万有引力定律单元检测
高三物理单元测试卷(四):曲线运动与万有引力定律
高三物理单元测试卷(四):曲线运动与万有引力定律曲线运动与万有引力定律班别:姓名:座号:总分:第Ⅰ卷(共34分)一.单项选择题(本题包括6小题,每小题3分,共18分,每小题只有一个选项符合题意)1.如图所示,用细线吊着一个质量为m的小球,使小球在水平面内做圆锥摆运动,关于小球受力,正确的是()A.受重力、拉力、向心力B.受重力、拉力C.受重力D.以上说法都不正确2.质量为m的石块从半径为R的半球形的碗口下滑到碗的最低点的过程中,假如摩擦力的作用使得石块的速度大小不变,如图所示,那么()A.因为速率不变,因此石块的加速度为零B.石块下滑过程中受的合外力越来越大C.石块下滑过程中的摩擦力大小不变D.石块下滑过程中的加速度大小不变,方向始终指向球心3.质量不计的轻质弹性杆P 部分插入桌面上小孔中,杆另一端套有质量为m 的小球,今使小球在水平面内做半径为R 、角速度为ω的匀速圆周运动,如图所示,则杆的上端受到球对它的作用力大小为( D )A .R m 2ωB .mgC .R m mg 2ω+D .242R g m ω+ 4.如图所示,a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是:( D )A .b 、c 的线速度大小相等,且大于a 的线速度;B .b 、c 的向心加速度大小相等,且大于a 的向心加速度;C .c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的c ;D .a 卫星由于某缘故轨道半径缓慢减小,则其线速度将逐步增大。
5.长为L 的轻绳的一端固定在O 点,另一端栓一个质量为m 的小球.先令小球以O 为圆心,L 为半径在竖直平面内做圆周运动,小球能通过最高点,如图所示。
g 为重力加速度,则( B )A .小球通过最高点时速度可能为零B .小球通过最高点时所受轻绳的拉力可能为零C .小球通过最底点时所受轻绳的拉力可能等于5mgD .小球通过最底点时速度大小可能等于2gL b a c地球6.我们的银河系的恒星中大约四分之一是双星。
高一物理万有引力定律测试题及答案.doc
万有引力定律测试题班级姓名学号一、选择题(每小题中至少有一个选项是正确的,每小题5分,共40分)1.绕地球作匀速圆周运动的人造地球卫星内,其内物体处于完全失重状态,则物体()A.不受地球引力作用 B.所受引力全部用来产生向心加速度C.加速度为零 D.物体可在飞行器悬浮2.人造地球卫星绕地球做匀速圆周运动,其轨道半径为R,线速度为v,周期为T,若要使卫星的周期变为2T,可能的办法是()A.R不变,使线速度变为v/2B.v不变,使轨道半径变为2RD.无法实现3.由于地球的自转,地球表面上各点均做匀速圆周运动,所以()A.地球表面各处具有相同大小的线速度B.地球表面各处具有相同大小的角速度C.地球表面各处具有相同大小的向心加速度D.地球表面各处的向心加速度方向都指向地球球心4.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星,相对自己静止不动,则这两位观察者的位置及两人造卫星到地球中心的距离可能是()A.一人在南极,一人在北极,两卫星到地球中心的距离一定相等B.一人在南极,一人在北极,两卫星到地球中心的距离可以不等,但应成整数倍C.两人都在赤道上,两卫星到地球中心的距离一定相等D.两人都在赤道上,两卫星到地球中心的距离可以不等,但应成整数倍5.设地面附近重力加速度为g0,地球半径为R0,人造地球卫星圆形运行轨道半径为R,那么以下说法正确的是( )6.一宇宙飞船在一个星球表面附近做匀速圆周运动,宇航员要估测星球的密度,只需要测定飞船的()A:环绕半径B:环绕速度C:环绕周期D:环绕角速度7.假设火星和地球都是球体,火星的质量M火和地球的质量M地之比M火/M地=p,火星的半径R火和地球的半径R地之比R火/R地=q,那么火星表面处的重力加速度g火和地球表面处的重力的加速度g地之比等于[]A.p/q2B.pq2C.p/qD.pqm8.已知万有引力恒量G ,则还已知下面哪一选项的数据,可以计算地球的质量( ) A :已知地球绕太阳运行的周期及地球中心到太阳中心的距离.B :已知月球绕地球运行的周期及月球中心到地球中心的距离.C :已知人造地球卫星在地面附近绕行的速度和运行周期.D :已知地球同步卫星离地面的高度.附加题(每题5分)1.假如一作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则 ( )A.根据公式v=ωr ,可知卫星的线速度将增大到原来的2倍2.两个靠近的天体称为双星,它们以两者连线上某点O 为圆心做匀速圆周运动,其质量分别为m 1、m 2,如右图所示,以下说法正确的是( )A :它们的角速度相同.B :线速度与质量成反比.C :向心力与质量的乘积成正比.D :轨道半径与质量成反比.二、填空题(每空6分,共36分) 1.天文学家根据天文观测宣布了下列研究成果:银河系中可能存在一个大“黑洞”,接近“黑洞”的所有物质,即使速度等于光速也被“黑洞”吸入,任何物体都无法离开“黑洞”。
