7-6高阶线性微分方程.
第四章高阶微分方程
![第四章高阶微分方程](https://img.taocdn.com/s3/m/a85930697fd5360cbb1adb14.png)
高阶微分方程
本章先从一个实际例子出发, 介绍高阶微分方程的一般形式, 进一步了解可降阶的 微分方程, 重点讲述高阶线性方程的基本理论和常系数线性方程的求解方法。最后给出 高阶方程的一些应用实例。 【例1】 鱼雷追击模型 一敌舰在某海域内沿着正北方向航行时, 我方战舰恰好位于敌舰的正西方向1 公里 处。 我舰向敌舰发射制导鱼雷,敌舰速度为0.42 公里/分,鱼雷速度为敌舰速度的2倍。 试问敌舰航行多远时将被击中 ? 〖 解〗 设敌舰初始点在Q0 (1, 0) 处,运动方向为平行y 轴的直线,t 时刻到达Q 点,鱼 雷的初始点在P0 (0, 0)处,沿曲线y = y (x)追击,敌舰的速度v0 = 0.42,则在时刻t ,鱼雷 在点P (x, y )处,此时敌舰在点Q(1, v0 t),如图4.1。由于鱼雷在追击过程中始终指向敌舰, 而鱼雷的运动方向正好是沿曲线y = y (x) 的切线方向,那么,鱼雷的运动方程为 dy v0 t − y = (4.1) dx 1−x 而鱼雷行使的速度为2v0,分为水平方向运动和垂直方向运动,故满足以下关系式 ( 将(4.1)改写为 v0 t − y = (1 − x) 将(4.3)两边同时对x求导数,得 v0 由(4.2)可得 dt 1 = dx 2v0 将(4.5)代入(4.4)中,得 1+( dy 2 ) dx (4.5) dy d2 y dy dt − = (1 − x) 2 − dx dx dx dx (4.4) dy dx (4.3) dx 2 dy ) + ( )2 = 2v0 dt dt (4.2)
−
t t0
(4.15)
a1 (s)ds
,
t, t0 ∈ [a, b]
(4.16)
【例3】 验证函数xt是方程 出该方程的通解。
高阶线性微分方程
![高阶线性微分方程](https://img.taocdn.com/s3/m/e82d3a09a76e58fafab003e9.png)
知 u 0, 取 u t t ,
得齐次方程的通解为
则 x2 te1t ,
x t C1 C2t e1t ;
17
情形3 有一对共轭复根 ( 0) 特征根为
o
x x
为物体自由振动的微分方程。
2
若受到铅直干扰力 F H sin pt ,
d2x dx 2 2 n k x h sin pt 2 为强迫振动的方程 dt 2 dt d uc duc Em 2 Lc 2 2 0 uc sin t dt dt LC 为串联电路的振荡方程
可以证明: 若方程(1)中的系数
(2)
P1 t , P2 t , Pn t
以及F t 均在区间 a, b 连续,则方程(1)存在惟一的满 足初始条件(2)的解 x t , t a, b .
4
二、 线性微分方程解的结构
x
n
t Pn t x t F t (3) t P1 t x n1 t Pn1 t x
得齐次方程的通解为
,ቤተ መጻሕፍቲ ባይዱ
x t C1e1t C2e2t ;
16
x a1x a2 x 0
情形2 有两个相等的实根
( 0)
a1 1 2 , 特征根为 一特解为 2 设另一特解为 x2 u t e1t ,
x1 e1t ,
,x2 代入原方程并化简, 将 x2 ,x2
可利用微分算子的线性性质证得。
问题: 以上解的线性组合是否是方程的通解?
6
高阶常系数线性微分方程
![高阶常系数线性微分方程](https://img.taocdn.com/s3/m/becca239783e0912a3162a47.png)
特征方程为 r 2 4r 4 0, r1 r2 2,
则通解为 y (C1 C2 x)e2x .
9
Ⅲ 有一对共轭复根 ( 0)
设特征根为 r1 i , r2 i ,
4
10-5 高阶常系数线性微分方程
定义 在n阶线性方程y(n) P1( x) y(n1) Pn1( x) y Pn( x) y f ( x)中,
如果未知函数y及其各阶导数y, y, , y(n)的系数全都是常数时,
则称该方程为常系数线性微分方程. 一般形式 : y(n) p1 y(n1) p2 y(n2) pn1 y pn y f ( x),
定义 由常系数齐次线性方程的特征方程的根确定其 通解的方法称为特征方程法.
11
例1 求方程 y 2 y y 0的通解.
解 特征方程为 r 2 2r 1 0 ,
解得 r1 r2 1 ,
故所求通解为 y (C1 C2 x)e x .
例2 求方程 y 2 y 5 y 0的通解.
Ⅱ 有两个相等的实根 ( 0)
特征根为 r1 r2
设另一特解为: y
p,
2 u2( x
)e
一特解为
, r1 x
将 y2 ,y2 ,y2代入原方程并化简得
y1 [
y2
e r1x , u( x)]
y1
u (2r1
p)u
(
r2 1
pr1
q)u
0,
知 u 0, 取 u( x) x, 则 y2 xer1x ,
高等数学上7.5可降阶的高阶微分方程
![高等数学上7.5可降阶的高阶微分方程](https://img.taocdn.com/s3/m/5bd7938acc22bcd126ff0c47.png)
1 2、 y = − ln(ax + 1); a
1 3、 y = ( x + 1)4. 2 1 1 y = x3 + x + 1. 三、 6 2
四、恰当导数方程
例 4
求方程 yy′′ + y′2 = 0的通解.
解 1 将方程写成 d ( yy′) = 0,
dx
故有 yy′ = C1 ,
即 ydy = C1dx,
.
五、变量代换降阶法
例 6 解
求方程 xyy′′ − xy′2 = yy′ 的通解.
∫ zdx , 设y=e
∫ zdx , y′ = z ⋅ e
∫ zdx + z ⋅ ze∫ zdx , y′′ = z′e
代入原方程, 代入原方程,得
解其通解为 z = C x,
z′x = z,
2
∫ Cxdx = C eC x . 原方程通解为 y = e 2
d2x m 2 = F(t) dt 由题设, 由题设 t = 0时,F(0) = F0 , 且力随时间的增大而均 匀地减小; 匀地减小 所以 F(t ) = F0 − kt;
又当t = T时, F(T ) = 0, 从而 t F(t ) = F0 (1 − ) T d 2 x F0 t 方程为 (1 − ) 2 = m T dt 初始条件为 x |t =0 = 0, dx |t =0 = 0 dt dx F0 t2 两端积分得 = (t − ) +C1 dt m 2T
′′ = ( y − xy′)2 的通解. 例 5 求方程 x yy
2
解
∫ zdx , 代入原方程 得 z′ + 2 z = 1 , 代入原方程,得 设y=e x x2
高阶变系数线性微分方程的特解求法
![高阶变系数线性微分方程的特解求法](https://img.taocdn.com/s3/m/54b1a933453610661ed9f4b4.png)
` 1 4)
对 任 意 自然 数
/ 1 1 1
|
m镇 C
O
n
,
归 纳可 证
m
一
m
乙 m K
=
一
些
二土 工
:
K `
x
) 二 ( K ’(
x
)
+
:
_
_
1
{二 (
\
x
)
,
、
(x ) …
,
,
2 ,
l 胜
二土
1一
l
} J
x
甲 ( x ),
甲, (
x
)
,
…
,
甲 ( t n
一
1 ) (x )
`
!
e
、 (X ) d 、
是方程
( 2 1 )
.
