八年级上册数学第一单元测试题2

合集下载

人教版初中数学八年级数学上册第一单元《三角形》测试(含答案解析)(2)

人教版初中数学八年级数学上册第一单元《三角形》测试(含答案解析)(2)

一、选择题1.如图,在ABC 中,AB 边上的高为( )A .CGB .BFC .BED .AD 2.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( )①13∠=∠; ②180BAE CAD ∠+∠=︒;③若//BC AD ,则230∠=︒;④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个3.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠B .1A D ∠=∠+∠C .2D ∠>∠ D .C D ∠=∠4.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40° 5.如图,ABC 中,55,B D ∠=︒是BC 延长线上一点,且130ACD ∠=︒,则A ∠的度数是( )A .50︒B .65︒C .75︒D .85︒ 6.一个多边形的内角和外角和之比为4:1,则这个多边形的边数是( ) A .7B .8C .9D .10 7.下列长度的三条线段能组成三角形的是( ) A .3,3,4B .7,4,2C .3,4,8D .2,3,5 8.若一个三角形的三个内角的度数之比为11:13:24,那么这个三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 9.如图,,AD CE 分别是ABC 的中线与角平分线,若,40B ACB BAC ∠=∠∠=︒,则ACE ∠的度数是( )A .20︒B .35︒C .40︒D .70︒10.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°11.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是( )A .43°B .47°C .30°D .60°12.下列四个图形中,线段CE 是ABC 的高的是( )A .B .C .D .二、填空题13.如图1,ABC 纸片面积为24,G 为ABC 纸片的重心,D 为BC 边上的一个四等分点(BD CD <)连结CG ,DG ,并将纸片剪去GDC ,则剩下纸片(如图2)的面积为__________.14.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.15.设三角形三内角的度数分别为,,x y z ︒︒︒,如果其中一个角的度数是另一个角的度数的2倍、那我们称数对(,)()y z y z <是x 的和谐数对,当150x =时,对应的和谐数对有一个,它为(10,20);当66x =时,对应的和谐数对有二个,它们是__________.当对应的和谐数对(,)y z 有三个时,请写出此时x 的范围_______.16.如果三角形两条边分别为3和5,则周长L 的取值范围是________17.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.18.三角形有两条边的长度分别是5和7,则第三边a 的取值范围是_____.19.如图,∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =________.20.一副分别含有30°和45°的直角三角板,拼成如图,则BFD ∠的度数是______.三、解答题21.如图,BP 平分ABC ∠,交CD 于点F ,DP 平分ADC ∠交AB 于点E ,AB 与CD 相交于点G ,42A ∠=︒.(1)若60ADC ∠=︒,求AEP ∠的度数;(2)若38C ∠=︒,求P ∠的度数.22.已知AB ∥CD ,CF 平分∠ECD .(1)如图1,若∠DCF =25°,∠E =20°,求∠ABE 的度数.(2)如图2,若∠EBF =2∠ABF ,∠CFB 的2倍与∠CEB 的补角的和为190°,求∠ABE 的度数.23.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C=60°,求∠DAE 的度数;(2)如图2,∠B <∠C ,则DAE 、∠B ,∠C 之间的数量关系为___________;(3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,求∠G 的度数.24.如图,∠CBF ,∠ACG 是△ABC 的外角,∠ACG 的平分线所在的直线分别与∠ABC ,∠CBF 的平分线BD ,BE 交于点D ,E .(1)若∠A=70°,求∠D 的度数;(2)若∠A=a ,求∠E ;(3)连接AD ,若∠ACB=β,则∠ADB= .25.如图,已知1,23180BDE ︒∠=∠∠+∠=.(1)证明://AD EF .(2)若DA 平分BDE ∠,FE AF ⊥于点F ,140∠=︒,求BAC ∠的度数. 26.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】在ABC 中,过C 点向AB 所在的直线作垂线,顶点与垂足之间的线段是AB 上的高,由此可得答案.【详解】解:ABC 中,AB 边上的高为:.CG故选:.A【点睛】本题考查的是三角形的高的含义,掌握钝角三角形的高是解题的关键.2.C解析:C【分析】利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒,再利用三角形的外角的性质求解4∠, 从而可判断④.【详解】解:90BAC DAE ∠=∠=︒,122390∴∠+∠=∠+∠=︒,13∴∠=∠,故①符合题意, 19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故②符合题意;//,BC AD180C CAD ∴∠+∠=︒,45C ∠=︒,135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒,故③不符合题意; 150180CAD BAE CAD ∠=︒∠+∠=︒,,30BAE ∴∠=︒,如图,记,AB DE 交于,G60E ∠=︒,180306090AGE ∴∠=︒-︒-︒=︒,45,B C ∠=∠=︒4904545.AGE B ∴∠=∠-∠=︒-︒=︒4.C ∴∠=∠ 故④符合题意,综上:符合题意的有①②④.故选:.C【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.3.D解析:D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∵∠1=∠2,∠A=∠C ,∠1=∠A+∠D ,∠2=∠B+∠C ,∴∠B=∠D ,∴选项A 、B 正确;∵∠2=∠A+∠D ,∴2D ∠>∠,∴选项C 正确;没有条件说明C D ∠=∠故选:D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键. 4.B解析:B【分析】利用平行线和三角形外角的性质即可求解.【详解】∵//AB CD ,∴60DEF A ∠=∠=︒.∵DEF C F ∠=∠+∠,∴604020F DEF C ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质,熟练利用其性质找到角的等量关系是解答本题的关键.5.C解析:C【分析】根据三角形的外角性质求解 .【详解】解:由三角形的外角性质可得:∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=130°-55°=75°,故选C .【点睛】本题考查三角形的外角性质,熟练掌握三角形的外角性质定理并能灵活运用是解题关键. 6.D解析:D【分析】设多边形有n 条边,则内角和为180°(n ﹣2),再根据内角和等于外角和4倍可得方程180(n ﹣2)=360×4,再解方程即可.【详解】解:设多边形有n 条边,由题意得:180(n ﹣2)=360×4,解得:n =10,故选:D .【点睛】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n ﹣2). 7.A解析:A【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】解:A 、3+3>4,能构成三角形,故此选项正确;B 、4+2<7,不能构成三角形,故此选项错误;C 、3+4<8,不能构成三角形,故此选项错误;D 、2+3=5,不能构成三角形,故此选项错误.故选:A .【点睛】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.8.B解析:B【分析】根据角的度数之比,求得最大角的度数,根据最大角的性质判断即可.【详解】∵三个内角的度数之比为11:13:24,∴最大角的度数为°24180111324⨯++=90°, ∴三角形是直角三角形,故选B.【点睛】 本题考查了三角形按角的分类,根据度数之比求得最大角的度数是解题的关键. 9.B解析:B【分析】由,40B ACB BAC ∠=∠∠=︒,再利用三角形的内角和定理求解ACB ∠,结合三角形的角平分线的定义,从而可得答案.【详解】解: ,B ACB ∠=∠40BAC ∠=︒,18040702B ACB ︒-︒∴∠=∠==︒, CE 是ABC 角平分线,1352ACE ACB ∴∠=∠=︒, 故选:.B【点睛】本题考查的是三角形的角平分线的定义,三角形的内角和定理,掌握以上知识是解题的关键.10.D解析:D【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可判断.【详解】解:∵∠A+∠B+∠C=180°,∠A=∠C-∠B,∴2∠C=180°,∴∠C=90°,∴必有一个内角等于90°,故选:D.【点睛】本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.11.A解析:A【分析】延长BC交刻度尺的一边于D点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt△CDE中,利用内角和定理求解.【详解】如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∵∠CED=∠α=47°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣47°=43°.故选:A.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.12.B解析:B【分析】利用三角形高的定义逐一判断选项,可得答案.【详解】A.CE不垂直AB,故CE不是ABC的高,不符合题意,B.CE是ABC中AB边上的高,符合题意,C.CE不是ABC的高,不符合题意,D.CE不是ABC的高,不符合题意.故选B.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.二、填空题13.18【分析】连接BG根据重心的性质得到△BGC的面积再根据D点是BC的四等分点得到△GDC的面积故可求解【详解】连接BG∵G为纸片的重心∴S△BGC=S△ABC=8∵D为边上的一个四等分点()∴S△解析:18【分析】连接BG,根据重心的性质得到△BGC的面积,再根据D点是BC的四等分点得到△GDC的面积,故可求解.【详解】连接BG,∵G为ABC纸片的重心,∴S△BGC=1S△ABC=83)∵D为BC边上的一个四等分点(BD CD∴S△DGC=3S△BGC=64∴剪去GDC,则剩下纸片的面积为24-6=18故答案为:18.【点睛】此题主要考查重心的性质,解题的关键是熟知重心的性质及面积的换算关系.14.3<a<13【分析】根据三角形的三边关系解答【详解】由题意得:8-5<a<8+5∴3<a<13故答案为:3<a<13【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边解析:3<a<13【分析】根据三角形的三边关系解答.【详解】由题意得:8-5<a<8+5,∴3<a<13,故答案为:3<a<13.【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边.15.(3876)(3381)【分析】根据和谐数对的定义求出当x=66时的两组数对;再分当时当时当时三种情况讨论从而得出结论【详解】解:当时180-66=114则114÷3=3838×2=76此时和谐数对解析:(38,76),(33,81) 060x ︒<<︒【分析】根据“和谐数对”的定义求出当x=66时的两组数对;再分当060x ︒<<︒时,当60120x ︒<︒时,当120180x ︒<︒时,三种情况讨论,从而得出结论.【详解】解:当66x =时,180-66=114,则114÷3=38,38×2=76,此时和谐数对为(38,76),或66÷2=33,114-33=81,此时和谐数对为(33,81),若对应的和谐数对(,)y z 有三个,当060x ︒<<︒时,它的和谐数对有(1803,2)x x ︒-,3(,180)22x x ︒-,180(3x ︒-,2(180))3x ︒-; 当60120x ︒<︒时,它的和谐数对有3(,180)22x x ︒-,180(3x ︒-,2(180))3x ︒-, 当120180x ︒<︒时,它的和谐数对有180(3x ︒-,2(180))3x ︒-, ∴对应的和谐数对(,)y z 有三个时,此时x 的范围是060x ︒<<︒,故答案为:(38,76),(33,81);060x ︒<<︒.【点睛】本题考查三角形内角和定理,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.16.10<L<16【分析】根据三角形的三边关系确定第三边的取值范围再根据不等式的性质求出答案【详解】设第三边长为x ∵有两条边分别为3和5∴5-3<x<5+3解得2<x<8∴2+3+5<x+3+5<8+3解析:10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x,∵有两条边分别为3和5,∴5-3<x<5+3,解得2<x<8,∴2+3+5<x+3+5<8+3+5,∵周长L=x+3+5,∴10<L<16,故答案为: 10<L<16.【点睛】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键.17.6【分析】根据DE分别是三角形的中点得出G是三角形的重心再利用重心的概念可得:2GD=AG进而得到S△ABG:S△ABD=2:3再根据AD是△ABC 的中线可得S△ABC=2S△ABD进而得到答案【详解析:6【分析】根据D,E分别是三角形的中点,得出G是三角形的重心,再利用重心的概念可得:2GD=AG进而得到S△ABG:S△ABD=2:3,再根据AD是△ABC的中线可得S△ABC=2S△ABD进而得到答案.【详解】解:∵△ABC的两条中线AD、BE相交于点G,∴2GD=AG,∵S△ABG=2,∴S△ABD=3,∵AD是△ABC的中线,∴S△ABC=2S△ABD=6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.18.2<a<12【分析】已知三角形两边的长根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和【详解】解:根据三角形三边关系定理知:第三边a的取值范围是:(7-5)<a<(解析:2<a<12.已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【详解】解:根据三角形三边关系定理知:第三边a的取值范围是:(7-5)<a<(7+5),即2<a <12.【点睛】本题考查了三角形三边关系,两边之和大于第三边,两边之差小于第三边.19.540°【分析】连接AGGD先根据∠H+∠K=∠HGA+∠KAG∠E+∠F=∠EDG+∠FGD最后根据多边形的面积公式解答即可【详解】解:连接AGGD∵∠H+∠K+∠HMK=180°∠HGA+∠KA解析:540°【分析】连接AG、GD,先根据∠H+∠K=∠HGA+∠KAG, ∠E+∠F=∠EDG+∠FGD,最后根据多边形的面积公式解答即可.【详解】解:连接AG、GD,∵∠H+∠K+∠HMK=180°,∠HGA+∠KAG +∠AMG=180°,∠HMK=∠AMG∴∠H+∠K=∠HGA+∠KAG;同理:∠E+∠F=∠EDG+∠FGD∴∠BAK+∠B+∠C+∠CDE+∠E+∠F+∠MGN+∠H+∠K=∠BAK+∠B+∠C+∠CDE+∠EDG+∠FGD+∠MGN+∠HGA+∠KAG=五边形的内角和=(5-2)×180°=540°故答案为540°.【点睛】本题考查了三角形内角和定理和多边形内角和定理,根据题意正确作出辅助线成为解答本题的关键.20.15°【分析】先根据直角三角板的性质得出∠B及∠CDE的度数再由补角的定义得出∠BDF的度数根据三角形内角和定理即可得出结论【详解】解:∵图中是一副直角三角板∴∠B=45°∠CDE=60°∴∠BDF解析:15°先根据直角三角板的性质得出∠B 及∠CDE 的度数,再由补角的定义得出∠BDF 的度数,根据三角形内角和定理即可得出结论.【详解】解:∵图中是一副直角三角板,∴∠B=45°,∠CDE=60°,∴∠BDF=180°-60°=120°,∴∠BFD=180°-45°-120°=15°.故答案为:15°.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.三、解答题21.(1)72︒;(2)40︒.【分析】(1)根据角平分线的定义可得∠ADP=12ADC ∠ ,然后利用三角形外角的性质即可得解;(2)根据角平分线的定义可得∠ADP=∠PDF ,∠CBP=∠PBA ,再根据三角形的内角和定理可得∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,所以∠A+∠C=2∠P ,即可得解.【详解】解:(1)∵DP 平分∠ADC ,∴∠ADP=∠PDF=12ADC ∠, ∵60ADC ∠=︒,∴30ADP ∠=︒,∴304272AEP ADP A ∠=∠+∠=︒+︒=︒;(2)∵BP 平分∠ABC ,DP 平分∠ADC ,∴∠ADP=∠PDF ,∠CBP=∠PBA ,∵∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,∴∠A+∠C=2∠P ,∵∠A=42°,∠C=38°,∴∠P=12(38°+42°)=40°. 【点睛】本题考查了三角形的内角和定理及三角形外角的性质,角平分线的定义,熟记定理并理解“8字形”的等式是解题的关键.22.(1)∠ABE=30°;(2)∠ABE=30°(1)假设CE与AB相交于点G,由题意易得∠DCE=50°,则有∠CGA=∠BGE=130°,然后根据三角形内角和可求解;(2)假设CE与AB、BF相交于点M、N,设∠ABF=x,∠DCF=∠FCE=y,则有∠EBF=2x,∠ABE=3x,∠DCE=2y,根据题意可得∠AMC=180°-2y,∠E=2y-3x,2∠CFB-∠CEB=10°,进而根据三角形内角和及角的和差关系可求解.【详解】解:(1)假设CE与AB相交于点G,如图所示:∵CF平分∠DCE,∠DCF=25°,∴∠DCE=50°,∵AB∥DC,∴∠DCE+∠AGC=180°,∴∠AGC=130°,∴∠EGB=∠AGC=130°,∵∠E=20°,∴∠ABE=30°;(2)假设CE与AB、BF相交于点M、N,如图所示:设∠ABF=x,∠DCF=y,∵∠EBF=2∠ABF,CF平分∠DCE,∴∠EBF=2x,∠ABE=3x,∠FCE=y,∠DCE=2y,∵AB∥DC,∴∠DCE+∠AMC=180°,∴∠EMB=∠AMC=180°-2y,∵∠E+∠EMB+∠ABE=180°,∴∠E=2y-3x,∵∠E+∠ENB+∠FBE=180°,∴∠ENB=180°+x-2y,∵∠CFB+∠CNF+∠FCE=180°,∴∠CFB=y-x ,∵∠CFB 的2倍与∠CEB 的补角的和为190°,∴2∠CFB-∠CEB=10°,∴()()22310y x y x ---=︒,解得:10x =︒,∴∠ABE=30°.【点睛】本题主要考查平行线的性质及三角形内角和,熟练掌握平行线的性质及三角形内角和是解题的关键.23.(1)10°;(2)∠DAE =12(∠C−∠B);(3)45°. 【分析】(1)根据三角形的内角和定理可求得∠BAC =80°,由角平分线的定义可得∠CAD 的度数,利用三角形的高线可求∠CAE 得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解∠DAE 、∠B 、∠C 的数量关系;(3)设∠ACB =α,根据角平分线的定义得∠CAG =12∠EAC =12(90°−α)=45°−12α,∠FCG =12∠BCF =12(180°−α)=90°−12α,再利用三角形外角的性质即可求得结果.【详解】解:(1)∵∠B =40°,∠C =60°,∠BAC +∠B +∠C =180°,∴∠BAC =80°,∵AD 平分∠BAC ,∴∠CAD =∠BAD =12∠BAC =40°, ∵AE 是△ABC 的高,∴∠AEC =90°,∵∠C =60°,∴∠CAE =90°−60°=30°,∴∠DAE =∠CAD−∠CAE =10°;(2)∵∠BAC +∠B +∠C =180°,∴∠BAC =180°−∠B−∠C ,∵AD 平分∠BAC ,∴∠CAD =∠BAD =12∠BAC , ∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°−∠C ,∴∠DAE=∠CAD−∠CAE=12∠BAC−(90°−∠C)=12(180°−∠B−∠C)−90°+∠C=1 2∠C−12∠B,即∠DAE=12(∠C−∠B).故答案为:∠DAE=12(∠C−∠B).(3)设∠ACB=α,∵AE⊥BC,∴∠EAC=90°−α,∠BCF=180°−α,∵∠CAE和∠BCF的角平分线交于点G,∴∠CAG=12∠EAC=12(90°−α)=45°−12α,∠FCG=12∠BCF=12(180°−α)=90°−12α,∵∠FCG=∠G+∠CAG,∴∠G=∠FCG −∠CAG=90°−12α−(45°−12α)=45°.【点睛】本题考查了三角形的内角和定理、三角形的高及角平分线等知识,熟练掌握三角形内角和定理并能灵活运用三角形的高、角平分线这些知识解决问题是关键.24.(1)35°;(2)90°-12α;(3)12β【分析】(1)由角平分线的定义得到∠DCG=12∠ACG,∠DBC=12∠ABC,然后根据三角形外角的性质即可得到结论;(2))根据角平分线的定义得到∠DBC=12∠ABC,∠CBE=12∠CBF,于是得到∠DBE=90°,由(1)知∠D=12∠A,根据三角形的内角和得到∠E=90°-12α;(3)根据角平分线的定义可得,∠ABD=12∠ABC,∠DAM=12∠MAC,再利用三角形外角的性质可求解.【详解】解:(1)∵CD平分∠ACG,BD平分∠ABC,∴∠DCG=12∠ACG,∠DBC=12∠ABC,∵∠ACG=∠A+∠ABC,∴2∠DCG=∠ACG=∠A+∠ABC=∠A+2∠DBC,∵∠DCG=∠D+∠DBC,∴2∠DCG=2∠D+2∠DBC,∴∠A+2∠DBC=2∠D+2∠DBC,∴∠D=12∠A=35°;(2)∵BD平分∠ABC,BE平分∠CBF,∴∠DBC=12∠ABC,∠CBE=12∠CBF,∴∠DBC+∠CBE=12(∠ABC+∠CBF)=90°,∴∠DBE=90°,∵∠D=12∠A,∠A=α,∴∠D=12α,∵∠DBE=90°,∴∠E=90°-12α;(3)如图,∵BD平分∠ABC,CD平分∠ACG,∴AD平分∠MAC,∠ABD=12∠ABC,∴∠DAM=12∠MAC,∵∠DAM=∠ABD+∠ADB,∠MAC=∠ABC+∠ACB,∠ACB=β,∴∠ADB=12∠ACB=12β.故答案为:12β.【点睛】本题主要考查三角形的角平分线,三角形外角的性质,灵活运用三角形外角的性质是解题的关键.25.(1)见解析;(2)70°【分析】(1)根据平行线的判定得出AC//DE ,根据平行线的性质得出∠2=∠ADE ,求出∠3+∠ADE=180°,根据平行线的判定得出即可;(2)求出∠BDE 的度数,求出∠2的度数,求出∠3的度数,根据四边形的内角和定理求出∠B ,再根据三角形内角和定理求出即可.【详解】(1)证明:∵∠1=∠BDE ,∴AC//DE ,∴∠2=∠ADE ,∵∠2+∠3=180°,∴∠3+∠ADE=180°,∴AD//EF ;(2)∵∠1=∠BDE ,∠1=40°,∴∠BDE=40°,∵DA 平分∠BDE ,∴∠ADE=12∠BDE=20°, ∴∠2=∠ADE=20°,∵∠2+∠3=180°∴∠3=160°,∵FE ⊥AF ,∴∠F=90°,∴∠B=360°-90°-160°-40°=70°,在△ABC 中,∠BAC=180°-∠1-∠B=180°-40°-70°=70°.【点睛】本题考查了平行线的性质和判定,多边形的内角和定理,角平分线的定义,能灵活运用知识点进行推理和计算是解此题的关键.26.10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°. 【详解】解:∠B AC =60°,∠C =70°∴∠ABC =180°−∠ABC −∠C =180°−60°-70°=50°,∵AE 是角平分线,∴∠EAC=12∠BAC=12×60°=30°,∵AD是高,∴∠ADC=90°,∴∠CAD=90°−∠C=90°−70°=20°,∴∠DAE=∠EAC−∠CAD=30°−20°=10°;∵AE,BF是角平分线,∴∠OAB=12∠BAC,∠OBA=12∠ABC,∴∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC)=12(180°−∠C)=12×(180°−70°) =55°.【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.。

初二数学上册第一单元测试题【三篇】

初二数学上册第一单元测试题【三篇】

导语:检验数学学得好不好的标准就是会不会解题。

听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独⽴解题、解对题才是学好数学的标志。

以下是⽆忧考整理的初⼆数学上册第⼀单元测试题【三篇】,希望对⼤家有帮助。

初⼆数学上册第⼀单元测试题(⼀)⼀、选择(共30分)1、如图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的⾯积为().A.16πB.12πC.10πD.8π2、三个正⽅形的⾯积如图(4),正⽅形A的⾯积为()A.6B.36C.64D.83、14.在△ABC中,AB=13,AC=15,⾼AD=12,则BC的长为()A.14B.14或4C.8D.4和84、将⼀根24cm的筷⼦,置于底⾯直径为15cm,⾼8cm的圆柱形⽔杯中,如图所⽰,设筷⼦露在杯⼦外⾯的长度为hcm,则h的取值范围是().A.h≤17cmB.h≥8cmC.15cm≤h≤16cmD.7cm≤h≤16cm5、若直⾓三⾓形的两条直⾓边长分别为3cm、4cm,则斜边上的⾼为()A、cmB、cmC、5cmD、cm6、以下列线段的长为三边的三⾓形中,不是直⾓三⾓形的是()A、B、C、D、7、已知三⾓形的三边长为a、b、c,如果,则△ABC是()A.以a为斜边的直⾓三⾓形B.以b为斜边的直⾓三⾓形C.以c为斜边的直⾓三⾓形D.不是直⾓三⾓形8、如果把直⾓三⾓形的两条直⾓边同时扩⼤到原来的2倍,那么斜边扩⼤到原来的().A.1倍B.2倍C.3倍D.4倍9、2002年8⽉在北京召开的国际数学家⼤会会徽取材于我国古代数学家赵爽的《勾股圆⽅图》,它是由四个全等的直⾓三⾓形与中间的⼀个⼩正⽅形拼成的⼀个⼤正⽅形,如图所⽰,如果⼤正⽅形的⾯积是13,⼩正⽅形的⾯积是1,直⾓三⾓形的短直⾓边为a,较长直⾓边为b,那么(a+b)2的值为()A.13B.19C.25D.16910、如图,长⽅体的长为15,宽为10,⾼为20,点离点的距离为5,⼀只蚂蚁如果要沿着长⽅体的表⾯从点爬到点,需要爬⾏的最短距离是()A.B.25C.D.⼆、填空(共24分)11、⼀个三⾓形三个内⾓之⽐为1:2:3,则此三⾓形是__________三⾓形;若此三⾓形的三边为a、b、c,则此三⾓形的三边的关系是__________。