(最终版)万有引力定律单元测试卷
第三章——万有引力定律单元测试卷本卷共100分,考试时间:60分钟班别: 姓名: 学号:一、单项选择题(共5小题,每小题6分,共30分。
) 1、下列说法正确的是( )A .第一宇宙速度是人造卫星的最大发射速度B .第一宇宙速度是人造卫星在地面附近绕地球做匀速圆周运动的最大运行速度C .如果需要,地球同步通讯卫星可以定点在地球上空的任何一点D .地球同步通讯卫星的轨道可以是圆的也可以是椭圆的2、 一个物体在地球表面所受的重力为G ,则在距地面高度为地球半径的2倍时,所受引力为A.2GB.3GC.4GD.9G3、若已知行星绕太阳公转的半径为r ,公转的周期为T ,万有引力恒量为G ,则由此可求出( )A .某行星的质量B .太阳的质量C .太阳表面的重力加速度D .太阳的密度4、假如地球自转速度增大,关于物体重力的下列说法中不正确的是( ) A .放在赤道地面上的物体的万有引力不变 B .放在两极地面上的物体的重力不变 C .赤道上的物体重力减小D .放在两极地面上的物体的重力增大 5、(2012年高考浙江理综-15)如图2所示,在火星与木星的轨道之间有一小行星带。
假设该带中的小行星只受太阳的引力,并绕太阳做匀速圆周运动。
下列说法正确的是A .太阳对各小行星的引力相同B .各小行星绕太阳运动的周期均小于一年C .小行星带内侧小行星的向心加速度大于外侧小行星的向心加速度D .小行星带内各小行星的线速度值都大于地球公转的线速度二、多项选择题(共5小题,每小题6分,共30分。
全部选对得6分,对而不全得3分,选错一个计0分。
) 6、关于开普勒行星运动的公式=k ,以下理解正确的是( ) A .k 是一个与行星无关的常量B .若地球绕太阳运转轨道的半长轴为R 地,周期为T 地;月球绕地球运转轨道的长半轴为R 月,周期为T 月,则 C .T 表示行星运动的自转周期 D .T 表示行星运动的公转周期7、假如一作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则( )A .根据公式v=ωr ,可知卫星的线速度将增大到原来的2倍B .根据公式,可知卫星所需要的向心力将减小到原来的C .根据公式,可知地球提供的向心力将减小到原来的D .根据上述B 和C 中给出的公式,可知卫星运动的线速度将减小到原来的8、关于万有引力常量G 的下列说法,正确的是( )A .G 的量值等于两个可视为质点、质量都是1kg 的物体相距1m 时的万有引力B .G 的量值是牛顿发现万有引力定律时就测出的C .G 的量值是由卡文迪许测出的D .G 的量值N ·m 2/kg 2,只适用于计算天体间的万有引力9、质量为m 1、m 2的甲乙两物体间的万有引力,可运用万有引力定律计算。
高一物理万有引力定律单元测试及答案
万有引力定律单元检测一、选择题(共12小题,每小题4分,共48分,1--7题为单选题,8--12题为多选题。
全部选对的得2分,选不全的得2分,有选错或不答的得0分)1.关于万有引力定律和引力常量的发现,下面说法中正确的是( ) A .万有引力定律是由开普勒发现的,而引力常量是由伽利略测定的 B .万有引力定律是由开普勒发现的,而引力常量是由卡文迪许测定的 C .万有引力定律是由牛顿发现的,而引力常量是由胡克测定的 D .万有引力定律是由牛顿发现的,而引力常量是由卡文迪许测定的 2.对万有引力定律的表达式F =Gm 1m 2r 2,下列说法正确的是( ) A .公式中G 为常量,没有单位,是人为规定的 B .r 趋向于零时,万有引力趋近于无穷大C .两物体之间的万有引力总是大小相等,与m 1、m 2是否相等无关D .两个物体间的万有引力总是大小相等,方向相反的,是一对平衡力3.两个质量均为M 的星体,其连线的垂直平分线为AB ,O 为两星体连线的中点,如图所示,一质量为m 的物体从O 沿OA 方向运动,设A 离O 足够远,则物体在运动过程中受到两个星球万有引力的合力大小变化情况是 ( ). A .一直增大 B .一直减小 C .先减小后增大 D .先增大后减4.“神舟七号”绕地球做匀速圆周运动的过程中,下列事件不.可能发生的是( ) A .航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 B .悬浮在轨道舱内的水呈现圆球状C .航天员出舱后,手中举起的五星红旗迎风飘扬D .从飞船舱外自由释放的伴飞小卫星与飞船的线速度相等5.如图,拉格朗日点L 1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。
据此,科学家设想在拉格朗日点L 1建立空间站,使其与月球同周期绕地球运动。
