6.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.7.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828= 是自然对数的底数)参考答案:1.(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a-=-,整理得到1ln 1a a a -=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,∞+上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.(2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x '<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e0x bx b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.2.(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=,即tan 2α=-,2tan 0αα-=,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d =,故PAQ △的面积为11623⨯=3.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有<整理得到:()ln 1ln n n +-()ln 2ln1ln 3ln 2ln 1ln n n +-+-+++- ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.4.(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b ,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为直线QM ,∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283kx ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.5.(1)y x=(2)()g x 在[0,)+∞上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,由第二问结论可知()m x 在[0,+∞)上单调递增,即得证.(1)解:因为()e ln(1)x f x x =+,所以()00f =,即切点坐标为()0,0,又1()e (ln(1))1xf x x x=+++',∴切线斜率(0)1k f '==∴切线方程为:y x =(2)解:因为1()()e (ln(1))1xg x f x x x=++'=+,所以221()e (ln(1))1(1)xg x x x x =++++',令221()ln(1)1(1)h x x x x =++-++,则22331221()01(1)(1)(1)x h x x x x x +=-+=>++++',∴()h x 在[0,)+∞上单调递增,∴()(0)10h x h ≥=>∴()0g x '>在[0,)+∞上恒成立,∴()g x 在[0,)+∞上单调递增.(3)解:原不等式等价于()()()(0)f s t f s f t f +->-,令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,∵()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+,e e ()e ln(1)e ln(1)()()11x t x x tx m x x t x g x t g x x t x++=++++-=+-++'+,由(2)知1()()e (ln(1))1xg x f x x x=++'=+在[)0,∞+上单调递增,∴()()g x t g x +>,∴()0m x '>∴()m x 在()0,∞+上单调递增,又因为,0x t >,∴()(0)m x m >,所以命题得证.6.(1)11;(2)5.【解析】【分析】(1)设,sin )Q θθ是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =⋅+,由柯西不等式即可求出最小值.(1)设,sin )Q θθ是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ θθθθθ⎛⎫=+-=--=-+≤⎭+⎪⎝,当且仅当1sin 11θ=-时取等号,故||PQ (2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-2=35161656565231555k =⋅=≥=+,当且仅当316k =时取等号,故CD 的最小值为5.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.7.(1)()f x 的减区间为e 02⎛⎫⎪⎝⎭,,增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.(1)()22e 12e 22xf x x x x -'=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02⎛⎫⎪⎝⎭,,()f x 的增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭,设()()21e e ln 22g x x a x b x x x ⎛⎫=---+ ⎪⎝⎭,则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭()()31e x x a x =---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a >+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<-+-+=-- ⎪ ⎪⎝⎭⎝⎭,设()3e ln 22u a a a =--,则()2e-202au a a '=<,故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+> ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =∈,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2ea at t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e ,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea at t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎝⎭⎝⎭,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-⨯-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=--> ⎪⎝⎭-,设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>,故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m ω---+-+'=>>++,所以()m ω在()0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。
2020全国卷Ⅰ高考压轴卷数学(理)含解析
17.(本小题 12 分)
4sin2 A B 4sin Asin B 2 2
△ABC 中,内角 A、B、C 所对的边分别为 a、b、c,已知
2
(1)求角 C 的大小;
(2)已知 b 4 ,△ABC 的面积为 6,求边长 c 的值.
18. (本小题 12 分)
BC CD 1 AB 2
如图,在四棱锥 P-ABCD 中,PD⊥平面 ABCD,
A. 1
B. 2
C. 3
D. 4
8.《九章算术》中有这样一个问题:今有竹九节,欲均减容之(其意为:使容量均匀递减),
上三节容四升,下三节容二升,中三节容几何?( )
A. 二升
B. 三升
C. 四升
D. 五升
9.在△ABC 中,角 A、B、C 所对的边分别为 a、b、c,a 3, c 2
3,bsinA
21. (本小题 12 分)
设函数 f x a2 ln x x2 ax a R .
(1)求 f x 的单调区间;
(2)求使 e 1 f x e2 对 x 1, e 恒成立的 a 的取值范围.