北师大版八年级数学上册第一章单元测试卷含答案

北师大版八年级数学上册第一章单元测试卷含答案

第一章单元测试卷(时间:100分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1. 已知△ABC的三边长分别是3 cm,4 cm,5 cm,则△ABC的面积是(A)A.6 cm2B.7.5 cm2C.10 cm2D.12 cm22. 如图,字母B所代表的正方形的面积是(C)A.12B.13C.144D.1943. 三角形的三条边长分别为a,b,c,且(a+b)2=c2+2ab,则这个三角形是(C)A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形4. 已知一直角三角形木板,三边的平方和为1800,则斜边长为(B)A.80 B.30 C.90 D.1205. 下列结论中不正确的是(C)A.三个内角之比为1∶2∶3的三角形是直角三角形B.三条边长之比为3∶4∶5的三角形是直角三角形C.三条边长之比为8∶16∶17的三角形是直角三角形D.三个内角之比为1∶1∶2的三角形是直角三角形6. 如图,小明将一张长为20 cm,宽为15 cm的长方形纸(AE>DE)剪去了一角,量得AB=3 cm,CD=4 cm,则剪去的直角三角形的斜边BC长为(D)A.5 cm B.12 cm C.16 cm D.20 cm错误!错误!,第7题图) 错误!,第8题图),第9题图)7. 如图,某公司举行周年庆典,准备在门口长25 m,高7 m的台阶上铺设红地毯,已知台阶的宽为3 m,则共需购买红地毯(C)A.21 m2B.75 m2C.93 m2D.96 m28. 如图,已知长方形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD =8,AB=4,则DE的长为(C)A.3 B.4 C.5 D.69. 如图,在三角形ABC中,D是边BC上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC的面积是(B)A.30 B.36 C.72 D.12510. 在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是(C)A .42B .32C .42或32D .30或35二、填空题(本大题共6小题,每小题4分,共24分)11. 在Rt △ABC 中,∠C =90°.若b =8,c =17,则S △ABC =60. 12. 在△ABC 中,AB =5 cm ,BC =6 cm ,BC 边上的中线AD =4 cm ,则∠ADC 的度数是90°. 13. 如图,每个小正方形边长为1,则△ABC 边AC 上的高BD 的长为85.,第13题图) ,第14题图) ,第16题图)14. 如图,已知长方形ABCD ,AB =3 cm ,AD =4 cm ,过对角线BD 的中点O 作BD 的垂直平分线EF ,分别交AD ,BC 于点E ,F ,则AE 的长为78cm .15. 李明从家出发向正北方走了1200 m ,接着向正东方向走到离家2000 m 的地方,则李明向正东方向走了1600m .16. 如图,一块砖的宽AN =5 cm ,长ND =10 cm ,CD 上的点B 距地面的高BD =8 cm .地面上A 处的一只蚂蚁要到B 处吃食,需要爬行的最短路径是17cm .三、解答题(一)(本大题共3小题,每小题6分,共18分)17. 如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,求AB 的长和△ABC 的周长.解:由勾股定理得AB 2=AC 2+BC 2=32+42=52,所以AB =5,△ABC 的周长是AC +BC +AB =3+4+5=1218. 如图,∠C =90°,AM =CM ,MP ⊥AB 于点P ,求证:BM 2=AP 2+BC 2+PM 2.证明:因为BM 2=BC 2+CM 2,CM =AM ,所以BM 2=BC 2+AM 2.又AM 2=AP 2+PM 2,所以BM 2=BC 2+AP 2+PM 219. 如图,在△ABC 中,AB =20,AC =15,AD 为BC 边上的高,且AD =12,求△ABC 的周长.解:因为AD 为BC 边上的高,所以∠ADB =∠ADC =90°,在Rt △ABD 中,AB =20,AD =12,所以BD 2=AB 2-AD 2,即BD =16,在Rt △ADC 中,AC =15,AD =12,所以DC 2=AC 2-AD 2,即DC =9,所以BC =25,所以△ABC 的周长是60四、解答题(二)(本大题共3小题,每小题7分,共21分)20. 如图,已知∠ADC =90°,AD =8,CD =6,AB =26,BC =24. (1)证明:△ABC 是直角三角形. (2)请求图中阴影部分的面积.解:(1)因为在Rt △ADC 中,∠ADC =90°,AD =8,CD =6,所以AC 2=AD 2+CD 2=82+62=100,所以AC =10.在△ABC 中,因为AC 2+BC 2=102+242=676,AB 2=262=676,所以AC 2+BC 2=AB 2,所以△ABC 为直角三角形 (2)S 阴影=S △ABC -S △ACD =12×10×24-12×8×6=9621. 如图,小明的家位于一条南北走向的河流MN 的东侧A 处,某一天小明从家出发沿南偏西30°方向走60 m 到达河边B 处取水,然后沿另一方向走80 m 到达菜地C 处浇水,最后沿第三方向走100 m 回到家A 处.问小明到河边B 处取水后是沿哪个方向行走的?并说明理由.解:因为AB =60,BC =80,AC =100,所以AB 2+BC 2=AC 2,∠ABC =90°.因为AD ∥NM ,所以∠NBA =∠BAD =30°,所以∠MBC =180°-90°-30°=60°,所以小明在河边B 处取水后是沿南偏东60°方向行走的22. 学校要征收一块土地,形状如图所示,∠B =∠D =90°,AB =20米,BC =15米,CD =7米,土地价格为1000元/平方米,请你计算学校征收这块地需要多少元?解:连接AC ,在△ABC 中,∠B =90°,AB =20,BC =15.由勾股定理得:AC 2=AB 2+BC 2=202+152=625.在△ADC 中,∠D =90°,CD =7,由勾股定理得:AD 2=AC 2-CD 2=625-72=576,AD =24,所以四边形的面积为12AB ·BC +12CD ·AD =234(平方米),234×1000=234000(元),所以学校征收这块地需要234000元五、解答题(三)(本大题共3小题,每小题9分,共27分)23. 如图,△ABC 的面积为84,BC =21,现将△ABC 沿直线BC 向右平移a(0<a <21)个单位到△DEF 的位置.(1)求BC 边上的高; (2)若AB =10,①求线段DF 的长;②连接AE ,当△ABE 时等腰三角形时,求a 的值.解:(1)作AM ⊥BC 于M ,因为△ABC 的面积为84,所以12BC ·AM =84,解得AM =8,即BC 边上的高为8(2)①在Rt △ABM 中,BM 2=AB 2-AM 2,所以BM =6,所以CM =BC -BM =15,在Rt △ACM 中,AC 2=AM 2+CM 2,所以AC =17,由平移的性质可知,DF =AC =17;②当AB =BE =10时,a =BE =10;当AB =AE =10时,BE =2BM =12,则a =BE =12;当EA =EB =a 时,ME =a -6,在Rt △AME 中,AM 2+ME 2=AE 2,即82+(a -6)2=a 2,解得a =253,则当△ABE 时等腰三角形时,a 的值为10或12或25324. 我们学习了勾股定理后,都知道“勾三、股四、弦五”.(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.事实上,勾是三时,股和弦的算式分别是12(9-1),12(9+1);勾是五时,股和弦的算式分别是12(25-1),12(25+1).根据你发现的规律,分别写出勾是七时,股和弦的算式;(2)根据(1)的规律,请用含n(n 为奇数,且n ≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想它们之间的相等关系(请写出两种),并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m 为偶数,且m >4)的代数式来表示股和弦.解:(1)12(72-1),12(72+1) (2)当n ≥3,且n 为奇数时,勾、股、弦分别为:n ,12(n 2-1),12(n 2+1),它们之间的关系为:①弦-股=1,②勾2+股2=弦2,如证明①,弦-股=12(n 2+1)-12(n 2-1)=12n 2+12-12n 2+12=1 (3)当m>4,且m 为偶数时,股、弦分别为:(m 2)2-1,(m2)2+125. 如图,在△ABC 中,AC =BC ,∠ACB =90°,点D ,E 是直线AB 上两点.∠DCE =45°. (1)当CE ⊥AB 时,点D 与点A 重合,求证:DE 2=AD 2+BE 2; (2)当点D 不与点A 重合时,求证:DE 2=AD 2+BE 2;(3)当点D 在BA 的延长线上时,(2)中的结论是否成立?画出图形,说明理由.解:(1)因为CE ⊥AB ,所以AE =BE ,因为点D 与点A 重合,所以AD =0,所以DE 2=AD 2+BE 2 (2)如图①,过点A 作AF ⊥AB ,使AF =BE ,连接DF ,CF ,因为在△ABC 中,AC =BC ,∠ACB =90°,所以∠CAB =∠B =45°,所以∠FAC =45°,所以△CAF ≌△CBE(SAS ),所以CF =CE ,∠ACF =∠BCE ,因为∠ACB =90°,∠DCE =45°,所以∠ACD +∠BCE =∠ACB -∠DCE =90°-45°=45°,因为∠ACF =∠BCE ,所以∠ACD +∠ACF =45°,即∠DCF =45°,所以∠DCF =∠DCE ,又因为CD =CD ,所以△CDF ≌△CDE(SAS ),所以DF =DE ,因为AD 2+AF 2=DF 2,所以AD 2+BE 2=DE 2(3)结论仍然成立.理由:如图②,过点A 作AF ⊥AB ,使AF =BE ,连接DF ,CF ,因为在△ABC 中,AC =BC ,∠ACB =90°,所以∠CAB =∠B =45°,所以∠FAC =45°,所以△CAF ≌△CBE(SAS ),所以CF =CE ,∠ACF =∠BCE ,因为∠BCE +∠ACE =90°,所以∠ACF +∠ACE =90°,即∠FCE =90°,因为∠DCE =45°,所以∠DCF =45°,所以∠DCF =∠DCE ,又因为CD =CD ,所以△CDF ≌△CDE(SAS ),所以DF =DE ,因为AD 2+AF 2=DF 2,所以AD 2+BE 2=DE 2。

苏科版八年级数学上册第1章《全等三角形》单元测试(含答案)

苏科版八年级数学上册第1章《全等三角形》单元测试(含答案)

苏科版八年级数学上册第1章《全等三角形》单元测试一.选择题1.下列各组中的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形3.如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是()A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D 4.图中的两个三角形全等,则∠1等于()A.45°B.62°C.73°D.135°5.已知△ABC≌△DEF,∠A=∠B=30°,则∠E的度数是()A.30°B.120°C.60°D.90°6.如图,若△ABC≌△DEF,B、E、C、F在同一直线上,BC=7,EC=4,则CF的长是()A.2 B.3 C.5 D.77.下列说法正确的是()A.周长相等的两个三角形全等B.如果三角形的三个内角满足∠A:∠B:∠C=1:2:3.则这个三角形是直角三角形C.从直找外一点到这条直线的垂线段,叫做这点到直线的距离D.两条直线被第三条直线所截,同位角相等二.填空题8.如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是.9.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.10.如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.11.如图,已知△ABC≌△ABD,且点C与点D对应,点A与点A对应,∠ACB=30°,∠ABC=85°,则∠BAD的度数为.12.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为.13.如图,已知△ABD≌△ACE,∠A=53°,∠B=22°,则∠C=°.14.如图是5×5的正方形网格,△ABC的顶点都在小正方形的顶点上,像△ABC这样的三角形叫格点三角形.画与△ABC有一条公共边且全等的格点三角形,这样的格点三角形最多可以画个.三.解答题15.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).16.如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.17.如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为、,结论为;(2)证明你的结论.18.已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.求证:(1)△ABO≌△DCO;(2)∠OBC=∠OCB.19.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC =4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.20.如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21.如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.参考答案一.选择题1.解:A、两个图形不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确;C、两个图形不能完全重合,故本选项错误;D、两个图形不能完全重合,故本选项错误;故选:B.2.解:A、两个等边三角形相似但不一定全等,故说法错误,不符合题意;B、两个全等图形的面积一定相等,正确,符合题意;C、形状相同的两个图形相似但不一定全等,故说法错误,不符合题意;D、两个正方形相似但不一定全等,故说法错误,不符合题意,故选:B.3.解:在△ABC和△DCB中,∵∠ACB=∠DBC,BC=BC,A:当∠ABC=∠DCB时,△ABC≌△DCB(ASA),故A能证明;B:当AB=DC时,不能证明两三角形全等,故B不能证明;C:当AC=DB时,△ABC≌△DCB(SAS),故C能证明;D:当∠A=∠D时,△ABC≌△DCB(AAS),故D能证明;故选:B.4.解:∵两个三角形全等,∴边长为a的对角是对应角,∴∠1=73°,故选:C.5.解:∵△ABC≌△DEF,∠A=∠B=30°,∴∠D=∠E=∠A=∠B=30°,则∠E的度数是30°.故选:A.6.解:∵△ABC≌△DEF,BC=7,∴EF=BC=7,∴CF=EF﹣EC=3,故选:B.7.解:A、周长相等的两个三角形,不一定全等,说法错误,不符合题意;B.三角形三个内角的比是1:2:3,则这个三角形的最大内角的度数是×180°=90°,即这个三角形是直角三角形,说法正确,符合题意;C.直线外一点到这条直线的垂线段的长度,叫做这点到该直线的距离,说法错误,不合题意;D.两条直线被第三条直线所截,同位角相等,是假命题.两直线不平行,没有这个性质.不符合题意;故选:B.二.填空题8.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣∠B﹣∠C﹣∠D=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.9.解:如图所示:由题意可得:∠1=∠3,则∠1+∠2=∠2+∠3=135°.故答案为:135°.10.解:添加的条件是AD=AB,理由是:在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故答案为:AD=AB(答案不唯一).11.解:在△ABC中,∵∠ACB=30°,∠ABC=85°,∠BAC+∠ACB+∠ABC=180°,∴∠BAC=180°﹣∠ACB+∠ABC=65°,∵△ABC≌△ABD,且点C与点D对应,点A与点A对应,∴∠BAD=∠BAC=65°,故答案为65°.12.解:∵△ABE≌△ACF∴AC=AB=5∴EC=AC﹣AE=5﹣2=3,故答案为:3.13.解:∵△ABD≌△ACE,∴∠C=∠B,∵∠B=22°,∴∠C=22°,故答案为:22.14.解:如图,以BC为公共边可画出△BDC,△BEC,△BFC三个三角形和原三角形全等.以AB为公共边可画出三个三角形△ABG,△ABM,△ABH和原三角形全等.所以可画出6个.故答案为:6.三.解答题15.解:如图所示:.16.证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.17.(1)解:由AAS,选的条件是:①,③,结论是②,故答案为:①,③,②(答案不唯一);(2)证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.18.证明:(1)∵∠AOB=∠COD,∠ABO=∠DCO,AB=DC,在△ABO和△DCO中,,∴△ABO≌△DCO(AAS);(2)由(1)知,△ABO≌△DCO,∴OB=OC∴∠OBC=∠OCB.19.解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.20.(1)证明:∵△ABC≌△DEC,∴CB=CE,∠DCE=∠ACB,∴∠CEB=∠B=65°,在△BEC中,∠CEB+∠B+∠ECB=180°,∴∠ECB=180°﹣65°﹣65°=50°,又∠DCE=∠ACB,∴∠DCA=∠ECB=50°;(2)解:∵△ABC≌△DEC,∴∠D=∠A=20°,在△DFC中,∠DFA=∠DCA+∠D=50°+20°=70°.21.(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.。

苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。

(常考题)人教版初中数学八年级数学上册第一单元《三角形》测试题(有答案解析)(2)

(常考题)人教版初中数学八年级数学上册第一单元《三角形》测试题(有答案解析)(2)

