统计学参数估计练习题

合集下载

参数估计练习题

参数估计练习题

参数估计练习题一、选择题1. 在统计学中,参数估计通常指的是:A. 估计总体参数的值B. 估计样本的均值C. 估计样本的方差D. 估计样本的中位数2. 下列哪项不是点估计的特点?A. 唯一性B. 精确性C. 随机性D. 简洁性3. 区间估计与点估计的主要区别在于:A. 区间估计提供了一个范围B. 点估计提供了一个范围C. 点估计比区间估计更精确D. 区间估计比点估计更精确4. 以下哪个分布的参数估计通常使用最大似然估计法?A. 正态分布B. 均匀分布C. 二项分布D. 泊松分布5. 以下哪个统计量是正态分布的参数估计?A. 方差B. 均值C. 标准差D. 所有上述选项二、填空题6. 点估计的误差可以通过________来衡量。

7. 区间估计的置信水平为95%,表示我们有95%的把握认为总体参数位于________内。

8. 样本均值的抽样分布服从________分布,当样本量足够大时。

9. 样本方差的抽样分布服从________分布,当样本量足够大时。

10. 正态分布的参数估计中,均值μ的估计量是________。

三、简答题11. 简述点估计与区间估计的区别。

12. 描述最大似然估计法的基本原理。

13. 解释为什么在样本量较大时,样本均值的分布会接近正态分布。

14. 说明在进行区间估计时,置信水平和置信区间宽度之间的关系。

15. 描述如何使用样本数据来估计总体比例。

四、计算题16. 假设有一个样本数据集{2, 4, 6, 8, 10},请计算样本均值和样本方差。

17. 假设你有一个正态分布的样本,样本均值为50,样本标准差为10,样本量为100。

请计算总体均值的95%置信区间。

18. 假设你有一个二项分布的样本,样本量为200,样本比例为0.4。

请使用最大似然估计法估计总体比例。

19. 假设你有一个泊松分布的样本,样本量为100,总观察值为200。

请估计泊松分布的参数λ。

20. 假设你有一个均匀分布的样本,样本最小值为1,样本最大值为10。

统计学习题答案参数估计

统计学习题答案参数估计

第5章参数估计●1. 从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。

(1)样本均值的抽样标准差等于多少?(2)在95%的置信水平下,允许误差是多少?解:已知总体标准差σ=5,样本容量n=40,为大样本,样本均值=25,(1)样本均值的抽样标准差===0。

7906(2)已知置信水平1-=95%,得=1。

96,于是,允许误差是E ==1.96×0.7906=1.5496。

●2.某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本.(3)假定总体标准差为15元,求样本均值的抽样标准误差;(4)在95%的置信水平下,求允许误差;(5)如果样本均值为120元,求总体均值95%的置信区间。

解:(1)已假定总体标准差为=15元,则样本均值的抽样标准误差为===2.1429(2)已知置信水平1-=95%,得=1.96,于是,允许误差是E ==1.96×2.1429=4.2000。

(3)已知样本均值为=120元,置信水平1-=95%,得=1.96,这时总体均值的置信区间为=120±4。

2=可知,如果样本均值为120元,总体均值95%的置信区间为(115。

8,124.2)元。

●3.某大学为了解学生每天上网的时间,在全校7500名学生中采取不重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时):3.3 3。

1 6。

2 5.8 2。

3 4。

1 5.4 4。

5 3。

24。

4 2。

0 5。

4 2。

6 6。

4 1.8 3.5 5.7 2。

32。

1 1.9 1.2 5.1 4.3 4。

2 3.6 0。

8 1。

54。

7 1。

4 1.2 2。

9 3。

5 2.4 0.5 3.6 2。

5求该校大学生平均上网时间的置信区间,置信水平分别为90%、95%和99%。

解:⑴计算样本均值:将上表数据复制到Excel表中,并整理成一列,点击最后数据下面空格,选择自动求平均值,回车,得到=3。

应用统计学:参数估计习题及答案.(优选)

应用统计学:参数估计习题及答案.(优选)

简答题1、矩估计的推断思路如何?有何优劣?2、极大似然估计的推断思路如何?有何优劣?3、什么是抽样误差?抽样误差的大小受哪些因素影响?4、简述点估计和区间估计的区别和特点。

5、确定重复抽样必要样本单位数应考虑哪些因素?计算题1、对于未知参数的泊松分布和正态分布分别使用矩法和极大似然法进行点估计,并考量估计结果符合什么标准2、某学校用不重复随机抽样方法选取100名高中学生,占学生总数的10%,学生平均体重为50公斤,标准差为48.36公斤。

要求在可靠程度为95%(t=1.96)的条件下,推断该校全部高中学生平均体重的范围是多少?3、某县拟对该县20000小麦进行简单随机抽样调查,推断平均亩产量。

根据过去抽样调查经验,平均亩产量的标准差为100公斤,抽样平均误差为40公斤。

现在要求可靠程度为95.45%(t=2)的条件下,这次抽样的亩数应至少为多少?4、某地区对小麦的单位面积产量进行抽样调查,随机抽选25公顷,计算得平均每公顷产量9000公斤,每公顷产量的标准差为1200公斤。