(
x
“ )y
+
(
(
x
)丁
的 解的 充 要 条 件 是
a
。
r (x ) ( p
`
(x )
+
甲“ (x )
)
+
a
,
(x )甲 (
x
)
+
a
:
(X )
二
0
( 2 2 )
。
成立
。
如 果存在 某常 数
义
Z
久 )
,
使
+
a
:
a
。
(
2
.
x
)
+
又
a
:
(
x
(x )~
高阶微分方程的解法及应用
![高阶微分方程的解法及应用](https://img.taocdn.com/s3/m/1cd7693c14791711cc7917ea.png)
本科毕业论文(设计)题目:高阶微分方程的解法及应用毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。
据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。
对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。
作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。
有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。
学校可以公布论文(设计)的全部或部分内容。
保密的论文(设计)在解密后适用本规定。
作者签名:指导教师签名:日期:日期:注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。
4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。
图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它目 录摘 要 ............................................................................................................................................. 1 Abstract ......................................................................................................................................... 2 前 言 ............................................................................................................................................. 3 第一章 高阶微分方程的理论与结构 ........................................................................................... 4 第二章 高阶常系数线性微分方程 ............................................................................................. 6 2.1 高阶常系数线性齐次微分方程 ........................................................................................ 6 2.1.1 特征根是单根的情况 ................................................................................................. 6 2.1.2 特征根是重根的情况 ................................................................................................. 7 2.2 高阶常系数线性非齐次方程 ............................................................................................ 8 2.2.1 常数变易法 ................................................................................................................. 8 2.2.2 比较系数法 ............................................................................................................... 10 2.2.3 拉普拉斯变换法 ....................................................................................................... 11 2.3 Euler 方程 ........................................................................................................................ 13 第三章 可降阶的高阶微分方程的解法 .. (15)3.1 形如()n n d yf x dx=的高阶方程 (15)3.2 形如()(1)()(,,,,)0k k n F x y y y +=的高阶方程 (16)3.3 形如()(,,,)0n F y y y '=的高阶方程 (17)3.4 恰当导数方程 .................................................................................................................. 19 第四章 高阶微分方程的应用 ................................................................................................... 21 参考文献 ....................................................................................................................................... 25 致 谢 . (26)摘 要本文首先介绍了高阶微分方程的一些理论与结构。
高阶线性方程解析
![高阶线性方程解析](https://img.taocdn.com/s3/m/ce6798d527284b73f24250f2.png)
推广 目录 上页 下页 返回 结束
例.
解方程
d4 w dx4
4w
0
(
0 ).
解: 特征方程:
(r2 2)2 2 2r2 0
即 ( r 2 2 r 2 )( r 2 2 r 2 ) 0
一、求通解 练 习 题
(提示:
线性无关的解)
三、降阶法与常数变易法
y P( x) y Q( x) y 0
(1)
1.已知齐次线性方程一个解,求与之线性无关的特解
代入(1)式, 得
解出 u(x) 得到 y2 通解为 (注:u(x)中不含常数)
y P( x) y Q( x) y 0
(1)
其根为
r1, 2
( 1 i ),
2
r3 , 4
(1i )
2
方程通解 :
we
x
2 ( C1 cos
2
x
C2
sin
x)
2
e
x
2 ( C3 cos
2
x
C4
sin
x)
2
机动 目录 上页 下页 返回 结束
例. 解方程 y(4) 2 y y 0 .
解: 特征方程: r 4 2 r 2 1 0 即 (r2 1)2 0
一、概念的引入
例: 一弹簧下挂一重物, 使物体具有初始速
度
物体便离开平衡位置O,上下振动.
确定物体的振动规律
解 受力分析
物体自由振动的微分方程
2、 y py qy 0 的解法
特征方程法
将其代入上方程, 得
高阶微分方程求解
![高阶微分方程求解](https://img.taocdn.com/s3/m/96529df5fab069dc5022014e.png)
* 将 y , ( y ) , ( y ) 代入原方程比较系数得 * *
1 1 a , b , 6 2
[(C0 C1 x C k 1 x k 1 ) cos x ( D0 D1 x Dk 1 x k 1 ) sin x ]e x
若是k重共轭 复根 j
4、二阶常系数非齐次线性微分方程解法
y py qy f ( x )
二阶常系数非齐次线性方程
y c1 cos x c2 sin x x
例4 设 f (x) 具有连续的二阶导数试确定f (x) 使曲线积分
( 常数) 与路径无关 解 由曲线积分与路径无关的条件得
f ( x ) e x 2 f ( x ) f ( x )
即
x f ( x) 2 f ( x) f ( x) e
1 x f ( x ) (c1 c2 x )e e ( 1)2
x
例5
解
1 求解方程 y 2 y y ( x cos 2 x ). 2 2 r 4 0, 特征方程
特征根
r1, 2 2i ,
对应的齐方的通解为 Y C1 cos 2 x C2 sin 2 x .
(1) ( 2) 设 y x k e x [ Rm ( x ) cos x Rm ( x ) sin x ],
m maxl , n 其中 R ( x ), R ( x )是m次多项式,
(1) m ( 2) m
; 0 j不是特征方程的根时 k . 1 j是特征方程的单根时
高阶齐次线性微分方程
![高阶齐次线性微分方程](https://img.taocdn.com/s3/m/38beef5ecaaedd3383c4d370.png)
