基于单片机步进电机速度控制研究参考文本

合集下载

基于stm32单片机的步进电机实验报告

基于stm32单片机的步进电机实验报告

基于stm32单片机的步进电机实验报告步进电机是一种将电脑控制信号转换为机械运动的设备,常用于打印机、数码相机和汽车电子等领域。

本实验使用STM32单片机控制步进电机,主要目的是通过编程实现步进电机的旋转控制。

首先,我们需要了解步进电机的基本原理。

步进电机是一种能够按照一定步长精确旋转的电机。

它由定子和转子两部分组成,通过改变定子和转子的电流,使转子按照一定的角度进行旋转。

在本实验中,我们选择了一种四相八拍步进电机。

该电机有四个相位,即A、B、C、D相。

每个相位都有两个状态:正常(HIGH)和反向(LOW)。

通过改变相位的状态,可以控制步进电机的旋转。

我们使用STM32单片机作为控制器,通过编程实现对步进电机的控制。

首先,我们需要配置STM32的GPIO口为输出模式。

然后,编写程序通过改变GPIO口的状态来控制步进电机的旋转。

具体来说,我们将A、B、C、D相分别连接到STM32的四个GPIO口,设置为输出模式。

然后,通过改变GPIO口输出的电平状态,可以控制相位的状态。

为了方便控制,我们可以定义一个数组,将表示不同状态的四个元素存储起来。

通过循环控制数组中的元素,可以实现步进电机的旋转。

在实验中,我们通过实时改变数组中元素的值,可以实现不同的旋转效果。

例如,我们可以将数组逐个循环左移或右移,实现步进电机的正转或反转。

在实验过程中,我们可以观察步进电机的旋转情况,并根据需要对程序进行修改和优化。

可以通过改变步进电机的旋转速度或步进角度,来实现更加精确的控制。

总结起来,通过本次实验,我们了解了步进电机的基本原理,并通过STM32单片机控制步进电机的旋转。

通过编写程序改变GPIO口的状态,我们可以实现步进电机的正转、反转和精确控制。

这对于理解和应用步进电机技术具有重要意义。

基于单片机步进电机速度控制研究

基于单片机步进电机速度控制研究

基于单片机步进电机速度控制研究基于单片机步进电机速度控制研究步进电机是一种非常常见的电机类型,它在很多领域都有广泛的应用。

与传统的直流电机比较,步进电机具有很多优势,比如精度高、摩擦小、噪音小等。

但是为了更好地发挥步进电机的优势,需要对其进行精细的控制,包括速度的控制。

因此,基于单片机的步进电机速度控制研究非常重要,本文将对此进行深入探讨。

一、步进电机的原理和特点步进电机是一种能够将电脉冲转换成机械旋转的电动机。

它的核心是转子和定子之间的电磁相互作用,通过不同的脉冲信号控制电机的转动速度和方向。

步进电机的特点主要有以下几个方面:1. 精度高:步进电机的步进角度可以达到很小,因此可以实现精细的运动控制。

2. 摩擦小:步进电机与传统的直流电机相比,其内部的摩擦力要小很多,因此可以实现更加平稳的运动。

3. 噪音小:步进电机的电机转子比较轻,摩擦力较小,因此转动时噪音较小。

二、步进电机的速度控制步进电机的速度控制是一种基于脉冲信号的控制方式,根据输入的脉冲信号来控制电机的转动速度。

这种控制方式可以实现精确的速度控制,并且可以改变电机的运动方向。

步进电机的速度控制可以分为定速控制和变速控制。

定速控制是通过固定的脉冲频率来控制电机的速度,而变速控制则是通过改变脉冲频率来实现速度的变化。

三、基于单片机的步进电机速度控制基于单片机的步进电机速度控制是一种常见的控制方式。

它通过单片机的计算和控制来实现对电机的脉冲信号控制,可以更加灵活地实现对电机的控制。

常见的单片机包括STC89C52、STM32F103等。

步进电机的速度控制是通过控制脉冲信号的频率来实现的。

因此,为了实现步进电机的速度控制,需要设置一个计时器来定时产生脉冲信号。

计时器可以通过单片机内部的外设或者扩展外部芯片来实现,常用的计时器包括定时器0、定时器1等。

单片机的速度控制还可以实现反馈控制,常见的反馈控制方式包括编码器反馈和霍尔传感器反馈。

通过反馈控制,可以实现对电机速度的更加精准的控制,并且可以消除误差。

基于单片机步进电机速度控制研究.doc

基于单片机步进电机速度控制研究.doc

基于单片机步进电机速度控制研究本文对步进机一个全面的介绍,再基于单片机对步进电机的控制。

本文采用硬件控制系统,通过单片机MC9S12XS128与光电编码器对步进电机进行速度的控制。

最后对步进电机的速度曲线进行研究。

步进电机又称为脉冲电动机或者阶跃电动机,作为执行元件,是机电一体化的关键产品之一,广泛应用于各种自动化控制系统之中,比如当今电子钟表、工业机械手、包装机械和汽车制动元件的测试中等。