试估计每公顷产量在8520-9480公斤的概率是多少?(P(t=1)=0.6827, P(t=2)=0.9545, P(t=3)=0.9973)5、某厂有甲、乙两车间都生产同种电器产品,为调查该厂电器产品的电流强度情况,按产量等比例类型抽样方法抽取样本,资料如下:试推断:(1)在95.45%(t=2)的概率保证下推断该厂生产的全部该种电器产品的平均电流强度的可能范围(2)以同样条件推断其合格率的可能范围(3)比较两车间产品质量6、采用简单随机重复和不重复抽样的方法在2000件产品中抽查200件,其中合格品190件,要求:(1)计算样本合格品率及其抽样平均误差(2)以95.45%的概率保证程度对该批产品合格品率和合格品数量进行区间估计。

(3)如果极限误差为2.31%,则其概率保证程度是多少?7、某单位按重复抽样方式随机抽取40名职工,对其业务考试成绩进行检查,资料如下:6889 88 84 86 87 75 73 72 687582 99 58 81 54 79 76 95 767160 91 65 76 72 76 85 89 926457 83 81 78 77 72 61 70 87(1)根据上述资料按成绩分成以下几组:60分以下、60-70分、70-80分、80-90分、90-100分。

参数估计试题及答案

参数估计试题及答案

参数估计试题及答案一、选择题(每题10分)1. 在统计学中,参数估计是指:a) 对总体参数进行估计b) 对样本参数进行估计c) 对总体与样本参数进行估计d) 对无限制的参数进行估计2. 下列哪个方法可以用于参数估计?a) 极大似然估计b) 最小二乘估计c) 贝叶斯估计d) 所有上述方法3. 哪个估计方法被广泛应用于正态分布的参数估计?a) 极大似然估计b) 最小二乘估计c) 方法一与二皆可d) 都不对4. 在参数估计中,抽样误差是指:a) 由于样本选择的随机性引起的误差b) 对总体参数的估计误差c) 由于参数估计方法的限制引起的误差d) 都对5. 当总体方差未知时,参数估计常常采用:a) Z检验b) T检验c) F检验d) 卡方检验二、判断题(每题10分)判断下列陈述的正误,并简要说明理由。

1. 在参数估计中,估计量的无偏性意味着样本均值等于总体均值。

2. 极大似然估计方法只适用于正态分布的参数估计。

3. 参数估计的置信区间给出了总体参数的准确范围。

4. 使用最小二乘法进行参数估计时,要求误差项满足正态分布假设。

5. 参数估计方法的选择应根据研究对象和研究目的来确定。

三、填空题(每题10分)1. 参数估计的基本思想是通过样本信息来推断总体的____________。

2. 参数估计的精度通常通过计算估计值的____________来衡量。

3. 极大似然估计方法的核心思想是选择使得样本观测出现的概率最____________的参数值。

4. 估计量的____________性是指估计值的抽样分布的中心与参数真值之间的偏离程度。

5. 参数估计的优良性包括无偏性、____________和一致性。

答案:一、选择题1. a2. d3. a4. a5. b二、判断题1. 正确。

估计量的无偏性意味着估计值的期望等于总体参数的真值。

2. 错误。

极大似然估计方法不仅限于正态分布,适用于各种分布的参数估计。

3. 错误。

参数估计习题及答案

参数估计习题及答案

参数估计习题及答案参数估计在统计学中是一个重要的概念,它涉及到根据样本数据来估计总体参数的过程。

下面,我将提供一些参数估计的习题以及相应的答案,以帮助学生更好地理解这一概念。

习题一:假设有一个班级的学生数学成绩,我们从这个班级中随机抽取了10名学生的成绩,得到样本均值 \(\bar{x} = 85\),样本标准差 \(s = 10\)。

请估计总体均值 \(\mu\)。

答案:根据样本均值 \(\bar{x}\) 来估计总体均值 \(\mu\),我们可以使用以下公式:\[ \hat{\mu} = \bar{x} \]因此,\(\hat{\mu} = 85\)。

习题二:在习题一中,如果我们想要估计总体方差 \(\sigma^2\),我们应该如何操作?答案:总体方差 \(\sigma^2\) 通常使用样本方差 \(s^2\) 来估计,样本方差的计算公式为:\[ s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]其中 \(n\) 是样本大小,\(x_i\) 是第 \(i\) 个观测值。

在这个例子中,\(n = 10\),\(\bar{x} = 85\),\(s = 10\)。

因此,我们可以使用以下公式来估计总体方差:\[ \hat{\sigma}^2 = s^2 = \frac{1}{10-1} \times 10^2 = 100 \]习题三:一个工厂生产的产品长度服从正态分布,样本均值为 \(\bar{x} =50\) 厘米,样本标准差为 \(s = 2\) 厘米。

如果我们知道总体均值\(\mu\) 为 \(50\) 厘米,我们如何估计总体标准差 \(\sigma\)?答案:根据已知的样本均值 \(\bar{x}\) 和样本标准差 \(s\),我们可以使用以下公式来估计总体标准差 \(\sigma\):\[ \hat{\sigma} = s \]因此,\(\hat{\sigma} = 2\) 厘米。