以1a 、2a 分别表示该空间站和月球向心加速度的大小,3a 表示地球同步卫星向心加速度的大小。
2021-2022学年 教科版(2019)必修2 第三章 万有引力定律 单元测试卷(含答案)
2021-2022学年 教科版(2019)必修2 第三章 万有引力定律单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题(每题4分,共8各小题,共计32分)1.一质量为m 的物体,假设在火星两极宇航员用弹簧测力计测得其所受的重力为1F ,在火星赤道上宇航员用同一弹簧测力计测得其所受的重力为2F ,通过天文观测测得火星的自转角速度为ω,设引力常量为G ,将火星看成是质量分布均匀的球体,则火星的密度和半径分别为( ) A.()211221234πF F F G F F m ωω-- B.212234πF F G m ωω C.()211221234πF F F G F F m ωω+- D.212234πF F G ωω- 2.若取地球的第一宇宙速度为8 km/s ,某行星的质量是地球质量的6倍,半径是地球半径的1.5倍,则此行星的第一宇宙速度约为( ) A.16 km/sB.32 km/sC.4 km/sD.2 km/s3.位于贵州的“中国天眼”(FAST )是目前世界上最大的单口径射电望远镜,通过FAST 可以测量地球与木星之间的距离。
当FAST 接收到来自木星的光线的传播方向恰好与地球公转线速度方向相同时,测得地球与木星的距离是地球与太阳距离的k 倍。
若地球和木星绕太阳的运动均视为匀速圆周运动且轨道共面,则可知木星的公转周期为( ) A.()3241k +年B.()3221k +年C.32(1)k +年D.32k 年4.如图,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a b 、到地心O 的距离分别为12r r 、,线速度大小分别为12v v 、,则( )A.12v v =B.12v v =C.21221v r v r ⎛⎫= ⎪⎝⎭D.21122v r v r ⎛⎫= ⎪⎝⎭5.“祝融号”火星车登陆火星之前,“天问一号”探测器沿椭圆形的停泊轨道绕火星飞行,其周期为2个火星日。
高一物理万有引力定律单元测试卷(附答案)
高一物理万有引力定律单元测试卷(题卷)注意事项:1.本试卷满分120分.考试时间90分钟.2.请把题卷的答案写在答卷上.考试结束,只交回答卷. 一、单选题(每小题4分,共48分)在每小题给出的四个选项中,只有一个选项是符合题目要求的.多选、不选或错选,该小题不得分.1.下面关于万有引力的说法中正确的是( A )A.万有引力是普遍存在于宇宙空间中所有具有质量的物体之间的相互作用B.重力和引力是两种不同性质的力C.万有引力只存在于可看成质点的物体间或均质球之间。
D.当两个物体间距为零时,万有引力将无穷大 2.三颗人造卫星A 、B 、C 在地球的大气层外沿如图所示的方向做匀速圆周运动,C B A m m m <=,则三颗卫星( D ) A.线速度大小:C B A v v v << B.周期:C B A T T T >> C.向心力大小: C B A F F F <= D.轨道半径和周期的关系:232323CC B BA A T R T R T R == 3.若已知某行星绕太阳公转的半径为r ,公转周期为T ,万有引力常量为G ,则由此可求出(B )A. 某行星的质量B.太阳的质量C. 某行星的密度D.太阳的密度 4.利用下列哪组数据,可以计算出地球的质量( A )①已知地球半径R 和地面重力加速度g②已知卫星绕地球做匀速圆周运动的轨道半径和r 周期T ③已知月球绕地球做匀速圆周运动的周期T 和月球质量m ④已知同步卫星离地面高h 和地球自转周期TA .①②B .①②④C .①③④D .②③④ 5.苹果落向地球,而不是地球向上运动碰到苹果,发生这个现象的原因是( C ) A.由于苹果质量小,对地球的引力小,而地球质量大,对苹果引力大造成的 B.由于地球对苹果有引力,而苹果对地球无引力造成的C.苹果与地球间的引力是大小相等的,由于地球质量极大,不可能产生明显的加速度D.以上说法都不对6.两颗人造地球卫星,质量之比m 1:m 2=1:2,轨道半径之比R 1:R 2=3:1,下面有图1关数据之比正确的是( D )A.周期之比T 1:T 2=3:1B.线速度之比v 1:v 2=3:1C.向心力之比为F 1:F 2=1:9D.向心加速度之比a 1:a 2=1:9 7.两颗人造卫星A 、B 绕地球做圆周运动,周期之比为 A T ∶B T =1∶8,则轨道把轨道半径之比和运行速度之比分别为( D ) A.A R ∶B R = 4∶1 A V ∶B V = 1∶2 B.A R ∶B R = 4∶1 A V ∶B V = 2∶1 C.A R ∶B R = 1∶4 A V ∶B V = 1∶2 D.A R ∶B R = 1∶4 A V ∶B V = 2∶18.