一、选择题1.下列命题中,是假命题的是( )A .直角三角形的两个锐角互余B .在同一个平面内,垂直于同一条直线的两条直线平行C .同旁内角互补,两直线平行D .三角形的一个外角大于任何一个内角 2.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒ 3.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是( ) A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .3cm ,4cm ,5cmD .5cm ,6cm ,7cm 4.将一个多边形纸片剪去一个内角后得到一个内角和是外角和4倍的新多边形,则原多边形的边数为( )A .9B .10C .11D .以上均有可能 5.下列长度的线段能组成三角形的是( ) A .2,3,5B .4,6,11C .5,8,10D .4,8,4 6.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( )A .2mB .3mC .5mD .7m 7.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒8.如图,已知,,90,//AD BC FG BC BAC DE AC ⊥⊥∠=︒.则结论①//FG AD ;②DE 平分ADB ;③B ADE ∠=∠;④CFG BDE ∠+∠90=︒.正确的是( )A .①②③B .①②④C .①③④D .②③④ 9.如图,直线//,65,30AB CD AE ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45°10.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A .72米B .80米C .100米D .64米 11.以下列各组线段为边,能组成三角形的是( ) A .1,2,3B .2,3,4C .2,5,8D .6,3,3 12.某多边形的内角和是其外角和的3倍,则此多边形的边数是( )A .5B .6C .7D .8 二、填空题13.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线14.如图,已知ABC 中,90,50ACB B D ︒︒∠=∠=,为AB 上一点,将BCD △沿CD 折叠后,点B 落在点E 处,且//CE AB ,则ACD ∠的度数是___________.15.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是_________度.16.三角形有两条边的长度分别是5和7,则第三边a 的取值范围是_____.17.如图所示,△ABC 中,∠BAC 、∠ABC 、∠ACB 的四等分线相交于D 、E 、F (其中∠CAD =3∠BAD ,∠ABE =3∠CBE ,∠BCF =3∠ACF ),且△DFE 的三个内角分别为∠DFE =60°、∠FDE =53°、∠FED =67°,则∠BAC 的度数为_________°.18.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95︒,王老师沿公园边由A 点经B→C→D→E ,一直到F 时,他在行程中共转过了_____度.19.如图,已知AE 是ABC 的边BC 上的中线,若8AB cm =,ACE △的周长比AEB △的周长多2cm ,则AC =______cm .20.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若150,222∠=︒∠=︒,则3∠=_______.三、解答题21.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于E ,已知80ACB ∠=︒,24B ∠=︒,求P ∠的度数.22.已知:在RT △ABC 中,∠ACB ═90°,CD ⊥AB ,AE 是∠CAB 的角平分线,AE 与CD 交于点F .(1)如图1,求证:∠CEF =∠CFE .(2)如图2,过点E 作EG ⊥AB 于点G ,请直接写出图中与∠CAE 互余的所有角.23.如图ABC 中,45B ∠=︒,70ACB ∠=︒,AD 是ABC 的角平分线,F 是AD 上一点EF AD ⊥,交AC 于E ,交BC 的延长线于G .求G ∠的度数.24.如图,已知在ABC 中,90C ∠=︒,BE 平分ABC ∠,且//BE AD ,20BAD ∠=︒,求AEB ∠的度数.25.(1)已知△ABC 中,∠B=5∠A ,∠C-∠B=15°,求∠A ,∠B ,∠C 的度数. (2)在△ABC 中,∠A=50°,BD ,CE 为高,直线BD ,CE 交于点H ,求∠BHC 的度数. 26.如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用三角形外角的性质、平行线的性质及直角三角形的性质分别判断后即可确定正确的选项.【详解】解:A. 直角三角形的两个锐角互余,正确,是真命题;B. 在同一个平面内,垂直于同一条直线的两条直线平行,正确,是真命题;C. 同旁内角互补,两直线平行,正确,是真命题;D. 三角形的一个外角大于任何一个内角,错误,是假命题;故选:D .【点睛】本题考查了命题与定理的知识,三角形外角的性质、平行线的性质及直角三角形的性质,熟悉相关性质是解题的关键.2.C解析:C【分析】根据三角形的内角和定理可求45E ∠=︒,利用补角的定义可求120FBE ∠=︒,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求出DFB ∠的度数【详解】解:在DEC ∆中∵90C ∠=︒,45CDE ∠=︒∴45E ∠=︒又∵60ABC ∠=︒∴120FBE ∠=︒由三角形的外角性质得DFB E FBE ∠=∠+∠45120=︒+︒165=︒故选:C【点睛】本题考查了三角形的内角和定理,互为补角的定义及三角形的外角性质,解题的关键是掌握三角形的外角性质3.A解析:A【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A 、1+2=3,故以这三根木棒不能构成三角形,符合题意;B 、2+3>4,故以这三根木棒能构成三角形,不符合题意;C 、3+4>5,故以这三根木棒可以构成三角形,不符合题意;D 、5+6>7,故以这三根木棒能构成三角形,不符合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,判断能否组成三角形的方法是看两个较小的和是否大于第三边.4.D解析:D【分析】将一个多边形纸片剪去一个内角可以多三种情况比原多边形边数少1,不变,多1,利用内角和公式求出内角的和与外角关系即可求出.【详解】如图将一个多边形纸片剪去一个内角∠BCF 后,多边形的边数和原多边形边数相同为n ,()21804360n-⨯︒=⨯︒,n=10,如图将一个多边形纸片剪去一个内角∠BCF后,多边形的边数比原多边形边数少1为n-1,()n--⨯︒=⨯︒,121804360n=11,如图将一个多边形纸片剪去一个内角∠GCF后,多边形的边数比原多边形边数多1为n+1,()n-⨯︒=⨯︒,+121804360n=9,原多边形的边数为9,10,11.故选择:D.【点睛】本题考查多边形剪去一个角问题,掌握剪去一个角后对多边形的边数分类讨论是解题关键.5.C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A 、2+3=5,不能组成三角形,不符合题意;B 、4+6<11,不能组成三角形,不符合题意;C 、5+8>10,能组成三角形,符合题意;D 、4+4=8,不能够组成三角形,不符合题意.故选:C .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.6.C解析:C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x m ,则5-2<x <5+2即3<x <7,∴当x=5时,能与2m 、5m 长的两根木棒钉成一个三角形,故选:C .【点睛】本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.7.C解析:C【分析】根据三角形内角和180︒求出∠BAC ,再由AD 是ABC ∆的角平分线求得∠DAC ,最后利用直角三角形的两个锐角互余求出∠ADE ,问题得到解决.【详解】解:∵40,60B C ︒︒∠=∠=,∴BAC=180B-C=80∠︒-∠∠︒,∵AD 是ABC ∆的角平分线, ∴1DAC=BAC=402∠∠︒, ∵DE AC ⊥,∴90DAC=50ADE ∠=︒-∠︒,故选:C .【点睛】本题考查了三角形的内角和定理,三角形的角平分线定义,直角三角形的两个锐角互余,正确理解三角形中角之间的关系是解本题的关键.8.C解析:C【分析】根据,,AD BC FG BC ⊥⊥得到FG ∥AD ,判断①正确;根据∠ADE+∠BDE=90°,∠B+∠BDE=90°,得到③正确;根据//DE AC , 证明∠BDE=∠C ,进行角的代换证明∠BDE+∠CFG=90°,得到④正确; 证明∠ADE+∠BDE=90°,判断②不正确.【详解】解:∵,,AD BC FG BC ⊥⊥∴∠FGB=∠ADB=90°,∴FG ∥AD ,∠ADE+∠BDE=90°,故①正确;∵DE ∥AC ,∴∠DEB=∠CAB=90°,∴∠B+∠BDE=90°,∴B ADE ∠=∠,∴③正确;∵//DE AC ,∴∠BDE=∠C ,∵∠FGC=90°,∴∠C+∠CFG=90°,∴∠BDE+∠CFG=90°,∴④正确;∵∠ADB=90°,∴∠ADE+∠BDE=90°,∴②不正确;故选:C .【点睛】本题考查了直角三角形两锐角互余,同角(等角)的余角相等,平行线的判定等知识,熟知相关定理是解题关键.9.B解析:B【分析】根据平行线和三角形外角的性质即可求出C ∠的大小.【详解】如图,设AE 和CD 交于点F ,∵//AB CD ,∴65A DFE ∠=∠=︒(两直线平行同位角相等),∵DFE ∠是CEF △的外角,∴653035C DFE E ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质.熟练利用两个性质证明和求解是解答本题的关键. 10.A解析:A【分析】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以9米即可.【详解】解:∵小明每次都是沿直线前进9米后向左转45度,∴他走过的图形是正多边形,∴边数n=360°÷45°=8,∴他第一次回到出发点A 时,一共走了8×9=72(m ).故选:A .【点睛】本题考查了正多边形的边数的求法,多边形的外角和为360°;根据题意判断出小明走过的图形是正多边形是解题的关键.11.B解析:B【分析】根据三角形的三边关系定理:两边之和大于第三边,即两条较短的边的长大于最长的边即可.【详解】A 、1+2=3,不能构成三角形, A 错误;B 、2+3=5>4可以构成三角形,B 正确;C 、2+5=7<8,不能构成三角形, C 错误;D 、3+3=6,不能构成三角形,D 错误.故答案选:B .本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键.12.D解析:D【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【详解】解:根据题意,得:(n-2)×180=360×3,解得n=8.故选:D.【点睛】本题考查了多边形的内角和与外角和,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.二、填空题13.11【分析】先根据题意求出多边形的边数再根据从n边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n,则有(n-2)•180+360=2520,解得:n=14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.14.25°【分析】先求出∠A的度数再根据折叠的性质可得∠E的度数根据平行线的性质求出∠ADE的度数进而即可求解【详解】∵∴∠A=40°∵沿折叠后点B 落在点E处∴∠E=∠B=50°∵∴∠ADE=∠E=50解析:25°【分析】先求出∠A的度数,再根据折叠的性质可得∠E的度数,根据平行线的性质求出∠ADE的度数,进而即可求解.∵90,50ACB B ︒︒∠=∠=,∴∠A=40°,∵BCD △沿CD 折叠后,点B 落在点E 处,∴∠E=∠B=50°,∵//CE AB ,∴∠ADE=∠E=50°,∴∠BDC=∠EDC=(180°-50°)÷2=65°,∴∠ACD=∠BDC-∠A=65°-40°=25°,故答案是:25°.【点睛】本题主要考查折叠的性质,三角形外角的性质,平行线的性质,直角三角形的性质,掌握平行线的性质以及三角形外角的性质,是解题的关键. 15.1800【分析】设多边形边数为n 根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9计算出n 的值再根据多边形内角和(n-2)•180°可得答案【详解】设多边形边数为n 由题意得:n-3=9n解析:1800【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9,计算出n 的值,再根据多边形内角和(n-2)•180°可得答案.【详解】设多边形边数为n ,由题意得:n-3=9,n=12,内角和:()1221801800-⨯︒=︒.故答案为:1800.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n 边形从一个顶点出发可引出(n-3)条对角线,多边形内角和公式(n-2)•180°.16.2<a <12【分析】已知三角形两边的长根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和【详解】解:根据三角形三边关系定理知:第三边a 的取值范围是:(7-5)<a <(解析:2<a <12.【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【详解】解:根据三角形三边关系定理知:第三边a 的取值范围是:(7-5)<a <(7+5),即2<a【点睛】本题考查了三角形三边关系,两边之和大于第三边,两边之差小于第三边.17.72【分析】由∠CAD=3∠BAD∠ABE=3∠CBE∠BCF=3∠ACF易得各角与∠ABC∠ACB∠BAC之间的关系由三角形外角等于不相邻的两个内角和列方程组求解即可得出结论【详解】解:∵∠CAD解析:72【分析】由∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF易得各角与∠ABC、∠ACB、∠BAC之间的关系,由三角形外角等于不相邻的两个内角和列方程组求解即可得出结论.【详解】解:∵∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF,∴∠CAD=34∠BAC,∠BAD=14∠BAC,∠ABE=34∠ABC,∠CBE=14∠ABC,∠BCF=34∠ACB,∠ACF=14∠ACB.∵∠DFE=60°、∠FDE=53°、∠FED=67°,∴1360 441353441367 44BAC ABCABC ACBACB BAC⎧∠+∠=⎪⎪⎪∠+∠=⎨⎪⎪∠+∠=⎪⎩,解得∠BAC=72°,∠ABC=56°,∠ACB=52°,故答案为:72.【点睛】本题考查了三元一次方程组的应用,以及三角形外角的性质.解题的关键是由外角的性质列出方程组.本题属于中档题,难度不大,但在角的变化上稍显繁琐,一不注意就易失分,做形如此类题型时,牢牢把握等量关系是关键.18.275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数由多边形的外角和即可求解【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数∵多边形的外角和为360°∴解析:275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,由多边形的外角和即可求解.【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,∵多边形的外角和为360°,∴他在行程中共转过了()36018095275︒-︒-︒=︒,故答案为:275.【点睛】本题考查多边形的外角和,明确王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数是解题的关键.19.10【分析】依据AE 是△ABC 的边BC 上的中线可得CE=BE 再根据AE=AE △ACE 的周长比△AEB 的周长多2cm 即可得到AC 的长【详解】解:∵AE 是△ABC 的边BC 上的中线∴CE=BE 又∵AE=A解析:10【分析】依据AE 是△ABC 的边BC 上的中线,可得CE=BE ,再根据AE=AE ,△ACE 的周长比△AEB 的周长多2cm ,即可得到AC 的长.【详解】解:∵AE 是△ABC 的边BC 上的中线,∴CE=BE ,又∵AE=AE ,△ACE 的周长比△AEB 的周长多2cm ,∴AC-AB=2cm ,即AC-8=2cm ,∴AC=10cm ,故答案为:10;【点睛】本题考查了三角形的角平分线、中线和高,求出两个三角形的周长的差等于两边的差是解题的关键.20.30°【分析】通过正三角形正四边形正五边形的内角度数结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°正方形的内角度数是90°正五边形的内角的度数是:(5﹣2)×180°=10解析:30°【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2==360°﹣60°﹣90°﹣108°﹣50°﹣22°=30°. 故答案是:30°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.三、解答题21.28°【分析】在△ABC 中,利用三角形内角和定理可求出∠BAC 的度数,结合角平分线的定义可得出∠BAD 的度数,在△ABD 中,利用三角形外角性质可求出∠PDE 的度数,再在△PDE 中利用三角形内角和定理可求出∠P 的度数.【详解】解:在ABC 中,80ACB ∠=︒,24B ∠=︒,18076BAC ACB B ∴∠=︒-∠-∠=︒. AD 平分BAC ∠,1382BAD BAC ∴∠=∠=︒. PDE ∠是ABD △的外角,243862PDE B BAD ∴∠=∠+∠=︒+︒=︒,PE BC ⊥于E ,90PED ∴∠=︒,906228P ∴∠=︒-︒=︒.【点睛】本题考查了三角形内角和定理、角平分线的定义以及对顶角,利用三角形内角和定理及角平分线的定义,求出∠ADC 的度数是解题的关键.22.(1)见解析;(2)图中与∠CAE 互余的角有∠CEA ,∠GEA ,∠CFE ,∠DFA .【分析】(1)根据角平分线的定义可得∠DAF =∠CAE ,再根据等角的余角相等、对顶角相等,可得∠CEF =∠CFE ;(2)根据互余的两个角的和为90°求解即可.【详解】(1)证明:∵∠ACB ═90°,CD ⊥AB ,∴∠DAF +∠AFD =90°,∠CAE +∠CEF =90°,又∵AE 是∠CAB 的角平分线,∴∠DAF =∠CAE ,∴∠AFD =∠CEF ,又∵∠AFD =∠CFE ,∴∠CEF =∠CFE ;(2)∵EG ⊥AB 于点G ,∴∠DAF +∠GEA =90°,由(1)可知∠DAF =∠CAE ,∠CAE +∠CEF =90°,∠CEF =∠CFE =∠DFA ,∴图中与∠CAE 互余的角有∠CEA ,∠GEA ,∠CFE ,∠DFA .【点评】本题考查了角平分线的定义和余角的定义,解决本题的关键是熟记余角的定义.23.12.5【分析】根据角平分线的定义以及三角形的内角和定理即可得出∠ADC的度数,再根据垂直定义以及三角形的内角和即可得出∠G的度数.【详解】解:∵∠B=45°,∠ACB=70°,AD是ABC的角平分线,∴∠BAC=2∠CAD=65°,∴∠ADC=180°﹣70°﹣32.5°=77.5°,∵EF⊥AD,∴∠G=180°﹣90°﹣77.5°=12.5°.【点睛】本题主要考查了三角形的内角和定理以及角平分线的定义,难度适中.24.110°【分析】根据平行线的性质和三角形外角的性质即可得到结论.【详解】∵BE∥AD,∴∠ABE=∠BAD=20°,∵BE平分∠ABC,∴∠EBC=∠ABE=20°,∵∠C=90°,∴∠AEB=∠C+∠CBE=90°+20°=110°.【点睛】考查了三角形的外角的性质、平行线的性质和角平分线的定义,解题关键是正确识别图形得出图中角之间的关系.25.(1)∠A=15°,∠B=75°,∠C =90°;(2)130°【分析】(1)将∠C用∠A表示,然后利用三角形内角和即可求解∠A,然后在依次求出∠B,∠C 即可;(2)根据题意作出示意图,然后根据四边形内角和即可求出∠DHE,根据对顶角相等即可求解∠BHC.【详解】(1)∵∠C-∠B=15°,即∠C =15°+∠B又∵∠B=5∠A∴∠C =15°+5∠A∵∠A+∠B+∠C=180°∴∠A+5∠A +15°+5∠A =180°解得∠A=15°∴∠B=75°,∠C =90°∴∠A=15°,∠B=75°,∠C =90°(2)根据题意作出下图,∵BD AC ⊥,CE AB ⊥∴∠BDA =90°,∠CEA=90°∵在四边形AEHD 中,∠A+∠HDA+∠HEA+∠DHE =360°∴∠DHE=360°-∠A-∠HAD-∠HEA=360°-50°-90°-90°=130°∴∠BHC=∠DHE=130°∴∠BHC =130°.【点睛】本题考查了三角形的内角和和四边形内角和,重点是熟记多边形内角和公式.26.这个多边形的边数是9【分析】多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是1260度.n 边形的内角和可以表示成(n−2)•180°,设这个多边形的边数是n ,就得到方程,从而求出边数.【详解】设这个多边形的边数为n ,根据题意,得(n−2)•180=360×3+180,解得:n =9.则这个多边形的边数是9.【点睛】此题考查了多边形内角与外角,此题要结合多边形的内角和公式寻求等量关系,构建方程即可求解.。

八年级上册数学 第一、二单元测试

八年级上册数学 第一、二单元测试

初二数学第一、二单元测试一、选择题。

(每题3分,共30分)1.已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为( )A. 7B.8C.9D.102.如图AD,CE是△ABC的两条高,已知AD=10,CE=9,AB=12,则BC的长是( ).A.10B.10. 8C.12D. 153.在平面直角坐标系中,已知A(2,0),B(-3,一4),C(0,0),则△ABC的面积为( ).A.4B. 6C.8D. 34.在△ABC中,∠A,∠B, ∠C的度数之比为2:3:4.则∠B的度数为( ).A. 120°B. 80°C.60°D.40°5.如图,在△ABC中. ∠B+∠C=120°,AD平分∠BAC.交BC于点D,DE//AB,交AC于点 E,则∠ADE的大小是( ).A. 30°B.40°C.50°D.60°6.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35° ,∠ACE=60°,则∠A的度数为( )A.50°B. 60°C.70°D.85°7.一个多边形的每个内角都是108°,那么这个多边形是( ).A.五边形B.六边形C.七边形D.八边形8.如图△ABC≌△ADE.如果AB=5cm.BC=7cm,AC=6cm,那么DE的长是( ).A.6cmB.5cmC.7cmD.无法确定9. 如图,AB= AC.添加下列条件,能用SAS判断△ABE≌△ACD的是( ).A.∠B=∠CB.∠AEB =∠ADCC.AE=ADD.BE=DC10.如图,在△ABC中,∠C= 90°,AD是∠BAC的平分线,DE⊥AB于点E,若DE=8cm, DB=10cm,则BC等于( ).A. 14 cmB. 16 cmC.18 cmD. 20cm二、填空题。

八年级上册第一单元数学测试卷

八年级上册第一单元数学测试卷

八年级数学上第一单元测试题1一.选择题(10小题每题4分,共40分)1.如图AE∥DF和AE=DF.要使△EAC≌△FDB,可添加的条件是()A.∠E=∠F B.EC=BF C.∠A=∠D D.BC=CD 2.如图△ABC≌△DCB若AC=6且DE=2,则BE的长为()A.3B.6C.2D.43.如图所示AB=AC和AD=AE和∠BAC=∠DAE和∠1=20°和∠2=25°,则∠3的度数为()A.30°B.45°C.50°D.60°4.如图△ABC≌△ADE中∠B=30°且∠E=115°,则∠BAC的度数是()A.35°B.30°C.45°D.25°5.如图在△ABC中AD⊥BC于点D和BE⊥AC于点E且AD和BE 交于点F,已知DF=DC=4且AF=3则BC的长为()A.7B.192C.11D.2526.如图△ABC≌△DBC和∠A=34°和∠ACD=72°,则∠DBC的度数是()A.110°B.105°C.64°D.100°7.如图△ABC≌△DEC且AF⊥CD.若∠BCE=65°那么∠CAF的度数为()8.如图△ABC≌△ADE和∠CAE=90°和AB=2,则图中阴影部分的面积为()A.2B.3C.4D.无法确定9.如图△ABC≌△DEC zh点E在AB上且AC与DE相交于点F和∠BCE=30°.则∠CED的度数为()A.30°B.40°C.60°D.75°10.如图在△ABD中AB=AD和点C是BD上一点和过点C作∠ACE =∠B交AD于点F,连接AE和CE且AE=AC,则下列结论正确的个数是()①BC=DE;②∠ACB=∠CFD;③∠CED=∠CAD;④CD=DE.A.1个B.2个C.3个D.4个二.填空题(10小题每题4分,共40分)11.如图线段AE和DB交于点C和∠A=∠D,请你添加一个条件.(只填一个即可),使△ABC≌△DEC.12.如图已知∠A=∠D要使△ABO≌△DCO,可添加的条件是.13.已知△ABC≌△ADE且AB=5cm和BC=8cm则DE的长为cm.14.如图OB为∠ABC的角平分线且AO⊥BO于点O,连接OC和△OBC的面积为12,则△ABC的面积为.15.如图已知△ABC≌△ADE中∠DAC=60°且∠BAE=100°,BC 和DE相交于点F则∠DFB的度数是度.16.如图在△ADB和△CBD中已知∠ADB=∠DBC和AD=BC那么由所给条件判定△ADB和△CBD全等的依据可以简写为.17.如图∠B=∠C,若用“SAS”说明△ABE≌△ACD则还需要加上条件:.18.如图点C在线段AB上(不与点A,B重合)且在AB的上方分别作△ADC和△BCE且AC=DC和BC=EC和∠ACD=∠BCE=α连接AE和BD交于点P,下列结论正确的是(填序号).①AE=BD;②PC平分∠APB;③PC平分∠DCE;④∠APB=180°﹣α.19.如图△ABC≌△DEF且点B和E在CF上.若CF=8和BE=4,则CE的长为.20.如图∠ACB=90°和AC=BC和AD⊥CE和BE⊥CE,垂足分别是点D和E,AD=3且BE=1,则DE的长是.一.解答题(6小题,每题10分共60分)1.如图已知AB∥CF且点E是AC的中点,直线FE交AB于点D.(1)求证:△ADE≌△CFE;(2)若AB=9和CF=5求BD的长.4.已知:如图点A和B和C和D在一条直线上,且CE=DF与AE=BF 与AB =CD .求证:△EAC ≌△FBD .7.把下列证明过程补充完整.已知:如图AC =AD 和∠C =∠D 和∠1=∠2.求证:AB =AE .证明:∵∠1=∠2,∴∠1+∠ =∠2+∠ ,∴∠ =∠EAD .在△ABC 和△AED 中,{∠C =∠DAC =AD∠()=∠EAD∴△ABC ≌△AED ( ),∴AB =AE .( )10.如图AB =AC .(1)请补充一个条件,使△ABE≌△ACD.(2)在(1)的条件下,OB=OC吗?为什么?13.如图∠A=∠B和AE=BE且点D在AC边上yu∠1=∠2=42°且AE和BD相交于点O.求∠BDE的度数.16.如图∠A=∠D=90°和AC=BD且AC和BD交于点O.求证:AO =DO.。

(必考题)初中数学八年级数学上册第一单元《勾股定理》测试题(含答案解析)(2)

(必考题)初中数学八年级数学上册第一单元《勾股定理》测试题(含答案解析)(2)