参数估计练习题

参数估计练习题

参数估计练习题参数估计练习题参数估计是统计学中的一个重要概念,它用于根据样本数据来估计总体参数的值。

在实际应用中,参数估计扮演着至关重要的角色,它可以帮助我们了解总体特征,并做出相应的决策。

本文将介绍一些参数估计的练习题,通过解答这些问题来加深对参数估计的理解。

1. 假设我们有一个服从正态分布的总体,我们希望估计其均值。

我们从该总体中抽取了一个样本,样本容量为n,样本均值为x̄,样本标准差为s。

请问,如何利用这些信息来估计总体均值的值?答:根据中心极限定理,当样本容量足够大时,样本均值的分布将近似于正态分布。

因此,我们可以使用样本均值x̄作为总体均值的估计值。

同时,我们可以计算样本均值的标准误差,即s/√n,来衡量估计的精确程度。

2. 在某个电商平台上,我们想要估计用户对某个产品的满意度。

我们从该平台上随机抽取了100个用户进行调查,他们对该产品的满意度进行了评分,评分范围为1到10。

请问,如何利用这些信息来估计用户对该产品的满意度的平均值?答:我们可以计算样本的平均得分,即样本均值x̄,作为用户对该产品满意度的估计值。

同时,我们可以计算样本均值的标准误差,即样本标准差s/√n,来衡量估计的精确程度。

此外,我们还可以计算样本的置信区间,来估计总体平均得分的范围。

3. 在某个城市的交通调查中,我们想要估计每天通勤时间的均值。

我们从该城市的不同地区随机抽取了100个通勤者,并记录了他们的通勤时间。

请问,如何利用这些信息来估计每天通勤时间的均值?答:我们可以计算样本的平均通勤时间,即样本均值x̄,作为每天通勤时间均值的估计值。

同时,我们可以计算样本均值的标准误差,即样本标准差s/√n,来衡量估计的精确程度。

此外,我们还可以计算样本的置信区间,来估计总体通勤时间均值的范围。

4. 在一项医学研究中,我们想要估计某种药物的治疗效果。

我们从患者中随机抽取了100个人,其中50人接受了药物治疗,另外50人接受了安慰剂。

《统计学》第10讲 参数估计(复习+习题)

《统计学》第10讲  参数估计(复习+习题)
22
(二)方差的区间估计
1.总体方差的区间估计
对于来自正态总体的容量为n的简单随机样本,统 计量 n 1s 2 / 2 服从自由度为 n 1 的卡方分布。
n 1 s 2

2
~ 2 n 1
总体方差在1- 置信水平下的置信区间为
2 n 1 s
2
2 2 2 2 s1 s2 s1 s2 , F 2 F1 2
F分布两个自由度
24
(三)总体比率区间估计
1.单样本比率的区间估计
当样本容量充分大时,样本比率p近似服从以总体比
率P为数学期望,以P(1-P)/n为方差的正态分布。
1. 样本比率的数学期望
E (p) P
2. 样本比率的方差
P (1 P ) n
n1 n2
18
( n1 3 0, n 2 3 0 )
大样本,方差已知(两个总体分布没有要求)
1. 两个样本均值之差 x 1 x 2 的抽样分布服从正态
分布,其数学期望为两个总体均值之差
E (x1 x 2 ) 1
2
2. 方差为各自的方差之和

2 x1 x 2
12 22 n1 n2

分别从两个独立的随机总体中抽取容量为n1和n2的 独立样本,当两个样本都为大样本时,两个样本比 率之差的抽样分布可用正态分布来近似。 数学期望为
• •
E ( p 1 p 2 ) P1 P 2
方差为各自的方差之和

27
2 p1 p 2
P1 (1 P1 ) P2 (1 P2 ) n1 n2

2
2 2 x n

统计学0523参数估计练习题答案

统计学0523参数估计练习题答案

1.某加油站64位顾客所组成的样本资料显示,每个人平均加油量是13.6加仑。

若总体标准差是3.0加仑,则总体每个人平均加油量95.45%置信区间估计值是多少?2.在由一所大学的90名学生所组成的样本中,显示有27名学生会以及格与不及格作为选课的依据。

(1)以及格与不及格作为选课依据的同学占全体同学比率的点估计为多少?(2)以及格与不及格作为选课依据的同学占全体同学比率的90%置信区间估计值为多少?3.在500个抽样产品中,有95%的一级品。

试测定抽样平均误差,并用0.9545的概率估计全部产品非一级品率的范围。

4.某农场从种植的2000亩水稻中平均亩产量为380公斤,亩产量的 (1)计算平均亩产量的平 (2)试以99%的置信概率 (3)如果要求抽样极限误25公斤,问概率为0.99时,应抽5.某大型企业进行工资调查,从其资料如下表所示。

试以95%的可 (1)全厂平均工资范围; (2)全厂职工中工资在 ━━━━━━━━━━┯━ 工资水平(元) │ ──────────┼─ 300以下 │ 300-400 │ 400-500 │ 500-600 │ 600以上 │ ━━━━━━━━━━┷━水稻中随机抽取200亩进行产量调查,测得产量的标准差为25公斤,要求:量的平均抽样误差信概率推断全场水稻总产量的所在范围极限误差不超过5公斤,亩产量的标准差仍为,应抽取多少亩进行调查?查,从全厂职工中随机抽取100名职工,得5%的可靠性估计:范围;资在400元以上人数比重的区间范围.━┯━━━━━━━━━━━━━━━│ 职工人数(人)─┼───────────────│ 15│ 20│ 50│ 10│ 5━┷━━━━━━━━━━━━━。