地球同步卫星距地面高度为h ,地球表面的重力加速度为g ,地球半径为R ,地球自转的角速度为ω,那么下列表达式表示同步卫星绕地球转动的线速度不正确的一项是( B )A.ω)(h R v +=B.)/(h R Rg v +=C.)/(h R g R v +=D.32ωg R v = 9.将物体由赤道向两极移动( C )A .它的重力减小B .它随地球转动的向心力增大C .它随地球转动的向心力减小D .向心力方向、重力的方向都指向球心 10、地球表面的重力加速度为g 0,物体在距地面上方3R 处(R 为地球半径)向心加速度为a n ,那么两个加速度之比g /a n 等于 ( D ) A.1:1 B.1:4 C.1:9 D.16:111.由于地球的自转,地球表面上各点均做匀速圆周运动,所以 ( B ) A.地球表面各处具有相同大小的线速度 B.地球表面各处具有相同大小的角速度C.地球表面各处具有相同大小的向心加速度D.地球表面各处的向心加速度方向都指向地球球心 12、天文学上把两个相距较近,由于彼此的引力作用而沿各自的轨道互相环绕旋转的恒星系统称为“双星”系统,设一双星系统中的两个子星保持距离不变,共同绕着连线上的某一点以不同的半径做匀速圆周运动,则( BA.两子星的线速度的大小一定相等B.两子星的角速度的大小一定相等C.两子星的周期的大小一定不.相等D.两子星的向心加速度的大小一定相等二、填空题(每小题4分,共24分)13. 地球做匀速圆周运动的人造地球卫星,卫星离地面越高,其线速度越______小__,角速度越____小___,旋转周期越_____大_____。
(新教材)人教版 物理 必修第二册 第七章 万有引力与宇宙航行 单元测试题
绝密★启用前(新教材)人教版物理必修第二册第七章万有引力与宇宙航行单元测试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分分卷I一、单选题(共10小题,每小题4.0分,共40分)1.发现行星运动定律的科学家是()A.第谷B.卡文迪许C.牛顿D.开普勒2.极地卫星(轨道平面经过地球的南北两极)圆轨道的半径为r,周期为2 h.赤道卫星(轨道平面为赤道平面)圆轨道半径为4r.则两卫星从距离最近到下一次最近的时间为()A.hB. 14 hC. 16 hD. 30 h3.澳大利亚科学家近日宣布,在离地球约14光年的红矮星wolf 1061周围发现了三颗行星b、c、d,它们的公转周期分别是5天、18天、67天,公转轨道可视为圆,如图所示.已知万有引力常量为G.下列说法不正确的是()A.可求出b、c的公转半径之比B.可求出c、d的向心加速度之比C.若已知c的公转半径,可求出红矮星的质量D.若已知c的公转半径,可求出红矮星的密度4.我国成功发射“一箭20星”,在火箭上升的过程中分批释放卫星,使卫星分别进入离地200-600 km高的轨道.轨道均视为圆轨道,下列说法正确的是()A.离地近的卫星比离地远的卫星运动速率小B.离地近的卫星比离地远的卫星向心加速度小C.上述卫星的角速度均大于地球自转的角速度D.同一轨道上的卫星受到的万有引力大小一定相同5.物理学发展历史中,在前人研究基础上经过多年的尝试性计算,首先发表行星运动的三个定律的科学家是()A.哥白尼B.第谷C.伽利略D.开普勒6.我国的人造卫星围绕地球的运动,有近地点和远地点,由开普勒定律可知卫星在远地点运动速率比近地点的运动速率小,如果近地点距地心距离为R1,远地点距地心距离为R2,则该卫星在远地点运动速率和近地点运动的速率之比为()A.B.C.D.7.已知地球半径为R,将一物体从地面发射至离地面高h处时,物体所受万有引力减少到原来的一半,则h为()A.RB. 2RC.RD.R8.引力波现在终于被人们用实验证实,爱因斯坦的预言成为科学真理.早在70年代就有科学家发现,高速转动的双星可能由于辐射引力波而使星体质量缓慢变小,观测到周期在缓慢减小,则该双星间的距离将()A.变大B.变小C.不变D.可能变大也可能变小9.现代观测表明,由于引力作用,恒星有“聚集”的特点,众多的恒星组成了不同层次的恒星系统,最简单的恒星系统是两颗互相绕转的双星,事实上,冥王星也是和另一星体构成双星,如图所示,这两颗行星m1、m2各以一定速率绕它们连线上某一中心O匀速转动,这样才不至于因万有引力作用而吸引在一起,现测出双星间的距离始终为L,且它们做匀速圆周运动的半径r1与r2之比为3∶2,则()A.它们的角速度大小之比为2∶3B.它们的线速度大小之比为3∶2C.它们的质量之比为3∶2D.它们的周期之比为2∶310.重力是由万有引力产生的,以下说法中正确的是()A.同一物体在地球上任何地方其重力都一样B.物体从地球表面移到空中,其重力变大C.同一物体在赤道上的重力比在两极处小些D.绕地球做圆周运动的飞船中的物体处于失重状态,不受地球的引力二、多选题(共4小题,每小题5.0分,共20分)11.(多选)根据开普勒定律,我们可以推出的正确结论有()A.人造地球卫星的轨道都是椭圆,地球在椭圆的一个焦点上B.