一、选择题1.如图,在22⨯的正方形网格中,每个小正方形边长为1,点A,B,C均为格点,以点A 为圆心,AB长为半径作弧,交格线于点D.则CD的长为()A.12B.13C.23-D.32.如图,在Rt△ABC中,∠BAC=90°,以Rt△ABC各边为斜边分别向外作等腰Rt△ADB、等腰Rt△AFC、等腰Rt△BEC,然后将等腰Rt△ADB和等腰Rt△AFC按如图方式叠放到等腰Rt△BEC中,其中BH=BA,CI=CA,已知,S四边形GKJE=1,S四边形KHCJ=8,则AC的长为()A.2 B.52C.4 D.63.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有()A.1 条B.2条C.3条D.4条4.在下列四组数中,属于勾股数的是()A.0.3,0.4,0.5 B.9,40,41 C.2,3,4 D.123 5.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,AB的垂直平分线DE交BC的延长线于点E,则DE的长为()A .103B .256C .203D .1546.如图,在Rt △ABC 中,∠C =90°,AC =2,BC =1,在BA 上截取BD =BC ,再在AC 上截取AE =AD ,则AE AC的值为( )A .352 B .51- C .5﹣1 D .51+ 7.《九章算术》是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多6尺,门的对角线长10尺,那么门的高和宽各是多少?如果设门的宽为x 尺,根据题意可列方程( )A .222(6)10x x ++=B .222(6)10x x -+=C .222(6)10x x +-=D .222610x +=8.《九章算术》是我国古代最重要的数学著作之一,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》﹔“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长.则AC 的长为( )A .4.2尺B .4.3尺C .4.4尺D .4.5尺 9.一个直角三角形的两条边分别是9和40,则第三边的平方是( )A .1681B .1781C .1519或1681D .1519 10.如图,在33⨯的正方形网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是ABC 的边AC 上的高,则BD 的长为( )A .52613B .102613C .13137D .7131311.在Rt △ABC 中,∠ACB =90°,AC =BC =1.点Q 在直线BC 上,且AQ =2,则线段BQ 的长为( )A .3B .5C .31+或31-D .51+或51- 12.勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为( )A .2B .3C .5D .6二、填空题13.如图,在ABC 中,90,ACB AC BC ︒∠==,点M 为射线AE 上一点,连接CM ,点N 为三角形ABC 外右侧一点,连接CN ,连接NB 交射线AE 于点D ,已知,,15CN CM CN CM EAC ︒⊥=∠= ,6260,2ACM BD ︒+∠==,则线段DN 长为________.14.将一根24cm 的筷子,置于底面直径为5cm 、高为12cm 的圆柱体中,如图,设筷子露出在杯子外面长为h cm ,则h 的最小值__,h 的最大值__.15.如图,在ABC 中,90C =∠,AB 的中垂线DE 交AB 于E ,交BC 于D ,若5AB =,3AC =,则ACD △的周长为__________.16.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是_________17.如图,两个正方形的面积分别是118S =,212S =,则第三个正方形的面积3S =_________.18.若直角三角形的两直角边长为a 、b 21025a a -+b ﹣12|=0,则该直角三角形的斜边长为_____.19.现有两根木棒,长度分别为5dm 和12dm ,若要钉成一个直角三角形框架,那么所需的第三根木棒的长度可以是________dm .20.若一个直角三角形的两条直角边长分别是4和6,则斜边长为__________.三、解答题21.如图,在△ABC 中,∠ABC 的角平分线与外角∠ACD 的角平分线相交于点E . (1)设∠A =α,用含α的代数式表示∠E 的度数;(2)若EC ∥AB ,AC =4,求线段CE 的长;(3)在(2)的条件下,过点C 作∠ACB 的角平分线交BE 于点F ,若CF =3,求边AB 的长.22.如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9.求AB 的长.23.如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC=60°,∠DAE=45°,点D 到地面的垂直距离DE=32米.求点B 到地面的垂直距离BC .24.如图,在Rt △ABC 中,∠C =90°,AC =8,AB =10,AB 的垂直平分线分别交AB 、AC 于点D 、E .求AE 的长.25.如图,//,90AD BC A ∠=︒,E 是AB 上的点,且,12AD BE =∠=∠.(1)求证:ADE BEC ≌△△.(2)若30,3AED AE ∠=︒=,求线段CD 的长度.26.如图,已知Rt △ABC 中,∠C =90°,点D 是AC 上一点,点E 、点F 是BC 上的点,且∠CDF =∠CEA ,CF =CA .(1)如图1,若AE 平分∠BAC ,∠DFC =25°,求∠B 的度数;(2)如图2,若过点F 作FG ⊥AB 于点G ,连结GC ,求证:AG +GF =2GC .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由勾股定理求出DE ,即可得出CD 的长.【详解】解:连接AD ,如图所示:∵AD =AB =2,∴DE =2221-=3,∴CD =23-,故选:C .本题考查了勾股定理;由勾股定理求出DE是解决问题的关键.2.D解析:D【分析】设AD=DB=a,AF=CF=b,BE=CE=c,由勾股定理可求a2+b2=c2,由S四边形GHCE=S四边形GKJE+S四边形KHCJ=9,可求b=,即可求解.【详解】解:设AD=DB=a,AF=CF=b,BE=CE=c,∴AB=,AC=,BC=,∵∠BAC=90°,∴AB2+AC2=BC2,∴2a2+2b2=2c2,∴a2+b2=c2,∵将等腰Rt△ADB和等腰Rt△AFC按如图方式叠放到等腰Rt△BEC,∴BG=GH=a,∵S四边形GHCE=S四边形GKJE+S四边形KHCJ=9,∴1(a+c)(c﹣a)=9,2∴c2﹣a2=18,∴b2=18,∴b=∴AC==6,故选:D.【点睛】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键.3.B解析:B【分析】由勾股定理求出a、b、c、d,即可得出结果.【详解】∵=,=d=2,=5∴长度是无理数的线段有2条,故选B.【点睛】本题考查了勾股定理、无理数,熟练掌握勾股定理是解决问题的关键.4.B解析:B根据勾股数的定义:满足222+=a b c 的三个正整数,成为勾股数,据此可判断.【详解】A .0.3、0.4、0.5,不是正整数,所以不是勾股数,选项错误;B .9、40、41,是正整数,且满足22294041+=,是勾股数,选项正确;C .2、3、4,是正整数,但222234+≠,所以不是勾股数,选项正确;D .1、2、3,不是正整数,所以不是勾股数,选项错误;故选:B .【点睛】本题考查了勾股数的判定方法,解题关键是要看这组数是否为正整数,且满足最小两个数的平方和等于最大数的平法.5.C解析:C【分析】利用勾股定理求BC 的长度,连接AE ,然后设BE=AE=x ,结合勾股定理列方程求解.【详解】解:如图,∵Rt △ABC 中,∠ACB=90°,∴22221086BC AB AC =-=-=,∵DE 是AB 的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x =∴BE=AE=253 在Rt △BDE 中,ED=22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键.6.B解析:B【分析】先由勾股定理求出BD=BC=1,得1,即可得出结论.【详解】解:∵∠C=90°,AC=2,BC=1,∴==∵BD=BC=1,∴1-,∴AE AC =, 故选B .【点睛】本题考查了黄金分割以及勾股定理,熟练掌握黄金分割和勾股定理是解题的关键. 7.A解析:A【分析】设门的宽为x 尺,则高为(x+6)尺,根据勾股定理解答.【详解】设门的宽为x 尺,则高为(x+6)尺,根据题意可列方程222(6)10x x ++=,故选:A .【点睛】此题考查勾股定理计算,正确理解题意掌握勾股定理计算公式是解题的关键. 8.A解析:A【分析】设AC=x 尺,则AB=(10-x )尺,利用勾股定理解答.【详解】设AC=x 尺,则AB=(10-x )尺, ABC 中,90ACB ∠=︒,222AC BC AB +=,∴2224(10)x x +=-,解得:x=4.2,故选:A .【点睛】此题考查勾股定理,根据题意正确设未知数,利用勾股定理解答是解题的关键. 9.C解析:C【分析】由题意可分当第三边为直角边时和当第三边为斜边时,然后利用勾股定理进行求解即可.【详解】解:当第三边是直角边时,第三边的平方是402﹣92=1519;当第三边是斜边时,第三边的平方是402+92=1681;故选:C.【点睛】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.10.D解析:D【分析】根据勾股定理计算AC的长,利用割补法可得△ABC的面积,由三角形的面积公式即可得到结论.【详解】解:由勾股定理得:AC=∵S△ABC=3×3−12×1×2−12×1×3−12×2×3=72,∴12AC•BD=72,∴=7,∴BD故选:D.【点睛】本题考查了勾股定理与三角形的面积的计算,掌握勾股定理是解题的关键.11.C解析:C【分析】分Q在CB延长线上和Q在BC延长线上两种情况分类讨论,求出CQ长,根据线段的和差关系即可求解.【详解】解:如图1,当Q在CB延长线上时,在Rt△ACQ中,CQ===∴1;如图2,当Q 在BC 延长线上时,在Rt △ACQ 中,2222213CQ AQ AC =-=-=,∴BQ=CQ+BC=31+;∴BQ 的长为31+或31-.故选:C【点睛】本题考查了勾股定理,根据题意画出图形,分类讨论是解题关键.12.B解析:B【分析】由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S 1,S 2,S 3,大小正方形重叠部分的面积为S ,则由勾股定理可得:S 1+S 2=S 3,在图②中,S 1+S 2+3-S=S 3,∴S=3,故选:B .【点睛】本题主要考查勾股定理与图形面积,灵活运用勾股定理处理图形面积之间的转化是解题关键.二、填空题13.【分析】根据题意可求证延长CM 交AB 与点G 过G 作GK 垂直于BC 于点K 根据角相等判断边相等AG=AM 列出方程求出AG 的长从而求出AM 的长从而求出BN 的长DN=BN-BD 即可求解【详解】∵∴∵CN=CM【分析】根据题意可求证ACM BCN ≅,延长CM 交AB 与点G ,过G 作GK 垂直于BC 于点K ,根据角相等判断边相等,AG=AM ,列出方程求出AG 的长,从而求出AM 的长,从而求出BN 的长,DN=BN-BD 即可求解.【详解】∵60ACM ︒∠=,90M B N A C C ︒=∠∠=,∴60ACM BCN ︒∠=∠=,∵AC BC =,CN=CM∴ACM BCN ≅,∴15CAM CBN ︒∠=∠=,延长CM 交AB 与点G ,过G 作GK 垂直于BC 于点K ,∵90,ACB AC BC ︒∠==,60ACM ︒∠=∴45ABC ︒∠=,45CAB ︒∠=,30GCB ∠=︒,∴60ABD ︒∠=,30BAD ︒∠=,75AGC ∠=︒,75AMG ∠=︒∴90ADB ︒∠=,AM=AG ,∵BD = ∴AB =∴12AC BC ===,设BK=a ,则GK=a ,CK =, ∴1a +=,∴a=1,∴1BK KG ==, ∴BG =∴AG =AM =∴6BN =, ∴622DN BN BD -=-=, 故答案为:62-.【点睛】本题主要考查的是三角形全等的性质及判定,正确做出辅助线,熟练掌握三角形全等的性质及判定是解答本题的关键.14.11cm12cm 【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h 最大当筷子与杯底及杯高构成直角三角形时h 最小利用勾股定理计算即可【详解】解:当筷子与杯底垂直时h 最大h 最大=24﹣12=12(cm解析:11cm 12cm【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h 最大,当筷子与杯底及杯高构成直角三角形时h 最小,利用勾股定理计算即可.【详解】解:当筷子与杯底垂直时h 最大,h 最大=24﹣12=12(cm ).当筷子与杯底及杯高构成直角三角形时h 最小,此时,在杯子内的长度22512+=13(cm ),故h =24﹣13=11(cm ).故h 的取值范围是11≤h ≤12cm .故答案为:11cm ;12cm .【点睛】此题考查勾股定理的实际应用,正确理解题意、掌握勾股定理的计算公式是解题的关键. 15.7【分析】先根据勾股定理求出BC 的长再由线段垂直平分线的性质得出AD=BD 即AD+CD=BC 再由AC=6即可求出答案【详解】解:∵△ABC 中∠C=90°AB=5AC=3∴BC==4∵DE 是线段AB 的解析:7【分析】先根据勾股定理求出BC的长,再由线段垂直平分线的性质得出AD=BD,即AD+CD=BC,再由AC=6即可求出答案.【详解】解:∵△ABC中,∠C=90°,AB=5,AC=3,∴BC=2222-=-=4,53AB AC∵DE是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BD+CD,即AD+CD=BC,∴△ACD的周长=AC+CD+AD=AC+BC=3+4=7.故答案为:7.【点睛】本题考查了勾股定理及线段垂直平分线的性质,能根据线段垂直平分线的性质求出AD+CD=BC是解题的关键.16.2021【分析】根据勾股定理求出生长了1次后形成的图形中所有的正方形的面积和结合图形总结规律根据规律解答即可【详解】解:如图由题意得正方形A的面积为1由勾股定理得正方形B的面积+正方形C的面积=1∴解析:2021【分析】根据勾股定理求出“生长”了1次后形成的图形中所有的正方形的面积和,结合图形总结规律,根据规律解答即可.【详解】解:如图,由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1,∴“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,∴“生长”了3次后形成的图形中所有的正方形的面积和为4,……∴“生长”了2020次后形成的图形中所有的正方形的面积和为2021,故答案为:2021.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.6【分析】根据题意和图形可以得到AB2和AC2再根据△ABC是直角三角形和勾股定理可以得到BC2【详解】解:∵两个正方形的面积分别是S1=18S2=12∴AB2=18AC2=12∵△ABC是直角三角解析:6【分析】根据题意和图形,可以得到AB2和AC2,再根据△ABC是直角三角形和勾股定理,可以得到BC2.【详解】解:∵两个正方形的面积分别是S1=18,S2=12,∴AB2=18,AC2=12,∵△ABC是直角三角形,∴BC2=AB2-AC2=18-12=6,故答案为:6.【点睛】本题考查了正方形的性质,解题的关键是明确题意,利用数形结合的思想解答.18.13【分析】根据非负数的性质得到ab的值然后结合勾股定理求得斜边的长度即可【详解】解:∵∴∴|a﹣5|+|b﹣12|=0∴a=5b=12∴该直角三角形的斜边长为:故答案是:13【点睛】本题考查了勾股解析:13【分析】根据非负数的性质得到a、b的值,然后结合勾股定理求得斜边的长度即可.【详解】解:∵|12|0b-=,∴|12|0b-=∴|a﹣5|+|b﹣12|=0,∴a=5,b=12,∴13=.故答案是:13.【点睛】本题考查了勾股定理,非负数的性质﹣绝对值、算术平方根.任意一个数的绝对值(二次根式)都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.19.13或【分析】分情况讨论当的木棒为直角边时以及当的木棒为斜边时利用勾股定理解答即可【详解】解:当的木棒为直角边时第三根木棒的长度为;当的木棒为斜边时第三根木棒的长度为;故答案为:13或【点睛】本题考解析:13【分析】分情况讨论当12dm的木棒为直角边时以及当12dm的木棒为斜边时,利用勾股定理解答即可.【详解】解:当12dm13dm;当12dm=;故答案为:13【点睛】本题考查勾股定理的应用,分情况讨论是解题的关键.20.【分析】直接根据勾股定理求解可得【详解】解:∵直角三角形的两条直角边长分别是4和6∴斜边长为故答案为:【点睛】本题考查勾股定理在任何一个直角三角形中两条直角边长的平方之和一定等于斜边长的平方即如果直解析:【分析】直接根据勾股定理求解可得.【详解】解:∵直角三角形的两条直角边长分别是4和6,∴故答案为:【点睛】本题考查勾股定理,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.三、解答题21.(1)12α;(2)4;(3)5625【分析】(1)设∠ABE=∠CBE=x,∠ACE=∠ECD=y,利用三角形的外角的性质,构建方程组求解即可.(2)证明CA=CB=CE,可得结论.(3)如图,连接AF,过点C作CT⊥BE于T.解直角三角形求出EF,BE,BF,再利用相似三角形的性质求解即可.【详解】解:(1)设∠ABE=∠CBE=x,∠ACE=∠ECD=y,则有22y x Ay x E=+∠⎧⎨=+∠⎩,可得∠E =12∠A =12α. (2)∵EC ∥AB ,∴∠ABE =∠E ,∵∠ABC =2∠ABE ,∠A =2∠E ,∴∠A =∠ABC ,∠E =∠CBE ,∴CA =CB =4,CE =CB =4.(3)如图,连接AF ,过点C 作CT ⊥BE 于T ,延长CF 交AB 于R .∵CF 平分∠ACB ,CE 平分∠ACD ,∴∠FCE =12(∠ACB +∠ACD )=90°, ∵CF =3,CE =4,∴EF5,∵S △CEF =12•EC•CF =12•EF•CT , ∴CT =125, 在Rt △BCT 中,BT=165, ∵CB =CE ,CT ⊥BE ,∴BT =TE ,∴BE =2BT =325, ∴BF =BE ﹣EF =325﹣5=75, ∵CA =CB ,CF 平分∠ACB ,∴CR ⊥AB ,BR =AR ,设BR =x ,RF =y , 则有2222227()5(3)4x y x y ⎧+=⎪⎨⎪++=⎩, 解得2825215x y ⎧=⎪⎪⎨⎪=⎪⎩(不符合题意的解已经舍弃). ∴AB =2BR =5625.【点睛】本题考查三角形的外角的性质,平行线的性质,勾股定理解直角三角形等知识,解题的关键是学会利用参数构建方程组解决问题,题目有一定的难度.22.【分析】由题意可知三角形CDB是直角三角形,利用已知数据和勾股定理直接可求出DC的长,再利用勾股定理求出AD的长,进而求出AB的长.【详解】∵CD⊥AB于D,且BC=15,BD=9,AC=20∴∠CDA=∠CDB=90°在Rt△CDB中,CD2+BD2=CB2,∴CD2+92=152∴CD=12;在Rt△CDA中,CD2+AD2=AC2∴122+AD2=202∴AD=16,∴AB=AD+BD=16+9=25.23.33【分析】在Rt△ADE中,运用勾股定理可求出梯子的总长度,在Rt△ABC中,根据已知条件再次运用勾股定理可求出BC的长.【详解】解:在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,2.∴AD2=AE2+DE2=(2)2+(2)2=36,∴AD=6,即梯子的总长为6米.∴AB=AD=6.在Rt△ABC中,∵∠BAC=60°,∴∠ABC=30°,∴AC=1AB=3,2∴BC2=AB2-AC2=62-32=27,∴BC=27=33m,∴点B到地面的垂直距离BC=33m.【点睛】本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.24.25 4【分析】连接BE,先利用勾股定理求出BC的长,根据线段垂直平分线的性质可得AE=BE,然后设AE=BE=x,再由勾股定理可得方程(8−x)2+62=x2,求解后即可得出答案.【详解】解:连接BE,在Rt△ABC中,∵∠C=90°,AC=8,AB=10,∴AC2+BC2=AB2.即82+BC2=102,解得:BC=6.∵DE是AB的垂直平分线,∴AE=BE.设AE=BE=x,则EC=8−x,∵Rt△BCE中,EC2+BC2=BE2,∴(8−x)2+62=x2,解得:x=254,∴AE=254.【点睛】此题考查了线段垂直平分线的性质以及勾股定理,掌握线段垂直平分线的性质并结合勾股定理求解线段的长度是解题的关键,且要注意数形结合思想应用.25.(1)证明见详解;(2)26【分析】(1)根据已知可得到∠A =∠B =90°,DE =CE ,AD =BE 从而利用HL 判定两三角形全等; (2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC =90°,由30,3AED AE ∠=︒=,可求得AD 、DE 的长,再利用勾股定理求得CD 的长即可.【详解】(1)∵AD ∥BC ,∠A =90°,∴∠A =∠B =90°,∵∠1=∠2,∴DE =CE .∵AD =BE ,在Rt △ADE 与Rt △BEC 中AD BE DE CE =⎧⎨=⎩, ∴Rt △ADE ≌Rt △BEC (HL )(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .DE=CE ,∴∠AED +∠BEC =∠BCE +∠BEC =90°.∴∠DEC =90°.在Rt △ADE 中又∵30,3AED AE ∠=︒=设AD =x ,则DE =2x,由勾股定理222AD AE DE +=,即2294x x +=解得x =∴在Rt △CDE 中由勾股定理,DC 2=DE 2+CE 2∴CD【点睛】本题主要考查全等三角形的判定与性质的运用,熟练掌握等三角形的判定与性质的运用是解题关键.26.(1)∠B=40°;(2)见解析.【分析】(1)先利用SAS 证明△AEC ≌△FDC ,得出∠EAC=∠DFC=25°,从而得出∠BAC=50°,再根据直角三角形的两个锐角互余即可得出结论(2)过点C 作GC 的垂线交GF 的延长线于点P ,根据同角的余角得出∠PCF =∠GCA ,再根据ASA 得出△AGC ≌△FPC ,从而得出△GCP 是等腰直角三角形,即可得出答案【详解】(1)在△AEC 和△FDC 中,∵∠CDF=∠CEA CE=CD ∠C=∠C,∴△AEC≌△FDC,∴∠EAC=∠DFC=25°∵AE平分∠BAC,∴∠BAC=2∠EAC=50°∵∠C=90°,∴在Rt△ABC中,∠B=90°-∠BAC=40°.(2)如答图,过点C作GC的垂线交GF的延长线于点P∴∠GCP = 90°∴∠GCF+∠PCF = 90°,∵∠ACB = 90°∴∠GCF+∠GCA = 90°,∴∠PCF =∠GCA.∵∠ACB=90°,GF⊥AB∴∠B+∠BAC=∠B+∠BFG= 90°,∴∠BAC=∠BFG.又∵∠PFC=∠BFG∴∠GAC=∠PFC.由(1)知,△AEC≌△FDC,∴CA=CF,∴△AGC≌△FPC,∴GC=PC,AG=FP.又∵PC⊥GC,∴△GCP是等腰直角三角形,∴GF+2GC,∴AG+2GC【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质、勾股定理等知识,正确作出辅助线构造全等三角形是解题的关键.。

最新人教版初中数学八年级数学上册第一单元《三角形》测试(有答案解析)(2)

最新人教版初中数学八年级数学上册第一单元《三角形》测试(有答案解析)(2)