第七章常微分方程7.8 高阶齐次线性微分方程数学与统计学院赵小艳1 2 高阶线性微分方程的概念1主要内容3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关高阶齐次线性微分方程通解的结构1 2 高阶线性微分方程的概念1主要内容3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关高阶齐次线性微分方程通解的结构解 受力分析 1 高阶线性微分方程的概念 例1 (弹簧的机械振动)如图,弹簧下挂一物体.设在垂直方向有一随时间变化的外力作用在物体上,物体将受外力驱使而上下振动,求物体的振动规律.pt H t f sin )(1= 以物体的平衡位置为坐标原点,x 轴的方向垂直向下. x xo )(1t f ;sin )()1(1pt H t f =外力;)2(kx f -=弹性力v f μ-=0)3(介质阻力,ma F =由x kx t f x m d d μ--=)(2可得.t x d d μ-= 设振动开始时刻为0,t 时刻物体离开平衡位置的位移为x (t ).,ma F =由x kx t f x m d d μ--=)(2可得t t 2d d 物体自由振动的微分方程.0,000====t t t x x d d 还应满足初始条件:一般地,称 )()()(2122t F x t P t x t P t x =++d d d d 为二阶线性微分方程, ,0)(时当≡t F 称为二阶齐次线性微分方程,,0)(时当≠t F 称为二阶非齐次线性微分方程. )()()()()()()()(1)1(1)(t F t x t P t x t P t x t P t x n n n n =++++-- n 阶线性(微分)方程 ,0)(时当≡t F n 阶齐次线性微分方程,t t 2d d .0,000====t t t x x d d 还应满足初始条件:物体自由振动的微分方程)1()()()()()()()()(1)1(1)(t F t x t P t x t P t x t P t x n n n n =++++-- n 阶线性(微分)方程,0)(时当≡t F n 阶齐次线性微分方程, ,0)(时当≠t F n 阶非齐次线性微分方程.其初始条件的一般形式为 )2(.)(,,)(,)()1(00)1(0000--===n n x t x x t x x t x 解的存在唯一性定理].,[,),()2()1(,],[)()(,),(),()1(021b a t t t x b a t F t P t P t P n ∈的解件存在唯一的满足初始条则方程上连续均在区间及中的系数若1 2 高阶线性微分方程的概念1主要内容3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关高阶齐次线性微分方程通解的结构为线性微分算子. ),()()()()(1111t x t P t x t P t x t P t x x L n n n n n n ++++=---d d d d d d 记 称 )()()()(1111t P t t P t t P t L n n n n n n ++++=---d d d d d d 性质;0)0()1(=L ;),()()2(为任一常数C x CL Cx L =,x L C x L C x L C x C x C x C L n n n n )()()()()3(22112211+++=+++ .,,,为任意常数其中C C C 2 高阶齐次线性微分方程解的性质 )3(0)()()()()()()(1)1(1)(=++++--t x t P t x t P t xt P t x n n n n 0)(=x L定理1(解的叠和性) ,)3(,,,21的解均是齐次线性方程若n x x x ,)3(2211的解也是齐次线性方程则n n x C x C x C x +++= 问题: 例如 ,0=+x x,sin 1t x =t x sin 22=都是它的解, 也是它的解, 2211x C x C x +=.sin )2(21t C C x +=这是因为但不是该方程的通解. )3(0)()()()()()()(1)1(1)(=++++--t x t P t x t P t x t P t x n n n n .,,,21为任意常数其中n C C C 不一定! 的通解呢?情况下才是方程个任意常数的解在什么具有)3(n 的通解?是否是)3(2211n n x C x C x C x +++=1 2 高阶线性微分方程的概念1主要内容3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关高阶齐次线性微分方程通解的结构定义1(线性相关与线性无关) ,)(,),(),(21个函数内的为定义在区间设n I t f t f t f n 使得个不全为零的常数如果存在),,,2,1(n i C n i =0)()()(2211=+++t f C t f C t f C n n ),,2,1)((n i t f i =则称函数组,值均成立中任何对区间t I ,,,,21维向量是一组设n s ααα 的常数如果存在一组不全为零,02211=+++s s k k k ααα 使得,,,1s k k s ααα,,,21 则称.,则称它是线性无关的关一个向量组不是线性相.是线性相关的在区间 I 线性相关; ,),,2,1(全为零时成立若上式仅当n i C i =线性无关.I n i t f i 在区间则称函数组),,2,1)(( =定义1(线性相关与线性无关) ,)(,),(),(21个函数内的为定义在区间设n I t f t f t f n 使得个不全为零的常数如果存在),,,2,1(n i C n i =0)()()(2211=+++t f C t f C t f C n n ),,2,1)((n i t f i =则称函数组,值均成立中任何对区间t I 在区间 I 线性相关; ,),,2,1(全为零时成立若上式仅当n i C i =线性无关. I n i t f i 在区间则称函数组),,2,1)(( =例如 t t 22sin ,cos ,1线性相关; 一般地, ,)()(21常数上若在≠t y t y I 上在与则函数I t y t y )()(21线性无关. .,线性无关而te t例1 .,,,,112上线性无关在任何区间证明函数组I x x x n - 证 反证法. 零的常数 使得()0,1,2,,1,i C i n =-0112210=++++--n n x C x C x C C 对区间 I 上的所有x 都成立, 但以上n -1 次方程在实数范围内最多有n -1个根. .,,,,112上线性无关在任何区间所以,函数组I x x x n - 即方程有无穷多个根.例如 ,0=+x x,sin 1t x =t x sin 22=都是它的解, 是它的解, t C C x C x C x sin )2(212211+=+=但不是通解. 矛盾!.个线性无关的特解关键是求微分方程的n 则必存在n 个不全为 假设这n 个函数线性相关, ,要求微分方程的通解t t t e e e 2,,-是否线性无关?,),(时当∞+-∞∈t 例2 解 两边同时关于变量t 求一阶和二阶导数, 得:假设 02321=++-t t t e C e C e C 042321=++-t t t e C e C e C 022321=+--t t t e C e C e C 联立, t t t t t t t t t e e e e e e e e e D 22242----=4112111112-=t e ,0≠t e 26-=().,+∞∞-∈t 因此 ,0321===C C C 即tt t e e e 2,,-线性无关. ,),(时当∞+-∞∈t 321,,C C C 关于变量的线性方程组的系数行列式为1 2 高阶线性微分方程的概念1主要内容3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关高阶齐次线性微分方程通解的结构定理2(解的线性无关判别法) 线性无关则)(,),(),(21t x t x t x n 0)()()()()()()()()()(0)1(0)1(20)1(100201002010≠=---t x t x t x t x t x t x t x t x t x t w n n n n n n使得中存在一点在,0t I ,)3()(,),(),(21的解的定义于区间是方程若I t x t x t x n 4 高阶齐次线性微分方程通解的结构)3(0)()()()()()()(1)1(1)(=++++--t x t P t x t P t x t P t x n n n n 行列式Wronski .)3(个线性无关的特解的关键是求n ,)3(的通解要求微分方程定理3(齐次线性微分方程通解的结构)个线性无关的解,的是微分方程若n t x t x t x n )3()(,),(),(21 )()()()(2211t x C t x C t x C t x n n +++= .,,,21为任意常数其中n C C C 证明 下证任一解 x (t ) 具有以上形式.由齐次方程解的叠加性质,可知上式中的 x (t ) 是(3)的解.任取(3)的解 x (t ) ,且满足初值条件.)(,,)(,)()1(00)1(0000--===n n x t x x t x x t x )3(0)()()()()()()(1)1(1)(=++++--t x t P t x t P t x t P t x n n n n 均可表示为则它的任一解x任取(3)的解 x (t ) ,且满足初值条件.)(,,)(,)()1(00)1(0000--===n n x t x x t x x t x 构造方程组 由于Wronski 行列式不等于零,所以以上方程组关于变量 n C C C ,,,21 且满足初值条件. )()()()(0202101t x C t x C t x C t x n n+++= 于是 .,,,00201nC C C )()()()(2211t x C t x C t x C t x n n +++= ⎪⎪⎩⎪⎪⎨⎧)()()()(00220110t x C t x C t x C t x n n +++= )()()()(00220110t x C t x C t x C t x n n +++=)()()(0)1(0)1(110)1(t x C t x C t xn n n n n ---++=存在唯一一组解定理3(齐次线性微分方程通解的结构) )()()()(2211t x C t x C t x C t x n n +++= .,,,21为任意常数其中n C C C 均可表示为则它的任一解x .,0)(')(",21求其通解的解是方程已知=++y x a y x a y e x x 例1 解 ,011110)0(≠-==w 由于.,线性无关所以x e x ,21x e C x C y +=该方程的通解为.,21为任意常数其中C C 个线性无关的解,的是微分方程若n t x t x t x n )3()(,),(),(21 )3(0)()()()()()()(1)1(1)(=++++--t x t P t x t P t x t P t x n n n n。