同一卫星离地球越远,速率越小C.不同卫星,轨道越大周期越大D.同一卫星绕不同的行星运行,的值都相同12.(多选)对于公式m=,下列说法中正确的是()A.式中的m0是物体以速度v运动时的质量B.当物体的运动速度v>0时,物体的质量m>m0,即物体的质量改变了,故经典力学不再适用C.当物体以较小速度运动时,质量变化十分微弱,经典力学理论仍然适用,只有当物体以接近光速的速度运动时,质量变化才明显,故经典力学适用于低速运动,而不适用于高速运动D.通常由于物体的运动速度很小,故质量的变化引不起我们的感觉.在分析地球上物体的运动时,不必考虑质量的变化13.(多选)两颗靠得很近的天体称为双星,它们以两者连线上某点为圆心做匀速圆周运动,这样就不至于由于引力作用而吸引在一起,则下述物理量中,与它们的质量成反比的是()A.线速度B.角速度C.向心加速度D.转动半径14.(多选)宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,而不会因为万有引力的作用而吸引到一起.如图所示,某双星系统中A、B两颗天体绕O 点做匀速圆周运动,它们的轨道半径之比rA∶rB=1∶2,则两颗天体的()A.质量之比m A∶m B=2∶1B.角速度之比ωA∶ωB=1∶2C.线速度大小之比v A∶v B=1∶2D.向心力大小之比F A∶F B=2∶1分卷II三、计算题(共4小题,每小题10.0分,共40分)15.由于银河系外某双黑洞系统的合并,美国国家科学基金会(NSF)宣布人类首次直接探测到了引力波,印证了爱因斯坦的预言.其实中国重大引力波探测工程“天琴计划”也已经正式启动,“天琴计划”的其中一个阶段就是需要发射三颗地球高轨卫星进行引力波探测,假设我国发射的其中一颗高轨卫星以速度v沿圆形轨道环绕地球做匀速圆周运动,其周期为T,地球半径为R,引力常量为G,根据以上所给条件,试求:(1)地球的质量M.(2)地球的平均密度.(球体体积V=πR3)16.已知行星的下列数据:引力常量为G.(1)行星表面的重力加速度g;(2)行星半径R;(3)卫星A与行星两球心间的距离r;(4)行星的第一宇宙速度v1;(5)行星附近的卫星绕行星运动的周期T1;(6)卫星A绕行星运动的周期T2;(7)卫星A绕行星运动的速度v2;(8)卫星A绕行星运动的角速度ω.试选取适当的数据估算行星的质量.(要求至少写出三种方法)17.如图是在同一平面不同轨道上同向运行的两颗人造地球卫星.设它们运行的周期分别是T1、T2(T1<T2),且某时刻两卫星相距最近.问:(1)两卫星再次相距最近的时间是多少?(2)两卫星相距最远的时间是多少?18.经过观察,科学家在宇宙中发现许多双星系统,一般双星系统距离其它星体很远,可以当作孤立系统处理,若双星系统中每个星体的质量都是M,两者相距为L(远大于星体半径),它们正绕着两者连线的中点做圆周运动.(1)试计算该双星系统的运动周期T计算.(2)若实际观察到的运动周期为T观测,且T观测∶T计算=1∶(N>0),为了解释T观测与T计算的不同,目前有理论认为,宇宙中可能存在观测不到的暗物质,假定有一部分暗物质对双星运动产生影响,该部分物质的作用等效于暗物质集中在双星连线的中点,试证明暗物体的质量M′与星体的质量M之比=.答案1.【答案】D【解析】发现行星运动定律的科学家是开普勒,故选D.2.【答案】C【解析】卫星绕地球做圆周运动由万有引力提供向心力,据此有G=mR可得,由此可知,赤道卫星轨道半径是极地卫星轨道半径的4倍,其运行周期是极地卫星周期的8倍,即赤道卫星的周期T2=8T1=16 h.因为卫星做圆周运动,相距最近位置根据圆周的对称性可知,有两个位置,其两位置间的时间差为每个卫星周期的,因为极地卫星周期为2 h,其半周期为1 h,赤道卫星周期为16 h,其半周期为8 h,所以在赤道卫星运转=8 h的过程中,极地卫星运转刚好是4个周期,故由第一次相距最近到第二次相距最近的时间为赤道卫星运转1个周期的时间即t=16 h.故选C.3.【答案】D【解析】行星b、c的周期分别为5天、18天,均做匀速圆周运动,根据开普勒第三定律公式=k,可以求解出轨道半径之比,选项A正确;根据万有引力等于向心力列式,对行星c、d,有G=ma n,故可以求解出c、d的向心加速度之比,选项B正确;已知c的公转半径和周期,根据牛顿第二定律,有G=mr,可以求解出红矮星的质量,但不知道红矮星的体积,无法求解红矮星的密度,选项C正确,D错误.4.【答案】C【解析】同步卫星的轨道高度约为 36 000 千米.卫星做匀速圆周运动,根据牛顿第二定律,有:G =m,解得:v=,故离地近的卫星比离地远的卫星运动速率大;A错误;卫星做匀速圆周运动,根据牛顿第二定律,有:G=ma,解得:a=,故离地近的卫星比离地远的卫星向心加速度大,B错误;卫星做匀速圆周运动,根据牛顿第二定律,有:G=mω2r,解得:ω=.