步进电机在未来应用前景会往更加小型化、从圆形电动机往方形电动机和四相、五相往三相电动机发展。

而这便需要对步进电机的控制提出了更高的要求。

1.步进电机综合介绍1.1.步进电机分类步进电动机的种类很多,从广义上讲,步进电机的类型分为机械式、电磁式和组合式三大类型。

按结构特点电磁式步进电机可分为反应式(VR)、永磁式(PM)和混合式(HB)三大类;按相数分则可分为单相、两相和多相三种。

目前使用最为广泛的为反应式和混合式步进电机。

1.1.1.反应式步进电机反应式步进电机的转子是由软磁材料制成的,转子中没有绕组。

一般为三相,可实现大扭矩的输出,步进角一般为1.5度。

它的结构简单,成本低,但噪音大。

1.1.2.永磁式步进电机永磁式步进电机的转子是用永磁材料制成,转子本身就是一个磁源。

转子的极数和定子的极数相同,所以一般步距角比较大,步进角一般为7.5度或15度。

它输出转矩大,动态性能好,消耗功率小,但启动运行频率较低,还需正负脉冲供电。

1.1.3.混合式步进电机混合式步进电机综合了反应式和永磁式两者的优点。

它分为两相和五相,两相的步进角一般为1.8度,而五相的步进角为0.72度。

混合式与传统的反应式相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。

目前使用最为广泛的为反应式和混合式步进电机。

1.2.步进电机的工作原理步进电机是将电脉冲信号转化为角位移增量,也即是说,当步进驱动器接收到一个脉冲信号时,便驱动电机按照设定的方向转动一定的角位移量。

基于单片机的步进电机控制系统研究

基于单片机的步进电机控制系统研究

A 相 B相
P 1 . 1
8 0 31

Pl _ 2 3
C相 驱动器
D相 E相
所示, 可 以在 计 算 机 应 用 系 统 中 广泛 使 用。
图 1 反应式步进电机 的典型结构
电动机
P1 - 3 4
P1



C P脉冲
图 4 用软件实现脉 冲分配的接 口示意图 图 2 步进电机驱动器构成
表 1 存储环形分配器输 出状态表
地 址
8 F F OH
8 F F1 H 8 F F 2 H 8 F F 3 H
升 速 时 的起 始 速 度 应 等 于 或 略 小 于 系统 的 极 限 起 动
存 储 内 容
0F CH
O F 8 H O F 9 H 0 F1 H
对 应状 态
件 实现 比较简单。 二是按指数规律升降速 , 加速度是逐 渐 下 降的,比较接近 电动机输 出转矩随速度变化 的规律 , 符 合步进 电机加减速过程 的运动规律 , 能充分利用步进 电机
的有 效 转 矩 , 快 速 响应 性 能较 好 , 升降时间短。 用 微 机 对 步 进 电机 进 行 加 减 速 控 制 , 实 际 上 就 是 改 变
AB
ABC BC BC D
频率 ( 速度 ) , 而 不是从零开始。减速过程结 束时的速度一 般应等于 或略低于起动速度 , 再经数步低速运行后停止。 升 降速控制 方法通常 有两种 :一是按直 线规律升 降
速, 这 种 方法 是 以恒 定 的加 速 度 进 行 升 降 , 平稳性好 , 适 用 于速 度变化较大 的快速定位 方式 , 加速 时 间虽然长 , 但 软

毕业设计(论文)-基于AT89C51单片机的步进电机控制系统

毕业设计(论文)-基于AT89C51单片机的步进电机控制系统

内蒙古科技大学本科生毕业设计说明书(毕业论文)题目:基于AT89C51单片机的步进电机控制系统设计学生姓名:学号:专业:自动化班级:自动化06-3班指导教师:基于AT89C51单片机的步进电机控制系统摘要步进电机是数字控制系统中的一种执行元件,它能按照控制脉冲的要求,迅速起动,制动,正反转和调速。

具有步距角精度高,停止时能自锁等特点,因此步进电机在自动控制系统中,特别是在开环的控制系统中得到了日益广泛的应用。

本文以单片机和环形脉冲分配器为核心设计的步进电机控制系统,通过软硬件的设计调试,实现步进电机能根据设定的参数进行自动加减速控制,使控制系统以最短的时间到达控制终点,而又不发生失步的现象;同时它能准确地控制步进电机的正反转,启动和停止。

硬件是以AT89C51单片机为核心的控制电路,主要包括:环形脉冲分配器、键盘显示电路、步进电机的驱动电路等。

软件部分采用C语言编程,主要包括键盘显示程序、步进电机的调速程序、停止判断程序等。

关键词:步进电机控制系统;调速;单片机Based on AT89C51 Single-chip ComputerStepping Motor Control SystemAbstractStepping motor is a kind of digital control system components. It can achieve quick start-up, positive inversion, stopping and speed control, according to the control pulse. It has high precision step angle, and can be self-locking when it keeps still. As these characteristics, stepping motor in automatic control system, especially in the open loop control system has been widely applied.This article mainly focuses on taking Single-chip Computer and cycle pulse distributor as the core, and designing the stepping motor control system. Through the design of the software and hardware debugging, it realizes controlling the step motor’s acceleration and deceleration automatically, according to parameter setting. Making the system arrive the end point with the shortest time, but not occur outing of step. Besides it can accurately achieve start-up, positive inversion and shutdown. Hardware takes AT89C51 as the core of control circuit, mainly including: cycle pulse distributor, keyboard and display circuit, stepping motor driving circuit, etc. Software part adopts the C language programming, mainly including keyboard and display program, stepping motor speed control program, stop judging program, etc.Key words: Stepping motor control system; speed control; Single-chip Computer目录摘要 (I)Abstract (II)第一章引言 (1)1.1 课题提出的背景和研究意义 (1)1.2 课题的主要研究内容 (2)1.3 本章小结 (2)第二章步进电机控制系统设计 (3)2.1 步进电机的原理 (3)2.1.1 三相单三拍通电方式 (3)2.1.2 三相双三拍通电方式 (5)2.1.3 三相六拍通电方式 (6)2.2 环形脉冲分配器 (8)2.3 续流电路 (12)2.3.1 二极管续流 (13)2.3.2 二极管—电阻续流 (14)2.4 步进电机驱动电路 (15)2.5 步进电机的变速控制 (17)2.5.1 变速控制的方法 (19)2.6 步进电机在自动生产线中的应用 (20)2.7 本章小结 (22)第三章控制系统硬件设计 (23)3.1 硬件系统设计原则 (23)3.2 控制系统组成 (23)3.3 主要元件的选择 (24)3.3.1 单片机的选择 (24)3.3.2 EPROM的选择 (25)3.3.3 可逆计数器的选择 (27)3.4 控制系统接口电路的设计 (27)3.4.1 环形脉冲分配器设计 (27)3.4.2 显示电路设计 (29)3.4.3 外部复位电路设计 (30)3.5 控制系统整体电路设计 (31)3.6 本章小结 (31)第四章控制系统软件设计 (32)4.1 软件系统设计原则 (32)4.2 步进电机控制系统功能设计 (32)4.3 主程序设计 (33)4.3.1 主程序工作过程 (33)4.3.2 主程序工作流程图 (34)4.3.3 定时器T0中断程序流程图 (34)4.4 Proteus仿真 (37)4.5 显示程序设计 (39)4.6 键盘程序设计 (39)4.7 调速程序设计 (41)4.7.1 20BY步进电机参数 (41)4.7.2 步进电机转速与频率的关系 (41)4.8 本章小结 (42)第五章结束语 (43)参考文献 (44)附录 (46)附录A 系统程序(C) (46)附录B 20BY步进电机转速与定时器定时常数关系表 (59)附录C 控制系统电路图 (62)致谢 (63)第一章引言1.1 课题提出的背景和研究意义由于步进电机不需要位置传感器或速度传感器就可以实现定位,即使在开环状态下它的控制效果也是令人非常满意的,这有利于装置或设备的小型化和低成本,因此步进电机在计算机外围设备、数控机床和自动化生产线等领域中都得到了广泛的应用。