第7章 统计学 参数估计 练习题

第7章 统计学 参数估计 练习题

第7章参数估计练习题一、填空题(共10题,每题2分,共计20分)1.参数估计就就是用_______ __去估计_______ __。

2、点估计就就是用_______ __得某个取值直接作为总体参数得_______ __。

3.区间估计就是在_______ __得基础上,给出总体参数估计得一个区间范围,该区间通常由样本统计量加减_______ __得到。

4、如果将构造置信区间得步骤重复多次,置信区间中包含总体参数真值得次数所占得比例称为_______ __,也成为_______ __。

5.当样本量给定时,置信区间得宽度随着置信系数得增大而_______ __;当置信水平固定时,置信区间得宽度随着样本量得增大而_______ __。

6、评价估计量得标准包含无偏性、_______ __与_______ __。

7、在参数估计中,总就是希望提高估计得可靠程度,但在一定得样本量下,要提高估计得可靠程度,就会_______ __置信区间得宽度;如要缩小置信区间得宽度,又不降低置信程度,就要_______ __样本量。

8、估计总体均值置信区间时得估计误差受总体标准差、_______ __与_______ __得影响。

9、估计方差未知得正态总体均值置信区间用公式_______ __;当样本容量大于等于30时,可以用近似公式_______ __。

10、估计正态总体方差得置信区间时,用_____ __分布,公式为______ __。

二、选择题(共10题,每题1分,共计10分)1.根据一个具体得样本求出得总体均值得95%得置信区间 ( )。

A.以95%得概率包含总体均值B.有5%得可能性包含总体均值C.一定包含总体均值D、要么包含总体均值,要么不包含总体均值2.估计量得含义就是指( )。

A、用来估计总体参数得统计量得名称B 、 用来估计总体参数得统计量得具体数值C 、 总体参数得名称D 、 总体参数得具体数值3. 总体均值得置信区间等于样本均值加减边际误差,其中边际误差等于所要求置信水平得临界值乘以( )。

统计学期末大作业题目及答案

统计学期末大作业题目及答案

统计学实践作业参数估计练习题1. 某大学为了解学生每天上网的时间,在全校7500名学生中采取不重复抽样方法随机抽取36人,调查他们每天上网的时间(单位:小时),得到的数据见表。

求该校大学生平均上网时间的置信区间,置信水平分别为90%、95%和99%。

平均标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数36最大(1)最小(1)置信度%)置信区间平均标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数36最大(1)最小(1)置信度%)置信区间平均标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数36最大(1)最小(1)置信度%)置信区间 2.2.某机器生产的袋茶重量(g)的数据见。

构造其平均重量的置信水平为90%、95%和99%的置信区间。

平均 3.标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数21最大(1)最小(1)置信度%)置信区间平均 3.标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数21最大(1)最小(1)置信度%)置信区间 3.平均 3.标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数21最大(1)最小(1)置信度%)置信区间3. 某机器生产的袋茶重量(g)的数据见。

构造其平均重量的置信水平为90%、95%和99%的置信区间。

平均标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数35最大(1)最小(1)置信度%)置信区间平均标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数35最大(1)最小(1)置信度%)置信区间平均标准误差中位数众数标准差方差峰度偏度区域最小值最大值求和观测数35最大(1)最小(1)置信度%)置信区间资料整理练习题1. 为评价家电行业售后服务的质量,随机抽取了由100家庭构成的一个样本。

服务质量的等级分别表示为:A.好;B.较好;C.一般;D.差;E.较差。

调查结果见表。

第章统计学参数估计 练习题

第章统计学参数估计 练习题

第7章参数估计练习题一、填空题(共10题,每题2分,共计20分)1.参数估计就是用_______ __去估计_______ __。

2. 点估计就是用_______ __的某个取值直接作为总体参数的_______ __。

3.区间估计是在_______ __的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减_______ __得到。

4. 如果将构造置信区间的步骤重复多次,置信区间中包含总体参数真值的次数所占的比例称为_______ __,也成为_______ __。

5.当样本量给定时,置信区间的宽度随着置信系数的增大而_______ __;当置信水平固定时,置信区间的宽度随着样本量的增大而_______ __。

6. 评价估计量的标准包含无偏性、_______ __和_______ __。

7. 在参数估计中,总是希望提高估计的可靠程度,但在一定的样本量下,要提高估计的可靠程度,就会_______ __置信区间的宽度;如要缩小置信区间的宽度,又不降低置信程度,就要_______ __样本量。