同步卫星的角速度等于地球自转的角速度,同步卫星的轨道高度约为36 000 千米,卫星分别进入离地200-600 km高的轨道,是近地轨道,故角速度大于地球自转的角速度,C正确;由于卫星的质量不一定相等,故同一轨道上的卫星受到的万有引力大小不一定相等,D错误;故选C.5.【答案】D【解析】哥白尼提出了日心说,第谷对行星进行了大量的观察和记录,开普勒在第谷的观察记录的基础上提出了行星运动的三个定律,选项D正确,A、B、C错误.6.【答案】B【解析】由开普勒第二定律:行星与太阳的连线在相等时间内扫过的面积相等即rmv=c(常数),所以v=,v近∶v远=R2∶R1.7.【答案】D【解析】根据万有引力定律,F=G,F′=G=F,可得h=(-1)R.8.【答案】B9.【答案】B【解析】双星的角速度和周期都相同,故A、D均错;由=m1ω2r1,=m2ω2r2,解得m1∶m2=r2∶r1=2∶3,C错误.由v=ωr知,v1∶v2=r1∶r2=3∶2,B正确.10.【答案】C【解析】不同的地方,由于重力加速度不同,导致重力不同,在地球表面随着纬度越高,重力加速度越大,则重力越大,所以同一物体在赤道上的重力比在两极处小些故A错误,C正确;物体从地球表面移到空中,重力加速度变小,则重力变小,故B错误;飞船绕地球作匀速圆周运动,受地球的引力提供向心力,故D错误.11.【答案】ABC【解析】由开普勒三定律知A、B、C均正确,注意开普勒第三定律成立的条件是对同一行星的不同卫星,有=常量.12.【答案】CD【解析】公式中m0是物体的静止质量,m是物体以速度v运动时的质量,A错.由公式可知,只有当v接近光速时,物体的质量变化才明显,一般情况下物体的质量变化十分微小,故经典力学仍然适用,故B错,C、D正确.13.【答案】ACD【解析】双星的角速度相等,根据G=mr1ω2,G=Mr2ω2得:m1r1=Mr2,知它们的质量与转动的半径成反比.线速度v=rω,则线速度之比等于转动半径之比,所以质量与线速度成反比.故A、D正确,B错误.根据a=rω2知,角速度相等,则向心加速度之比等于半径之比,质量与半径成反比,则质量与向心加速度成反比.故C正确.14.【答案】AC【解析】双星都绕O点做匀速圆周运动,由两者之间的万有引力提供向心力,角速度相等,设为ω.根据牛顿第二定律,对A星:G=mAω2rA①对B星:G=mBω2rB②联立①②得mA∶mB=rB∶rA=2∶1.根据双星的条件有:角速度之比ωA∶ωB=1∶1,由v=ωr得线速度大小之比v A∶v B=rA∶rB=1∶2,向心力大小之比FA∶FB=1∶1,选项A、C正确,B、D错误.15.【答案】(1)(2)【解析】(1)地球卫星做匀速圆周运动,根据牛顿第二定律得G=m(R+h),v=.解得M=(2)ρ=,地球体积V=,解得ρ=.16.【答案】行星的质量为,或和【解析】设行星的质量为M.第一种方法:在行星表面,由重力等于万有引力,得:G=mg解得:M=第二种方法:对于行星附近的卫星,根据万有引力等于向心力,得:G=m可得:M=第三种方法:对卫星A,根据万有引力等于向心力,得:G=mω2r解得:M=答:行星的质量为,或和.17.【答案】(1)(2)(k=0,1,2,…)【解析】(1)依题意,T1<T2,周期大的轨道半径大,故在外层轨道的卫星运行一周所需的时间长.设经过Δt两卫星再次相距最近.则它们运行的角度之差Δθ=2π即t-t=2π解得t=.(2)两卫星相距最远时,它们运行的角度之差Δθ=(2k+1)π(k=0,1,2,…)即t-t=(2k+1)π(k=0,1,2,…)解得t=(k=0,1,2…).18.【答案】(1)T计算=πL(2)=【解析】(1)双星均绕它们连线的中点做圆周运动,根据牛顿第二定律得G=M·①解得T计算=πL.(2)因为T观测<T计算,所以双星系统中受到的向心力大于本身的引力,故它一定还受到其它指向中心的力,按题意这一作用来源于暗物质,根据牛顿第二定律得G+G=M·②由题意T观测∶T计算=1∶③将③代入②得,G+G=(N+1)·M·④联立①④,得G=N·M·⑤联立①⑤,得=.。
万有引力定律测试题及答案
物理同步测试(5)—万有引力定律本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分考试用时120分钟。
第Ⅰ卷(选择题共40分)一、每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。
1.关于“亚洲一号”地球同步通信卫星,下列说法中正确的是ﻩﻩ( )ﻩA.她的运行的速度是7.9km/sﻩB.已知它的质量是1.42T,若将它的质量增为2.84T,其同步的轨道的半径变为原来的2倍C.它可以绕过北京的正上方,所以我国可以利用它进行电视转播。
ﻩD.它距地面的高度约是地球半径的5倍,所以它的向心加速度约是地面处的重力加速度的1/362.发射地球的同步卫星时,先将卫星发射的近地的轨道1,然后在圆轨道1的Q点经点火使卫星沿椭圆轨道2运行,当卫星到椭圆轨道2上距地球的最远点P处,再次点火,将卫星送入同步的轨道3,如图所示。