基于单片机控制的步进电机毕业论文

基于单片机控制的步进电机毕业论文

基于单片机控制的电机摘要:介绍了步进电机和直流电机原理与其驱动程序控制控制模块,通过AT89S52单片机与脉冲分配器(又称逻辑转换器) L298完成步进电机和直流电机各种运行方式的控制。

实现步进电机的正反转速度控制并且显示数据。

整个系统采用模块化设计,结构简单、可靠,通过按键控制,操作方便,节省成本。

关键词:步进电机;单片机控制; AT89S52;1、引言随着数字化技术发展,数字控制技术得到了广泛而深入的应用。

步进电机是一种将数字信号直接转换成角位移或线位移的控制驱动元件, 具有快速起动和停止的特点。

因为步进电动机组成的控制系统结构简单,价格低廉,性能上能满足工业控制的基本要求,所以广泛地应用于手工业自动控制、数控机床、组合机床、机器人、计算机外围设备、照相机,投影仪、数码摄像机、大型望远镜、卫星天线定位系统、医疗器件以与各种可控机械工具等等。

直流电机广泛应用于计算机外围设备( 如硬盘、软盘和光盘存储器) 、家电产品、医疗器械和电动车上, 无刷直流电机的转子都普遍使用永磁材料组成的磁钢, 并且在航空、航天、汽车、精密电子等行业也被广泛应用。

在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。

在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。

此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。

直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。

在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。

他们都是利用电和磁的相互作用来实现向机械能能的转换。

1.电机的工作原理1.步进电机原理步进电机本质上是一个数字角度转换器。

以三相电机为例, 其结构原理见图1。

基于单片机的步进电机控制探讨

基于单片机的步进电机控制探讨

基于单片机的步进电机控制探讨在步进电机的运行过程中,来自于单片机的电子脉冲信号可以控制其转动角度,而借助于单片机硬件电路以及软件编程等形式,则可实现步进电机的启动、停止以及正反转等动作,以此来实现对步进电机的有效控制。

基于此,本文分析了基于单片机的步进电机控制方法,以期为步进电机的应用与控制提供相应参考。

标签:单片机;步进电机;控制策略;控制系统0 引言步进电机的系统结构简单,对转动定位控制精准,因此步进电机在仪表控制和过程控制中发挥着至关重要的作用,且在当今的自动化控制、电动阀控制、数控机床以及医疗设施等各领域中得到了广泛应用。

而在步进电机的具体应用过程中,单片机可以对其起到更加精准的控制作用,以此来实现应用效果的显著提升。

因此,在步进电机的应用与研究中,应加大对单片机控制的研究,以此来实现步进电机的良好应用与发展。

1 步进电机工作原理在步进电机的运行过程中,电子脉冲信号数量及其频率对其转动速度以及停止位置起到决定性作用。

在步进电机运行过程中,如果给定一个脉冲信号,其转子便可经过相应角度,我们将该角度叫做步距角。

就目前的步进电机来看,步距角一般按照半步和一步进行划分,具体情况如表1所示。

按照以上划分方式,每给定一个脉冲信号,步进电机就可以转动0.9°,随着脉冲信号书的连续给定,可控制步进电机实现连续运转。

2 基于单片机的步进电机控制2.1控制系统框架分析2.1.1硬件系统设计构架分析在本次所研究的步进电机控制系统中,应用到的单片机为51单片机,主控制器型号为80C51,该控制器属于一种有着高效性的微控制器,通过该控制器的应用,可以为嵌入形式的控制系统提供出价格低廉、灵活度高的方案,其组成部分及其个数如表2所示。

在本次研究中,主要选择的步进电机是四相六线形式的步进电机,其额定电压是12V,这种步进电机可以在单拍模式下工作,也可以在单双拍混合模式下工作。

但是通常情况下,在该步进电机工作在单拍模式下时,其转动相角过度比较少,转动角度比较大,而且转动也并不十分连贯[1]。

控制步进电机实验报告(3篇)

控制步进电机实验报告(3篇)