请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分,答题时用 2B 铅笔在答题卡上把所选的题号涂黑.
它表示以(﹣1,2)为圆心、半径等于 2 的圆; 设弦心距为 d,由题意可得 22+d2=4,求得 d=0, 可得直线经过圆心,故有﹣2a﹣2b+2=0, 即 a+b=1,再由 a>0,b>0,可得
4 1 =( 4 1 )(a+b)=5+ 4b a ≥5+2
ab ab
ab
4b a 9 ab
e
e
e
2020版高考数学理科(人教B版)一轮复习高考大题专项1函数与导数的综合压轴大题Word版含解析
高考大题专项一函数与导数的综合压轴大题突破 1 利用导数求极值、最值、参数范围x1.函数f(x)= (x-k)e .(1)求 f(x)的单调区间 ;(2)求 f(x)在区间 [0,1] 上的最小值 .2.(2021福建龙岩 4 月质检 ,21 改编 )函数 f(x)= (x-2)e x-a(x+ 2)2.求函数 g( x)=f (x)+ 3e x的极值点 .3.(2021山东师大附中一模,21)函数f(x)= (x-a)e x(a∈R) .(1)当 a= 2 时 ,求函数 f(x)在 x= 0 处的切线方程 ;(2)求 f(x)在区间 [1,2] 上的最小值 .4.(2021陕西咸阳一模,21改编)f(x)=e x-aln x(a∈ R ).当a=- 1时,假设不等式f(x)> e+m ( x-1)对任意x∈(1,+ ∞)恒成立 ,求实数 m 的取值范围 .5.设函数f(x)=x2+ax+b ,g( x)=e x(cx+d ).假设曲线y=f (x)和曲线y=g (x)都过点P(0,2),且在点P处有相同的切线 y= 4x+2.(1)求 a,b,c,d 的值 ;(2)假设 x≥ -2 时 ,f(x)≤ kg(x),求 k 的取值范围 .6.(2021河北江西南昌一模,21)函数f(x)= ln( ax)+bx 在点 (1,f(1)) 处的切线是y= 0.(1)求函数 f(x)的极值 ;-(2) 当f(x)+ x(m< 0)恒成立时 ,求实数 m 的取值范围 (e 为自然对数的底数).突破 2利用导数证明问题及讨论零点个数1.(2021全国3,文21)函数f(x)=-(1)求曲线 y=f (x)在点 (0,-1) 处的切线方程 ;(2)证明 :当 a≥ 1 时 ,f(x)+ e≥ 0.2.(2021河北保定一模,21 改编 )函数f(x)= ln x-(a∈R).假设 f(x)有两个极值点x1,x2,证明:f3.函数f(x)=ax 3-3x2+ 1,假设 f(x)存在唯一的零点 x0,且 x0> 0,求 a 的取值范围 .4.(2021安徽芜湖期末,21改编)函数f(x)=x3-aln x(a∈ R ).假设函数y=f (x)在区间(1,e]上存在两个不同零点 ,求实数 a 的取值范围 .5.(2021河南郑州一模,21)函数f(x)= ln x+,a∈R且 a≠0.(1)讨论函数 f(x)的单调性 ;x(2)当 x时,试判断函数g(x)= (ln x-1)e +x-m 的零点个数 .x 26.(2021河北衡水中学押题三,21)函数f( x)=e -x +a ,x∈ R,曲线y=f (x)的图象在点(0,f(0))处的切线方程为y=bx.(1)求函数 y=f (x)的解析式 ;(2)当 x∈R时 ,求证 :f(x) ≥-x2 +x;(3)假设 f(x)>kx 对任意的 x∈ (0,+ ∞)恒成立 ,求实数 k 的取值范围 .高考大题专项一函数与导数的综合突破1 利用导数求极值、最值、参数范围1.解(1)由题意知f'(x)= (x-k+ 1)e x.令 f' (x)= 0,得 x=k- 1.当 x∈ (-∞,k-1) 时 ,f'(x) <0,当 x∈( k-1,+∞)时 ,f'(x)> 0.