7-6 高阶线性微分方程(高等数学)
![7-6 高阶线性微分方程(高等数学)](https://img.taocdn.com/s3/m/4aade01eb42acfc789eb172ded630b1c59ee9bd8.png)
§7.6 高阶线性微分方程教学内容:一.线性微分方程解的结构1. 二阶齐次线性微分方程通解的结构(1)定理:(叠加原理)如果1y 和2y 是二阶齐次线性微分方程0)()(=+'+''y x q y x p y 的两个解,则1122y C y C y =+也是方程0)()(=+'+''y x q y x p y 的解,其中1C ,2C 为任意常数.(2)定理:(二阶齐次线性微分方程通解的结构) 若12,y y 是二阶齐次线性微分方程0y py qy '''++=的两个线性无关的解,则1122y C y C y =+是0y py qy '''++=的通解,其中1C ,2C 为任意常数.2. 二阶非齐次线性微分方程通解的结构(1)定理:若12,y y 是二阶线性非齐次微分方程()y py qy f x '''++=的两个特解,则12y y y =-是其二阶线性齐次微分方程0y py qy '''++=的解.(2)定理:(二阶非齐次线性微分方程通解的结构) 若*y 是()y py qy f x '''++=的一个特解,c y 是0y py qy '''++=的通解,则二阶常系数非齐次线性微分方程()y py qy f x '''++=的通解是*c y y y =+.(3)定理:(叠加定理) 设二阶非齐次线性微分方程()y py qy f x '''++=的自由项可以写成两个函数之和12()()()f x f x f x =+, 即12()()y py qy f x f x '''++=+,若1*y 与2*y 分别是方程1()y py qy f x '''++=与2()y py qy f x '''++=的特解, 那么12**y y y =+就是方程'''()y py qy f x ++=的特解.二.二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程0y py qy '''++=的通解求解过程: (1)将原方程化为标准型0y py qy '''++=;(2)写出0y py qy '''++=的特征方程20r pr q ++=,求得特征根12,r r ; (3)根据下表得到'''0y py qy ++=的通解.如果求特解,只需将初始条件代入通解确定12,C C 后,即可得到满足初始条件的特解*y .三.二阶常系数非齐次线性微分方程1. ()()e x m f x P x λ=型:二阶常系数非齐次线性微分方程求解的基本步骤:(1)将原方程化为标准形式()'''y py qy f x ++=,按照表6.1求齐次方程'''0y py qy ++=的通解c y ; (2)按照表6.2确定()'''y py qy f x ++=的特解*y 形式并代入原方程最终求出特解*y ; (3)根据定理6.4求得()'''y py qy f x ++=的通解*c y y y =+;(4)将初始条件代入通解确定12,C C 后,即可得到满足初始条件的特解.2. ()e [()cos ()sin ]xl n f x P x x P x x λωω=+型自由项形式为()e [()cos ()sin ]xl n f x P x x P x x λωω=+,其中(),()l n P x P x 分别为x 的l 次和n 次多项式,,λω为常数. 一般的,非齐次方程(6.9)的特解可设为12e [()cos ()sin ]k x m m y x R x x R x x λωω*=+,其中12(),()m m R x R x 均为m 次待定实系数的多项式,max(,)m l n =, 特别注意特解中含有2(1)m +个待定实系数;当i λω+不是特征根时, 0k =;当i λω+是特征根时, 1k =.四.例题讲解例1.求下列微分方程.(1) 2''10'120y y y ++=; (2) ''2'50y y y -+=; (3) 初值问题''2'0y y y -+=, 0012x x y y =='==,.例2.求解微分方程(4)40y y ''+=.例3.求''5'667y y y x -+=+的一个特解.例4.求918y y '''+=的通解.例5.求方程''5'612e x y y y ++=满足初始条件000,0x x y y =='==的特解. 例6.求方程32e cos xy y y x -'''++=的一个特解.例7.求方程25e sin x y y y x '''-+=的通解.。
同济高数第七版上册考研数学考纲
![同济高数第七版上册考研数学考纲](https://img.taocdn.com/s3/m/ce61d720336c1eb91a375d71.png)
1(4)(7)(10)(18)
(19)(21)(25)(26)
2,5,6,7(10)(11)(13)
5.4反常积分
无穷限的反常积分
了解概念,会计算反常积分
例1~7
习题5-4:
1(4)(8)(10)
2,3(记住结论),4
无界函数的反常积分
5.5反常积分的审敛法
不作要求
总习题五
总结归纳本章的基本概念、基本定理、基本公式、基本方法
P120习题2-5:
1,3(3)(6),
4(4)(6)(7)
基本初等函数的微分方程
掌握
微分运算的法则
(微分形式不变性)
了解(会求
函数的微分)
微分在近似计算中的应用
不作要求
总习题二
总结归纳本章的基本概念、基本定理、基本公式、基本方法
P122中习题二:
2,3,6(1),7,11
12(1),13,14
数三不做12,13
掌握
章节
教材内容
考纲要求
必做例题
必做习题
1.6极限存在准则,两个重要极限
极限存在的两个准则(夹逼准则、单调有界数列必有极限)
掌握(数一数二)
了解(数三)
P52习题1-6:
1(4)(6),2,4
利用两个重要极限求极限的方法
掌握【重点】
例1~4
柯西审敛原理
不作要求
1.7无穷小的比较
无穷小阶的定义及无穷小量的比较方法
习题5-2:
3,5(2),6,7,8(3)
(8)(11)(12),
11(2),12,13,14,15,16
牛顿-莱布尼茨共识
掌握【重点】
(定理会证明)
常系数齐次线性微分方程(13)
![常系数齐次线性微分方程(13)](https://img.taocdn.com/s3/m/eb67c43ae009581b6bd9ebf4.png)
只需要求特征方程(代数方程)之根
整理课件
4
二阶常系数齐次线性—微分方程:
①
我们猜想①的解为
和它的导数只差常数因子,
( r 为待定常数 ), 代入①得
②
称②为微分方程①的特征方程, 其根称为特征根.
1. 当
时, ②有两个相异实根则ຫໍສະໝຸດ 分方程有两个线性无关的特解:
因此方程的通解为
整理课件
5
2. 当
即
故所求方程为
由通解知特征方程有根 : P327 2(2) 以
…
整理课件
19
?
3. 设
是某二阶线性非齐次微分方程的解,求此微分方程. 解:
是所求方程对应的齐次方程的解 对应的齐次方程的特征方程 :
对应的齐次方程为: 又
所以所求微分方程为
整理课件
20
作业 P340 1 (3) , (6) , (10) ;
时, 通解为
(2) 当
时, 通解为
(3) 当
时, 通解为
可推广到高阶常系数线性齐次方程求通解 .
整理课件
15
思考与练习
求方程 答案:
的通解 . 通解为 通解为 通解为
整理课件
16
作业 P340 1 (3) , (6) , (10) ;
2 (2) , (3) , (6) ; 3
整理课件
17
备用题 1.
时, 特征方程有两个相等实根
则得微分方程有一个特解
也是解
设另一特解
(目的是找出与y1线性无关的解)
代入方程得: (常系数变易法)
是特征方程的二重根
取 C(x) = x , 则得
因此原方程的通解为
7-6高阶线性微分方程
![7-6高阶线性微分方程](https://img.taocdn.com/s3/m/da458aa9f121dd36a32d8272.png)
非齐次方程通解为
y C1 y1 C 2 y2 y1 y2 f ( x ) y1 f ( x ) dx y2 dx . w( x ) w( x )
x 1 例 求方程 y y y x 1 的通解. 1 x 1 x x 1 解 1 0, 1 x 1 x
说明:
y C1 y1 ( x) C2 y2 ( x) 不一定是所给二阶方程的通解.
例如, 是某二阶齐次方程的解, 则
也是齐次方程的解 但是
并不是通解
为解决通解的判别问题, 下面引入函数的线性相关与
线性无关概念.
齐次线性方程解的叠加原理 函数的线性相关与线性无关:
定理1 如果函数y1(x)与
个解 y1 x , y2 e x , y3 e 2 x , 求此方程满足初始条件
y (0) 1, y(0) 3 的特解 .
解: y2 y1 与 y3 y1 是对应齐次方程的解, 且 x y2 y1 e x 2x 常数 y3 y1 e x 因而线性无关, 故原方程通解为
2
二阶线性微分方程
当 f ( x ) 0时, 二阶齐次线性微分方程 当 f ( x ) 0时,二阶非齐次线性微分方程n阶线微分方程y( n)
P1 ( x ) y
( n1 )
Pn1 ( x ) y Pn ( x ) y f ( x ).
二、二阶齐次线性微分方程的解的结构
x y e , 由刘维尔公式 对应齐方一特解为 1
x dx 1 x 1 x y2 e 2 x e dx x , e
对应齐方通解为 Y C1 x C2e x .