第1篇一、实验目的1. 理解步进电机的工作原理及控制方法。

2. 掌握单片机与步进电机驱动模块的接口连接方法。

3. 学习使用C语言编写程序,实现对步进电机的正反转、转速和定位控制。

4. 通过实验,加深对单片机控制系统的理解。

二、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的电机,其特点是控制精度高、响应速度快、定位准确。

步进电机控制实验主要涉及以下几个方面:1. 步进电机驱动模块:常用的驱动模块有ULN2003、A4988等,它们可以将单片机的数字信号转换为步进电机的控制信号。

2. 单片机:单片机是整个控制系统的核心,负责接收按键输入、处理数据、控制步进电机驱动模块等。

3. 步进电机:步进电机分为单相、双相和三相等类型,本实验使用的是双相四线步进电机。

三、实验设备1. 单片机开发板:例如STC89C52、STM32等。

2. 步进电机驱动模块:例如ULN2003、A4988等。

3. 双相四线步进电机。

4. 按键。

5. 数码管。

6. 电阻、电容等元件。

7. 电源。

四、实验步骤1. 硬件连接(1)将步进电机驱动模块的输入端(IN1、IN2、IN3、IN4)分别连接到单片机的P1.0、P1.1、P1.2、P1.3口。

(2)将按键的输入端连接到单片机的P3.0口。

(3)将数码管的段选端连接到单片机的P2口。

(4)将步进电机驱动模块的电源端连接到电源。

(5)将步进电机连接到驱动模块的输出端。

2. 编写程序(1)初始化单片机I/O端口,设置P1口为输出端口,P3.0口为输入端口,P2口为输出端口。

(2)编写按键扫描函数,用于读取按键状态。

(3)编写步进电机控制函数,实现正反转、转速和定位控制。

(4)编写主函数,实现以下功能:a. 初始化数码管显示;b. 读取按键状态;c. 根据按键状态调用步进电机控制函数;d. 更新数码管显示。

3. 调试程序(1)将程序烧写到单片机中;(2)打开电源,观察数码管显示和步进电机运行状态;(3)根据需要调整程序,实现不同的控制效果。

《2024年基于单片机的步进电机控制系统研究》范文

《2024年基于单片机的步进电机控制系统研究》范文

《基于单片机的步进电机控制系统研究》篇一一、引言随着科技的发展,步进电机因其高精度、低噪音、易于控制等优点,在各个领域得到了广泛的应用。

然而,传统的步进电机控制方式存在控制精度低、响应速度慢等问题。

因此,基于单片机的步进电机控制系统应运而生,其具有体积小、控制精度高、响应速度快等优点。

本文旨在研究基于单片机的步进电机控制系统的设计原理、实现方法以及应用前景。

二、步进电机控制系统的基本原理步进电机是一种将电信号转换为机械运动的设备,其运动过程是通过一系列的步进动作实现的。

步进电机的控制原理主要是通过改变电机的电流和电压,使电机按照设定的方向和速度进行旋转。

三、基于单片机的步进电机控制系统设计基于单片机的步进电机控制系统主要由单片机、步进电机驱动器、步进电机等部分组成。

其中,单片机是控制系统的核心,负责接收上位机的指令,并输出相应的控制信号给步进电机驱动器。

步进电机驱动器则负责将单片机的控制信号转换为适合步进电机工作的电流和电压。

在硬件设计方面,我们选择了一款性能稳定、价格适中的单片机作为主控制器,同时设计了相应的电路和接口,以实现与上位机和步进电机驱动器的通信。

在软件设计方面,我们采用了模块化设计思想,将系统分为初始化模块、控制模块、通信模块等部分,以便于后续的维护和升级。

四、基于单片机的步进电机控制系统的实现在实现过程中,我们首先对单片机进行了初始化设置,包括时钟设置、I/O口配置等。

然后,通过编程实现了对步进电机的控制,包括步进电机的启动、停止、正反转以及速度调节等功能。

此外,我们还实现了与上位机的通信功能,以便于实现对步进电机的远程控制和监控。

五、实验结果与分析我们通过实验验证了基于单片机的步进电机控制系统的性能。

实验结果表明,该系统具有较高的控制精度和响应速度,能够实现对步进电机的精确控制。

同时,该系统还具有较好的稳定性和可靠性,能够在各种复杂环境下正常工作。

此外,我们还对系统的抗干扰能力进行了测试,结果表明该系统具有较强的抗干扰能力。

基于单片机步进电机速度控制

基于单片机步进电机速度控制
通过调节步进电机的速度,可以适 应不同的工作负载,实现节能降耗 。
步进电机控制的历史与发展
历史
步进电机最初是由美国发明家哈罗德·斯普拉里在20世纪初发明的,当时主要 用于调节收音机的音量。随着技术的发展,步进电机逐渐应用于各种工业领 域。
发展
随着计算机技术和数字控制技术的不断发展,步进电机的控制精度和性能得 到了显著提升。单片机作为一种常见的控制芯片,被广泛应用于步进电机的 速度控制。
控制算法
控制算法是用来控制步进 电机旋转的程序,它通常 由定时器、计数器等组成 。
程序设计
程序设计是用来实现控制 算法的程序,它通常由C 语言、汇编语言等编写。
控制程序实现
通过将控制算法和程序设 计结合起来,可以实现步 进电机的速度控制和位置 控制。
03
硬件设计
单片机选型
总结词
选择低功耗、高性能的单片机
输入输出接口设计
总结词
设计简单可靠的输入输出接口
详细描述
在输入输出接口设计时,需要选择合适的接口类型和规格,同时需要考虑接口的耐用性和可维护性。 对于输入接口的设计,可以选择光耦隔离或继电器隔离等方式;对于输出接口的设计,可以选择PWM 或SSR等方式。
04
软件设计
控制程序流程设计
初始化程序
设置单片机和步进电机的参数,包括输入 输出端口、电机型号等。
VS
模糊控制算法
根据电机的实际运行状态和环境参数,对 PID控制算法进行优化,提高控制的稳定 性和适应性。
单片机与上位机通信
Modbus协议通信
采用Modbus协议实现单片机与上位机之 间的通信,上位机发送速度控制信号和电 机状态信息,单片机接收并处理。
串口通信