所以 f(x)的单调递减区间是(-∞,k-1),单调递增区间是(k-1,+ ∞).(2)当 k-1≤ 0,即 k≤1 时 ,f(x)在 [0,1] 上单调递增 ,所以 f(x)在区间 [0,1] 上的最小值为f(0)=-k ;当 0<k- 1< 1,即 1<k< 2 时 ,f(x)在 [0,k-1] 上单调递减 ,在 [k-1,1] 上单调递增 ,所以 f(x)在区间 [0,1] 上的最小值为 f(k-1)=- e k- 1;当 k-1≥ 1,即 k≥ 2 时 ,f(x)在 [0,1] 上单调递减 ,所以 f(x)在区间 [0,1] 上的最小值为f(1)= (1-k)e.综上 ,当 k≤ 1 时 ,f(x)在[0,1] 上的最小值为f(0) =-k ;k-1当 1<k< 2 时 ,f(x) 在[0,1] 上的最小值为f( k-1)=- e;2.解由g(x)= (x+1)e x-a(x+ 2)2,得 g'(x)= (x+ 2)e x-2a(x+ 2)=( x+2)(e x-2a),(ⅰ)当 a≤ 0 时 ,在 ( -∞,-2)上 ,g'(x) < 0,在 (-2,+ ∞)上 ,g'( x)>0.(ⅱ)当 a> 0时,令 g'(x)= 0,解得 x=- 2 或 x= ln(2 a).①假设 a=,ln(2 a)=- 2,g'(x)≥ 0 恒成立 ;②假设 a>,ln(2 a)>- 2,在( -2,ln(2 a))上 ,g'( x)< 0;在 (-∞,-2)与 (ln(2 a),+ ∞) 上,g'(x)> 0.③假设 a<,ln(2 a)<- 2,在(ln(2 a),-2)上 ,g'( x)< 0;在 (-∞,ln(2a))与 (- 2,+ ∞) 上,g'(x)> 0.综上 ,当 a≤ 0 时 ,g(x)极小值点为 -2,无极大值点 ;当 0<a<时 ,g(x)极小值点为 -2,极大值点为 ln(2 a); 当 a= 时 ,g(x)无极值点 ;当 a>时 ,g(x)极小值点为 ln(2 a),极大值点为 -2.3.解(1)设切线的斜率为k.因为 a= 2,所以 f(x)= (x-2)e x,f'(x)= e x( x-1).所以 f(0)=- 2,k=f' (0)= e0 (0-1)=- 1.所以所求的切线方程为y=-x- 2,即 x+y+ 2= 0.(2)由题意得 f'(x)=e x(x-a+ 1),令 f'(x)= 0,可得 x=a- 1.①假设 a-1≤1,那么 a≤2,当 x∈ [1,2] 时 ,f'(x)≥ 0,那么 f(x)在 [1,2] 上单调递增 .所以②假设所以③假设所以f(x) min=f (1)= (1-a)e.a-1≥2,那么 a≥3,当 x∈ [1,2] 时 ,f'(x)≤ 0,那么 f(x)在 [1,2] 上单调递减 .21<a- 1< 2,那么 2<a< 3,f'(x),f(x)随 x 的变化情况如下表:x(1,a-1)a-1(a-1,2)f'(x)-0+f(x)单调递减极小值单调递增所以 f(x)的单调递减区间为[1,a- 1],单调递增区间为[a-1,2] .a-1综上所述 : 当 a≤ 2 时 ,f(x) min=f (1)= (1-a)e;当 a≥3 时 ,f(x)min=f (2)= (2-a)e2;当 2<a< 3 时 ,f(x)min=f (a-1)=- e a-1.4.解由f(x)= e x-aln x,原不等式即为e x+ ln x-e-m(x-1)> 0,记 F(x)= e x+ ln x-e-m(x-1),F(1)= 0,依题意有F(x)> 0 对任意 x∈ [1,+ ∞)恒成立 ,求导得 F' ( x)= e x+ -m,F' (1)= e x+ 1-m,F″ (x) = e x-,当 x>1 时 ,F″(x)> 0,那么 F' (x)在 (1,+∞)上单调递增 ,有 F' (x)>F' (1)= e x+ 1-m,假设 m≤ e+ 1,那么 F' (x) > 0,那么 F(x)在 (1,+ ∞)上单调递增 ,且 F(x)>F (1)= 0,适合题意 ;假设 m> e+ 1,那么F' (1)< 0,又 F' (ln m)=> 0,故存在 x1∈(1,ln m),使 F' (x)= 0,当 1<x<x 1时 ,F' (x)< 0,得 F(x)在 (1,x1)上单调递减 ,F(x)<F (1)= 0,舍去 ,综上 ,实数 m 的取值范围是m≤ e+ 1.5.