设原方程的通解为 y c1 ( x ) x c2 ( x )e x ,
高阶常系数线性微分方程
![高阶常系数线性微分方程](https://img.taocdn.com/s3/m/2e9b2ef684254b35eefd34b9.png)
y e x (C 1 cos x C 2 sin x)
可推广到高阶常系数线性齐次方程求通解 .
2.已知y1 e , y2 e 是二阶常系数线性齐次 方程
r1 x r2 x
的解,如何求微分方程 ?
特征根为 特征方程:
则齐次方程为 :
3.已知y xe 是二阶常系数线性齐次 方程的解,
推论.
是 n 阶齐次方程
的 n 个线性无关解, 则方程的通解为
y C1 y1 Cn yn (Ck 为任意常数)
三、二阶常系数齐次线性微分方程
① 和它的导数只差常数因子, 所以令①的解为 y e r x ( r 为待定常数 ), 代入①得
(r pr q ) e
2
rx
0 r 2 pr q 0
§7.4 高阶线性微分方程
一、二阶微分方程:
d2y dy P ( x ) Q( x ) y f ( x ) 2 dx dx
当 f ( x ) 0时, 二阶线性齐次微分方程 当 f ( x ) 0时,二阶线性非齐次微分方程
其中,P(x)、Q(x)、f(x)为x的已知函数;
当P(x)、Q(x)为常数时,称为常系数二阶线性 微分方程;否则为变系数二阶线性微分方程。
r1 x
3. 当 p 2 4 q 0 时, 特征方程有一对共轭复根
这时原方程有两个复数解:
y1 e ( i ) x e x (cos x i sin x ) y2 e ( i ) x e x (cos x i sin x )
利用解的叠加原理 , 得原方程的线性无关特解:
②
称②为微分方程①的特征方程, 其根称为特征根.
第七章 微分方程
![第七章 微分方程](https://img.taocdn.com/s3/m/d0647c0a76c66137ee061999.png)
第七章 微分方程§7.1微分方程的基本概念1. 填空(1) 微分方程356()40x y y y x '''++=的阶数是 二阶 ; (2) 微分方程2(76)()y x y dx x y dy e -+-=的阶数是 一阶; (3) 微分方程2sin d d ρρθθ+=的阶数是一阶;(4) 微分方程212(),x y C C x e =+则当120,1C C ==时,00|0,|1;x x y y =='==(5) 已知曲线上点(,)p x y 处的法线与x 轴的交点为Q,且线段PQ 被y 轴平分.则曲线所满足的微分方程是20yy x '+=2. 验证(3)x y x c e =+是微分方程20y y y '''-+=的解,它是否是该微分方程式的通解?为什么?证: 3(3),6(3)x x x x y e x c e y e x c e '''=++=++ 则有26(3)2[3(3)](3)0x x x x x y y y e x c e e x c e x c e '''-+=++-++++=则(3)x y x c e =+是微分方程的解,但只含有一个任意常数,所以它不是通解.3. 设212()x y C C x e =+(1) 验证y 是微分方程440y y y '''-+=的通解. 解22222122122(),44()x x x x y C e C C x e y C e C C x e '''=++=++,因为22222212212124444()48()4()0x x x x x y y y C e C C x e C e C C x e C C x e '''-+=++--+++=所以212()x y C C x e =+是微分方程的解,且含有两个相互独立的任意常数,因而是微分方程的通解.(2) 求参数方程12,C C 使得它满足初始条件(0)0,(0)1y y '== 解:由(0)0,(0)1y y '==得0111002120(0)0,12 1.C e C C C e C e C =+=⇒==+⇒=§7.2可分离变量微分方程1. 求下列可分离变量微分方程的解 (1)()()0x y x x y y e e dx e e dy ++-++= 解:(1)(1)0,(1)(1),11y x xyyxyxxyy x e dy e dxe e dx e e dy e e dy e e dx e e --++=+=--=-+ 1(1)(1),,ln 1ln 1ln 1111y x y x y xy x y x e dy e dx d e d e e e C e e e e --+==--=-++-+-+⎰⎰⎰⎰111101011(1)(1),(1)(1),1010y y xyx yx y x x e e e e C e e C e e C e e ⎧⎧->-<+-=⇒+-=⇒+-=⎨⎨+>+<⎩⎩111010(1)(1),(1)(1),1010y y x yx y xx e e e e C e e C e e ⎧⎧-<->⇒+-=-⇒+-=-⎨⎨+>+<⎩⎩则通解为(1)(1)x y e e C +-=. (2)cos s sin sin 0xco ydx x ydy +=11sin cos cos sin ,ln cos n sin ln cos sin cos sin cos sin y x d y d xdy dx dx y l x C y C x y x y x =-=⇒=+⇒=⎰⎰⎰⎰1cos sin cos sin y C x y C x ⇒=±⇒=所以通解为arccos(sin )y C x =2. 求下列可分离变量微分方程满足所给初始条件下的特解 (1)20,| 1.y x x y e y -='==解:220221111111,,,|1,,2222y y x y x x x y x e dy dx y e e c y c e e e e e e e ----='==⇒=+=⇒=-=+-⎰⎰所以特解为2111ln()22x y e e-=--+(2)2sin ln ,|x y x y y y e π='==解:111,ln ln ln csc ln ln csc ln (csc )ln sin dy dxy x ctgx C y C x ctgx y C x ctgx y y x==-+⇒=-⇒=±-⎰⎰ ln (csc )y C x ctgx ⇒=-2|1,x y e C π==⇒= 则1cos ln csc tan sin 2x xy x ctgx x -⇒=-==,所以特解为 tancsc 2xx ctgxy ee-==(3)sin (12)cos 0,(0)4x ydx e ydy y π-++==解cos cos sin sin (2),,,sin sin sin sin 121222x x x x x xydy dx ydy dx d y e dx d y d e y y y y e e e e -----+===-=++++⎰⎰⎰⎰⎰⎰ 1111ln sin ln(2)ln ln (2)sin sin 22x x x x C Cy e C C e y y e e -±=-++=+⇒=⇒=++(0)sin443C y C y ππ=⇒=⇒==则特解为y =3. 质量为1g 的质点受外力作用作直线运动,外力和时间成正比,和质量运动的速度成反比,在10t s =时速度等于50/,cm s 外力为42/,g cm s ⋅问从运动开始经过了一分钟后的速度是多少?解:1010,|50,|420,20,120,20t t t dvF k v F k mvv t m v t vdv tdt v dt=='===⇒=∴==⇒==⎰⎰22210110,|50250,20500,2t v t c v c v t ==+=⇒==+ 所求特解为v60|269.3(/)t v cm s =≈4. 一曲线通过点(2,3),它在两坐标轴间的任一切线段均被切点所平分,求这曲线方程. 解:1112tan ,ln ln ln 2y y dy dxy y x C xy C xy C xy C x xy x α'==-=-=-⇒=-+⇒=⇒=±⇒=⎰⎰又因(2)3y =知C=6,则所求的曲线方程为6xy =§7.3齐次方程1. 求下列齐次方程的通解.(1) 22()0x y dx xydy +-=解:2221y dy x y x y dx xyx⎛⎫+ ⎪+⎝⎭==,令2'111,,,,,yu u y ux y u xu xu u udu dx xu ux+''===+=-==22221111ln ln ln ln 2u x C C x u C x =+=⇒= 通解为222ln()y x Cx =(2) 3(l n l n )dyx y y x dx=- 解:3ln ,dy y ydx x x=令ln 1(3ln 1),3ln ,,,,.(3ln 1)3ln 133ln 1y du dx d u dx d u dxu xu u u u x u u x u x u x-'==-===---⎰⎰ 33333111ln 3ln 1ln()3ln 1ln(1)3y u C x u C x Cx Cx x -=⇒-=±=⇒=+ 所以通解为313Cx y xe+= (3) (2s i n 3c o s )3c o s 0y yy x y d x x d y x xx+-=解:2sin3cos 2sin 3cos 3,,,,3cos 2tan 3cos y y x y dyy u u udx x x u y ux u x u du y dxx u x ux x++'===+==令 3221133ln sin ln ln sin 2tan 2dx du u x C u C x Cx x u =⇒=+⇒=±=⎰⎰ 再将yu x=代入原方和得通解为 32sin yCx x= 2. 