则卫星在轨道1、2和3上正常运行时,有:()A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的角速度小于在轨道1上的角速度。
C.卫星在轨道1上经Q点的加速度等于它在轨道2上经Q点的加速度D.卫星在轨道2上运行经P点的加速度跟经过Q点的加速度相等。
3.两颗人造地球卫星A.B绕地球做圆周运动,周期之比是T A:T B=1:8,则轨道半径之比和运动的速率之比分别为ﻩﻩ()A.R A:RB=4:1V A:VB=1:2ﻩB.RA:RB=4:1 VA:VB=2:1ﻩC.R A:RB=1:4 VA:VB=1:2ﻩD.R A :RB =1:4 V A :V B =2:14.如图所示,a 、b 、c 是地球大气层外圆形轨道上的三颗卫星,a 、b 的质量相同,但小于c 的质量,则ﻩﻩﻩ( )A.b 所需的向心力最小B.b、c的周期相同且大于a的周期 ﻩC .向心加速度大小相同且小于a 的向心加速度 ﻩD.bc 的线速度相同,且小于a的线速度。
5.地面附近的重力加速度为g ,地球的半径为R,人造地球卫星圆形运行的轨道为r,那么下列说法正确的是ﻩﻩﻩﻩ( )ﻩA.卫星在轨道上的向心加速度大小为gR 2/r2ﻩB.卫星在轨道上的速度大小为r g R /2 ﻩC.卫星运行的角速度大小为g R r 23/ ﻩD.卫星运行的周期为2g R r 23/π6.假如一个作匀速圆周运动的卫星的轨道的半径增大到原来的两倍,仍做匀速圆周运动( )A.根据公式V=r ω,可知卫星运动的线速度将增大为原来的两倍ﻩB .根据公式F =m r v 2,可知卫星所须的向心力减小到原来的21C.根据公式F=221rm Gm 可知地球提供的向心力将减小到原来的41ﻩD.根据上述B ,C 中所给的公式,可知卫星的线速度将减小到原来的227.航天飞机中的物体处于失重状态,是指这个物体ﻩﻩ( ) ﻩA.不受地球的吸引力;ﻩB.地球吸引力和向心力平衡;ﻩC .受的向心力和离心力平衡; ﻩD.对支持它的物体的压力为零。
高中物理第六章万有引力与航天单元检测卷含解析新人教版必修
第六章单元检测卷(时间:90分钟满分:100分)一、选择题(本题共10个小题,每小题4分,共40分)1.第一宇宙速度是物体在地球表面附近环绕地球做匀速圆周运动的速度,则有( ) A.被发射的物体质量越大,第一宇宙速度越大B.被发射的物体质量越小,第一宇宙速度越大C.第一宇宙速度与被发射物体的质量无关D.第一宇宙速度与地球的质量有关2.美国的“大鸟”侦察卫星可以发现地面上边长仅为0.36m的方形物体,它距离地面高度仅有16km,理论和实践都表明:卫星离地面越近,它的分辨率就越高,那么分辨率越高的卫星( )A.向心加速度一定越大B.角速度一定越小C.周期一定越大D.线速度一定越大3.卫星在到达预定的圆周轨道之前,运载火箭的最后一节火箭仍和卫星连接在一起(卫星在前,火箭在后),先在大气层外某一轨道a上绕地球做匀速圆周运动,然后启动脱离装置,使卫星加速并实现星箭脱离,最后卫星到达预定轨道b,关于星箭脱离后,下列说法正确的是( )A.预定轨道b比某一轨道a离地面更高,卫星速度比脱离前大B.预定轨道b比某一轨道a离地面更低,卫星的运行周期变小C.预定轨道b比某一轨道a离地面更高,卫星的向心加速度变小D.卫星和火箭仍在同一轨道上运动,卫星的速度比火箭大4.火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆.已知火卫一的周期为7小时39分,火卫二的周期为30小时18分,则两颗卫星相比( ) A.火卫一距火星表面较近B.火卫二的角速度较大C.火卫一的运动速度较大D.火卫二的向心加速度较大5.火星探测项目是我国继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目.假设火星探测器在火星表面附近圆形轨道运行的周期为T1,神舟飞船在地球表面附近的圆形轨道运行周期为T2,火星质量与地球质量之比为p,火星半径与地球半径之比为q,则T1和T2之比为( )A.qp3B.1pq3C.pq3D.q3p6.把火星和地球都视为质量均匀分布的球体.已知地球半径约为火星半径的2倍,地球质量约为火星质量的10倍.由这些数据可推算出( )A.地球表面和火星表面的重力加速度之比为5∶1B.地球表面和火星表面的重力加速度之比为10∶1C.地球和火星的第一宇宙速度之比为5∶1D.地球和火星的第一宇宙速度之比为10∶17.有两颗质量相同的人造卫星,其轨道半径分别是r A、r B,且r A=r B/4,那么下列判断中正确的是( )A.它们的周期之比T A∶T B=1∶4 B.它们的线速度之比v A∶v B=8∶1 C.它们所受的向心力之比F A∶F B=8∶1 D.它们的角速度之比ωA∶ωB=8∶1 8.已知万有引力常量为G,在太阳系中有一颗行星的半径为R,若在该星球表面以初速度v0竖直上抛一物体,则该物体上升的最大高度为H.已知该物体所受的其他力与行星对它的万有引力相比较可忽略不计.