8. 估计总体均值置信区间时的估计误差受总体标准差、_______ __和_______ __的影响。

9. 估计方差未知的正态总体均值置信区间用公式_______ __;当样本容量大于等于30时,可以用近似公式_______ __。

10. 估计正态总体方差的置信区间时,用_____ __分布,公式为______ __。

二、选择题(共10题,每题1分,共计10分)1.根据一个具体的样本求出的总体均值的95%的置信区间 ( )。

A.以95%的概率包含总体均值B.有5%的可能性包含总体均值C.一定包含总体均值D. 要么包含总体均值,要么不包含总体均值2.估计量的含义是指( )。

A. 用来估计总体参数的统计量的名称B. 用来估计总体参数的统计量的具体数值C. 总体参数的名称D. 总体参数的具体数值3. 总体均值的置信区间等于样本均值加减边际误差,其中边际误差等于所要求置信水平的临界值乘以( )。

统计学习题05

统计学习题05
答案:CDE
2.下面哪些是影响必要样本容量的因素()。
A.总体各单位标志变异程度B.允许的极限误差大小
C.推断的可靠程度D.抽样方法和抽样组织方式
E.样本均值和样本统计量
答案:ABCD
3.评价估计量是否优良的常用标准有( )。
A.无偏性B.有效性
C.准确性D.一致性
E.随机性
答案:ABC
4.点估计( )。
[参考答案]
28.306
2.现有一大批种子,为了估计其发芽率,随机抽取400粒进行发芽试验。结果有15粒每发芽。试以90%的置信度估计这批种子的发芽率。
[参考答案]
[ 0.95 , 0.97 ]
3.设总体X服从参数 的泊松分布,其概率分布率为 ,
x=0,1,2,……试求参数 的极大似然估计量及矩估计量。
A.求每晚睡眠时间总体均值的点估计。
B.假定总体是正态分布,求总体均值的点估计的95%置信区间。
[参考答案]
A.6.86,B.[6.54 , 7.18]
5.在某地方选举进行以前展开的民意测验表明,在随机抽取的121名居民中有65名支持某候选人,试求该候选人支持率的信赖区间。( =5%)
[参考答案]
0.54-0.089=0.451
答案:C
21.已知σ2的1-α置信区间为,该区间也可表示为()。
(D)以上答案都不正确
答案:B
二、多项选择题
1.在区间估计中,如果其他条件保持不变,置信度与精确度之间存在下列关系( )。
A.前者愈低,后者也愈低B. 前者愈高,后者也愈高
C. 前者愈低,后者愈高D.前者愈高,后者愈低
E. 两者呈相反方向变化
3.在进行参数估计时,我们并不是直接用一个个的具体样本之来估计、推断总体参数,而是根据样本构造出一些特定的量,用这些特定量来估计总体参数,这些根据样本构造的特定量就称为样本统计量。在估计过程中,我们把用来推估总体参数的样本统计量称为估计量。

第章统计学参数估计练习题

第章统计学参数估计练习题

第7章参数估计练习题一、填空题(共10题,每题2分,共计20分)1.参数估计就是用_______ __去估计_______ __。

2. 点估计就是用_______ __的某个取值直接作为总体参数的_______ __。

3.区间估计是在_______ __的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减_______ __得到。

4. 如果将构造置信区间的步骤重复多次,置信区间中包含总体参数真值的次数所占的比例称为_______ __,也成为_______ __。

5.当样本量给定时,置信区间的宽度随着置信系数的增大而_______ __;当置信水平固定时,置信区间的宽度随着样本量的增大而_______ __。

6. 评价估计量的标准包含无偏性、_______ __和_______ __。

7. 在参数估计中,总是希望提高估计的可靠程度,但在一定的样本量下,要提高估计的可靠程度,就会_______ __置信区间的宽度;如要缩小置信区间的宽度,又不降低置信程度,就要_______ __样本量。