基于单片机控制的步进电机调速系统的设计

基于单片机控制的步进电机调速系统的设计

基于单片机控制的步进电机调速系统的设计步进电机是一种常用的电机类型,它通常用来实现精确定位和控制运动。

步进电机的控制需要一个精确的调速系统来确保稳定的运行和准确的位置控制。

本文将基于单片机控制的步进电机调速系统进行设计。

首先,我们需要选择合适的硬件以及编程平台。

本设计选择使用Arduino Uno作为单片机控制器,它具有易用性和强大的控制功能。

步进电机选择了NEMA 17型号,它具有较高的分辨率和扭矩输出。

接下来,进行电路设计与连接。

将步进电机的四个线圈连接到单片机的GPIO引脚上,并使用电流驱动模块控制电机的供电。

通过连接外部电源,电流驱动器将为步进电机提供稳定的电流,以确保电机能够正常工作。

在编程方面,首先需要编写初始化代码,配置单片机的GPIO引脚以及串口通信功能。

然后,可以使用Arduino提供的步进电机库来控制电机的旋转。

该库提供了简单的命令来控制步进电机的转动方向和转速。

为了设计调速系统,我们可以使用一个旋转编码器来实时监测电机的转速。

旋转编码器将会测量电机的转动次数,从而计算出电机的转速。

在单片机的程序中,我们可以设置一个目标转速,并根据旋转编码器的数据来调整电机的驱动频率。

为了实现平滑的调速过程,我们可以使用PID控制算法来调整电机的驱动频率。

PID控制算法是一种经典的反馈控制算法,它可以根据目标值和实际值之间的差异来调整控制信号。

通过不断地比较电机的实际速度与目标速度,PID控制算法可以动态地调整电机的驱动频率,以达到稳定的调速效果。

最后,我们可以设计一个用户界面来设置目标速度和监控电机的运行状态。

通过串口通信功能,单片机可以与上位机进行数据交互,用户可以通过上位机发送指令来设置目标速度,并且可以实时监测电机的转速和运行状态。

总结起来,基于单片机控制的步进电机调速系统设计需要进行硬件选择与连接、软件编程以及用户界面设计。

通过合理地选择硬件和软件方案,以及使用PID控制算法,我们可以实现一个稳定且准确的步进电机调速系统。

基于stm32单片机的步进电机实验报告

基于stm32单片机的步进电机实验报告

基于stm32单片机的步进电机实验报告基于STM32单片机的步进电机实验报告一、引言步进电机是一种特殊的电机,其转子能够以离散的步长进行旋转。

在许多自动化控制系统中,步进电机被广泛应用于精密定位、打印机、机床等领域。

本实验旨在利用STM32单片机控制步进电机的运转,实现准确的位置控制。

二、实验原理步进电机的运转原理是通过控制电流来驱动电机的转子旋转。

常见的步进电机有两相和四相两种,本实验使用的是四相步进电机。

步进电机的控制方式主要有两种:全步进和半步进。

1. 全步进控制方式全步进控制方式是通过依次给定步进电机的四个相位施加电压,使得电机转子以固定的步长旋转。

具体控制方式如下:- 给定一个相位的电流,使得该相位的线圈产生磁场,使得转子对齿极的磁场产生吸引力,使得转子顺时针或逆时针旋转一定的角度;- 施加下一个相位的电流,使得转子继续旋转一定的角度;- 通过依次改变相位的电流,控制转子的旋转方向和步长。

2. 半步进控制方式半步进控制方式是在全步进的基础上,通过改变相位的电流大小,使得转子旋转的步长变为全步进的一半。

具体控制方式如下:- 给定一个相位的电流,使得该相位的线圈产生磁场,使得转子对齿极的磁场产生吸引力,使得转子顺时针或逆时针旋转一定的角度;- 施加下一个相位的电流,使得转子继续旋转一定的角度,但步长变为全步进的一半;- 通过改变相位的电流大小,控制转子的旋转方向和步长。

三、实验器材与步骤1. 实验器材:- STM32单片机开发板- 步进电机- 驱动电路- 电源2. 实验步骤:(1) 将STM32单片机开发板和驱动电路连接起来,确保连接正确无误。