一、选择题1.下列四组线段中,不可以构成三角形的是( )A .4,5,6B .1.5,2,2.5C .13,14,15D .1,2,3 2.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠B .1A D ∠=∠+∠C .2D ∠>∠D .C D ∠=∠ 3.若一个三角形的三边长分别为3,7,x ,则x 的值可能是( ) A .6B .3C .2D .11 4.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD∠的度数为( )A .25︒B .85︒C .60︒D .95︒5.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30° 6.一个多边形的内角和外角和之比为4:1,则这个多边形的边数是( ) A .7B .8C .9D .10 7.三角形的两条边长为3和7,那么第三边长可能是( )A .1B .4C .7D .10 8.正十边形每个外角等于( )A .36°B .72°C .108°D .150°9.如图,直线//,65,30AB CD A E ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45° 10.以下列长度的各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,6cmB .3cm ,4cm ,8cmC .5cm ,6cm ,10cmD .5cm ,6cm ,11cm 11.下列长度的三条线段,能组成三角形的是( ) A .3,5,6B .3,2,1C .2,2,4D .3,6,10 12.如图,在ABC 中,70B ∠=,D 为BC 上的一点,若ADC x ∠=,则x 的度数可能为( )A .30°B .60°C .70°D .80°二、填空题13.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B 两处,用仪器探测生命迹象C ,已知探测线与地面的夹角分别是30︒和60︒(如图),则C ∠的度数是_________.14.如图,C 为∠AOB 的边OA 上一点,过点C 作CD ∥OB 交∠AOB 的平分线OE 于点F ,作CH ⊥OB 交BO 的延长线于点H ,若∠EFD =α,现有以下结论:①∠COF =α;②∠AOH =180°﹣2α;③CH ⊥CD ;④∠OCH =2α﹣90°.其中正确的是__(填序号).15.已知三角形三边长分别为m ,n ,k ,且m 、n 满足2|9|(5)0n m -+-=,则这个三角形最长边k 的取值范围是________.16.如图,将纸片ABC 沿DE 折叠,点A 落在点P 处,已知12124+∠=∠︒,A ∠=___________.17.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.18.如图,已知∠A =47°,∠B =38°,∠C =25°,则∠BDC 的度数是______.19.若线段AM ,AN 分别是ABC ∆的高线和中线,则线段AM ,AN 的大小关系是AM _______AN (用“≤”,“≥”或“=”填空).20.一副分别含有30°和45°的直角三角板,拼成如图,则BFD ∠的度数是______.三、解答题21.图①、图②、图③都是5×5的网格,每个小正方形的顶点称为格点,△ABC 的顶点均在格点上,在图①、图②、图③给定网格中,仅用无刻度的直尺,按下列要求完成画图,并保留作图痕迹.(1)在图①中边AB 上找到格点D ,并连接CD ,使CD 将△ABC 面积两等分; (2)在图②中△ABC 的内部找到格点E ,并连接BE 、CE ,使△BCE 是△ABC 面积的14. (3)在图③中△外部画一条直线l ,使直线l 上任意一点与B 、C 构成的三角形的面积是△ABC 的18.22.如图,已知在ABC 中,CE 是外角ACD ∠的平分线,BE 是ABC ∠的平分线.(1)求证:2A E ∠=∠.(2)若A ABC ∠=∠,求证://AB CE .23.如图,已知点D ,E 分别在ABC 的边AB ,AC 上,//DE BC .(1若80ABC ∠=︒,40AED ∠=︒,求A ∠的度数:(2)若180BFD CEF ∠+∠=︒,求证:EDF C ∠=∠.24.如图,AF ,AD 分别是ABC 的高和角平分线,且34B ∠=︒,76C ∠=︒,求DAF ∠的度数.25.已知AD 是ABC 的角平分线,CE 是AB 边上的高,AD ,CE 相交于点P ,BCE 40,APC 123∠∠=︒=︒,求ADC ∠和ACB ∠的度数.26.如图,已知1,23180BDE ︒∠=∠∠+∠=.(1)证明://AD EF .(2)若DA 平分BDE ∠,FE AF ⊥于点F ,140∠=︒,求BAC ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】计算较小两边的和,与最大的边比较,大于最大的边时三角形存在,依此判断即可.【详解】∵4+5>6,∴能构成三角形;∵1.5+2>2.5,∴能构成三角形;∵14+15>13,∴能构成三角形;∵<1+2=3,∴不能构成三角形;故选D.【点睛】本题考查了已知线段长判断三角形的存在,熟记三角形存在的条件是解题的关键.2.D解析:D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∵∠1=∠2,∠A=∠C,∠1=∠A+∠D,∠2=∠B+∠C,∴∠B=∠D,∴选项A、B正确;∵∠2=∠A+∠D,∴2D∠>∠,∴选项C正确;没有条件说明C D∠=∠故选:D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键. 3.A解析:A【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.4.D解析:D【分析】根据角平分线的定义可得∠DAC =∠DAE ,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠D ,然后利用三角形的内角和定理列式计算即可得解.【详解】解:∵AD 是∠CAE 的平分线,60=︒∠DAC ,∴∠DAC =∠DAE =60°,又∵35B ∠=︒由三角形的外角性质得,∠D =∠DAE−∠B =60°−35°=25°,∴在△ACD 中,∠ACD =180°−∠DAC -∠D =180°−60°−25°=95°.故选:D .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.5.A解析:A【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD ,∠AED=∠C+∠EDC ,再根据∠B=∠C ,∠ADE=∠AED 即可得出结论.【详解】解:∵∠ADC 是△ABD 的外角,∴∠ADC=∠B+∠BAD ,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE∵∠AED 是△CDE 的外角,∴∠AED=∠C+∠EDC ,∵∠ADE=∠AED ,∴∠B+∠BAD-∠CDE=∠C+∠EDC ,∵∠B=∠C ,∴∠BAD=2∠EDC ,∵10CDE ∠=︒∴∠BAD=20°;故选:A【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.6.D解析:D【分析】设多边形有n条边,则内角和为180°(n﹣2),再根据内角和等于外角和4倍可得方程180(n﹣2)=360×4,再解方程即可.【详解】解:设多边形有n条边,由题意得:180(n﹣2)=360×4,解得:n=10,故选:D.【点睛】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n﹣2).7.C解析:C【分析】根据三角形的两边之和大于第三边,确定第三边的取值范围即可.【详解】解:三角形的两条边长为3和7,设第三边为x,则第三边的取值范围是:7-3<x<7+3,解得,4<x<10,故选:C.【点睛】本题考查了三角形的三边关系,根据两边长确定第三边的取值范围是解题关键.8.A解析:A【分析】根据正十边形的外角和等于360︒,每一个外角等于多边形的外角和除以边数,即可得解.【详解】︒÷=︒,3601036∴正五边形的每个外角等于36︒,故选:A.【点睛】本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形以上三者之间的关系是解题的关键.9.B解析:B【分析】∠的大小.根据平行线和三角形外角的性质即可求出C【详解】如图,设AE和CD交于点F,∵//AB CD ,∴65A DFE ∠=∠=︒(两直线平行同位角相等),∵DFE ∠是CEF △的外角,∴653035C DFE E ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质.熟练利用两个性质证明和求解是解答本题的关键. 10.C解析:C【分析】根据三角形三边关系解答.【详解】A 、∵2+3<6,∴以此三条线段不能组成三角形;B 、3+4<8,∴以此三条线段不能组成三角形;C 、∵5+6>10,∴以此三条线段能组成三角形;D 、∵5+6=11,∴以此三条线段不能组成三角形;故选:C .【点睛】此题考查三角形的三边关系:三角形两边的和大于第三边.11.A解析:A【分析】根据三角形三边长关系,逐一判断选项,即可得到答案.【详解】A. ∵3+5>6,∴长度为3,5,6的三条线段能组成三角形,故该选项符合题意,B. ∵1+2=3,∴长度为3,2,1的三条线段不能组成三角形,故该选项不符合题意,C. ∵2+2=4,∴长度为2,2,4的三条线段不能组成三角形,故该选项不符合题意,D. ∵3+6<10,∴长度为3,6,10的三条线段不能组成三角形,故该选项不符合题意, 故选A【点睛】本题主要考查三角形三边长的关系,掌握三角形任意两边之和大于第三边,是解题的关键.12.D解析:D【分析】根据三角形的外角的性质得到∠ADC=∠B+∠BAD,得到x>70°,根据平角的概念得到x<180°,计算后进行判断得到答案.【详解】解:∵∠ADC=∠B+∠BAD,∴x>70°,又x<180°,∴x的度数可能为80°,故选:D.【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.二、填空题13.【分析】先由题意得CAB=30°∠ABD=60°再由三角形的外角性质即可得出答案【详解】解:∵探测线与地面的夹角为30°和60°∴∠CAB=30°∠ABD=60°∵∠ABD=∠CAB+∠C∴∠C=6解析:30【分析】先由题意得CAB=30°,∠ABD=60°,再由三角形的外角性质即可得出答案.【详解】解:∵探测线与地面的夹角为30°和60°,∴∠CAB=30°,∠ABD=60°,∵∠ABD=∠CAB+∠C,∴∠C=60°-30°=30°,故答案为:30°.【点睛】本题考查了三角形的外角的性质,对顶角,解题的关键是熟练掌握三角形的外角性质,比较简单.14.①②③④【分析】分别根据平行线的性质角平分线的定义邻补角的定义直角三角形两锐角互余进行判断即可得出结论【详解】解:∵CD∥OB∠EFD=α∴∠EOB=∠EFD=α∵OE平分∠AOB∴∠COF=∠EO解析:①②③④【分析】分别根据平行线的性质,角平分线的定义,邻补角的定义,直角三角形两锐角互余进行判断即可得出结论.【详解】解:∵CD ∥OB ,∠EFD =α,∴∠EOB =∠EFD =α,∵OE 平分∠AOB ,∴∠COF =∠EOB =α,故①正确;∠AOB =2α,∵∠AOB +∠AOH =180°,∴∠AOH =180°﹣2α,故②正确;∵CD ∥OB ,CH ⊥OB ,∴CH ⊥CD ,故③正确;∴∠HCO +∠HOC =90°,∠AOB +∠HOC =180°,∴∠OCH =2α﹣90°,故④正确.故答案为:①②③④.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角的定义,直角三角形两锐角互余等知识,熟练掌握相关知识点是解题关键.15.【分析】根据求出mn 的长根据三角形三边关系求出k 的取值范围再根据k 为最长边进一步即可确定k 的取值【详解】解:由题意得n-9=0m-5=0解得m=5n=9∵mnk 为三角形的三边长∴∵k 为三角形的最长边解析:914k ≤<【分析】根据2|9|(5)0n m -+-=求出m 、n 的长,根据三角形三边关系求出k 的取值范围,再根据k 为最长边进一步即可确定k 的取值.【详解】解:由题意得n-9=0,m-5=0,解得 m=5,n=9,∵m ,n ,k ,为三角形的三边长,∴414k ≤<,∵k 为三角形的最长边,∴914k ≤<.故答案为:914k ≤<【点睛】本题考查了绝对值、偶次方的非负性,三角形的三边关系,根据题意求出m 、n 的长是解题关键,确定k 的取值范围时要注意k 为最长边这一条件. 16.【分析】根据折叠得到由此得到利用计算得出再根据三角形的内角和定理求出结果【详解】解:∵∴∴∵∴∴故答案为:【点睛】此题考查折叠的性质三角形内角和定理正确理解折叠的性质得到对应角相等是解题的关键 解析:62︒.【分析】根据折叠得到ADE EDP ∠=∠,AED DEP ∠=∠,由此得到122()360ADE AED ∠+∠+∠+∠=︒,利用12124+∠=∠︒,计算得出118ADE AED ∠+∠=︒,再根据三角形的内角和定理求出结果.【详解】解:∵ADE EDP ∠=∠,AED DEP ∠=∠,∴1222180180ADE AED ∠+∠+∠+∠+︒=︒,∴122()360ADE AED ∠+∠+∠+∠=︒,∵12124+∠=∠︒,∴118ADE AED ∠+∠=︒,∴180()62A ADE AED ∠=︒-∠+∠=︒.故答案为:62︒.【点睛】此题考查折叠的性质,三角形内角和定理,正确理解折叠的性质得到对应角相等是解题的关键.17.6【分析】根据DE 分别是三角形的中点得出G 是三角形的重心再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案【详解析:6【分析】根据D ,E 分别是三角形的中点,得出G 是三角形的重心,再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3,再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案.【详解】解:∵△ABC 的两条中线AD 、BE 相交于点G ,∴2GD =AG ,∵S △ABG =2,∴S △ABD =3,∵AD 是△ABC 的中线,∴S △ABC =2S △ABD =6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.18.110°【分析】连接AD 并延长根据三角殂的外角性质分别表示出∠3和∠4因为∠BDC是∠3和∠4的和从而不难求得∠BDC的度数【详解】解:连接AD 并延长∵∠3=∠1+∠B∠4=∠2+∠C∴∠BDC=∠解析:110°【分析】连接AD,并延长,根据三角殂的外角性质分别表示出∠3和∠4,因为∠BDC是∠3和∠4的和,从而不难求得∠BDC的度数.【详解】解:连接AD,并延长.∵∠3=∠1+∠B,∠4=∠2+∠C.∴∠BDC=∠3+∠4=(∠1+∠B)+(∠2+∠C)=∠B+∠BAC+∠C.∵∠A=47°,∠B=38°,∠C=25°.∴∠BDC=47°+38°+25°=110°,故答案为:110°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.19.;【分析】根据三角形的高的概念得到AM⊥BC根据垂线段最短判断【详解】解:如图∵线段AM是△ABC边BC上的高∴AM⊥BC由垂线段最短可知AN≥AM故答案为:【点睛】本题考查的是中线和高的概念掌握垂解析:≤;【分析】根据三角形的高的概念得到AM⊥BC,根据垂线段最短判断.【详解】解:如图,∵线段AM是△ABC边BC上的高,∴AM⊥BC,由垂线段最短可知,AN≥A M,故答案为:≤.【点睛】本题考查的是中线和高的概念,掌握垂线段最短是解题的关键.20.15°【分析】先根据直角三角板的性质得出∠B及∠CDE的度数再由补角的定义得出∠BDF的度数根据三角形内角和定理即可得出结论【详解】解:∵图中是一副直角三角板∴∠B=45°∠CDE=60°∴∠BDF解析:15°【分析】先根据直角三角板的性质得出∠B及∠CDE的度数,再由补角的定义得出∠BDF的度数,根据三角形内角和定理即可得出结论.【详解】解:∵图中是一副直角三角板,∴∠B=45°,∠CDE=60°,∴∠BDF=180°-60°=120°,∴∠BFD=180°-45°-120°=15°.故答案为:15°.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.三、解答题21.(1)见解析图;(2)见解析图;(3)见解析图【分析】(1)根据三角形中线的性质可知,当CD为△ABC在AB边上的中线时,可将其面积平分,即找到AB的中点,连接AE即可;(2)可按照△BCE与△ABC都以BC为底边进行分析,当都以BC为底边时,△ABC 的高为4,从而使得△BCE的高为1即可;(3)延续(2)的解题思路,都以BC为底边,要使得构成的三角形的面积是△ABC的1 8,则让构成的三角形的高为12即可,则在BC下方12个单位处作平行于BC的直线即为所求.【详解】如图所示:(1)D在格点上,也为AB的中点,故CD即为所求;(2)当点E在直线m上,且三角形内部时,均满足题意,如图△BCE,此时答案不唯一,符合要求即可;(3)如图,直线l即为所求.【点睛】本题主要考查作图-应用与设计作图,充分理解三角形中线的性质,以及灵活运用底相等时,面积之比等于高之比进行图形构造是解题关键.22.(1)证明见解析;(2)证明见解析.【分析】(1)根据角平分线的性质和三角形的外角性质即可求证;(2)由∠A=2∠E ,∠A=∠ABC ,∠ABC=2∠ABE 得∠ABE=∠E ,从而AB ∥CE .【详解】证明:(1)∵ACD ∠是ABC 的一个外角,2∠是BCE 的一个外角,∴ACD ABC A ∠=∠+∠,21E ∠=∠+∠,∴A ACD ABC ∠=∠-∠,21E ∠=∠-∠.∵CE 是外角ACD ∠的平分线,BE 是ABC ∠的平分线,∴22ACD ∠=∠,21ABC ∠=∠,∴2221A ∠=∠-∠2(21)=∠-∠2E =∠.(2)由(1)可知2A E ∠=∠.∵A ABC ∠=∠,2ABC ABE ∠=∠,∴22E ABE ∠=∠,即E ABE ∠=∠,∴//AB CE .【点睛】本题考查了三角形的综合问题,涉及平行线的判定,三角形的外角性质,角平分线的性质,灵活运用所学知识是解题的关键.23.(1)60A ∠=︒;(2)证明见解析.【分析】(1)根据平行线的性质可得80ADE ABC ∠=∠=︒,再根据三角形内角和定理即可求得A ∠的度数;(2)根据三角形外角的性质可得BFD EDF DEF ∠=∠+∠,再结合180BFD CEF ∠+∠=︒可得180EDF DEC ∠+∠=︒,根据两直线平行同旁内角互补即可证明结论.【详解】解:(1)∵//DE BC ,80ABC ∠=︒,∴80ADE ABC ∠=∠=︒,∵40AED ∠=︒,∴18060AE A ADE D ∠=︒-∠=∠-︒;(2)∵BFD EDF DEF ∠=∠+∠,180BFD CEF ∠+∠=︒,∴180EDF DEF CEF ∠+∠+∠=︒,即180EDF DEC ∠+∠=︒,∵//DE BC ,∴180C DEC ∠+∠=︒,∴EDF C ∠=∠.【点睛】本题考查三角形外角的性质,平行线的性质,三角形内角和定理.能正确理解定理,根据图形得出角度之间的关系是解题关键.24.21︒【分析】运用三角形的内角和定理即可求出∠BAC 的度数;根据角平分线的定义、三角形的内角和定理的推论以及直角三角形的两个锐角互余即可求出∠FAC 的度数,再由DAF DAC FAC =-∠∠∠即可得出结论.【详解】解:∵AF 是ABC 的高,∴90AFC ∠=︒,∴90907614FAC C ∠=︒-∠=︒-︒=︒,∵180BAC B C ∠+∠+∠=︒,∴180180763470BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 是ABC 的角平分线, ∴11703522DAC BAC ==⨯︒=∠∠︒, ∴21DAF DAC FAC =-∠=∠∠︒.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键. 25.∠ADC 83=︒,∠ACB 64=︒.【分析】由CE 是AB 边上的高,可得∠AEC=90︒,再利用三角形的外角性质可得∠ADC ,∠EAP ,∠B 的度数,再根据AD 是ABC 的平分线,可得∠BAC 的度数,再利用三角形的内角和定理即可得到∠ACB 的度数.【详解】∵CE 是AB 边上的高,∴CE ⊥AB ,即∠AEC=90︒,∵∠APC=∠BCE+∠ADC=123︒,∠BCE=40︒,∴∠ADC=123︒-4083︒=︒,∵∠APC=∠AEP+∠EAP=123︒,∴∠EAP=1239033︒-︒=︒,∵AD 是ABC 的角平分线,∴∠BAC=2∠EAP=23366⨯︒=︒,∵∠ADC=∠BAD+∠B ,∴∠B=833350︒-︒=︒,∵∠B+∠BAC+∠ACB=180︒,∴∠ACB=180665064︒-︒-︒=︒,即∠ADC 83=︒,∠ACB 64=︒.【点评】本题考查了三角形的角平分线、高线,三角形的外角性质和三角形的内角和定理.熟记性质并准确识图是解题的关键.26.(1)见解析;(2)70°【分析】(1)根据平行线的判定得出AC//DE ,根据平行线的性质得出∠2=∠ADE ,求出∠3+∠ADE=180°,根据平行线的判定得出即可;(2)求出∠BDE 的度数,求出∠2的度数,求出∠3的度数,根据四边形的内角和定理求出∠B ,再根据三角形内角和定理求出即可.【详解】(1)证明:∵∠1=∠BDE ,∴AC//DE ,∴∠2=∠ADE ,∵∠2+∠3=180°,∴∠3+∠ADE=180°,∴AD//EF ;(2)∵∠1=∠BDE ,∠1=40°,∴∠BDE=40°,∵DA 平分∠BDE ,∴∠ADE=12∠BDE=20°, ∴∠2=∠ADE=20°,∵∠2+∠3=180°∴∠3=160°,∵FE ⊥AF ,∴∠F=90°,∴∠B=360°-90°-160°-40°=70°,在△ABC 中,∠BAC=180°-∠1-∠B=180°-40°-70°=70°.【点睛】本题考查了平行线的性质和判定,多边形的内角和定理,角平分线的定义,能灵活运用知识点进行推理和计算是解此题的关键.。

八年级数学上册第一单元测试题(含答案)

八年级数学上册第一单元测试题(含答案)

八年级数学上册第一单元测试题(含答案)满分120分, 考试时间120分钟一、单选题(30分)1. 现有3cm、4cm、5cm、7cm长的四根木棒, 任选其中三根组成一个三角形, 那么可以组成三角形的个数是()A. 4B. 3C. 2D. 12. 如图, 工人师傅在安装木制门框时, 为防止变形常常钉上两根木条, 这样做的依据是()A.三角形具有稳定性B.两点之间, 线段最短C. 直角三角形的两个锐角互为余角D. 垂线段最短第2题图第3题图第4题图3. 如图, 在△ABC中, ∠1=∠2, G为AD的中点, BG的延长线交AC于点E, F为AB上的一点, CF与AD垂直, 交AD于点H, 则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高A. 2个B. 3个C. 4个D. 1个4.如图, 若△ABC≌△DEF, 且BE=5, CF=2, 则BF的长为()A. 5B. 3C. 2D. 1.55.将一副常规的三角尺按如图方式放置, 则图中的度数为()A. B. C. D.第5题图第6题图第7题图6. 如图所示, △ABC≌△BAD, 点A与点B, 点C与点D是对应顶点, 如果∠DAB=50°, ∠DBA=40°, 那么∠DAC的度数为()A. 5°B. 10°C. 40°D. 50°7.如图, 若, 则添加下列一个条件后, 仍无法判定的是()A. B. C. D.8.如图, 、、分别是、、的中点, 若△BFD的面积是3, 则的面积是( )A. 6B. 18C. 24D. 12第8题图 第9题图 第10题图9. 如图, 点B.C.D 在同一直线上, AB CE, 若∠A =55°, ∠ACB =65°, 则∠1的值为( ) A. 80° B. 65° C. 55° D. 60° 10.如图, 在平面直角坐标系中, 点A(2, 0), B(0,4), 若以B, O, C 为顶点的三角形与△ABO 全等, 则点C 的坐标不能为( )A.(-2,0)B.(0,-4)C.(2,4)D.(-2,4) 二、填空题(24分)11. 如图, 七边形ABCDEFG 的对角线共有 ________条.第11题图 第13题图 第14题图 12. 已知BD 是 的中线, , , 且 的周长为16, 则 的周长为________. 13. 如图, 是直角三角形, , 是 的高, , , , 则AD 的长为_______.14. 如图, 在△ABC 中, D, E 分别是边AB, AC 上一点, 将△ABC 沿DE 折叠, 使点A 落在边BC 上, 若∠A =60°, 则∠1+∠2+∠3+∠4=______.15.如图, 点F 是△ABC 的边BC 延长线上一点, DF ⊥AB 于点D, ∠A =30°, ∠F =50°, ∠ACF 的度数是_____.第15题图 第16题图16. 如图, 一种测量工具, 点O 是两根钢条AC.BD 中点, 并能绕点O 转动.由三角形全等可得内槽宽AB 与CD 相等, 其中△OAB ≌△OCD 的依据是 (写出全等的简写)17.如图, ∠1, ∠2, ∠3是五边形ABCDE 的3个外角, 若 , 则 ________.第17题图 第18题图18. 如图, 方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上, 这样的三角形叫格点三角形, 图中与△ABC 全等的格点三角形共有__________个(不含△ABC). 三、解答题(66分)19. (8分)如图, 已知: AD 是△ABC 的角平分线, CE 是△ABC 的高, ∠BAC =60°, ∠BCE =40°, 求∠GABCD EFB C DAADB 的度数.20.(8分)如图, D 是AC 上一点, AB=DA,DE ∥AB, ∠B=∠DAE,求证: BC=AE21. (8分)如图所示, AC=AE, ∠1=∠2, AB=AD. 求证: BC=DE.22.(8分)如图所示, 是 的角平分线, 是 的外角平分线, 、 交于点 , 若 , 求的度数.23. (8分)如图, 四边形ABCD 中, BC=CD, CB ⊥AB 于B, CD ⊥AD 于D, 求证: AB=AD.24. (8分)某建筑测量队为了测量一栋居民楼ED 的高度, 在大树AB 与居民楼ED 之间的地面上选了一点C, 使B, C, D 在一直线上, 测得大树顶端A 的视线AC 与居民楼顶端E 的视线EC 的夹角为90°, 若AB=CD=24米, BD=64米, 请计算出该居民楼ED 的高度.DE A B C25. (9分)将一个凸边形剪去一个角得到一个新的多边形, 其内角和为1620°, 求的值.26.(9分)如图, 在四边形ABCD 中, AD∥BC, ∠ABC=90°, AD=12, BC=24, 动点 P 从点 A 出发以每秒1个单位的速度沿 AD 向点 D运动, 动点 Q 从点 C 出发以每秒 2 个单位的速度沿 CB 向点 B 运动, P, Q 同时出发, 当点 P 停止运动时, 点 Q 也随之停止, 连接PQ, DQ.设点 P 运动时间为 t 秒, 问当 t 为何值时, △PDQ ≌△CQD , 并证明△PDQ ≌△CQD答案一、单选题1. 现有3cm、4cm、5cm、7cm长的四根木棒, 任选其中三根组成一个三角形, 那么可以组成三角形的个数是()A. 4B. 3C. 2D. 1答案: B2.如图, 工人师傅在安装木制门框时, 为防止变形常常钉上两根木条, 这样做的依据是()A. 三角形具有稳定性B. 两点之间, 线段最短C. 直角三角形的两个锐角互为余角D. 垂线段最短答案: A第2题图第3题图第4题图3. 如图, 在△ABC中, ∠1=∠2, G为AD的中点, BG的延长线交AC于点E, F为AB上的一点, CF与AD垂直, 交AD于点H, 则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高A. 2个B. 3个C. 4个D. 1个答案: A4.如图, 若△ABC≌△DEF, 且BE=5, CF=2, 则BF的长为()A. 5B. 3C. 2D. 1.5答案: D5.将一副常规的三角尺按如图方式放置, 则图中的度数为()A. B. C. D.答案: D第5题图第6题图第7题图6. 如图所示, △ABC≌△BAD, 点A与点B, 点C与点D是对应顶点, 如果∠DAB=50°, ∠DBA=40°, 那么∠DAC的度数为()A. 5°B. 10°C. 40°D. 50°答案: B7.如图, 若, 则添加下列一个条件后, 仍无法判定的是()A. B. C. D.答案: C8.如图, 、、分别是、、的中点, 若△BFD的面积是3, 则的面积是( )A. 6B. 18C. 24D. 12答案: C第8题图第9题图第10题图9. 如图, 点B.C.D在同一直线上, AB CE, 若∠A=55°, ∠ACB=65°, 则∠1的值为()A. 80°B. 65°C. 55°D. 60°答案: D10.如图, 在平面直角坐标系中, 点A(2, 0), B(0,4), 若以B, O, C为顶点的三角形与△ABO全等, 则点C的坐标不能为( )A.(-2,0)B.(0,-4)C.(2,4)D.(-2,4)答案: B二、填空题11. 如图, 七边形ABCDEFG的对角线共有________条.答案: 14第11题图第13题图第14题图12. 已知BD是的中线, , , 且的周长为16, 则的周长为________.答案: 1313.如图, 是直角三角形, , 是的高, , , , 则AD的长为_______.答案: 4.814.如图, 在△ABC中, D, E分别是边AB, AC上一点, 将△ABC沿DE折叠, 使点A 落在边BC上, 若∠A =60°, 则∠1+∠2+∠3+∠4=______.答案: 240°15.如图, 点F是△ABC的边BC延长线上一点, DF⊥AB于点D, ∠A=30°, ∠F=50°, ∠ACF的度数是_____.答案: 70°第15题图第16题图16. 如图, 一种测量工具, 点O是两根钢条AC.BD中点, 并能绕点O转动.由三角形全等可得内槽宽AB 与CD相等, 其中△OAB≌△OCD的依据是(写出全等的简写)答案: SAS17.如图, ∠1, ∠2, ∠3是五边形ABCDE的3个外角, 若, 则________.答案: 210°第17题图第18题图18. 如图, 方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上, 这样的三角形叫格点三角形, 图中与△ABC全等的格点三角形共有__________个(不含△ABC).答案: 7三、解答题19. 如图, 已知: AD是△ABC的角平分线, CE是△ABC的高, ∠BAC=60°, ∠BCE=40°, 求∠ADB的度数.【解析】∵CE是△ABC的高∴∠BEC=90°△BEC为直角三角形∵∠BCE=40°∴∠B=90°-∠BCE=90°-40°=50°∵∠BAC=60°, AD是△ABC的角平分线∴1302BAD BAC∠=∠=︒在△ADB 中, ∠ADB=180°-∠B-∠BAD=180°-50°-30°=100°20.如图,D 是AC 上一点,AB=DA,DE ∥AB, ∠B=∠DAE,求证:BC=AE 【解析】 ∵DE ∥AB∴∠EDA=∠CAB在△ADE 和△BAC 中EDA CAB DA AB DAE B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△BAC(ASA) ∴AE=BC21. 如图所示, AC=AE, ∠1=∠2, AB=AD. 求证: BC=DE. 【解析】 ∵∠1=∠2∴∠1+∠EAB=∠2+∠EAB 即∠CAB=∠EAD 在△CAB 和△EAD 中AC AE CAB EAD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CAB ≌△EAD(SAS) ∴BC=DE22.如图所示, 是 的角平分线, 是 的外角平分线, 、 交于点 , 若 , 求 .【解析】∵ACE A ABC ∠=∠+∠∵ ,∴12DCE A DBC ∠=∠+∠∵DCE D DBC ∠=∠+∠ ∴ , 即 . 【答案】35︒23. 如图, 四边形ABCD 中, BC=CD, CB ⊥AB 于B, CD ⊥AD 于D, 求证: AB=AD. 【解析】连接AC ∵CB ⊥AB, CD ⊥AD∴△CBA 和△CDA 为直角三角形 在Rt △CBA 和Rt △CDA 中AC AC BC DC =⎧⎨=⎩∴Rt △CBA ≌Rt △CDA (HL) ∴AB=AD24. 某建筑测量队为了测量一栋居民楼ED 的高度, 在大树AB 与居民楼ED 之间的地面上选了一点C, 使B, C, D 在一直线上, 测得大树顶端A 的视线AC 与居民楼顶端E 的视线EC 的夹角为90°, 若AB=CD=24米, BD=64米, 请计算出该居民楼ED 的高度.【解析】根据题意∠ABC=∠CDE=∠ACE=90°DEABC∴∠ACB+∠ECD=90°在Rt △ABC 中, ∠ACB+∠CAB=90° ∴∠CAB=∠ECD 在△ABC 和△CDE 中CAB ECD AB CDABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDE(ASA) ∴BC=DE∵BC=BD-CD=64-24=40 ∴DE=4025. 将一个凸 边形剪去一个角得到一个新的多边形, 其内角和为1620°, 求 的值. 【解析】分三张情况,(1)剪去一个角后得到的新多边形边数少1, 如图所示:(3)1801620n -⋅︒=︒解得n=12(2)剪去一个角后得到的新多边形边数不变, 如图所示:(2)1801620n -⋅︒=︒解得n=11(3)剪去一个角后得到的新多边形边数多1, 如图所示:(21)1801620n -+⋅︒=︒解得n=10所以n 的值为12, 11或1026.如图, 在四边形ABCD 中, AD ∥BC, ∠ABC=90°, AD=12, BC=24, 动点 P 从点 A 出发以每秒1个单位的速度沿 AD 向点 D 运动, 动点 Q 从点 C 出发以每秒 2 个单位的速度沿 CB 向点 B 运动, P, Q 同时出发, 当点 P 停止运动时, 点 Q 也随之停止, 连接PQ, DQ 。