8. 估计总体均值置信区间时的估计误差受总体标准差、_______ __和_______ __的影响。

9. 估计方差未知的正态总体均值置信区间用公式_______ __;当样本容量大于等于30时,可以用近似公式_______ __。

10. 估计正态总体方差的置信区间时,用_____ __分布,公式为______ __。

二、选择题(共10题,每题1分,共计10分)1.根据一个具体的样本求出的总体均值的95%的置信区间 ( )。

A.以95%的概率包含总体均值B.有5%的可能性包含总体均值C.一定包含总体均值D. 要么包含总体均值,要么不包含总体均值2.估计量的含义是指( )。

A. 用来估计总体参数的统计量的名称B. 用来估计总体参数的统计量的具体数值C. 总体参数的名称D. 总体参数的具体数值3. 总体均值的置信区间等于样本均值加减边际误差,其中边际误差等于所要求置信水平的临界值乘以( )。

参数估计习题及答案

参数估计习题及答案

参数估计习题及答案参数估计习题及答案在统计学中,参数估计是一种重要的技术,用于根据样本数据估计总体的未知参数。

参数估计的目标是通过样本数据推断总体参数的取值范围,并得到一个接近真实值的估计。

本文将通过几个习题来探讨参数估计的方法和应用。

习题一:某研究人员想要估计某种新药对病人的治疗效果。

他从一家医院中随机选取了100名患者,并将他们随机分为两组,一组接受新药治疗,另一组接受传统药物治疗。

研究人员希望通过样本数据估计新药的治疗效果是否显著优于传统药物。

解答:在这个问题中,我们需要估计两个总体的治疗效果,即新药组和传统药物组的平均治疗效果。

为了估计这两个总体的差异,我们可以使用两个独立样本的 t检验。

假设新药组的平均治疗效果为μ1,传统药物组的平均治疗效果为μ2。

我们的零假设是H0: μ1 = μ2,备择假设是H1: μ1 > μ2。

通过计算样本均值和标准差,我们可以得到 t 统计量的值,并进行假设检验。

习题二:某公司的销售部门想要估计他们的销售额与广告投入之间的关系。

他们收集了过去一年的数据,包括每个月的广告投入和销售额。

现在他们希望通过样本数据来估计广告投入对销售额的影响程度。

解答:在这个问题中,我们需要估计两个变量之间的关系,即广告投入和销售额之间的线性关系。

为了估计这个关系,我们可以使用简单线性回归模型。

假设广告投入为 x,销售额为 y。

我们的回归模型可以表示为y = β0 + β1x + ε,其中β0 和β1 是回归系数,ε 是误差项。

通过最小二乘法,我们可以估计回归系数的值,并进行假设检验来判断广告投入对销售额的影响是否显著。

习题三:某研究人员想要估计某个城市的人口数量。

他从该城市的不同地区随机选取了若干个样本点,并统计了每个样本点的人口数量。

现在他希望通过样本数据估计整个城市的人口数量。

解答:在这个问题中,我们需要估计一个总体的数量,即整个城市的人口数量。

为了估计这个数量,我们可以使用抽样调查的方法。

统计学参数估计练习题

统计学参数估计练习题

第7章参数估计练习题一、填空题(共10题,每题2分,共计20分)1.参数估计就是用去估计。

2.点估计就是用的某个取值直接彳为总体参数的。

3.区间估计是在的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减得到。

4.如果将构造置信区间的步骤重复多次,置信区间中包含总体参数真值的次数所占的比例称为,也成为。

5.当样本量给定时,置信区间的宽度随着置信系数的增大而;当置信水平固定时,置信区间的宽度随着样本量的增大而。

6.评价估计量的标准包含无偏性、和。

7.在参数估计中,总是希望提高估计的可靠程度,但在一定的样本量下,要提高估计的可靠程度,就会置信区间的宽度;如要缩小置信区间的宽度,又不降低置信程度,就要样本量。

8.估计总体均值置信区间时的估计误差受总体标准差、和的影响。

9.估计方差未知的正态总体均值置信区间用公式当样本容量大于等于30时,可以用近似公式。

10.估计正态总体方差的置信区间时,用——分布,公式为___。

二、选择题(共10题,每题1分,共计10分)1.根据一个具体的样本求出的总体均值的95%的置信区问()。

A,以95%的概率包含总体均值B.有5%的可能性包含总体均值C.一定包含总体均值D.要么包含总体均值,要么不包含总体均值2.估计量的含义是指()0A.用来估计总体参数的统计量的名称B.用来估计总体参数的统计量的具体数值C.总体参数的名称D.总体参数的具体数值3 .总体均值的置信区间等于样本均值加减边际误差,其中边际误差等于所要求置信水平的临界值乘以()。

A.样本均值的标准差B.样本标准差C.样本方差D.总体标准差4 .一个95%的置信区间是指()。

A.总体参数有95%的概率落在这一区间内B.总体参数有5%的概率未落在这一区间内C.在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数 5 .置信系数表达了置信区间的()。

统计学第五章 参数估计作业

统计学第五章 参数估计作业
2
ˆq ˆ ˆq ˆ p p ˆ Z ,p ] 2 n n
0.2 0.8 0.2 0.8 [0.2- 1.96 ,0.2 1.96 ] 400 400 [0.2- 0.0392,0.2 0.0392] [0.16,0.24 ]
3、 解 : 1 0.95,
2

2 ( Z ) 1 0.025 0.975 Z 1.96
2
0.025
代入置信区间公式: S S [ x - Z , x Z ] 2 2 n n 5 5 [4.5 - 1.96 ,4.5 1.96 ] 100 100 [4.5 0.98,4.5 0.98] [3.52,5.48]
作业:
1、设x1,x2,x3为简单随机抽样的3个观测值.如果采用如下不等权的平均值:
2 2 1 x ' x1 x2 x3 5 5 5
作为总体均值的点估计值,试说明它将比采用等权的平均值:
1 1 1 x x1 x2 x3 3 3 3
作为总体均值的点估计值要差.(提示:用点估计值衡量标准来讨论) 2、某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成 的一个随机样本,他们到单位的距离(单位:km)分别是:10,3,14,8,6,9,12,11, 7,5,10,15,9,16,13,2.求职工上班 从家里到单位平均距离在95%的置信区间? 3、根据某大学100名学生的抽样调查,每月平均用于购买书籍的费用为4.5元, 标准差为5元,求大学生每月用于购买书籍费用的区间估计(置信度为95%)?
2 2 1 1、 解:D ( x ' ) D ( x1 x2 x3 ) 5 5 5 4 4 1 D( x1 ) D ( x2 ) D( x3 ) 25 25 25 9 D( x) 25 1 1 1 D ( x ) D ( x1 x2 x3 ) 3 3 3 1 1 1 D ( x1 ) D ( x2 ) D ( x3 ) 9 9 9 1 D( x) 3 D ( x ' ) D ( x ),即以等权的平均值作为 总体均值 的点估计值效果要好于 不等权的平均值 .