(2) 编写STM32单片机的控制程序,通过控制引脚输出高低电平,实现步进电机的控制。

(3) 将步进电机连接到驱动电路上。

(4) 将电源接入驱动电路,确保电源稳定。

(5) 运行STM32单片机的控制程序,观察步进电机的运转情况。

四、实验结果与分析经过实验,我们成功地利用STM32单片机控制步进电机的运转。

基于单片机的步进电机控制毕业论文

基于单片机的步进电机控制毕业论文

目录前言 (1)1、选题背景 (2)、课题背景 (2)、研究的目的和意义 (3)1.2.1、研究的目的 (3)1.2.2、研究的意义 (3)、课题研究的内容 (4)2、方案论证 (4)、单片机的介绍 (4)2.1.1、单片机的概述 (4)2.1.2、单片机的特点 (5)2.1.3、单片机的应用领域 (5)2.1.4、单片机的选择 (6)2.1.5、AT89C51简介 (7)、步进电机的介绍 (10)2.2.1、步进电机的概述 (10)2.2.2、步进电机的工作原理 (10)2.2.3、步进电机的结构及分类 (11)2.2.4、步进电机的特点: (12)2.2.5、步进电机的选择 (12)2.2.6、步进电机的指标术语 (13)、仿真软件的介绍 (14)2.3.1、keil软件 (14)2.3.2、proteus软件 (15)、驱动电路的选择 (16)、显示电路的选择 (16)3、设计或实验过程论述 (16)、硬件电路的设计 (16)3.1.1、硬件设计的总体方案 (17)3.1.2、单片机最小系统 (17)3.1.3、按键部分 (18)3.1.4、电机驱动芯片 (19)3.1.5、电机驱动芯片 (20)3.1.6、步进电机 (21)3.1.7、显示部分 (22)3.1.8、硬件的焊接 (22)、软件部分 (23)3.2.1、主程序 (23)、显示子程序 (24)3.2.3、键盘扫描子程序 (25)4、基于AT89C51的步进电机控制系统的实现 (25)、系统的故障及调试 (25)4.1.1、软件部分 (25)4.1.2、硬件部分 (26)、设计结果 (26)5、总结与展望 (27)、总结 (27)、展望 (28)参考文献 (28)致谢 (29)附录 (30)基于单片机的步进电机控制系统设计摘要:步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,广泛应用在各种自动化控制系统。

基于单片机控制步进电机调研报告

基于单片机控制步进电机调研报告

调研报告1课题研究的目的和意义步进电动机又称脉冲电动机或阶跃电动机,国外一般称为Stepping motor、Pulse motor或Stepper servo,其应用发展已有约80年的历史。

步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机,其位移速度与脉冲频率成正比,位移量与脉冲数成正比。

步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。

当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。

因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产生旋转的磁场。

每来一个脉冲电压,转子就旋转一个步距角,称为一步。

根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。

步进电机每转一周的步数相同,在不丢步的情况下运行,其步距误差不会长期积累。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,同时步进电机只有周期性的误差而无累积误差,精度高,步进电动机可以在宽广的频率范围内通过改变脉冲频率来实现调速、快速起停、正反转控制等,这是步进电动机最突出的优点[1]。

正是由于步进电机具有突出的优点,所以成了机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。

随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用[2]。

比如在数控系统中就得到广泛的应用。

目前世界各国都在大力发展数控技术,我国的数控系统也取得了很大的发展,我国已经能够自行研制开发适合我国数控机床发展需要的各种档次的数控系统。

虽然与发达国家相比,我们我国的数控技术方面整体发展水平还比较低,但已经在我国占有非常重要的地位,并起了很大的作用。

除了在数控系统中得到广泛的应用,近年来由于微型计算机方面的快速发展,使步进电机的控制发生了革命性变革。

单片机电机速度控制实验报告

单片机电机速度控制实验报告

单片机电机速度控制实验报告实验目的本实验旨在通过使用单片机控制电机的转速,研究单片机在电机速度控制方面的应用。

实验原理电机速度控制是电机控制领域中的重要研究内容之一。

单片机作为一种常用的控制器件,其在电机速度控制中也有着广泛的应用。

本实验采用PID控制算法来实现单片机对电机速度的控制。

PID控制算法是一种经典的控制方法,通过根据电机速度与设定速度之间的误差来调节电机的输入信号,从而实现对电机速度的精确控制。

实验器材1. 单片机开发板:XXX型号2. 直流电机:XXX型号3. 驱动电路:根据电机型号选择相应的驱动电路4. 电源:12V直流电源5. 电阻、电容等辅助元器件6. 逻辑分析仪(可选)实验步骤1. 搭建电路:根据电机型号选择相应的驱动电路,并将电机与驱动电路连接至单片机开发板上。

2. 编写程序:使用C语言编写程序,实现PID控制算法。

程序主要包括如下几个部分:a) 初始化:对单片机进行GPIO口、定时器等相关设置。

b) 速度测量:通过编码器或其他传感器来测量电机的实时速度。

c) PID控制:根据速度测量值与设定速度值之间的误差,计算PID控制算法所需的比例、积分和微分参数,并调节电机输入信号。

d) 输出控制:将计算得到的电机输入信号输出至驱动电路。

e) 延时控制:根据设定的采样周期对程序进行延时控制,以实现实时的速度控制。

f) 循环控制:将以上步骤循环执行,实现电机速度的连续控制。

3. 烧写程序:将编写好的程序通过编程器烧写至单片机开发板上。

4. 实验测量:使用示波器或逻辑分析仪等仪器对电机的转速进行测量,并记录实时的速度控制效果。

5. 数据分析:通过对测量数据的分析,评估所设计的PID控制算法在电机速度控制方面的性能及精度。

6. 总结与讨论:根据实验结果,总结本次实验的经验教训,并提出改进措施和下一步的研究方向。

实验结果与分析通过对实验测量数据的分析,我们可以得到电机速度控制效果的定性和定量评估。

基于单片机的步进电机升降速及精度控制研究优秀doc资料

基于单片机的步进电机升降速及精度控制研究优秀doc资料

基于单片机的步进电机升降速及精度控制研究优秀doc资料基于单片机的步进电机升降速及精度控制研究黄法恒,等基于单片机的步进电机升降速及精度控制研究黄法恒,刘利(上海交通大学,上海200240摘要:介绍了单片机控制步进电机的一般硬件结构,在此基础上提出了三种步进电机升速的实现方法,最后分析了单片机定时误差对步进控制的影响,并得出了解决办法。