解(1)由得f(0) =2,g(0)= 2,f'(0) =4,g'(0)= 4.而 f' (x)= 2x+a ,g'(x) =e x(cx+d+c ),故 b= 2,d= 2,a= 4,d+c= 4.从而 a= 4,b= 2,c= 2,d= 2.(2)由 (1) 知 ,f(x)=x 2+ 4x+2,g(x)= 2e x(x+1) .设函数 F(x)=kg (x)-f(x)= 2ke x(x+ 1)-x2-4x-2,那么 F' (x)= 2ke x(x+ 2) -2x-4= 2(x+2)(ke x-1) . 由题设可得 F(0) ≥ 0,即 k≥ 1.令 F' (x)= 0 得 x1=- ln k,x2=- 2.2①假设 1≤ k< e ,那么 -2<x 1≤ 0.从而当 x∈ (- 2,x1 )时 ,F' (x)< 0;当 x∈ (x1,+ ∞)时 ,F' (x)> 0.即 F(x)在 (-2,x1)单调递减 ,在 (x1,+∞) 单调递增 .故 F(x)在 [- 2,+ ∞)的最小值为 F(x1 ).而 F(x1)= 2x1+ 2- -4x1- 2=-x 1(x1+ 2)≥ 0.故当 x≥ -2 时 ,F(x)≥ 0,即 f(x)≤ kg(x)恒成立 .②假设 k=e2,那么 F' (x)= 2e2(x+2)(e x-e- 2).从而当 x>- 2 时 ,F' (x)> 0,即 F(x) 在(-2,+ ∞)单调递增 .而 F(-2)= 0,故当 x≥ -2 时 ,F(x)≥0,即 f(x)≤ kg(x)恒成立 .2- 2-22③假设k>e ,那么 F(-2)=- 2ke + 2=-2e(k-e ) <0.从而当 x≥ -2 时 ,f(x)≤ kg(x)不可能恒成立.综上 ,k 的取值范围是 [1,e2].6.解(1)∵f(x) =ln( ax)+bx ,∴f'(x)= +b= +b ,∵点 (1,f(1)) 处的切线是y= 0,∴f'(1)= 1+b= 0,且 f(1)= ln a+b= 0,∴a= e,b=- 1,即 f(x)= ln x-x+ 1(x> 0),∴f'(x)= -1=-,∴f(x)在 (0,1) 上递增 ,在 (1,+ ∞)上递减 .所以 f(x)的极大值为 f(1)= ln e-1= 0,无极小值 .(2)由 (1)f(x)= ln x-x+ 1,当-f( x)+ x(m< 0)恒成立时 ,即--2+ ln x-x+ 1+ x(m< 0)在 x∈(0,+ ∞)恒成立 ,同除以 x 得设 g(x)=,h(x)=-2,那么g'(x)=-,h'(x)=-,又∵m< 0,所以当 0<x< 1 时 ,g'(x)< 0,h'(x) > 0;当 x> 1 时 ,g'(x)> 0,h'(x)< 0.∴g(x)在 (0,1)上单调递减 ,在 (1,+ ∞)上单调递增 ,g(x)min=g (1)= ,h(x)在 (0,1)上单调递增 ,在 (1,+∞)上单调递减 ,h(x)max=h (1) = -1.∴g(x),h(x) 均在 x= 1 处取得最值 ,所以要使 g(x)≥ h(x)恒成立 ,只需 g(x)min≥ h(x)max ,即-1,解得 m≥ 1-e,又 m< 0,∴实数 m 的取值范围是[1-e,0).突破 2利用导数证明问题及讨论零点个数--因此曲线 y=f (x)在点 (0,-1)处的切线方程是 2x-y-1= 0.1.(1)解f' (x)=,f'(0)=2.