求下列齐次方程满足所给初始条件下的通解. (1)1,|2x x yy y y x='=+= 解:令yu x=,2211111,,ln ln ,|2222x du y xu u u x C x C y C u dx xx =⎛⎫'===+⇒=+=⇒= ⎪⎝⎭所以通解为222(ln 2)y x x =+(2)22221(2)(2)0,|1x x xy y dx y xy x dy y =+-++-==解:222222212221y y dy x xy y x x dx y xy x y y x x ⎛⎫-- ⎪+-⎝⎭=-=+-⎛⎫+- ⎪⎝⎭,令y u x =,2222112,1211u u dx u xu u du x u u u u --⎛⎫'+==- ⎪++-+⎝⎭ 1112211ln ln ln ln11u u x C C x C x Cx u u +++==⇒=±=++,从而有 221(),|11x x y C x y y C =+=+=⇒=因此特解为22x y x y +=+§7.3一阶线性微分方程1. 求下列一阶线性微分方程的通解. (1) x y y e -'==解: ()dx dxx x x x x x y e e e dx C e e e dx C e dx C e x C ------⎡⎤⎰⎰⎡⎤⎡⎤=+=+=+=+⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰ (2) ln (2ln )0y ydx x y dy +-=解:21ln dx x dy y y y+= 2222ln ln 2ln ln 2ln ln ln ln ln ln 111dy dy d y d y y y y y y y y yx e e dy C e e dy C e e dy C y y y ---⎡⎤⎡⎤⎡⎤⎰⎰⎰⎰=+=+=+⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ =22ln(ln )ln(ln )222211(ln )(ln )(ln )(ln )ln y y e e dy C y y dy C y y d y C y y ---⎡⎤⎡⎤⎡⎤+=+=+⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰ =2221(ln )(ln )ln ln 3(ln )Cy y d y C y y -⎡⎤+=+⎣⎦⎰. 2..求下列一阶线性微分方程满足所给初始条件下的特解. (1)sin ,|1x dy y x y dx x xπ=+== 解: 111ln ln ln ln sin sin sin dx dx x x x xx x x x x y e e dx C e e dx C e e dx C x x x ---⎡⎤⎡⎤⎡⎤⎰⎰=+=+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰ =11sin 1sin (cos )x x xdx C x xdx C x C x x --⎡⎤⎡⎤+=+=-+⎢⎥⎣⎦⎣⎦⎰⎰ |11x y C ππ==⇒=-则特解为1(cos 1)y x xπ=-+-(2) ln (ln )0,|1x e x xdy y x dx y =+-==解:1ln dy y dx x x x+= 1111ln ln ln ln ln ln ln ln ln ln 111dx dx d x d x x x x x x x x xy e e dx C e e dx C e e dx C x x x ---⎡⎤⎡⎤⎡⎤⎰⎰⎰⎰=+=+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰ 1ln(ln )ln ln 21111[ln ln ][(ln )]ln ln 2x x e e dx C xd x C x C x xx -⎡⎤=+=+=+⎢⎥⎣⎦⎰⎰1|12x e y C ==⇒=,因而特解为21[(ln )1]2ln y x x=+. 2. 求一曲线的方程,这曲线通过原点,且在点(,)x y 处的切线斜率等于2.x y + 解:依题意知2,2y x y y y x ''=+-=1222()2dx dx x x x x x x x y e xe dx C e xe dx C e xe d x C e xde C ----⎡⎤⎰⎰⎡⎤⎡⎤⎡⎤=+=+=-+=-+⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰ =2(2(()2()x x x x x x x x xe xe e dx C e xe e d x C e xe e C ------⎡⎤⎡⎤⎡⎤--+=-+-+=-++⎣⎦⎣⎦⎣⎦⎰⎰ 022,|02x x x Ce y C ==--+=⇒=则微分方程的特为2(1)x y e x =--3. 设有一质量为m 的质点作直线运动,从速度等于零的时刻起,有一个与运动方向一致,大小与时间成正比(比例系数为1k )的力作用于它,此处还受一与速度成正比(比例系数为2k )的阻力作用,求质点运动的速度与时间的函数关系. 解:2112,k kmv k t k v v v t m m''=-+=2222221112k k k k k k dt dt t t t t m m m m m mk k k m v e te dt C e te dt C e tde C m m m k ---⎡⎤⎡⎤⎡⎤⎰⎰=+=+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰ 222211222(()k k k k t t t t mm m mk k m ete e dt C t Cek k k --⎡⎤=-+=-+⎢⎥⎣⎦⎰ 111022222|0.t mk k mk v C v t k k k ==⇒=∴=- §7.5可降阶的高阶微分方程1. 求微分方程的通解. (1)x y xe x '''=+解:()2112x x x x x y xe x dx xe dx xdx xde xdx xe e x C '''=+=+=+=-++⎰⎰⎰⎰⎰2311211226x x x x y xe e x C dx xe e x C x C ⎛⎫'''=-++=-+++ ⎪⎝⎭⎰3421212311(2)(3)624x x x y xe e x C x C dx x e x C x C x C '=-+++=-++++⎰(2) ()21y y '''=+解:令21112,,1,,arctan ,tan(),tan()1dp dyp y y p p pdx p x C P x C x C dx p '''''===+==+=+=++ 1112tan()()ln cos()y x C d x C x C C =++=-++⎰2. 求下列微分方程满足所给初始条件下的特解. (1)2002,|1,|1x x x y y e y y ==''''+===解:令2222222241111,,2,[][][]4dx dx x x x x x x x p y y p p p e p e e e dx C e e e dx C e e C ---⎰⎰'''''==+==+=+=+⎰⎰222222112131313,(0)1,()444488x x x x x x y e C e y C y e e dx e e C ---''=+=⇒==+=-+⎰ 25(0)1,4y C =⇒= 因而特解为22135.884x x y e e -=-+ (2) 2111,|0,| 1.x x x y xy y y ==''''+===解:令1121122211111,,1,,[][]dx dx xx p y y p x p xp p p p e e dx C xdx C x x x xx -⎰⎰''''''==+=+==+=+⎰⎰=21112111ln 1ln 11[][ln ],(1)11,,(ln )2x x dx C x C y C y y dx dx x C x x x x x x x ''+=+=⇒==+=+=+⎰⎰⎰ 2(1)00y C =⇒= ,则特解为21(ln )ln 2y x x =+ §7.6高阶线性微分方程1. 验证21xye =及22x yxe =都是方程24(42)0y xy x y '''-+-=的解,写出该方程的通解.证:2222222221114(42)246420x x x x x y xy x y e x e x e x e e '''-+-=+-+-= 222332224(42)[644842]0x y xy x y x x x x x x e '''-+-=+--+-= 121y y x=≠常数,则通解为 2221212()x x xy C e C xe C C x e =+=+2. 验证51y x =21y x =是方程2350x y xy y '''--=的解,23ln 9x y x -=是微分方程2235ln x y xy y x x '''--=的解,写出微分方程2235ln x y xy y x x '''--=的通解.