苏科版八年级数学上册第一章 全等三角形单元测试(二)及解析

苏科版八年级数学上册第一章 全等三角形单元测试(二)及解析

第一章全等三角形单元测试一、选择题1.下列图形中,和所给图全等的图形是()A.B.C.D.2.下列命题中,真命题的个数是()①全等三角形的周长相等;②全等三角形的对应角相等;③全等三角形的面积相等;④全等三角形的对应角平分线相等.A.4 B.3 C.2 D.1(题1题) (题4题) (题7题)3.下列条件中,能判定两个三角形全等的是()A.有三个角对应相等B.有两条边对应相等C.有两边及一角对应相等D.有两角及一边对应相等4.如图,△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.45°C.35°D.25°5.在下列条件中,不能说明△ABC≌△A′B′C的是()A.∠A=∠A′,∠C=∠C′,AC=A′C′B.∠A=∠A′,AB=A′B′,BC=B′C′C.∠B=∠B′,∠C=∠C′,AB=A′B′D.AB=A′B′,BC=B′C,AC=A′C′6.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′,AB=B′A′,则下列结论中正确的是()A.AC=A′C′B.BC=B′C′C.AC=B′C′D.∠A=∠A′7.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL8.如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有()A.1个B.2个C.3个D.4个(题8题)(题9题) (题10题)9.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可10.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10°B.20°C.7.5°D.15°二、填空题11.如果△ABC≌△A′B′C′,AB=24,S△A′B′C′=180,那么△ABC中AB边上的高是.12.一个三角形的三边长分别为2,5,m,另一个三角形的三边长分别为n,6,2,若这两个三角形全等,则m+n=.13.已知,如图∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF(1)若以“SAS”为依据,还要添加的条件为;(2)若以“ASA”为依据,还要添加的条件为.(题13题) (题15题) (题16题)14.下列说法正确的有个.(1)两条边对应相等的两个直角三角形全等.(2)有一锐角和斜边对应相等的两直角三角形全等.(3)一条直角边和一个锐角对应相等的两直角三角形全等.(4)面积相等的两个直角三角形全等.15.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A 且垂直于AC的射线AO上运动,当AP=时,△ABC和△PQA全等.16.如图,△ABC的高BD,CE相交于点O.请你添加一个条件,使BD=CE.你所添加的条件是.(仅添加一对相等的线段或一对相等的角)17.如图,已知BE⊥AD,CF⊥AD,BE=CF,由这三个条件组合运用可以得到若干结论,请你写出三个正确结论:.(题17题) (题18题)18.如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,下面有四个条件:①AB=DE,②AC=DF,③∠ABC=∠DEF,④BE=CF.请你在其中选3个作为题设,余下的1个作为结论,写出所有能组成真命题组合的题设为.(填序号)三、解答题(共46分)19.如图所示,已知∠ACB和∠ADB都是直角,且AC=AD,P是AB上任意一点.求证:CP=DP.20.如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.21.已知:如图所示,AD是△ABC的中线,DE⊥AB于E,DF⊥AC于F且BE=CF.求证:(1)AD是∠BAC的平分线;(2)AB=A C.22.如图所示,施工队在沿AC方向开山修路,为了加快施工进度,要在小山的另一边点E同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55°,要使A,C,E成一直线,那么开挖点E离点B的距离如何求得?请你设计出解决方案.23.如图,∠BAC=∠BAD,点E在AB上.(1)添加一个条件,使△ACE≌△ADE,你添加的条件是;(2)根据(1)中你添加的条件,请再写出另外一对全等三角形,并证明.24.数学作业本发下来了,徐波想“我应该又是满分吧”,翻开作业本,一个大红的错号映入眼帘,徐波不解了,“我哪里做错了呢”下面就是徐波的解法,亲爱的同学,你知道他哪儿错了吗?你能帮他进行正确的说明吗?如图所示,∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.试说明∠ADC=∠AE B.徐波的解法:在△ACD和△ABE中,,所以△ABE≌△ACD,所以∠ADC=∠AE B.25.如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.(1)求证:△ABP≌△CBE;(2)连结AD、BD,BD与AP相交于点F.如图2.①当=2时,求证:AP⊥BD;②当=n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.参考答案与试题解析一、选择题1.下列图形中,和所给图全等的图形是()A.B.C.D.【考点】全等图形.【分析】根据能够完全重合的两个图形是全等形即可判断出答案.【解答】解;如图所示:和左图全等的图形是选项D.故选:D.【点评】本题考查全等形的定义,属于基础题,注意掌握全等形的定义.2.下列命题中,真命题的个数是()①全等三角形的周长相等;②全等三角形的对应角相等;③全等三角形的面积相等;④全等三角形的对应角平分线相等.A.4 B.3 C.2 D.1【考点】命题与定理.【分析】根据全三角形的性质,可以判断各个说法是否正确,从而可以解答本题.【解答】解:全等三角形的周长相等,故①正确;全等三角形的对应角相等,故②正确;全等三角形的面积相等,故③正确;全等三角形的对应角平分线相等,故④正确;故选A.【点评】本题考查命题和定理,解题的关键是明确全等三角形的性质.3.下列条件中,能判定两个三角形全等的是()A.有三个角对应相等 B.有两条边对应相等C.有两边及一角对应相等 D.有两角及一边对应相等【考点】全等三角形的判定.【分析】熟练运用判定方法判断.做题时要按判定全等的方法逐个验证.【解答】解:有三个角对应相等,不能判定全等,A错误;有两条边对应相等,缺少条件不能判定全等,B错误;有两边及一角对应相等不能判定全等,C错误;有两角及一边对应相等可判断全等,符合AAS或ASA,是正确的.故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.如图,△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.45°C.35°D.25°【考点】全等三角形的性质.【分析】由全等三角形的性质可得到∠BAC=∠EAD,在△ABC中可求得∠BAC,则可求得∠EA C.【解答】解:∵∠B=70°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣30°=80°,∵△ABC≌△ADE,∴∠EAD=∠BAC=80°,∴∠EAC=∠EAD﹣∠DAC=80°﹣35°=45°,故选B.【点评】本题主要考查全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.5.在下列条件中,不能说明△ABC≌△A′B′C的是()A.∠A=∠A′,∠C=∠C′,AC=A′C′B.∠A=∠A′,AB=A′B′,BC=B′C′C.∠B=∠B′,∠C=∠C′,AB=A′B′D.AB=A′B′,BC=B′C,AC=A′C′【考点】全等三角形的判定.【分析】根据题意,对选项一一分析,选择正确答案.【解答】解:A、∠A=∠A′,∠C=∠C′,AC=A′C′,可用ASA判定△ABC≌△A′B′C,故选项正确;B、∠A=∠A′,AB=A′B′,BC=B′C′,SSA不能判定两个三角形全等,故选项错误;C、∠B=∠B′,∠C=∠C′,AB=A′B′,可用AAS判定△ABC≌△A′B′C,故选项正确;D、AB=A′B′,BC=B′C,AC=A′C′,可用ASA判定△ABC≌△A′B′C,故选项正确.故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′,AB=B′A′,则下列结论中正确的是()A.AC=A′C′B.BC=B′C′C.AC=B′C′D.∠A=∠A′【考点】全等三角形的判定.【分析】此题难度较小,主要是对应关系的问题,可以采用排除法进行分析确定.【解答】解:如图所示,∵∠C=∠C′=90°,∠A=∠B′,AB=B′A′,∴Rt△ABC≌Rt△A′B′C′,∴AC=B′C′(A不正确,C正确),BC=A′C′(B不正确),∠A=∠B′(已知已给出,D不正确),故选C.【点评】主要考查全等三角形的判定,作此题需考虑对应关系,不能凭主观想象和习惯做题,画个图形,一目了然.7.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL【考点】全等三角形的应用.【分析】结合图形根据三角形全等的判定方法解答.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA).故选B.【点评】本题考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键.8.如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有()A.1个B.2个C.3个D.4个【考点】直角三角形全等的判定;全等三角形的性质.【分析】可以采用排除法对各个选项进行验证,从而得出最后的答案.【解答】解:①∵BE⊥AC,AD⊥BC∴∠AEH=∠ADB=90°∵∠HBD+∠BHD=90°,∠EAH+∠AHE=90°,∠BHD=∠AHE∴∠HBD=∠EAH∵DH=DC∴△BDH≌△ADC(AAS)∴BD=AD,BH=AC②:∵BC=AC∴∠BAC=∠ABC∵由①知,在Rt△ABD中,BD=AD∴∠ABC=45°∴∠BAC=45°∴∠ACB=90°∵∠ACB+∠DAC=90°,∠ACB<90°∴结论②为错误结论.③:由①证明知,△BDH≌△ADC∴BH=AC解④:∵CE=CD∵∠ACB=∠ACB;∠ADC=∠BEC=90°∴△BEC≌△ADC由于缺乏条件,无法证得△BEC≌△ADC∴结论④为错误结论综上所述,结论①,③为正确结论,结论②,④为错误结论,根据题意故选B.故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以 B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了 D.带1、4或2、4或3、4去均可【考点】全等三角形的应用.【专题】应用题.【分析】②④虽没有原三角形完整的边,又没有角,但延长可得出原三角形的形状;带①、④可以用“角边角”确定三角形;带③、④也可以用“角边角”确定三角形.【解答】解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选D.【点评】本题考查了全等三角形判定的应用;确定一个三角形的大小、形状,可以用全等三角形的几种判定方法.做题时要根据实际问题找条件.10.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10°B.20°C.7.5°D.15°【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形.【分析】根据直角三角形两锐角互余求出∠DCE=60°,旋转的性质可得∠BCE1=15°,然后求出∠BCD1=45°,从而得到∠BCD1=∠A,利用“边角边”证明△ABC和△D1CB全等,根据全等三角形对应角相等可得∠BD1C=∠ABC=45°,再根据∠E1D1B=∠BD1C﹣∠CD1E1计算即可得解.【解答】解:∵∠CED=90°,∠D=30°,∴∠DCE=60°,∵△DCE绕点C顺时针旋转15°,∴∠BCE1=15°,∴∠BCD1=60°﹣15°=45°,∴∠BCD1=∠A,在△ABC和△D1CB中,,∴△ABC≌△D1CB(SAS),∴∠BD1C=∠ABC=45°,∴∠E1D1B=∠BD1C﹣∠CD1E1=45°﹣30°=15°.故选:D.【点评】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记性质并求出△ABC和△D1CB全等是解题的关键.二、填空题11.如果△ABC≌△A′B′C′,AB=24,S△A′B′C′=180,那么△ABC中AB边上的高是15.【考点】全等三角形的性质.【分析】运用全等三角形的面积相等得出S△ABC=180,再利用AB=24本题可解.【解答】解:∵△ABC≌△A′B′C′,S△A′B′C′=180,∴S△ABC=180,设AB边上的高是h.则S△ABC=AB•h,又AB=24,∴△ABC中AB边上的高h=180×2÷24=15.故填15.【点评】本题考查了全等三角形的性质,三角形的面积;要牢固掌握这些知识,并能灵活应用.12.一个三角形的三边长分别为2,5,m,另一个三角形的三边长分别为n,6,2,若这两个三角形全等,则m+n=11.【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等求出m、n的值,再相加即可得解.【解答】解:∵两三角形全等,∴m=6,n=5,∴m+n=6+5=11.故答案为:11.【点评】本题考查了全等三角形的性质,熟记性质是解题的关键.13.已知,如图∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF(1)若以“SAS”为依据,还要添加的条件为BE=CF或BC=EF;(2)若以“ASA”为依据,还要添加的条件为∠A=∠D.【考点】全等三角形的判定.【分析】(1)根据全等三角形的SAS定理,只需找出夹角的另一边,即BC=EF,即可证得.(2)要判定△ABC≌△DEF,已知∠ABC=∠DEF,AB=DE,加∠A=∠D即可.【解答】解:(1)∵∠ABC=∠DEF,AB=DE,要使△ABC≌△DEF,且以“SAS”为依据,∴还要添加的条件为:BE=CF或BC=EF;故答案为:BE=CF或BC=EF;(2)∵∠ABC=∠DEF,AB=DE,要使△ABC≌△DEF,且以“ASA”为依据,∴还要添加的条件为:∠A=∠D.故答案为:∠A=∠D.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.14.下列说法正确的有3个.(1)两条边对应相等的两个直角三角形全等.(2)有一锐角和斜边对应相等的两直角三角形全等.(3)一条直角边和一个锐角对应相等的两直角三角形全等.(4)面积相等的两个直角三角形全等.【考点】直角三角形全等的判定.【分析】利用全等三角形的判定方法逐个判断即可.【解答】解:(1)当这两条边都是直角边时,结合直角相等,则可用SAS可判定两个三角形全等,当这两条边一条是斜边一条是直角边时,可用HL判定这两个直角三角形全等,故(1)正确;(2)有一锐角和斜边对应相等时,结合直角,可用AAS来判定这两个直角三角形全等,故(2)正确;(3)当一条直角边和一个锐角对应相等时,结合直角,可用AAS或ASA来证明这两个直角三角形全等,故(3)正确;(4)当两个三角形面积相等时,这两个直角三角形不一定会等,故(4)不正确;综上可知正确的有3个,故答案为:3.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.15.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A 且垂直于AC的射线AO上运动,当AP=5或10时,△ABC和△PQA全等.【考点】直角三角形全等的判定.【分析】当AP=5或10时,△ABC和△PQA全等,根据HL定理推出即可.【解答】解:当AP=5或10时,△ABC和△PQA全等,理由是:∵∠C=90°,AO⊥AC,∴∠C=∠QAP=90°,①当AP=5=BC时,在Rt△ACB和Rt△QAP中∴Rt△ACB≌Rt△QAP(HL),②当AP=10=AC时,在Rt△ACB和Rt△PAQ中∴Rt△ACB≌Rt△PAQ(HL),故答案为:5或10.【点评】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.16.如图,△ABC的高BD,CE相交于点O.请你添加一个条件,使BD=CE.你所添加的条件是BE=CD 或∠EBC=∠DCB或∠DBC=∠BCE或AB=AC.(仅添加一对相等的线段或一对相等的角)【考点】全等三角形的判定与性质.【分析】根据三角形全等的判定方法,从△BCD和△CBE全等,或者△ABD和△ACE全等考虑添加条件.【解答】解:添加BE=CD可以利用“HL”证明△BCD≌△CBE,添加∠EBC=∠DCB可以利用“AAS”证明△BCD≌△CBE,添加∠DBC=∠BCE可以利用“AAS”证明△BCD≌△CBE,添加AB=AC可以利用“HL”证明△ABD≌△ACE,综上所述,所添加的条件可以是BE=CD或∠EBC=∠DCB或∠DBC=∠BCE或AB=A C.故答案为:BE=CD或∠EBC=∠DCB或∠DBC=∠BCE或AB=A C.【点评】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键.17.如图,已知BE⊥AD,CF⊥AD,BE=CF,由这三个条件组合运用可以得到若干结论,请你写出三个正确结论:△BDE≌△CDF,BD=CD,AD是△ABC的中线.【考点】全等三角形的判定与性质.【分析】根据已知条件得到△BDE≌△CDF,根据全等三角形的性质得到BD=C D.AD是△ABC的中线【解答】解:∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,∴△BDE≌△CDF(AAS),∴BD=C D.∴AD是△ABC的中线.故答案为:△BDE≌△CDF,BD=CD,AD是△ABC的中线.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要根据实际情况灵活运用.18.如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,下面有四个条件:①AB=DE,②AC=DF,③∠ABC=∠DEF,④BE=CF.请你在其中选3个作为题设,余下的1个作为结论,写出所有能组成真命题组合的题设为①②④或①③④.(填序号)【考点】命题与定理.【分析】直接利用全等三角形的判定方法分别得出符合题意的答案.【解答】解:∵BE=CF,∴BC=EF,在△ABC和△DEF中∵,∴△ABC≌△DEF(SAS),∴AC=DF,即①③④为题设,可以得出②;∵BE=CF,∴BC=EF,在△ABC和△DEF中∵,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,即①②④为题设,可以得出③;故答案为:①②④或①③④.【点评】此题主要考查了命题与定理,正确掌握全等三角形的判定方法是解题关键.三、解答题(共46分)19.如图所示,已知∠ACB和∠ADB都是直角,且AC=AD,P是AB上任意一点.求证:CP=DP.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先根据HL判定Rt△ACB≌Rt△ADB得出BC=BD,∠CBA=∠DBA,再利用SAS判定△CBP≌△DBP从而得出CP=DP.【解答】证明:在Rt△ACB和Rt△ADB中,,∴Rt△ACB≌Rt△ADB(HL).∴BC=BD,∠CBA=∠DB A.∵BP=BP,∴△CBP≌△DBP(SAS).∴CP=DP.【点评】本题考查三角形全等的判定和性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.【考点】直角三角形全等的判定;全等三角形的性质.【专题】探究型.【分析】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理.【解答】解:AC=ED,理由如下:∵AB⊥BC,DC⊥AC,ED⊥BC,∴∠B=∠EFC=∠DCE=90°.∴∠A+∠ACB=90°,∠CEF+∠ACB=90°.∴∠A=∠CEF.在△ABC和△ECD中,∴△ABC≌△ECD(ASA).∴AC=ED(全等三角形的对应边相等).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.已知:如图所示,AD是△ABC的中线,DE⊥AB于E,DF⊥AC于F且BE=CF.求证:(1)AD是∠BAC的平分线;(2)AB=A C.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)要证AD平分∠BAC,只需证明△ABD≌△ACD即可.(2)由1可证得Rt△AED≌Rt△AFD,然后推出BE=CF可得AB=A C.【解答】证明:(1)AD是△ABC的中线(已知),∴BD=C D.在Rt△EBD和Rt△FCD中,∴Rt△EBD≌Rt△FCD(HL).∴DE=DF(全等三角形的对应边相等),即AD是∠BAC的平分线.(2)在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF(全等三角形的对应边相等).又∵BE=CF(已知),∴AB=A C.【点评】本题考查了全等三角形的判定和性质;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(6分)如图所示,施工队在沿AC方向开山修路,为了加快施工进度,要在小山的另一边点E 同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55°,要使A,C,E成一直线,那么开挖点E离点B的距离如何求得?请你设计出解决方案.【考点】全等三角形的应用.【专题】应用题;方案型.【分析】本题让我们了解测量两点之间的距离的一种方法,设计只要符合全等三角形全等的条件,具有可操作性,需要测量的线段和角度在空地可实施测量.【解答】解:方案设计如图,延长BD到点F,使BD=DF=500米,过F作FG⊥ED于点G.因为∠ABD=145°,所以∠CBD=35°,在△BED和△FGD中所以△BED≌△FGD(ASA),所以BE=FG(全等三角形的对应边相等).所以要求BE的长度可以测量GF的长度.【点评】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题主要是利用了△BED≌△FGD的判定及性质.23.如图,∠BAC=∠BAD,点E在AB上.(1)添加一个条件,使△ACE≌△ADE,你添加的条件是AC=AD;(2)根据(1)中你添加的条件,请再写出另外一对全等三角形,并证明.【考点】全等三角形的判定与性质.【分析】(1)由图形可知AE=AE,结合条件可再添加AC=AD,利用SAS可证明△ACE≌△ADE;(2)利用SAS可证明△ACB≌△AD B.【解答】解:(1)∵在图形中有AE=AE,且∠BAC=∠BAD,∴可添加AC=AD,利用SAS判断△ACE≌△ADE,故答案为:AC=AD;(2)可证明△ACB≌△ADB,证明如下:在△ACB和△ADB中∴△ACB≌△ADB(SAS).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.24.数学作业本发下来了,徐波想“我应该又是满分吧”,翻开作业本,一个大红的错号映入眼帘,徐波不解了,“我哪里做错了呢”下面就是徐波的解法,亲爱的同学,你知道他哪儿错了吗?你能帮他进行正确的说明吗?如图所示,∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.试说明∠ADC=∠AE B.徐波的解法:在△ACD和△ABE中,,所以△ABE≌△ACD,所以∠ADC=∠AE B.【考点】全等三角形的判定与性质.【专题】阅读型.【分析】证明三角形全等,不能用SSA,而徐波正是犯了这个错误,要解决本题,首先证明△ABF≌△ACG(AAS),再证明Rt△BEF≌Rt△CDG(HL),即可推出∠ADC=∠AE B.【解答】解:错在不能用“SSA”说明三角形全等.正确的解法如下:如图所示,因为∠BAC是钝角,故过B、C两点分别作CA、BA的垂线,垂足分别为F,G,在△ABF与△ACG中,∴△ABF≌△ACG(AAS),∴BF=CG,在Rt△BEF和Rt△CDG中,∴Rt△BEF≌Rt△CDG(HL),∴∠ADC=∠AE B.【点评】本题考查了全等三角形的判定和性质;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题要特别注意SSA不能作为全等三角形一种证明方法使用.25.如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.(1)求证:△ABP≌△CBE;(2)连结AD、BD,BD与AP相交于点F.如图2.①当=2时,求证:AP⊥BD;②当=n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.【考点】相似形综合题.【专题】几何综合题.【分析】(1)求出∠ABP=∠CBE,根据SAS推出即可;(2)①延长AP交CE于点H,求出AP⊥CE,证出△CPD∽△BPE,推出DP=PE,求出平行四边形BDCE,推出CE∥BD即可;②分别用S表示出△PAD和△PCE的面积,代入求出即可.【解答】(1)证明:∵BC⊥直线l1,∴∠ABP=∠CBE,在△ABP和△CBE中∴△ABP≌△CBE(SAS);(2)①证明:连结BD,延长AP交CE于点H,∵△ABP≌△CBE,∴∠APB=∠CEB,∵∠PAB+∠APB=90°,∴∠PAB+∠CEB=90°,∴AH⊥CE,∵=2,即P为BC的中点,直线l1∥直线l2,∴△CPD∽△BPE,∴==,∴DP=PE,∴四边形BDCE是平行四边形,∴CE∥BD,∵AH⊥CE,∴AP⊥BD;②解:∵=n,∴BC=n•BP,∴CP=(n﹣1)•BP,∵CD∥BE,易得△CPD∽△BPE,∴==n﹣1,设△PBE的面积S△PBE=S,则△PCE的面积S△PCE满足=n﹣1,即S2=(n﹣1)S,∵S△PAB=S△BCE=n•S,∴S△PAE=(n+1)•S,∵==n﹣1,∴S1=(n﹣1)•S△PAE,即S1=(n+1)(n﹣1)•S,∴==n+1.【点评】本题考查了平行四边形的性质和判定,相似三角形的性质和判定,全等三角形的性质和判定的应用,主要考查了学生的推理能力,题目比较好,有一定的难度.。