(2)证明当 a≥ 1 时 ,f(x)+ e≥ (x2+x- 1+ e x+ 1)e-x.令 g(x)=x 2+x- 1+e x+1, 那么 g'(x)= 2x+ 1+ e x+ 1.当 x<- 1 时 ,g'(x)< 0,g(x)单调递减 ;当 x>- 1 时 ,g'(x)> 0,g(x)单调递增 ;所以 g(x)≥ g(-1)= 0.因此 f(x)+ e≥ 0.--2.证明f'(x) =(x> 0),令 p(x)=x 2+ (2-a)x+ 1,由 f(x) 在(0,+ ∞)有两个极值点 x1,x2,那么方程 p(x)= 0 在(0,+ ∞)有两个实根--得 a> 4,x1,x2,-∴f(x1)+f (x2)= ln x1-+ ln x2-= ln x1x2-=-a ,f=f -= ln---= ln-- (a-2),∴f=ln--a-2+= ln-+ 2.设 h(a)= ln-+ 2(a> 4),那么 h'(a)=-< 0,--∴h(a)在 (4,+ ∞)上为减函数 ,又 h(4)= 0,∴h(a) <0,∴f3.解法1函数f(x)的定义域为R ,当a= 0时,f(x)=- 3x2+ 1,有两个零点±,原函数草图∴a= 0 不合题意 ;当 a> 0 时 ,当 x→ -∞时 ,f(x)→ -∞,f(0)= 1,f( x)存在小于 0 的零点 x0,不合题意 ;当 a< 0 时 ,f'(x)= 3ax22∴在区间-内 f' (x)< 0;-6x,由 f'(x)= 3ax -6x=0,得 x1= 0,x2= < 0,在区间内 f'(x)> 0;在区间 (0,+ ∞)内 f'(x)< 0.∴f(x)在区间 -为减函数 ,在区间为增函数 ,在区间 (0,+∞)为减函数 .∴假设 f(x)存在唯一的零点x0,且 x0>0?f(x) min=f>0?+1> 0?< 1? a2> 4.∵a< 0,∴a<-2.解法 2 曲线 y=ax 3与曲线 y=3x2-1 仅在 y 轴右侧有一个公共点,当 a≥0 时 ,由图象知不符合题意 ;当 a< 0 时 ,设曲线 y=ax 3与曲线 y= 3x2-1 相切于点 ( x0,y0),-那么得 a=- 2,由图象知a<- 2 时符合题意 .解法 3 别离成a=-+ 3=-t3+3t,令y=a ,g(t)=-t 3+ 3t,g'( t)=- 3t2+ 3= 3(1-t2),当 t∈ (-1,1)时 ,g'(t)> 0,当 t> 1 或 t<- 1 时 ,g'(x)< 0.所以 g( t)在 (-∞,- 1)递减 ,在区间(-1,1)递增 ,在 (1,+ ∞)递减 ,所以当 t=- 1 时,g(t)min=- 2,由 g(t)=-t 3+ 3t 的图象可知 ,t= 1 时 ,g(t)max= 2.3,交点在第四象限 ,所x→ + ∞时 ,g(t)→ + ∞,当 a<- 2 时 ,直线 y=a 与 g(t)=-t + 3t 的图象只有一个交点以满足题意 .4.解由f(x)= 0,得a=在区间 (1,e] 上有两个不同实数解 ,即函数 y=a 的图象与函数 g(x)=的图象有两个不同的交点 .因为 g'(x)=-,令 g'(x)= 0 得 x=,所以当 x∈ (1,)时 ,g'(x)< 0,函数在 (1, ) 上单调递减 ,当 x∈ ( ,e]时 ,g'(x)> 0,函数在 (,e]上单调递增 ;那么 g(x)min=g()=3e,而 g()== 27 > 27,且 g(e)= e3< 27,要使函数 y=a的图象与函数g(x) = 的图象有两个不同的交点 ,∴a的取值范围为 (3e,e3].5.解(1)f' (x)=-(x>0),当 a< 0 时,f' (x)> 0 恒成立 ,函数 f( x)在 (0,+ ∞)上单调递增 ;当 a> 0 时 ,由 f' (x)> 0,得 x> ,由 f' (x)< 0,得 0<x<,函数单调递增区间为,单调递减区间为综上所述 ,当 a< 0 时 ,函数 f(x)的单调递增区间为(0,+ ∞),当 a> 0 时,函数 f(x) 的单调递增区间为,单调递减区间为(2)∵x时 ,函数 g(x)= (ln x-1)e x+x-m 的零点 ,即方程 (ln x-1)e x+x=m 的根 .