关键词:单片机;步进电机;升速曲线;定时误差Study on Speep 2up /down and Prec isi on Con trol of Step M otorBa sed on S i n gle 2ch i p M i croco m puterHUANG Fa 2heng ,L IU L i(Shanghai J iao Tong University,Shanghai 200240,ChinaAbstract:The hard ware structure of the contr ol of step mot or using single 2chinp m icr ocomputer was in 2tr oduced in this paper .on this basis,put f or ward three ways t o realize the s peed2up of step mot or .I n the last,analysed the influence of ti m ing err or of shigle 2chinp m icr ocomputer in the contr ol of step mo 2t or,then gave the way t o s olve this p r oble m.Key W ords:Single 2chi p m icr ocomputer;Step mot or;Speed 2up curve;Ti m ing err or收稿日期:20212092021控制系统硬件步进电机驱动器的输入信号共有三路,分别是:步进脉冲输入信号CP,电机运转方向控制输入信号C W ,急停复位输入信号REST 。

基于51系列单片机控制步进电机调速实验

基于51系列单片机控制步进电机调速实验

基于51系列单片机控制步进电机调速实验实验目的及要求:1、熟悉步进电机的工作原理2、熟悉51系列单片机的工作原理及调试方法3、设计基于51系列单片机控制的步进电机调速原理图(要求实现电机的速度反馈测量,测量方式:数字测量)4、实现51系列单片机对步进电机的速度控制(步进电机由实验中心提供,具体型号42BYG )由按钮控制步进电机的启动与停止;实现加速、匀速、和减速控制。

速度设定由键盘设定,步进电机的反馈速度由LED数码管显示。

实验原理:步进电机控制原理一般电动机都是连续旋转,而步进电动却是一步一步转动的,故叫步进电动机。

步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。

步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。

因此步进电动机是一种把脉冲变为角度位移(或直线位移)的执行元件。

步进电动机的转子为多极分布,定子上嵌有多相星形连接的控制绕组,由专门电源输入电脉冲信号,每输入一个脉冲信号,步进电动机的转子就前进一步。

由于输入的是脉冲信号,输出的角位移是断续的,所以又称为脉冲电动机。

随着数字控制系统的发展,步进电动机的应用将逐渐扩大。

步进电机区别于其他控制电机的最大特点是,它是通过输入脉冲信号来进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由脉冲信号频率决定。

步进电机的驱动电路根据控制信号工作,控制信号可以由单片机产生。

电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。

0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图:(图2所示)图1 是反应式步进电动机结构示意图,它的定子具有均匀分布的六个磁极,磁极上绕有绕组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机步进电机速度控制研究参考文本In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of EachLink To Achieve Risk Control And Planning某某管理中心XX年XX月基于单片机步进电机速度控制研究参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。

本文对步进机一个全面的介绍,再基于单片机对步进电机的控制。

本文采用硬件控制系统,通过单片机MC9S12XS128与光电编码器对步进电机进行速度的控制。

最后对步进电机的速度曲线进行研究。

步进电机又称为脉冲电动机或者阶跃电动机,作为执行元件,是机电一体化的关键产品之一,广泛应用于各种自动化控制系统之中,比如当今电子钟表、工业机械手、包装机械和汽车制动元件的测试中等。

步进电机在未来应用前景会往更加小型化、从圆形电动机往方形电动机和四相、五相往三相电动机发展。

而这便需要对步进电机的控制提出了更高的要求。

1.步进电机综合介绍1.1.步进电机分类步进电动机的种类很多,从广义上讲,步进电机的类型分为机械式、电磁式和组合式三大类型。

按结构特点电磁式步进电机可分为反应式(VR)、永磁式(PM)和混合式(HB)三大类;按相数分则可分为单相、两相和多相三种。

目前使用最为广泛的为反应式和混合式步进电机。

1.1.1.反应式步进电机反应式步进电机的转子是由软磁材料制成的,转子中没有绕组。

一般为三相,可实现大扭矩的输出,步进角一般为1.5度。

它的结构简单,成本低,但噪音大。

1.1.2.永磁式步进电机永磁式步进电机的转子是用永磁材料制成,转子本身就是一个磁源。

转子的极数和定子的极数相同,所以一般步距角比较大,步进角一般为7.5度或15度。

它输出转矩大,动态性能好,消耗功率小,但启动运行频率较低,还需正负脉冲供电。

1.1.3.混合式步进电机混合式步进电机综合了反应式和永磁式两者的优点。

它分为两相和五相,两相的步进角一般为1.8度,而五相的步进角为0.72度。

混合式与传统的反应式相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。

目前使用最为广泛的为反应式和混合式步进电机。

1.2.步进电机的工作原理步进电机是将电脉冲信号转化为角位移增量,也即是说,当步进驱动器接收到一个脉冲信号时,便驱动电机按照设定的方向转动一定的角位移量。

我们可以通过控制脉冲的个数来控制步进电机的角位移量,通过控制脉冲的频率来控制速度与加速度。

定子齿有三个励磁绕组,其几何轴线分别于转子的轴线错开。

当A相通电时,由于定齿的A齿与转子的1齿对齐,没有切向力,转子静止,接着B相通电,转子齿偏移定子一个角度,由于励磁磁通力图沿着磁阻最小的路径通过,因此对转子产生电磁吸力,迫使转子齿转过转动,当转子转到定子齿对齐位置时,因转子只受径向力而无切向力的作用,故转矩为零,转子被锁定在该位置上。

综上可得出,错齿是促使步进机旋转的根本原因。

在非超载的情况下,电机转速、停止的位置只取决于脉冲信号的脉冲数和脉冲频率,而不受负荷变化的影响。

本文是基于这个条件下进行步进电机速度控制研究。

2.步进电机控制系统的研究2.1.脉冲控制的方法实现脉冲的分配的方法有两种:软件法和硬件法。

软件法在电机运行的过程中,要不停地产生控制脉冲,占用了CPU大量的时间,可能会使单片机无法进行其它工作,所以现在大部分都是采用硬件法。

2.2.控制系统硬件设计的研究良好的驱动系统方案能强有力的支撑步进电机升降速曲线的设计。

控制系统每发一个脉冲信号, 通过驱动器就能够驱动步进电机旋转一个步距角。

步进电机的转速与脉冲信号的频率成正比。

角位移量与脉冲个数相关。

步进电机停止旋转时,能够产生两种状态:制动加载能够产生最大或部分保持转矩(通常称为刹车保持,无需电磁制动或机械制动)及转子处于自由状态(能够被外部推力带动轻松旋转)。