第1章 分式 单元测试卷 2022-2023学年湘教版数学八年级上册

第1章 分式 单元测试卷 2022-2023学年湘教版数学八年级上册

2022-2023学年湘教新版八年级上册数学《第1章 分式》单元测试卷一.选择题(共10小题,满分30分)1. 若分式2(1)(2)44x x x x +--+的值为0,则x 的值为( )A. 1-B. 2C. 2或1-D. 12. 在1x ,+m n m ,25ab ,23x π中,分式有( )A. 2个 B. 3个 C. 4个 D. 1个3. 如果把分式xy x y+中的x 和y 都扩大为原来的4倍,那么分式的值( )A. 扩大为原来的4倍B. 扩大为原来的2倍C. 不变D. 缩小为原来的124. 若将分式2223x x y -与分式2()x x y -通分后,分式2()x x y -的分母变为2(x ﹣y )(x+y ),则分式2223x x y-的分子应变为( )A. 6x 2(x ﹣y )2 B. 2(x ﹣y ) C. 6x 2 D. 6x 2(x+y )5. 分式216x 与13xy -的最简公分母是( )A. 36x y B. 26x y C. 218x y D. 318x y6. 计算a b b ac⋅的结果是( )A. ab abcB. a cC. 1cD. 07. 计算:0(20)-=( )A. 0B. 20C. 1D. 20-8. 若m -n =2,则代数式222m n m m m n-⋅+的值是( )A. -2B. 2C. -4D. 49. 给出以下方程:314x -=,32x =,3152x x +=+,132x x -=,其中分式方程的个数是( )A. 1B. 2C. 3D. 410. 已知113a b +=,114b c+=,115c a +=,则abc ab bc ca =++( )A.13 B. 14C. 15 D. 16二.填空题(共10小题,满分30分)11. 关于x 的方程2312x x x --=-的解为______.12. 已知两分式221x x -+11x +中间阴影覆盖了运算符号.(1)若覆盖了“+”,其运算结果为______;(2)若覆盖了“÷”,并且运算结果为1,则x 的值为______.13. 已知分式5x n x m ++(m ,n 为常数)满足表格中的信息:x 的取值2-0.4q 分式的值无意义03则q 的值是 _____.14. 当x ___________时,分式12x -的值为正数.15. 若关于x 的方程1222x m x x++=--有增根,则m 的值是______________.16. 若0(99)a =,1(0.1)b -=-,25()3c -=-,那么a 、b 、c 三数的大小为 ______.(用“<”连接)17. 代数式12x M x+÷+化简的结果是2x +,则整数M =______.当<2x -时,12x x++______12(填“>”“<”“=”)18. 下列四个分式:22x y x y ++、22x y x y --、22x y x y -+、22x y x y +-,其中最简分式有__________个.19. 受疫情的影响,“84”消毒液需求量猛增,某商场用4000元购进一批“84”消毒液后,供不应求,商场又用6750元购进第二批这种消毒液,所购的瓶数是第一批瓶数的1.5倍,但每瓶单价贵了1元,则该商场第一批购进“84”清毒液每瓶的单价为______元.20. 化简:2222444x y x xy y--+=_____.三.解答题(共6小题,满分90分)21. 已知分式236x x x ---.(1)当x 为何值时,此分式有意义?(2)当x 为何值时,此分式的值为零?22. 计算(1)22346()2x xy y x⋅-;(2)2221221a a a a a a-⋅-++.23. 计算:(1)2301()(48)2-÷⨯; (2)2213(3)34ab ab a b ⋅-24. 先化简,再求值:211211a a a a ⎛⎫÷- ⎪+++⎝⎭,其中1a =.25. 为做好新冠肺炎疫情防控,某学校购入了一批洗手液与消毒液.购买洗手液花费4000元,购买消毒液花费3000元,购买的洗手液瓶数是消毒液瓶数的2倍,每瓶消毒液的价格比每瓶洗手液的价格高5元.(1)求一瓶洗手液的价格与一瓶消毒液的价格分别是多少元?(2)由于疫情还未结束,学校决定再次购入一批相同质量品牌的洗手液与消毒液,洗手液和消毒液的瓶数分别都比第一次的购入量多100瓶.适逢经销商进行价格调整,每瓶洗手液的价格比第一次的价格降低5%4a,每瓶消毒液的价格比第一次的价格降低%a,最终第二次购买洗手液与消毒液的总费用只比第一次购买洗手液与消毒液的总费用多350元,求a的值.26. 已知A、B两地相距a km甲乙两人分别从A、B两地同时匀速出发,若相向而行,则经过a min后两人相遇,若同向而行,则经过b(b a>)min后甲追上乙.(1)试用含a,b的代数式表示甲、乙两人的速度v甲,v乙;(2)若73VV=甲乙,求ab的值;(3)若两人相向而行,第一次相遇后继续按原方向前进,其中甲到达B地后按原路返回.直接写出甲、乙从第一次相遇到再次相遇所需的时间.2022-2023学年湘教新版八年级上册数学《第1章 分式》单元测试卷一.选择题(共10小题,满分30分)【1题答案】【答案】A【解析】【分析】根据分式值为零且分式有意义的条件求解即可.【详解】解:∵分式2(1)(2)44x x x x +--+的值为0, ∴(x +1)(x -2)=0,且x 2-4x +4≠0,解得x =-1或x =2,且x ≠2,∴x =-1故选:A .【点睛】此题考查了分式值为零的条件,分式有意义的条件,熟记分式的知识是解题的关键.【2题答案】【答案】A【解析】【分析】根据一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式判断即可.【详解】解:在1x ,+m n m ,25ab ,23x π中,分式有:1x ,+m n m共2个,其余2个是整式,故选:A .【点睛】本题考查了分式的定义,注意π是数字,熟练掌握分式的定义是解题的关键.【3题答案】【答案】A【解析】【分析】根据分式的基本性质,进行计算即可解答.【详解】解:由题意得:44444x y xy x y x y⋅=++,∴如果把分式xy x y+中的x 和y 都扩大为原来的4倍,那么分式的值扩大为原来的4倍,故选:A .【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.【4题答案】【答案】C【解析】【分析】分式2223x x y -与分式 2()x x y -的公分母是2(x+y )(x ﹣y ),据此作出选择.【详解】解:因为分式2()x x y - 与分式2223x x y- 的公分母是2(x+y )(x ﹣y ),所以分式2()x x y -的分母变为2(x ﹣y )(x+y ),则分式2223x x y- 的分子应变为6x 2故选:C .【点睛】本题考查了通分.通分的关键是确定最简公分母.①最简公分母的系数取各分母系数的最小公倍数.②最简公分母的字母因式取各分母所有字母的最高次幂的积.【5题答案】【答案】B【解析】【分析】两个分母中系数的最小公倍数为6,所有字母因式x 与y 的最高次幂分别是x 2、y ,这三者的乘积则是最简公分母.【详解】分式216x 与13xy -的最简公分母是26x y ,故选:B .【点睛】本题考查了分式的最简公分母,知道如何找最简公分母是解题的关键.【6题答案】【答案】C【解析】【分析】根据分式的乘法运算法则来求解.【详解】解:1a b ab b ac abc c⋅==.故选:C .【点睛】本题主要考查了分式乘法的运算法则,理解约分是解答关键.【7题答案】【答案】C【解析】【分析】根据零指数幂的意义计算即可.【详解】解:0(20)1-= ,故选:C .【点睛】本题考查零指数幂的意义,掌握零指数幂公式01(0)a a =≠是解题的关键.【8题答案】【答案】D【解析】【分析】先因式分解,再约分得到原式=2(m -n ),然后利用整体代入的方法计算代数式的值.【详解】解:原式m n m n m +-=()()•2m m n+=2(m -n ),当m -n =2时,原式=2×2=4.故选:D .【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【9题答案】【答案】B【解析】【分析】利用分式方程的定义:分母中含有未知数的方程,进行逐一判断即可.【详解】解:314x -=中分母不含未知数,不是分式方程;32x=中分母含有未知数,是分式方程;3152x x +=+中分母含有未知数,是分式方程;132x x -=中分母不含未知数,不是分式方程,共有两个是分式方程,故B 正确.故选:B .【点睛】本题主要考查的是分式方程的定义,掌握定义并进行准确判断是解题的关键.【10题答案】【答案】D【解析】【分析】先把原条件通分变形可得3,4,5,ac bc ab ac ab bc abc abc abc +++===再把三式相加,再取倒数即可得到答案.【详解】解:∵113a b +=,114b c +=,115c a +=,∴3,4,5,a b b c a c ab bc ac+++=== ∴3,4,5,ac bc ab ac ab bc abc abc abc+++===22212,ac bc ac abc++∴= 6,ac bc ab abc++∴= ∴ 1.6abc ab bc ca =++故选D【点睛】本题考查的是分式的求值,掌握“倒数法求解分式的值”是解本题的关键.二.填空题(共10小题,满分30分)【11题答案】【答案】45x =【解析】【分析】根据解分式方程的规则进行求解即可,最后必须检验.【详解】解:去分母得:2(2)(2)3x x x x ---=,整理得:54x =,解得:45x =,经检验:4424(2)(2)05525x x -=⨯-=-≠,∴45x =是原方程的解.故答案为:45x =.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题关键,注意一定要对求出来的未知数的值进行检验.【12题答案】【答案】①. 1x - ②. 【解析】【分析】根据分式的加法与解分式方程分别计算即可求解.【详解】(1)221x x -++11x +()()21121111x x x x x x +--+===-++;(2)221x x -+÷111x =+,221111x x x -+⨯=+;221x -=,x ∴=,经检验x =是原方程的解,故答案为:1x -,【点睛】本题考查了分式的混合运算,解分式方程,正确的计算是解题的关键.【13题答案】【答案】4【解析】【分析】由表格中的数据,结合分式值无意义及分式值为0的条件可求解m ,n 值,即可求解分式,利用x q =时,5232q q -=+,计算可求解.【详解】解:由表格可知:当2x =-时0x m +=,且当0.4x =时,50x n +=,解得2m =,2n =-,∴分式为522x x -+,当x q =时,5232q q -=+,解得4q =,经检验,4q =是分式的解,故答案为:4.【点睛】本题主要考查分式的值,分式有意义的条件及分式的值为零的条件,解分式方程,求解m ,n 值是解题的关键.【14题答案】【答案】2x >【解析】【分析】根据题意可知分子10>,只要分母20x ->即可求解.【详解】解:∵分式12x -的值为正数,∴20x ->,解得2x >.故答案为:2x >.【点睛】本题考查了分式的值,根据题意列出不等式是解题的关键.【15题答案】【答案】-1【解析】【分析】利用分式方程解法的一般步骤解分式方程,令方程的解为2得到关于m 的方程,解方程即可得出结果.【详解】解:去分母得:1−(x +m )=2(x −2),去括号得:1−x −m =2x −4,移项,合并同类项得:−3x =m −5,∴53m x -=.∵关于x 的方程1222x m x x ++=--有增根,∴x =2∴523m -=,∴m =−1.故答案为:−1.【点睛】本题主要考查了解分式方程,分式方程的增根,理解分式方程增根的意义解答是解题的关键.【16题答案】【答案】b<c<a【解析】【分析】利用零指数幂的意义,负整数指数幂的意义分别计算a ,b ,c 的值,再进行大小比较,即可得出答案.【详解】解:∵0(99)a =,1(0.1)b -=-,25()3c -=-,∴1a =,10b =-,925c =,又∵910125-<<,∴b<c<a ,故答案为:b<c<a .【点睛】本题考查零指数幂,负整数指数幂,解题的关键是熟练掌握:01a =,1-=m ma a .【17题答案】【答案】①. 1x +##1x + ②. >【解析】【分析】根据题意可得()122x M x x+=⋅++,即可求解;然后把12x x ++变形为112x-+,即可求解.【详解】解:根据题意得:()122x M x x +=⋅++1x =+;∵12111222x x x x x++-==-+++,∵<2x -,即20x +<∴102x<+,∴102x->+,∴1112x ->+,即112x x+>+,∴1122x x +>+.故答案为:1x +,>【点睛】本题主要考查了分式的乘法运算以及化简,熟练掌握分式的运算法则是解题的关键.【18题答案】【答案】2##两【解析】【分析】最简分式是分式的分子、分母没有非零的公因式,即不能再约分,据此判断即可解答.【详解】解:22x y x y ++是最简分式,22x y x y --()()x y x y x y -=+-1x y=+,不是最简分式,22x y +是最简分式,22x y x y +-()()x y x y x y +=+-1x y=-,不是最简分式,故最简分式有2个,故答案为:2.【点睛】本题考查最简最简分式,判断一个分式是最简分式,主要看分式的分子、分母是不是有公因式.【19题答案】【答案】8【解析】【分析】设该商场第一批购进“84”清毒液每瓶的单价为x 元,根据所购的瓶数是第一批瓶数的1.5倍列分式方程解答.【详解】解:设该商场第一批购进“84”清毒液每瓶的单价为x 元,由题意得400067501.51x x ⨯=+,解得x =8,经检验,x =8是原方程的解,故答案为:8.【点睛】此题考查了分式方程的实际应用,正确理解题意列得分式方程是解题的关键.【20题答案】【答案】22x y x y +-【解析】【分析】先根据平方差公式和完全平方公式把分子与分母进行整理,然后进行约分即可.【详解】解:原式()()()2222x y x y x y -+=-2x y=-,故答案为:22x y x y +-.【点睛】此题考查了约分,用到的知识点是平方差公式和完全平方公式,关键是把要求的式子进行变形.三.解答题(共6小题,满分90分)【21题答案】【答案】(1)x ≠3且x ≠﹣2 (2)x =﹣3【解析】【分析】(1)根据分式有意义的条件是分母不等于零列出不等式计算即可;(2)根据分式值为零的条件是分子等于零且分母不等于零列式计算.【详解】(1)由题意得:x 2﹣x ﹣6≠0,解得:x ≠3且x ≠﹣2;(2)由题意得:|x |﹣3=0且x 2﹣x =6≠0,解得:x =﹣3,则当x =﹣3时,此分式的值为零.【点睛】本题考查了是的是分式有意义和分式值为零的条件,掌握分式有意义的条件和分式值为零的条件是解题的关键.【22题答案】【答案】(1)334x y- (2)2a 1-【解析】【分析】(1)先计算乘方,再计算乘法并化简;(2)先将分子与分母分解因式,再计算乘法并化简即可.【小问1详解】原式=623468x xy y x-⋅ =334x y-;【小问2详解】原式=()()()()211211a a a a a a +-⋅+- =2a 1-.【点睛】此题考查了分式的计算,正确掌握分式的计算法则及运算顺序是解题的关键.【23题答案】【答案】(1)116;(2)233214a b a b -【解析】【分析】(1)先算乘方,再算括号,后算除法即可;(2)根据单项式与多项式的乘法法则计算即可;【详解】解:(1)原式=4(641)÷⨯=464÷=116;(2)原式=221313343ab ab ab a b ⨯⨯-=233214a b a b -.【点睛】本题考查了负整数指数幂、零指数幂的意义,以及单项式与多项式的乘法计算,熟练掌握运算法则是解答本题的关键.【24题答案】【答案】11a +,12【解析】【分析】根据分式的运算法则,先计算括号里的,再将除法转化为乘法,对分子分母因式分解后约分化简,再将1a =代入化简得代数式即可求解.【详解】解:211211a a a a ⎛⎫÷- ⎪+++⎝⎭2112111a a a a a a +⎛⎫=÷- ⎪++++⎝⎭ 2211a a a a a =÷+++()211aa aa +=⨯+11a =+,将1a =代入上式得:原式11112==+.【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则及运算顺序是解决问题的关键.【25题答案】【答案】(1)一瓶洗手液的价格为 10元,一瓶消毒液的价格为15 元 (2)20【解析】【分析】(1)设一瓶洗手液的价格为x 元,则一瓶消毒液的价格为(x +5)元.根据题意可列出关于x 的分式方程,求出x 即可.(2)先求出第二次购入洗手液和消毒液各多少瓶,再结合题意列出关于a 的一元一次方程,解出a 即可.【小问1详解】解:设一瓶洗手液的价格为x 元,则一瓶消毒液的价格为(x +5)元.根据题意可列方程:4000300025x x =⨯+,解得:10x =,经检验8x =是原方程得解.∴一瓶洗手液的价格为10元,一瓶消毒液的价格为8+7=15元,答:一瓶洗手液的价格为10元,一瓶消毒液的价格为15元.【小问2详解】解:第二次购入洗手液400010050010+=瓶,购入消毒液300010030015+=瓶.根据题意可列等式:550010(1%)30015(1%)400030003504a a ⨯⨯-+⨯⨯-=++.解得:20a =.【点睛】本题考查一元一次方程和分式方程的实际应用.根据题意找准等量关系,列出相应方程是解答本题的关键.【26题答案】【答案】(1)v 甲=2a b b +,v 乙=2b a b - (2)25 (3)()b b a a b -+min【解析】【分析】(1)根据同向而行和相向而行分别列出方程,解之即可;(2)根据(1)中结果,得到73a b b a +=-,解之即可;(3)根据题意列出算式,再计算可得结果.【小问1详解】解:由已知可得()()a v v ab v v a ⎧+=⎪⎨-=⎪⎩甲乙甲乙,2a b v b +∴=甲,2b a v b-=乙;【小问2详解】73v a b v b a +==-甲乙,∴()()37a b b a +=-,∴3377a b b a +=-,∴104a b =,∴25a b =;【小问3详解】2()222b a a b b a a b a b b b-+-⋅⨯÷-=-.答:甲、乙从第一次相遇到再次相遇所需的时间为()min b a -.【点睛】本题考查了二元一次方程组,列分式及其计算,熟练运用路程公式是解题的关键.。

鲁教版八年级上册数学第一章单元测试卷

鲁教版八年级上册数学第一章单元测试卷

鲁教版八年级上册数学第一章单元测试卷-CAL-FENGHAI.-(YICAI)-Company One1第一章达标测试卷一、选择题(每题3分,共30分)1.下列各式从左到右的变形中,是因式分解的为( )A .x (a -b )=ax -bxB .x 2-1+y 2=(x -1)(x +1)+y 2C .x 2-1=(x +1)(x -1)D .x 2+1=x ⎝ ⎛⎭⎪⎫x +1x 2.下列四个多项式中,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-6x+93.下列分解因式正确的是( )A .-a +a 3=-a (1+a 2)B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)24.因式分解x 3-2x 2+x ,正确的是( )A .(x -1)2B .x (x -1)2C .x (x 2-2x +1)D .x (x +1)2 5.多项式:①16x 2-x ;②(x -1)2-4(x -1);③(x +1)2-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果中含有相同因式的是( )A .①和②B .③和④C .①和④D .②和③6.若多项式x 2+mx -28可因式分解为(x -4)(x +7),则m 的值为( )A .-3B .11C .-11D .37.已知a +b =2,则a 2-b 2+4b 的值是( )A .2B .3C .4D .68.已知△ABC 的三边长分别为a ,b ,c ,且满足a 2+b 2+c 2=ab +ac +bc ,则△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形9.不论x ,y 为什么实数,代数式x 2+y 2+2x -4y +7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是( )A.(a-b)2=a2-2ab+b2 B.a(a-b)=a2-abC.(a-b)2=a2-b2 D.a2-b2=(a+b)(a-b)二、填空题(每题3分,共24分)11.分解因式:m3n-4mn=________________.12.一个正方形的面积为x2+4x+4(x>0),则它的边长为________.13.比较大小:a2+b2________2ab-1(填“>”“≥”“<”“≤”或“=”).14.若m-n=-2,则m2+n22-mn的值是________.15.如果x2+kx+64是一个整式的平方,那么k的值是________.16.已知P=3xy-8x+1,Q=x-2xy-2,当x≠0时,3P-2Q=7恒成立,则y =________.17.多项式4y2+1加上一个单项式后,能成为一个完全平方式,那么加上的单项式可以是__________(写出一个即可).18.如图是两邻边长分别为a,b的长方形,它的周长为14,面积为10,则a2b +ab2的值为________.三、解答题(19~21题每题10分,其余每题12分,共66分) 19.分解因式:(1)a2b-abc;(2)(2a-b)2+8ab;(3)(m2-m)2+12(m2-m)+116.20.先分解因式,再求值:(1)4a2(x+7)-3(x+7),其中a=-5,x=3;(2)(2x-3y)2-(2x+3y)2,其中x=16,y=18.21.已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.22.已知a,b是一个等腰三角形的两边长,且满足a2+b2-4a-6b+13=0,求这个等腰三角形的周长.23.如图,在一个边长为a m的正方形广场的四个角上分别留出一个边长为b m的正方形花坛(a>2b),其余的地方种草坪.(1)求草坪的面积是多少;(2)当a=84,b=8,且每平方米草坪的成本为5元时,种这块草坪共需投资多少元?24.观察猜想:如图所示的大长方形是由一个小正方形和三个小长方形拼成的,请根据此图填空:x2+(p+q)x+pq=x2+px+qx+pq=(__________)·(__________).说理验证:事实上,我们也可以用如下方法进行变形:x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=____________=(__________)·(________).于是,我们可以利用上面的方法继续进行多项式的因式分解.尝试运用:例题把x2+5x+4因式分解.解:x2+5x+4=x2+(4+1)x+4×1=(x+4)(x+1).请利用上述方法将多项式x2-8x+15因式分解.答案一、1.C 2.D 3.D 4.B 5.D 6.D7.C :a 2-b 2+4b =(a +b )·(a -b )+4b =2(a -b )+4b =2a +2b =2(a +b )=4.8.D 9.A 10.D二、11.mn (m +2)(m -2) :先提公因式,再利用平方差公式.注意分解因式要彻底.12.x +2 13.>14.2 :m 2+n 22-mn =m 2+n 2-2mn 2=(m -n )22=(-2)22=2.15.±1616.2 :∵P =3xy -8x +1,Q =x -2xy -2,∴3P -2Q =3(3xy -8x +1)-2(x -2xy -2)=7.∴9xy -24x +3-2x +4xy +4=7,∴13xy -26x =0,即13x (y -2)=0.∵x ≠0,∴y -2=0.∴y =2.17.4y (答案不唯一)18.70三、19.解:(1)原式=ab (a -c ).(2)原式=4a 2-4ab +b 2+8ab=4a 2+4ab +b 2=(2a +b )2.(3)原式=(m 2-m )2+2·(m 2-m )·14+⎝ ⎛⎭⎪⎫142=(m 2-m +14)2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫m -1222=(m -12)4. 20.解:(1)原式=(x +7)(4a 2-3).当a =-5,x =3时,(x +7)·(4a 2-3)=(3+7)×[4×(-5)2-3]=970.(2)原式=[(2x -3y )+(2x +3y )]·[(2x -3y )-(2x +3y )]=-24xy .当x =16,y =18时, -24xy =-24×16×18=-12. 21.解:∵a 2+b 2+2a -4b +5=0,∴(a 2+2a +1)+(b 2-4b +4)=0,即(a +1)2+(b -2)2=0.∴a +1=0且b -2=0.∴a =-1,b =2.∴2a 2+4b -3=2×(-1)2+4×2-3=7.22.解:a 2+b 2-4a -6b +13=(a -2)2+(b -3)2=0,故a =2,b =3.当腰长为2时,则底边长为3,周长=2+2+3=7;当腰长为3时,则底边长为2,周长=3+3+2=8.所以这个等腰三角形的周长为7或8.23.解:(1)草坪的面积是(a 2-4b 2) m 2.(2)当a =84,b =8时,草坪的面积是a 2-4b 2=(a +2b )(a -2b )=(84+2×8)·(84-2×8)=100×68=6 800(m 2),所以种这块草坪共需投资5×6 800=34 000(元).24.解:观察猜想 x +p ;x +q说理验证 x (x +p )+q (x +p );x +p ;x +q尝试运用 x 2-8x +15=x 2+(-8x )+15=x 2+(-3-5)x +(-3)×(-5)=(x -3)(x -5).。