令 h(x)= (ln x-1)e x+x ,h'( x)=- e x+ 1,由 (1)知当 a= 1 时 ,f(x)= ln x+ -1 在递减 ,在 [1,e] 上递增 ,∴f(x)≥f(1)= 0,+ ln x-1≥ 0 在 x上恒成立 ,∴h'(x) =x x- e + 1≥ 0+ 1>0,∴h(x)= (ln x-1)e +x 在x上单调递增 ,∴h(x)min=h =- 2∴当 m<- 2或 m>e 时,没有零点 ,当 -2m≤e 时有,h(x) max= e.一个零点 .6.(1)解根据题意,得f'(x)= e x-2x,那么 f' (0)= 1=b.由切线方程可得切点坐标为(0,0), 将其代入y=f ( x),得 a=- 1,故 f(x) =e x-x2-1.(2)证明令 g( x)=f (x)+x 2-x= e x-x-1.由 g'(x) = e x-1= 0,得 x=0, 当 x∈ (-∞,0)时 ,g'(x)< 0,y=g (x)单调递减 ;当 x∈ (0,+ ∞)时,g'(x)> 0,y=g (x)单调递增 .所以 g(x)min=g (0)= 0,2(3) 解 f( x)>kx 对任意的x∈ (0,+∞) 恒成立等价于>k 对任意的 x∈ (0,+ ∞)恒成立 .令φ(x)=,x> 0,得φ'(x)=------- -==由 (2)可知 ,当 x∈ (0,+ ∞)时 ,e x-x-1> 0 恒成立 ,令φ'(x)> 0,得 x> 1;令φ'(x)< 0,得 0<x<1.所以 y= φ(x)的单调增区间为 (1,+ ∞),单调减区间为 (0,1),故φ(x)min= φ(1)= e-2,所以 k< φ(x)min= e-2.所以实数 k 的取值范围为(-∞,e-2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压轴题(一)
12.设P 为双曲线x 2a 2-y 2
b 2=1右支上一点,F 1,F 2分别为该双曲线的左、右焦点,
c ,e 分别表示该双曲线的半焦距和离心率.若PF 1→·PF 2→
=0,直线PF 2交y 轴于点A ,则△AF 1P 的内切圆的半径为( )
A .a
B .b
C .c
D .e
答案 A
解析 因为PF 1→·PF 2→
=0,所以△AF 1P 是直角三角形.设△AF 1P 的内切圆的半径是r ,则2r =|PF 1|+|P A |-|AF 1|=|PF 1|+|PA |-|AF 2|=|PF 1|-(|AF 2|-|P A |)=|PF 1|-|PF 2|=2a .所以r =a .
16.(2019·湘赣十四校联考二)已知函数f (x )=sin x +2cos x 的图象向右平移φ个单位长度得到g (x )=2sin x +cos x 的图象,若x =φ为h (x )=sin x +a cos x 的一条对称轴,则a =________.
答案 43
解析 由题意,得f (x )=5sin(x +α),其中sin α=255,cos α=5
5.g (x )=5sin(x +β),其中sin β=55,cos β=255,
∴α-φ=β+2k π,即φ=α-β-2k π, ∴sin φ=sin(α-β)=sin αcos β-cos αsin β=3
5, cos φ=cos(α-β)=cos αcos β+sin αsin β=4
5, 又x =φ是h (x )=sin x +a cos x 的一条对称轴, ∴h (φ)=sin φ+a cos φ=35+4
5a =±1+a 2, 即a =43.