参数估计练习题

参数估计练习题

参数估计练习题一、选择题1. 在统计学中,参数估计通常指的是:A. 确定数据的中心趋势B. 估计总体参数的值C. 计算样本的方差D. 进行假设检验2. 点估计和区间估计的区别在于:A. 点估计总是比区间估计更准确B. 点估计提供了一个估计值,而区间估计提供了一个估计范围C. 区间估计总是比点估计更准确D. 点估计和区间估计是同一个概念3. 以下哪个是参数估计中的常用方法?A. 均值B. 方差C. 最大似然估计D. 标准差4. 置信区间的确定依赖于:A. 样本大小B. 总体分布C. 样本均值D. 所有上述因素5. 如果一个参数的估计值是10,标准误差是0.5,那么95%置信区间的宽度大约是:A. 1B. 2C. 3D. 4二、填空题6. 假设总体服从正态分布,样本均值为\( \bar{x} \),样本标准差为s,样本容量为n,那么总体均值μ的95%置信区间为\( \bar{x} \pm ______ \times \frac{s}{\sqrt{n}} \)。

7. 在最大似然估计中,参数的估计值是使_________达到最大值的参数值。

8. 当样本量足够大时,根据中心极限定理,样本均值的分布将趋近于_________分布。

9. 一个参数的估计精度可以通过_________来衡量。

10. 在进行参数估计时,如果样本数据不满足正态分布,可以考虑使用_________估计方法。

三、简答题11. 描述最大似然估计的基本原理,并给出一个简单的例子。

12. 解释为什么在小样本情况下,使用t分布而不是正态分布来计算置信区间。

13. 什么是贝叶斯估计?它与频率学派的参数估计有何不同?四、计算题14. 假设有一个样本数据集{10, 12, 8, 14, 11},请计算样本均值、样本方差和样本标准差。

15. 根据题目14中的数据,计算总体均值的95%置信区间。

(假设总体标准差未知,使用t分布)16. 如果你有一个样本容量为30的正态分布总体的样本,样本均值为50,样本标准差为10,请计算总体均值的95%置信区间。

心理统计学-推断统计-参数估计-练习题

心理统计学-推断统计-参数估计-练习题

【单项选择题】区间估计依据的原理是()A.概率论B.样本分布理论C.小概率事件D.假设检验【单项选择题】下列不属于评价一个估计量好坏的特征的是()A.有用性B.有效性C.一致性D.充分性【单项选择题】用从总体抽取的一个样本统计量作为总体参数的估计值称为()A.点估计B.样本估计C.区间估计D.总体估计【单项选择题】样本平均数的可靠性和样本的大小()A.没有一定关系B.成反比C.没有关系D.成正比【多项选择题】一个良好的估计量具备的特征有()A.无偏性B.一致性C.有效性D.充分性【多项选择题】区间估计中总体指标所在范围()A.是一个可能范围B.是绝对可靠的范围C.不是绝对可靠的范围D.是有一定把握程度的范围【多项选择题】参数估计分为()和()A.点估计B.标准误C.标准差D.区间估计【单项选择题】置信度或者置信水平可以表示为()A.1-βB.1-aC.βD.a【单项选择题】在某学校的一次考试中,已知全体学生的成绩服从正态分布,其总方差为100。

从中抽取25名学生,其平均成绩为80,方差为64。

以95%的置信度估计该学校全体学生成绩均值的置信区间是()A.[76.08,83.92]B.[75.90,84.10]C.[76.86,83.14]D.[74.84,85.16]【单项选择题】当显著性水平一定时,置信区间的宽度()A.随着样本容量n 的增大而增大B.随着样本容量n 的增大而减小C.与样本容量n 无关D.与样本容量n 的平方根成正比【单项选择题】从某正态总体中随机抽取一个样本,其中n=10,1-n S =6,其平均数的抽样标准误为()A.1.7B.1.9C.2.1D.2.0【单项选择题】在参数估计中,α指()A.置信水平B.置信区间C.置信度D.显著性水平【单项选择题】总体分布为正态,总体方差已知,从总体中随机抽取容量为20的样本。

用样本平均数估计总体平均数的置信区间为() A.1122-+<<--n Z X n Z X σμσααB.1122-+<<--n t X n t X σμσααC.n Z X n Z X σμσαα22+<<-D.nt X n t X σμσαα22+<<-【单项选择题】下列受样本容量影响分布曲线形态的是()A.正态分布和F 分布B.F 分布和t 分布C.正态分布和t 分布D.正态分布和χ²分布【单项选择题】随机抽取一个样本容量为100的样木,其均值X =80,标准差s=10,所属总体均值μ的99%的置信区间是()A.[77.42,82.58]B.[78.04,81.96]C.[76.08,83.92]D.[77.42,81.96]【单项选择题】总体方差未知时,可以用()作为总体方差的估计值,实现对总体平均数的估计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章参数估计
练习题
一、填空题(共10题,每题2分,共计20分)
1.参数估计就是用_______ __去估计_______ __。

2. 点估计就是用_______ __的某个取值直接作为总体参数的_______ __。

3.区间估计是在_______ __的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减_______ __得到。

4. 如果将构造置信区间的步骤重复多次,置信区间中包含总体参数真值的次数所占的比例称为_______ __,也成为_______ __。

5.当样本量给定时,置信区间的宽度随着置信系数的增大而_______ __;当置信水平固定时,置信区间的宽度随着样本量的增大而_______ __。

6. 评价估计量的标准包含无偏性、_______ __和_______ __。

7. 在参数估计中,总是希望提高估计的可靠程度,但在一定的样本量下,要提高估计的可靠程度,就会_______ __置信区间的宽度;如要缩小置信区间的宽度,又不降低置信程度,就要_______ __样本量。