八年级数学上册第一、二章单元测试题及答案

八年级数学上册第一、二章单元测试题及答案

八年级数学上册第一、二章单元测试题一.填空题:(每小题3分,共30分)1. 已知直角三角形的三边长为6、8、x ,x 为斜边,则以x 为边的正方形的面积为____ _; 2.如右图:图形A 的面积是 ;3.2)3(-=________,327- =_________, 0)5(-的立方根是 ;4.在棱长为5dm 的正方体木箱中,现放入一根长dm 12的铁棒,能放得进去吗? ;5.210-的算术平方根是 ,16的平方根是 ;6.计算:_________1125613=-; 7.若a 、b 互为相反数,c 、d 互为倒数,则______3=++cd b a ;8.在2,3.0,10,1010010001.0,125,722,0,1223π---•- 中,负实数集合:{ };9.有两棵树,一棵高6米,另一棵高2米,两树相距5米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米;10.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_____________; 二.选择题:(每小题4分,共24分) 11.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)12.已知一直角三角形的木版,三边的平方和为1800cm 2,则斜边长为( ) (A ) 80cm (B ) 30cm (C ) 90cm (D ) 120cm13.下列语句中正确的是 ( )(A ) 9-的平方根是3-(B )9的平方根是3 (C ) 9的算术平方根是3±(D )9的算术平方根是3 14.下列运算中,错误的是 ( )①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ (A ) 1个 (B ) 2个 (C ) 3个 (D ) 4个15.若9,422==b a ,且0<ab ,则b a -的值为 ( ) (A ) 2- (B ) 5± (C ) 5 (D ) 5- 16.实数31,42,6π中,分数的个数有 ( )(A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个三.计算题:(每小题4分,共24分) 17. 24612⨯ 18. )32)(32(-+ 19.2224145-第10题图144225A20.)81()64(-⨯- 21.31227- 22.()3222143-⎪⎭⎫⎝⎛-⨯+23.解答题:(每小题4分,共8分)(1)822=y (2) 8)12(3-=-x24.已知a a a =-+-20052004,求22004-a 的值;(6分)25.如图,每个小正方形的边长是1,在图中画出①一个面积是2的直角三角形;②一个面积是2的正方形;(两个面积部分涂上阴影)(6分)26.(8分)一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?第25题图 A C C B A八年级上第一、二章测试题参考答案:一.1.100; 2.81; 3.33-,1; 4.不能; 5.1.0,2±; 6.54-; 7.1; 8.12-,3125-,2π-; 9.41; 10.10; 二.11.C ; 12.B ; 13.D ; 14.D ; 15.B ; 16.B ; 三.17.3; 18.1; 19.143; 20.72; 21.1; 22.7- 四.23.(1)2±=y ;(2)21-=x ; 24.∵02005≥-a ,∴02005≥-a ,∴2005≥a ,∴20042004-=-a a ∴a a a =-+-20052004,∴20042005=-a ,∴220042005=-a (两边平方)∴200520042=-a 25.26.8米;。

苏科版八年级上册数学《第1章全等三角形》单元测试题及答案

苏科版八年级上册数学《第1章全等三角形》单元测试题及答案

苏科版数学八年级上册《第1章全等三角形》单元测试题考试分值:120;考试时间:100分钟一.选择题(共10小题,满分40分)1.(4分)如图所示正方形网格中,连接AB、AC、AD,观测∠1+∠2+∠3=()A.120°B.125°C.130°D.135°2.(4分)长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.B.C.D.3.(4分)如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,一条线段PQ=AB,P,Q两点分别在线段AC和AC的垂线AX上移动,若△ABC和△APQ全等,则AP的值为()A.6cm B.12cm C.12cm或6cm D.以上答案都不对4.(4分)如图,已知△ABC≌△CDA,∠B=∠D,则下列结论中正确的是()①AB=CD,BC=DA.②∠BAC=∠DCA,∠ACB=∠CAD.③AB∥CD,BC∥DA.A.①B.②C.①③D.①②③5.(4分)下列说法正确的是()A.全等三角形是指周长和面积都一样的三角形B.全等三角形的周长和面积都一样C.全等三角形是指形状相同的两个三角形D.全等三角形的边都相等6.(4分)如图,已知点D在AC上,点B在AE上,△ABC≌△DBE,且∠BDA=∠A,若∠A:∠C=5:3,则∠DBC=()A.30°B.25°C.20°D.15°7.(4分)如图所示,△ABC≌△EDF,DF=BC,AB=ED,AE=20,AF=5,则AC的长为()A.20 B.5 C.10 D.158.(4分)下列不能判定三角形全等的是()A.如图(1),线段AD与BC相交于点O,AO=DO,BO=CO.△ABO与△BCO B.如图(2),AC=AD,BC=BD.△ABC与△ABDC.如图(3),∠A=∠C,∠B=∠D.△ABO与△CDOD.如图(4),线段AD与BC相交于点E,AE=BE,CE=DE,AC=BD.△ABC与△BAD9.(4分)如图,在四边形ABCD中,AD∥BC,若∠DAB的角平分线AE交CD于E,连接BE,且BE边平分∠ABC,则以下命题不正确的个数是①BC+AD=AB;②E为CD中点;=S四边形ABCD;⑤BC=CE.()③∠AEB=90°;④S△ABEA.0个B.1个C.2个D.3个10.(4分)一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可二.填空题(共5小题,满分20分)11.(4分)如图,已知△ACF≌△DBE,∠E=∠F,AD=9cm,BC=5cm,AB的长为cm.12.(4分)如图:已知DE=AB,∠D=∠A,请你补充一个条件,使△ABC≌△DEF,并说明你判断的理由:或.13.(4分)七巧板是我们祖先的一项卓越创造,它虽然只有七块,但是可以拼出多种多样的图形,如图就是一个七巧板,七块刚好拼成一个正方形,图中全等的三角形有对.14.(4分)在△ABC和△DEF中,AB=4,∠A=35°,∠B=70°,DE=4,∠D=°,∠E=70°,根据判定△ABC≌△DEF.15.(4分)如图,AB,D相交于点O,已知OC=OA,请你补充的一个条件或使△AOD≌△COB.三.解答题(共5小题,满分60分)16.(10分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.17.(12分)如图,在△ABC和△DCB中AC与BD相交于点O,AB=DC.(1)请你再添加一个条件,使得△ABC≌△DCB;(2)根据(1)中你所添加的条件,求证:△ABC≌△DCB;(3)△OBC的形状是.(直接写出结论,不需证明)18.(12分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.19.(12分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.20.(14分)点D是等边△ABC(即三条边都相等,三个角都相等的三角形)边BA上任意一点(点D与点B不重合),连接DC.(1)如图1,以DC为边在BC上方作等边△DCF,连接AF,猜想线段AF与BD的数量关系?请说明理由.(2)如图2,若以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?请说明理由.参考答案一.选择题1.D.2.A.3.C.4.D.5.B.6.C.7.D.8.C.9.B.10.D.二.填空题11.2.12.∠B=∠E或∠ACB=∠DFE或AF=CD.13.3.14.35,ASA.15.OB=DO或∠A=∠C.三.解答题16.解:(1)3对.分别是:△ABD≌△ACD;△ADE≌△ADF;△BDE≌△CDF.(2)△BDE≌△CDF.证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.又D是BC的中点,∴BD=CD.在Rt△BDE和Rt△CDF中,,∴△BDE≌△CDF(HL).17.解:(1)添加∠ABC=∠DCB,(2)证明如下:∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS).(3)由(2)知△ABC≌△DCB,∴∠ACB=∠DBC,∴△OBC的形状是等腰三角形.18.解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.19.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.20.解:(1)BD=AF,理由:∵△ABC和△DCF都是等边三角形,∴BC=AC,CD=CF,∠ACB=∠DCF=60°,∴∠BCD=∠ACF,在△BCD和△ACF中,,∴△BCD≌△ACF(SAS),∴BD=AF;(2)AB=AF+BF′,理由:∵△ABC和△DCF都是等边三角形,∴BC=AC,CF′=CD,∠F′CD=∠BCA=90°,∴∠F′CB=∠DCA,在△F′CB和△DCA中,,∴△F′CB≌△DCA(SAS),∴BF′=DA,由(1)知,BD=AF,∵AB=BD+AD,∴AB=AF+BF′.。

八年级数学上册第一单元测试题(含答案)

八年级数学上册第一单元测试题(含答案)

八年级数学上册第一单元测试题(含答案)满分120分,考试时间120分钟一、单选题(30分)1.现有3cm 、4cm 、5cm 、7cm 长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是( )A .4B .3C .2D .12.如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是( ) A .三角形具有稳定性 B .两点之间,线段最短 C .直角三角形的两个锐角互为余角 D .垂线段最短第2题图 第3题图 第4题图3.如图,在△ABC 中,∠1=∠2,G 为AD 的中点,BG 的延长线交AC 于点E ,F 为AB 上的一点,CF 与AD 垂直,交AD 于点H ,则下面判断正确的有( )①AD 是△ABE 的角平分线;②BE 是△ABD 的边AD 上的中线; ③CH 是△ACD 的边AD 上的高;④AH 是△ACF 的角平分线和高 A .2个 B .3个 C .4个 D .1个 4.如图,若△ABC ≌△DEF ,且BE =5,CF =2,则BF 的长为( ) A .5 B .3 C .2 D .1.5 5.将一副常规的三角尺按如图方式放置,则图中1∠的度数为( ) A .15︒B .60︒C .65︒D .75︒第5题图 第6题图 第7题图6.如图所示,△ABC ≌△BAD ,点A 与点B ,点C 与点D 是对应顶点,如果∠DAB =50°,∠DBA =40°,那么∠DAC 的度数为( ) A .5° B .10° C .40° D .50°7.如图,若AB AC =,则添加下列一个条件后,仍无法判定ABE ACD ∆≅∆的是( ) A .B C ∠=∠B .AE AD =C .BE CD =D .AEB ADC ∠=∠8.如图,D 、E 、F 分别是BC 、AD 、BE 的中点,若△BFD 的面积是3,则ABC ∆的面积是( )A .6B .18C .24D .12第8题图 第9题图 第10题图9.如图,点B 、C 、D 在同一直线上,AB //CE ,若∠A =55°,∠ACB =65°,则∠1的值为( ) A .80° B .65° C .55° D .60°10.如图,在平面直角坐标系中,点A(2,0),B(0,4),若以B ,O ,C 为顶点的三角形与△ABO 全等,则点C 的坐标不能为( )A. (-2,0)B. (0,-4)C. (2,4)D. (-2,4) 二、填空题(24分)11.如图,七边形ABCDEFG 的对角线共有 ________条.第11题图 第13题图 第14题图12.已知BD 是ABC △的中线,8AB =,5BC =,且ABD △的周长为16,则BCD 的周长为________. 13.如图,ABC ∆是直角三角形,90BAC ∠=︒,AD 是ABC ∆的高,6AB cm =,8AC cm =,BC 10cm =, 则AD 的长为_______.14.如图,在△ABC 中,D ,E 分别是边AB ,AC 上一点,将△ABC 沿DE 折叠,使点A 落在边BC 上,若∠A =60°,则∠1+∠2+∠3+∠4=______. 15.如图,点F 是△ABC 的边BC 延长线上一点,DF ⊥AB 于点D ,∠A =30°,∠F =50°,∠ACF 的度数是_____.第15题图 第16题图16.如图,一种测量工具,点O 是两根钢条AC 、BD 中点,并能绕点O 转动.由三角形全等可得内槽宽AB 与CD 相等,其中△OAB ≌△OCD 的依据是 (写出全等的简写) 17.如图,∠1,∠2,∠3是五边形ABCDE 的3个外角,若210A B ∠+∠=︒,则123∠+∠+∠=________.第17题图 第18题图18.如图,方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC 全等的格点三角形共有__________个(不含△ABC).三、解答题(66分) 19.(8分)如图,已知:AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC =60°,∠BCE =40°,求∠ADB 的度数.GABCD EFB C DA20. (8分)如图,D 是AC 上一点,AB=DA,DE ∥AB, ∠B=∠DAE ,求证:BC=AE21.(8分)如图所示,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE .22. (8分)如图所示,BD 是ABC ∠的角平分线,CD 是ABC ∆的外角平分线,BD 、CD 交于点D ,若70A ∠=︒,求D ∠的度数.23.(8分)如图,四边形ABCD 中,BC=CD ,CB ⊥AB 于B ,CD ⊥AD 于D ,求证:AB=AD . 24.(8分)某建筑测量队为了测量一栋居民楼ED 的高度,在大树AB 与居民楼ED 之间的地面上选了一点C ,使B ,C ,D 在一直线上,测得大树顶端A 的视线AC 与居民楼顶端E 的视线EC 的夹角为90°,若AB=CD=24米,BD=64米,请计算出该居民楼ED 的高度.ABC DEDE ABC25.(9分)将一个凸n边形剪去一个角得到一个新的多边形,其内角和为1620°,求n的值.26.(9分)如图,在四边形ABCD 中,AD∥BC,∠ABC=90°,AD=12,BC=24,动点P从点A出发以每秒1个单位的速度沿AD 向点D运动,动点Q从点C出发以每秒 2 个单位的速度沿CB向点B 运动,P,Q 同时出发,当点P停止运动时,点Q 也随之停止,连接PQ,DQ.设点P运动时间为t秒,问当t 为何值时,△PDQ ≌△CQD,并证明△PDQ ≌△CQD答案一、单选题1.现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.4B.3C.2D.1答案:B2.如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是()A.三角形具有稳定性B.两点之间,线段最短C.直角三角形的两个锐角互为余角D.垂线段最短答案:A第2题图 第3题图 第4题图3.如图,在△ABC 中,∠1=∠2,G 为AD 的中点,BG 的延长线交AC 于点E ,F 为AB 上的一点,CF 与AD 垂直,交AD 于点H ,则下面判断正确的有( ) ①AD 是△ABE 的角平分线;②BE 是△ABD 的边AD 上的中线; ③CH 是△ACD 的边AD 上的高;④AH 是△ACF 的角平分线和高A .2个B .3个C .4个D .1个答案:A4.如图,若△ABC ≌△DEF ,且BE =5,CF =2,则BF 的长为( ) A .5 B .3 C .2D .1.5答案:D5.将一副常规的三角尺按如图方式放置,则图中1∠的度数为( ) A .15︒ B .60︒ C .65︒ D .75︒答案:D第5题图 第6题图 第7题图6.如图所示,△ABC ≌△BAD ,点A 与点B ,点C 与点D 是对应顶点,如果∠DAB =50°,∠DBA =40°,那么∠DAC 的度数为( )A .5°B .10°C .40°D .50°答案:B7.如图,若AB AC =,则添加下列一个条件后,仍无法判定ABE ACD ∆≅∆的是( ) A .B C ∠=∠ B .AE AD = C .BE CD = D .AEB ADC ∠=∠答案:C8.如图,D 、E 、F 分别是BC 、AD 、BE 的中点,若△BFD 的面积是3,则ABC ∆的面积是( )A .6B .18C .24D .12答案:C第8题图 第9题图 第10题图9.如图,点B 、C 、D 在同一直线上,AB //CE ,若∠A =55°,∠ACB =65°,则∠1的值为( )A .80°B .65°C .55°D .60°答案:D10.如图,在平面直角坐标系中,点A(2,0),B(0,4),若以B ,O ,C 为顶点的三角形与△ABO 全等,则点C 的坐标不能为( )A. (-2,0)B. (0,-4)C. (2,4)D. (-2,4)答案:B二、填空题11.如图,七边形ABCDEFG 的对角线共有 ________条. 答案:14第11题图 第13题图 第14题图12.已知BD 是ABC △的中线,8AB =,5=,且ABD △的周长为16,则BCD 的周长为________. 答案:13 13.如图,ABC ∆是直角三角形,90BAC ∠=︒,AD 是ABC ∆的高,6AB cm =,8AC cm =,BC 10cm =, 则AD 的长为_______.答案:4.814.如图,在△ABC 中,D ,E 分别是边AB ,AC 上一点,将△ABC 沿DE 折叠,使点A 落在边BC 上,若∠A =60°,则∠1+∠2+∠3+∠4=______.答案:240° 15.如图,点F 是△ABC 的边BC 延长线上一点,DF ⊥AB 于点D ,∠A =30°,∠F =50°,∠ACF 的度数是_____.答案:70°第15题图 第16题图16.如图,一种测量工具,点O 是两根钢条AC 、BD 中点,并能绕点O 转动.由三角形全等可得内槽宽AB 与CD 相等,其中△OAB ≌△OCD 的依据是 (写出全等的简写)答案:SAS 17.如图,∠1,∠2,∠3是五边形ABCDE 的3个外角,若210A B ∠+∠=︒,则123∠+∠+∠=________.答案:210°第17题图 第18题图18.如图,方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC 全等的格点三角形共有__________个(不含△ABC).答案:7 三、解答题19.如图,已知:AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC =60°,∠BCE =40°,求∠ADB 的度数.【解析】∵CE 是△ABC 的高 ∴∠BEC=90°△BEC 为直角三角形 ∵∠BCE =40°∴∠B=90°-∠BCE =90°-40°=50° ∵∠BAC =60°, AD 是△ABC 的角平分线∴1302BAD BAC ∠=∠=︒ 在△ADB 中,∠ADB=180°-∠B-∠BAD=180°-50°-30°=100° 20. 如图,D 是AC 上一点,AB=DA,DE ∥AB, ∠B=∠DAE ,求证:BC=AEG A BC D EFB C D A【解析】 ∵DE ∥AB∴∠EDA=∠CAB 在△ADE 和△BAC 中EDA CAB DA AB DAE B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△BAC(ASA) ∴AE=BC21.如图所示,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE . 【解析】 ∵∠1=∠2∴∠1+∠EAB=∠2+∠EAB 即∠CAB=∠EAD 在△CAB 和△EAD 中AC AE CAB EAD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CAB ≌△EAD(SAS) ∴BC=DE22.如图所示,BD 是ABC ∠的角平分线,CD 是ABC ∆的外角平分线,BD 、CD 交于点D ,若70A ∠=︒,求D ∠.【解析】∵ACE A ABC ∠=∠+∠∵12DCE ACE ∠=∠,12DBC ABC ∠=∠∴12DCE A DBC ∠=∠+∠∵DCE D DBC ∠=∠+∠∴12D DBC A DBC ∠+∠=∠+∠,即1352D A ∠=∠=︒.【答案】35︒23.如图,四边形ABCD 中,BC=CD ,CB ⊥AB 于B ,CD ⊥AD 于D ,求证:AB=AD . 【解析】连接AC ∵CB ⊥AB ,CD ⊥AD∴△CBA 和△CDA 为直角三角形 在Rt △CBA 和Rt △CDA 中AC AC BC DC =⎧⎨=⎩∴Rt △CBA ≌Rt △CDA (HL) ∴AB=AD24.某建筑测量队为了测量一栋居民楼ED 的高度,在大树AB 与居民楼ED 之间的地面上选了一点C ,使B ,C ,D 在一直线上,测得大树顶端A 的视线AC 与居民楼顶端E 的视线EC 的夹角为90°,若AB=CD=24ABC DEDEABC米,BD=64米,请计算出该居民楼ED 的高度. 【解析】根据题意∠ABC=∠CDE=∠ACE=90° ∴∠ACB+∠ECD=90°在Rt △ABC 中,∠ACB+∠CAB=90° ∴∠CAB=∠ECD 在△ABC 和△CDE 中CAB ECD AB CDABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDE(ASA) ∴BC=DE∵BC=BD-CD=64-24=40 ∴DE=4025.将一个凸n 边形剪去一个角得到一个新的多边形,其内角和为1620°,求n 的值. 【解析】分三张情况,(1)剪去一个角后得到的新多边形边数少1,如图所示:(3)1801620n -⋅︒=︒解得n=12(2)剪去一个角后得到的新多边形边数不变,如图所示:(2)1801620n -⋅︒=︒解得n=11(3)剪去一个角后得到的新多边形边数多1,如图所示:(21)1801620n -+⋅︒=︒解得n=10所以n 的值为12,11或1026.如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°,AD=12,BC=24,动点 P 从点 A 出发以每秒1个单位的速度沿 AD 向点 D 运动,动点 Q 从点 C 出发以每秒 2 个单位的速度沿 CB 向点 B 运动,P ,Q 同时出发,当点 P 停止运动时,点 Q 也随之停止,连接PQ ,DQ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上第一单元测试题
一、选择题(每小题3分,共36分)
1、下列说法正确的是( )
A.有理数只是有限小数。

B.无理数是无限小数。

C.无限小数是无理数。

D.3
2
是分

2、81的平方根是( )
B.±9
C.3
D.±3 3、立方根等于本身的数是( )
A.-1
B.0
C.±1
D.±1或0 4、边长为1的正方形的对角线长是( ) A.整数 B.分数 C.有理数 D.无理数 5、下列说法错误的是( )
的平方根是1,B.-1的立方根是-.2是2的平方根。

D.-3是2)3( 的平方根
6.将写有字“B ”的字条正对镜面,则镜中出现的会是( )。

(A )B (B ) (C ) (D ) 7、下列四个图案
中,具有
一个共有性质。

则下面四个数字中,满足上述性质的一个是( )。

A 6 B 7 C 8 D 9 8、下列命题中,不正确的是( ) A 关于直线对称的两个三角形一定全等;
B 两个圆形纸片随意平放在水平桌面上构成轴对称图形;
C 若两图形关于直线对称,则对称轴是对应点所连线的垂直平分线;
D 等腰三角形一边上的高,中线及这边对角平分线重合。

9.已知等腰三角形的一边等于3,一边等于6,那么它的周长等于 ( ) A .12 B .12或15 C .15 D .15或18 10.已知等腰三角形的一个外角等于100°,则它的顶角是 ( ) A .80° B .20° C .80°或20° D .不能确定 11.如图,已知∠AOB=40°,OM 平分∠AOB ,MA ⊥OA ,MB ⊥OB ,垂足 分别为A 、B 两点,则∠MAB 等于 ( ) A .50° B .40° C .30° D .20°
12.如图,DE 是△ABC 中边AC 的垂直平分线,若BC=18 cm ,AB=10 cm ,则△ABD 的周长为 ( ) A .16 cm B .28 cm C .26 cm D .18 cm
二、填空题(每小题3分,共21分)
13、一个正数的平方等于169,
则这个正数是 ,一个负数的平方等于
25
16
,这个负数是 ,一个数的平方等于6,则这个数是 .
14、-1的立方根是 27的立方根是 ,5的算术平方根是 .
15、化简:
3681= ,-2
)2
1(- = ,-33)3(- =
16、64
的立方根是 平方根是 平方是 。

17、比较大小:8 7,5
3
10 2
2
1
π 。

18、等腰三角形腰上的高与另一腰的夹角为40度,则这个等腰三角形的顶角为 度
19、如图,△ABC 中,AB=AC ,∠A=36°AB 的中垂线DE 交AC 于D ,交AB 于E ,下述结论:(1)BD 平分∠ABC ;(2)AD=BD=BC ;(3)△BCD 的周长等于AB +BC ;(4)D 是AC 中点。

其中正确的命题序号是_________________。

三、、解答题
20、(12)如图,根据要求回答下列问题:
解:(1)点A 关于x 轴对称点的坐标是 ;
点B 关于y 轴对称点的坐标是 ;
(2)作出与△ABC 关于x 轴对称的图形(不写作法,保留作图痕
迹)
21、(10)在△ABC 中,∠C =90°,DE 垂直平分斜边AB ,分别交AB ,BC 于D ,E 。


∠CAE =∠B +30°,求∠AEB 。

E
D
C
A
22、(10)已知AB=AC,BD=DC,AE平分∠FAC,问:AE与AD是否垂直为什么
23、(9)以“,△△,―――”(即两个圆,两个三角形,三条线段)为条件画出一个有实际意义的对称图形。

24.(10)下面是数学课堂上的一个学习片段,阅读后,请回答后面的问题;
学习了等腰三角形的有关内容后,王老师请同学们回答这样一个问题:“已知等腰三角形ABC一个角的度数为30°,请你求出其他两个角。

”在与同学交流后,小明说:“其他两个角的度数分别是30°和120°."小梁说:“其他两个角的度数分别是75°和75°。

”还有一些同学也提出了不同看法······(1)假如你也在课堂上,你的意见如何为什么(2)通过对上面的数学问题的讨论,你有什么感受(用一句话表示)25.(12)在△ABC中,AB=AC, ∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,
(1)试猜想∠MAN的大小并说明理由。

(2)试证:BM=MN=NC
M
E
N
A
B
A
B C D E
F。

相关文档
最新文档