20.已知函数f (x )=1
2(x 2+2a ln x ).
(1)讨论f(x)=1
2(x
2+2a ln x),x∈(1,e)的单调性;
(2)若存在x1,x2∈(1,e)(x1≠x2),使得f(x1)=f(x2)<0成立,求a的取值范围.
解(1)由f(x)=1
2(x
2+2a ln x),得
f′(x)=x+a
x=
x2+a
x(x>0),
当a≥0时,f′(x)>0恒成立,
所以f(x)在(1,e)上单调递增;
当a<0时,f′(x)=0的解为x=-a(舍负),
若-a≤1,即a∈[-1,0),则f(x)在(1,e)上单调递增;
若-a≥e,即a∈(-∞,-e2],
则f(x)在(1,e)上单调递减;
若a∈(-e2,-1),则f(x)在(1,-a)上单调递减,在[-a,e)上单调递增.
(2)由(1)可知,当a≤-e2或a≥-1时,函数f(x)在(1,e)上为单调函数,此时不存在x1,x2∈(1,e)(x1≠x2),使得f(x1)=f(x2)<0.
当a∈(-e2,-1)时,f(x)在(1,-a]上单调递减,在[-a,e)上单调递增,所以f(x)在x=-a处取得极小值,
f(x)极小值=f(-a)=1
2(-a+2a ln -a)=-
1
2a+
1
2a ln (-a),其中a∈(-e
2,-
1),
令g(a)=-1
2a+
1
2a ln (-a),a∈(-e
2,-1),
则g′(a)=-1
2+
1
2ln (-a)+
1
2=
1
2ln (-a),
a∈(-e2,-1),
所以g′(a)>0,所以g(a)在(-e2,-1)上单调递增,
且g(-e)=0,g(-e2)=-e2
2<0,
所以当a∈(-e2,-e)时,f(x)
极小值
<0,此时存在x1,x2∈(1,e)(x1≠x2),使得f(x1)=f(x2)<0.
21.某芯片代工厂生产某型号芯片每盒12片,每批生产若干盒,每片成本1
元,每盒芯片需检验合格后方可出厂.检验方案是从每盒芯片随机取3片检验,若发现次品,就要把全盒12片产品全部检验,然后用合格品替换掉不合格品,方可出厂;若无次品,则认定该盒芯片合格,不再检验,可出厂.
(1)若某盒芯片中有9片合格,3片不合格,求该盒芯片经一次检验即可出厂的概率?
(2)若每片芯片售价10元,每片芯片检验费用1元,次品到达组装工厂被发现后,每片须由代工厂退赔10元,并补偿1片经检验合格的芯片给组装厂.设每片芯片不合格的概率为p (0<p <1),且相互独立.
①若某盒12片芯片中恰有3片次品的概率为f (p ),求f (p )的最大值点p 0; ②若以①中的p 0作为p 的值,由于质检员操作疏忽,有一盒芯片未经检验就被贴上合格标签出厂到组装工厂,试确定这盒芯片最终利润X (单位:元)的期望.
解 (1)设“该盒芯片经一次检验即可出厂”的事件为A ,则P (A )=C 39
C 312=2155.
答:该盒芯片经一次检验即可出厂的概率为21
55. (2)①某盒12片芯片中恰有3片次品的概率
f (p )=C 312p 3(1-p )9
=127C 312⎝ ⎛⎭
⎪⎫3412, 当且仅当3p =1-p ,即p =1
4时取“=”号, 故f (p )的最大值点p 0=1
4. ②由题设,知p =p 0=1
4.
设这盒芯片不合格品的个数为n , 则n ~B ⎝ ⎛⎭⎪⎫12,14, 故E (n )=12×1
4=3,
则E (X )=120-12-30-3×2=72.
所以这盒芯片最终利润X的期望是72元.。