证:251113(20155)0x y xy xy x '''--=--=, 2212213(235)0x y xy xy x'''--=+-=, 22222223332653ln ln ln ln 93939x x x x y xy xy x x x x x x x '''--=--+++=61yx y=≠ 常数,则微分方程的通解为 2511223121ln .9x y C y C y y C x C x x =++=+-3. 验证12121()(,2x x xe y C e C e C C x -=++是任意常数)是方程2x xy y xy e ''+-=的通解. 解:*12111,,2x x x ye y e y e x x -===,因为 1112222222222222222(11)0,2(11)0x x xy y xy e xy y xy e x x x x x x x x-''''+-=-++--=+-=+++--= ()()***212112(),22x x x x y x y y xy xe e e e y '''+-=-+==≠ 常数,所以通解为121()2x x xe y C e C e x -=++§7.7常系数齐次线性微分方程3. 求下列二阶常系数齐次线性微分方程的通解. (1)212120,1204,3y y y r r r r '''+-=+-=⇒=-= 所以通解为4312x x y C e C e -=+. (2)212690,6903y y y r r r r '''++=++=⇒==-所以通解为312()x y C C x e =+. (3)21,26100,61003y y y r r r i '''++=++=⇒=-±所以通解为312(cos sin )x y e C x C x -=+4. 求下列二阶常系数齐次线性微分方程满足所给初始条件下的特解. (1)320,(0)0,(0)1y y y y y ''''++===.解: 211,3202,1r r r r ++=⇒=-=-,则通解为22121212,2,(0)0,(0)11,1x x x x y C e C e y C e C e y y C C ----''=+=--==⇒==-则通解为2x x y e e --=-.(2) 250,(0)2,(0)5y y y y '''+===解:21,22505r r i +=⇒=±则通解为12cos5sin 5y C x C x =+12125sin 55cos5,(0)2,(0)52,1y C x C x y y C C ''=-+==⇒==则特解为2cos5sin 5y x x =+§7.8常系数非齐次线性微分方程5. 求下列二阶非齐次微分方程的通解 (1)228(1)x y y y x e -'''--=+解:24212122804,2,x x r r r r Y C e C e ---=⇒==-∴=+ 面1,2m λ==-为特征单根()()'''*2*222*2222(),(2)2(),24(2)4()x x x x x xy x ax b e y ax b e ax bx e y ae ax b e ax bx e ------∴=+=+-+=-+++()()***21728(1),1236x y y y x e a b -'''--=+⇒=-=-则特解为*217()1236x y x x e -=-+,因而微分方程的通解为:4212x x y C e C e -=+217()1236x x x e --+(2) 25sin 2x y y y e x '''-+=解:21,2250,121,2,0r r r i m αβ-+==±⇒===而12i +是特征方程的根,因而令*(cos 2sin 2)x y xe A x B x =+代入原方程求出1,04A B =-=,*1cos 24x y xe x =-所以微分方程的通解为121(cos 2sin 2)cos 24x x y C x C x e xe x =+-6. 求微分方程43y y '''-=满足初始条件(0)0,(0)1y y '==的特解解:212400,4r r r r -=⇒==对应齐次微分方程的通解为412,0x y C C e λ=+= 为特征单根,则*y ax =代入原方程得*33,44a y x =-∴=-,微分方程的通解为:41234x y C C e x =+-,由(0)0,(0)1y y '==知1297,,1616C C ==故特解为497316164x y e x =+- 7. 设函数()f x 连续,且满足0()()(),xx f x e t x f t dt =+-⎰求()f x .] 解:()()(),()()()()(),()()xxxxx x x x f x e tf t dt x f t dt f x e xf x f t dt xf x e f t dt f x e f x '''=+-=+--=-=-⎰⎰⎰⎰ ()()x f x f x e ''⇒+=,而21,210,r r i +=⇒=±对应齐次微分方程的通解为:12cos sin Y C x C x =+而0,1m λ==不是特征根,令*x y Ae =代入原方程求得12A =,则通解为 121cos sin 2x y C x C x e =++1211(0)1,(0)1,22f f C C '==⇒== ,则特解为1()[cos sin ]2x f x x x e =++。
《高等数学Ⅰ》教学大纲
![《高等数学Ⅰ》教学大纲](https://img.taocdn.com/s3/m/c22782154b35eefdc9d33323.png)
《高等数学Ⅰ》课程教学大纲一、课程简介课程名称:高等数学Ⅰ课程编号:4660123课程类别:通识课学分: 6学时:96授课系:基础部先修课程初等数学考核方式及各环节所占比例考试课:期末成绩占70%,平时成绩占30%课程概要高等数学是高等工科院校最重要的基础课程之一,又是重要的工具课.是培养学生理性思维和计算的重要载体,是提高学生文化素质和学习有关专业知识的重要基础。
通过本课程的教学,不但使学生具备学习后续其他数学课程和专业课程所需要的基本数学知识,而且还使学生在数学的抽象性、逻辑性与严密性方面受到必要的训练和熏陶,使他们具有理解和运用逻辑关系、研究和理解抽象事物、认识和利用数形规律的初步能力。
为本科生的后继课程及各专业课程打下必要的数学基础。
教学目的及要求通过各个教学环节,逐步培养学生具有抽象概括问题能力,逻辑推理能力,空间想象能力和自学能力,使学生具有比较熟悉的运算能力和综合运用所学知识去分析问题和解决问题的能力。
教材及主要参考书本课程选用同济大学数学系主编的《高等数学》(第六版,2007年)一书为教材;教学参考书选用:同济大学数学系主编的《高等数学习题全解指南》;二、课程章节主要内容及学时分配第一章函数与极限(讲课 18 学时,实验学时)内容:映射与函数;数列的极限;函数的极限;极限的运算;无穷大和无穷小;函数的连续性重点:用两个重要极限求极限。
掌握:函数的概念和的性质;基本初等函数的性质及其图形;极限四则运算法则;用两个重要极限求极限;无穷小的比较;函数连续的概念;会判断间断点类型了解:反函数和复合函数的概念;极限的ε-N,ε-δ定义;两个极限存在准则(夹挤准则,单调有界准则),无穷小、无穷大的概念,初等函数的连续性,闭区间上连续函数的性质。
内容:导数的概念与求导法则;高阶导数;隐函数及参数方程所确定函数的导数;函数的微分重点:初等函数的一、二阶导数掌握:导数和微分的概念;导数和微分的运算法则和导数的基本公式;初等函数的一、二阶导数;隐函数和参量方程确定的函数一、二阶导数了解:导数的几何意义及函数的可导性与连续性之间的关系;能用导数描述一些物理量;高阶导数的概念第三章微分中值定理与导数的应用(讲课 14 学时,实验学时)内容:微分中值定理;罗必塔(L′Hospital)法则;泰勒公式;函数的单调性与曲线的凹凸性;函数的极值与最值;函数图形的描绘重点:函数的极值、增减性、罗必塔(L′Hospital)法则掌握:罗尔(Rolle)定理,拉格朗日(Lagrange)定理;罗必塔(L′Hospital)法则;函数的极值概念及求法;简单的最大值和最小值的应用问题了解:柯西(Cauchy)定理和泰勒(Taylor)公式;函数图形的凹凸性;函数图形的拐点;描绘函数图形第四章不定积分(讲课 12 学时,实验学时)内容:不定积分的概念与性质;不定积分的换元积分与分部积分法;有理函数的积分重点:不定积分的换元法和分部积分法掌握:不定积分的概念及性质,不定积分的基本公式;不定积分的换元法和分部积分法了解:较简单的有理函数的积分。
6高阶线性微分方程
![6高阶线性微分方程](https://img.taocdn.com/s3/m/7605e7d376eeaeaad1f330fd.png)
y′′ + P(x) y′ + Q(x) y = 0
的两个解, 则y = C y1(x) + C2 y2 (x) 1 也是该方程的解. (叠加原理) 证: 将 y = C1y1(x) + C2 y2 (x) 代入方程左边, 得
′′ ′′ ′ ′ [C1y1 +C2 y2 ] + P(x)[C1y1 +C2 y2 ] + Q(x)[C1y1 + C2 y2 ]
证毕
Y = C1 cos x + C2 sin x
因此该方程的通解为
目录
上页
下页
返回
结束
定理 4.