步进电机驱动器,必须与步进电机的型号相匹配。

否则,将会损坏步进电机及驱动器。

电机驱动系统的性能直接影响和制约加减速曲线的效果。

其硬件方面,基于MC9S12XS128 16位MCU以及光电编码器、步进电机驱动电路、单片机最小系统板电路支撑软件平台。

MC9S12XS128是飞思卡尔公司为成本敏感型汽车车身电子应用而设计的16位微控制器,其相关特性足以满足此控制系统的设计要求。

MC9S12XS128 MCU主要特性:(1)S12X CPU,最高总线速度40MHz;(2)2.128KB闪存,带有错误校正功能(ECC);(3)带有ECC 的、4KB 至8KB DataFlash,用于实现数据或程序存储;(4)可配置8 、10 或12 位模数转换器(ADC),转换时间3μs;(5)支持控制区域网(CAN)、本地互联网(LIN)和串行外设接口(SPI)协议模块;(6)带有16-位计数器的、8-通道定时器;(7)出色的EMC,及运行和停止省电模式。

电机驱动电路的设计采用ULN2003芯片,ULN2003是高耐压、大电流达林顿陈列,由七个硅NPN 达林顿管组成,其工作电压高,工作电流大,灌电流可达500mA,并且能够在关态时承受50V的电压,输出还可以在高负载电流并行运行。

基于步进电机升降速曲线的设计选用四相五线步进电机,最小步进角7.5度,通过电机驱动细分原理,可使最小步进角变为3.75度。

四相电机常见的运行方式为四相四拍和四相八拍,四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A。

当电机绕组通电时序为AB-BC-CD-DA时电机为正转,改变通电时序为DA-CD-BC-AB时电机则为反转.步进电机升降速曲线设计步进电机启动和停止的时候,一般情况下,系统的极限启动频率比较低,而要求的运行速度往往比较高,如果系统以要求的运行速度直接启动,因为该速度已经超过极限启动频率而不能正常启动,起则发生丢步,重则根本不能启动,产生堵转。

系统运行起来后,如果达到终点时立即停止发送脉冲,令其立即停止,则由于系统惯性的作用,步进电机会转过控制器所希望的平衡位置,为了克服步进失步和过冲现象,应该在启动停止时加入适当的加减速控制。

步进电机常用的升降频加减速控制方法有4种:3.1.直线升降频电机运动时,其运动过程是首先以一定的加速度加速运动,当速度达到指定的速度时,开始匀速运动,减速时,以一定的加速度减速运动到指定的速度后匀速运动或停下来。

在步进电机升速过程中,直线规律速度控制是加速度保持一个恒定值不变,速度以直线规律上升,该种加减速方法快速性较好,控制方法计算简单, 所以适用于控制系统处理速度较慢且对升降速过程要求不高的场合。

将影响电机和机械系统的使用寿命,这种方法是以恒定的加速度进行升降,平稳性好,适用于速度变化较大的快速定位方式。

加速时间虽然长,但软件实现比较简单。

以往研究表明,步进电机处于负载状态下可以按预期的目标升降速,但是反映出过冲量大,稳定性差,噪音大的现象。

所以在短距离的步进电机加减速控制中不适合采用该方法。

同时,由于这种速度控制方法的加速度是恒定的,其缺点是未充分考虑步进电机输出力矩随速度变化的特性,步进电机在高速时会发生失步"因此,除部分特殊场合,线性规律控制已逐步退出历史的舞台。

3.2.阶梯曲线升降频将步进电机的升降过程离散为一个不连续的区间,控制器件所发出的驱动脉冲受阶梯函数的控制,即步进电机的转速每跃升1个台阶后,恒速运转一段时间,通过反馈机制比较当前速度与目标速度是否一致,若不一致则相应的加或减一个脉冲档位,这种方法的缺点是在恒速阶段没有加速,未充分利用步进电机的加速性能,而且在高频段加速台阶高,步进电机在速度越阶时会发生失步。

3.3.指数曲线升降频指数规律加减速是指在加减速过程控制中,步进电机的速度是指数规律上升或下降的。

开始加速度最大,并且随着速度的升高而逐渐减小,速度上升得越来越慢。

当速度上升至最高值时,加速度降低至最小,理想情况下应接近于0,用指数规律加减速能充分保证步进电机的运行稳定性,同时兼顾了升降运行快速性。

事实上,用指数规律加减速完全可以满足短距离步进控制的要求。

它符合步进电机加减速过程的运动规律,能充分利用步进电机的有效转矩,快速响应性能较好,升降时间短。

指数升降控制具有较强的跟踪能力,但当速度变化较大时平衡性较差。

3.4.抛物线升降频抛物线升降频将直线升降频和指数曲线升降频融为一体,充分利用步进电机低速时的有效转矩,使升降速的时间大大缩短,同时又具有较强的跟踪能力,这是一种比较好的方法,抛物线升降频很适合步进电机的加减速控制。

但这种升降频算法的软件开销比较大,算法比较复杂,控制器处理的时间相对较长。

步进电机因其有其独特的优点,广泛地应用于自动化控制系统中。

随着科技的发展,对步进电机的智能化控制要求也将越来越高,我们也有必要对它进行进一步的研究。

请在此位置输入品牌名/标语/sloganPlease Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion。

相关文档
最新文档