8. 估计总体均值置信区间时的估计误差受总体标准差、_______ __和_______ __的影响。

9. 估计方差未知的正态总体均值置信区间用公式_______ __;当样本容量大于等于30时,可以用近似公式_______ __。

10. 估计正态总体方差的置信区间时,用_____ __分布,公式为______ __。

二、选择题(共10题,每题1分,共计10分)
1.根据一个具体的样本求出的总体均值的95%的置信区间 ( )。

A.以95%的概率包含总体均值
B.有5%的可能性包含总体均值
C.一定包含总体均值
D. 要么包含总体均值,要么不包含总体均值
2.估计量的含义是指( )。

A. 用来估计总体参数的统计量的名称
B. 用来估计总体参数的统计量的具体数值
C. 总体参数的名称
D. 总体参数的具体数值
3. 总体均值的置信区间等于样本均值加减边际误差,其中边际误差等于所要求置信水平的临界值乘以( )。

A. 样本均值的标准差
B. 样本标准差
C. 样本方差
D. 总体标准差
4.一个95%的置信区间是指( )。

A. 总体参数有95%的概率落在这一区间内
B. 总体参数有5%的概率未落在这一区间内
C. 在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数
D. 在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数
5. 置信系数表达了置信区间的( )。

A. 准确性
B. 精确性
C. 显着性
D. 可靠性
6. 在置信水平不变的条件下,要缩小置信区间,则( )。

A. 需要增加样本量
B. 需要减少样本量
C. 需要保持样本量不变
D. 需要改变统计量的抽样标准差
7. 某地区职工样本的平均工资450元,样本平均数的标准差是5元,该地区全部职工平均工资落在440-460元之间的估计置信度为( )。

A. 0.95
B.0.9545
C. 0.99
D. 0.9973
8. 在其它条件不变的情况下,如果总体均值置信区间半径要缩小成原来的二分之一,则所需的样本容量( )。

A. 扩大为原来的4倍
B. 扩大为原来的2倍
C. 缩小为原来的二分之一
D. 缩小为原来的四分之一
9. 以下哪个不是用公式n s
t x 构造置信区间所需的条件( )。

A. 总体均值已知
B. 总体服从正态分布
C. 总体标准差未知
D. 样本容量小于30
10. 假设正态总体方差已知,欲对其均值进行区间估计。

从其中抽取较小样本后使用
的统计量是( )。

A. 正态统计量
B. 2χ统计量
C. t 统计量
D. F 统计量
三、判断题(共10题,每题1分,共计10分)
1. 在其他条件相同时,95%的置信区间比90%的置信区间宽。

( )
2. 比较参数的两个估计量的有效性时,必须保证它们是无偏估计。

( )
3. 用95%的置信水平得到某班学生考试成绩的置信区间为60-80分,因此我们可以说60-80分这个区间以95%的概率包含全班学生平均考试成绩的真值。

( )
4. 在总体均值和总体比例的区间估计中,边际误差由置信水平和统计量的标准差确定。

( )
5. 当正态总体的方差已知时,在小样本条件下,估计总体均值使用的分布是t 分布。

( )
6.有效性是指随着样本量的增大,估计量的值越来越接近被估总体的参数。

( )
7. 在置信水平一定的条件下,要提高估计的可靠性,就应增大样本量。

( )
8. 在样本量一定的条件下,要提高估计的精度,就应降低置信水平。

( )
9. 在其他条件不变的情况下,总体数据的方差越大,估计时所需的样本量就越大。

( )
10.对于非正态总体,在大样本条件下,估计总体均值使用的分布是正态分布。

( )
四、计算题(共6题,每题10分,共计60分)
1、已知某苗圃中树苗高度服从正态分布,今工作人员从苗圃中随机抽取64株,测得苗高并求得其均值62厘米,标准差为8.2厘米。

请确定该苗圃中树苗平均高度的置信区间,置信水平95%。

2、从水平锻造机的一大批产品中随机抽取20件,测得其尺寸平均值x =32.58,样本方差2S =0.0966。

假定该产品的尺寸2~(,)X N μσ,2,μσ均未知。

试求2σ的置信度为95%的置信区间。

3、某一金融分析师想要估计纽约证券交易所上市公司中拥有现金资产超过总资产百分之十的上市公司的比例。

(1)他希望达到的估计误差不超过0.10,置信度为90%,请确定他所需的样本容量。

(2)假设他根据(1)所确定的样本容量进行了抽样,并计算得出样本比例为0.13,试构建置信度为90%的总体比例的置信区间。

4、某市交通管理部门拟估计该市机动车未按照规定购买保险的比例。

(1)他们希望估计的允许误差不超过0.02,置信度为95%,请确定所需的样本容量。

(2)假设他根据(1)所确定的样本容量进行了抽样,并计算得出样本比例为0.15,试构建置信度为95%的总体比例的置信区间。

5、强生出租车公司拟进行一项调查,调查在六一儿童节那天出租车的平均行驶里程数。

为此公司抽取了20辆出租车进行调查,测得样本均值545公里,标准差为140公里。

请确定公司所有出租车平均行驶里程的置信区间,置信水平95%。

6、某地区的写字楼月租金的标准差为80元,要估计总体均值的95%的置信区间,希望的边际误差为25元,应抽取的样本量是多少。

相关文档
最新文档