分别是方程
y′′ + P(x) y′ + Q(x) y = fk (x) (k =1, 2,, m)
的特解, 是方程
y′′ + P(x) y′ + Q(x) y = ∑ fk (x)
k =1
m
的特解. (非齐次方程之解的叠加原理) 定理3, 定理4 均可推广到 n 阶线性非齐次方程.
′′ ′ = C1[ y1 + P(x) y1 + Q(x) y1]
′′ ′ + C2 [ y2 + P(x) y2 + Q(x) y2 ] = 0 证毕
目录 上页 下页 返回 结束
说明: 说明
y = C1y1(x) + C2 y2 (x) 不一定是所给二阶方程的通解.
例如, 是某二阶齐次方程的解, 则 也是齐次方程的解 但是 并不是通解 为解决通解的判别问题, 下面引入函数的线性相关与 线性无关概念.
(Y′′ + y *′′ ) + P(x) (Y′ + y *′ )+ Q(x) (Y + y *) + (Y′′ + P(x)Y′ + Q(x)Y)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的特解,
那么
y* 1
y* 2
就是原方程的特解.
解的叠加原
C1e
x
C2e2x
1 12
e5x
(C1 , C 2是任意常数)
是方程y 3 y 2 y e5x的通解.
定理 5. 给定 n 阶非齐次线性方程
无关特解, 的通解为
是对应齐次方程的 n 个线性 是非齐次方程的特解, 则非齐次方程
2. 阻力 R dx ;
dt
o x
x
F ma, m d 2 x cx dx ,
dt 2
dt
d 2 x 2n dx k 2 x 0 物体自由振动的微分方程
dt 2
dt
若受到铅直干扰力 F H sin pt,
d 2 x 2n dx k 2 x hsin pt 强迫振动的方程
解: y2 y1 与 y3 y1 是对应齐次方程的解, 且
y2 y3
y1 y1
ex x e2x x
常数
因而线性无关, 故原方程通解为
y C1(ex x) C2 (e2x x)
代入初始条件y(0) 1, y(0) 3, 得C1 1, C2 2, 故所求特解为 y 2e2x ex.
提示:
(89 考研 )
y1 y3, y2 y3 都是对应齐次方程的解,
二者线性无关 . (反证法可证)
例4. 已知微分方程 y p(x) y q(x) y f (x) 有三 个解 y1 x , y2 ex , y3 e2x , 求此方程满足初始条件 y(0) 1, y(0) 3 的特解 .
Y (x) y(x)
齐次方程通解 非齐次方程特解
例3. 设线性无关函数
都是二阶非齐次线
性方程 y P(x) y Q(x) y f (x)的解,C1,C2 是任意 常数, 则该方程的通解是 ( D ).
(B) C1y1 C2 y2 (C1 C2 ) y3; (C) C1y1 C2 y2 (1 C1 C2 ) y3;
称线性无关
例如 当x (, )时, 1,x, x2 , 线性无关
1,cos2 x, sin2 x 线性相关
特别地: 若在 I 上有 y1( x) 常数, y2( x)
则函数 y1 ( x)与 y2 ( x)在 I 上线性无关.
定理 2:如果 y1( x)与 y2 ( x)是方程(1)的两个线
2.二阶非齐次线性方程的解的结构:
定理 3 设 y*是二阶非齐次线性方程
y P( x) y Q( x) y f ( x)
(2)
的一个特解, Y 是与(2)对应的齐次方程(1)的通
解, 那么 y Y y*是二阶非齐次线性微分方程(2)
的通解.
例如, 方程 对应齐次方程
有特解 有通解
Y C1 cos x C2 sin x
因此该方程的通解为
定理 4 设非齐次方程(2)的右端 f ( x)是几个函
数之和, 如 y P( x) y Q( x) y f1( x) f2 ( x)
而
y1*
与
y
* 2
分别是方程,
y P( x) y Q( x) y f1( x)
y P( x) y Q( x) y f2 ( x)
二阶线性微分方程
当 f ( x) 0时, 二阶线性齐次微分方程
当 f ( x) 0时,二阶线性非齐次微分方程
n阶线性微分方程 y(n) P1( x) y(n1) Pn1( x) y Pn ( x) y f ( x).
二、线性微分方程的解的结构
1.二阶齐次方程解的结构:
y P( x) y Q( x) y 0
性无关的特解, 那么 y C1 y1 C2 y2 就是方程(1) 的通解.
例如 y y 0, y1 cos x, y2 sin x,
且 y2 tan x 常数, y1
y C1 cos x C2 sin x.
推论.
是 n 阶齐次方程
的 n 个线性无关解, 则方程的通解为
y C1y1 Cn yn (Ck为任意常数)
R
上的电量为 q(t) , 自感电动势为 EL ,
由电学知
i
L C
E ∼~
q‖ q K
根据回路电压定律:
在闭合回路中, 所有支路上的电压降为 0
E L di q Ri 0 dt C
化为关于 uc 的方程:
故有
L
C
d 2uC d t2
R C d uC dt
uC Em sin t
R
令
R 2L
dt 2
dt
Lc
d 2uc dt 2
2
duc dt
02uc
Em LC
sint
串联电路的振荡方程
例. 设有一个电阻 R , 自感L ,电容 C 和电源 E 串
联组成的电路, 其中R , L , C 为常数 ,
求电容器两两极板间电压 uc 所满足的微分方程 .
提示: 设电路中电流为 i(t), 极板
也是齐次方程的解
但是
并不是通解
为解决通解的判别问题, 下面引入函数的线性相关与 线性无关概念.
定义:设 y1 , y2 ,, yn为定义在区间I 内的n
个函数.如果存在n 个不全为零的常数,使得 当x 在该区间内有恒等式成立
k1 y1 k2 y2 kn yn 0,
那么称这n 个函数在区间I 内线性相关.否则
(1)
定理 1 如果函数 y1( x)与 y2 ( x)是方程(1)的两个
解,那么 y C1 y1 C2 y2也是(1)的解.(C1, C2是常 数)
问题: y C1 y1 C2 y2一定是通解吗?
说明:
y C1y1(x) C2 y2 (x) 不一定是所给二阶方程的通解.
例如,
是某二阶齐次方程的解, 则
第六节
第七章
高阶线性微分方程
一、二阶线性微分方程举例
二、线性齐次方程解的结构 三、线性非齐次方程解的结构 *四、常数变易法
一、概念的引入
例:设有一弹簧下挂一重物,如果使物体具有一个初
始速度v0 0,物体便离开平衡位置,并在平衡位置 附近作上下振动.试确定物体的振动规律x x(t ).
解 受力分析 1. 恢复力 f cx;
,
0
1 LC
L
串联电路的振荡方程:
C
q‖ q
d 2uC dt2
2
d uC dt
02uC
Em sin t
LC
i
E~
K
如果电容器充电后撤去电源 ( E = 0 ) , 则得
d 2uC d t2
2
d uC dt
02uC
0
d 2 y P( x) dy Q( x) y f ( x)
dx 2
dx