则根据这些条件,可以求出的物理量是( )A.该行星的密度B.该行星的自转周期C.该星球的第一宇宙速度D.该行星附近运行的卫星的最小周期9.2009年2月11日,一颗美国商业卫星与一颗俄罗斯废弃的军用通信卫星在俄罗斯的西伯利亚北部上空790km处发生碰撞,两颗卫星的质量分别为450kg和560kg,若近似认为这两颗卫星的轨道为匀速圆周运动轨道,且相撞前两颗卫星都在各自预定的轨道上运行.则关于这两颗卫星的描述正确的是( )A.这两颗卫星均为地球同步卫星B.这两颗卫星的运行速度均大于7.9km/sC.这两颗卫星的运行周期是相同的D.这两颗卫星的向心加速度的大小是相同的10.图1如图1所示,卫星A、B、C在相隔不远的不同轨道上,以地心为中心做匀速圆周运动,且运动方向相同,若某时刻三颗卫星恰好在同一直线上,则当卫星B经过一个周期时,下列关于三颗卫星的位置说法中正确的是( )A.三颗卫星的位置仍然在同一条直线上B.卫星A位置超前于B,卫星C位置滞后于BC.卫星A位置滞后于B,卫星C位置超前于BD.由于缺少条件,无法确定它们的位置关系题1234567891011.火星的半径是地球半径的1/2,火星质量约为地球质量的1/10,忽略火星和地球的自转,如果地球上质量为60kg的人到火星上去,则此人在火星表面的质量是________kg,所受的重力是________N;在火星表面上由于火星的引力产生的加速度是________m/s2.在地球表面上可举起60 kg杠铃的人,到火星上用同样的力可举起质量是________kg 的杠铃.(g取9.8 m/s2)12.1969年7月21日,美国宇航员阿姆斯特朗在月球上留下了人类第一只脚印,迈出了人类征服月球的一大步.在月球上,如果阿姆斯特朗和同伴奥尔德林用弹簧秤称量出质量为m的仪器的重力为F;而另一位宇航员科林斯驾驶指令舱,在月球表面附近飞行一周,记下时间为T,根据这些数据写出月球质量的表达式M=________.三、计算题(本题共4个小题,共44分)13.(10分)2008年10月我国发射的“月球探测轨道器”LRO,每天在距月球表面50km的高空穿越月球两极上空10次.若以T表示LRO在离月球表面高h处的轨道上做匀速圆周运动的周期,以R表示月球的轨道半径,求:(1)LRO运行时的加速度a;(2)月球表面的重力加速度g.14.(10分)已知一只静止在赤道上空的热气球(不计气球离地高度)绕地心运动的角速度为ω0,在距地面h高处圆形轨道上有一颗人造地球卫星.设地球质量为M,半径为R,热气球的质量为m,人造地球卫星的质量为m1.根据上述条件,有一位同学列出了以下两个式子:对热气球有:G Mm R2=mω20R 对人造地球卫星有:GMm 1R +h2=m 1ω2(R +h )进而求出了人造地球卫星绕地球运行的角速度ω.你认为这个同学的解法是否正确?若认为正确,请求出结果;若认为不正确,请补充一 个条件后,再求出ω.15.(12分)2005年10月12日,我国成功地发射了“神舟六号”载人飞船,飞船进入轨道运行若干圈后成功实施变轨进入圆轨道运行,经过了近5天的运行后,飞船的返回舱顺利降落在预定地点.设“神舟六号”载人飞船在圆轨道上绕地球运行n 圈所用的时间为t ,若地球表面重力加速度为g ,地球半径为R ,求: (1)飞船的圆轨道离地面的高度; (2)飞船在圆轨道上运行的速率.16.(12分)A 、B 两颗卫星在同一轨道平面内绕地球做匀速圆周运动.地球半径为R ,A 卫星离地面的高度为R ,B 卫星离地面高度为3R ,则: (1)A 、B 两卫星周期之比T A ∶T B 是多少?(2)若某时刻两卫星正好通过地面同一点的正上方,则A 卫星至少经过多少个周期两卫星相距最远?第六章 万有引力与航天1.CD [第一宇宙速度v =GMR与地球质量M 有关,与被发射物体的质量无关.] 2.AD [由万有引力提供向心力有GMm r 2=m v 2r =mω2r =m 4π2T 2r =ma n ,可得a n =GM r2,r 越小,a n 越大,A 正确;v =GMr ,r 越小,v 越大,D 正确;ω=GMr 3,r 越小,ω越大,B 错误;T =4π2r3GM,r 越小,T 越小,C 错误.]3.C [火箭与卫星脱离时,使卫星加速,此时G Mm r 2<m v 2r,卫星将做离心运动,到达比a更高的预定轨道;由G Mmr 2=ma n 得a n =GM r2,即r 越大,卫星的向心加速度越小.]4.AC [由万有引力提供向心力可得G Mm r 2=m (2πT )2r ,即T 2=4π2r 3GM,知选项A 是正确的;同理可得v 2=GM r ,知选项C 是正确的;由ω=2πT 知选项B 是错误的;由a n =F 万m =GMm r 2m =GM r2,可知选项D 是错误的.]5.D [设中心天体的质量为M ,半径为R ,当航天器在星球表面飞行时,由G Mm R2=m (2πT)2R和M =ρV =ρ·43πR 3解得ρ=3πGT2,即T =3πρG∝1ρ,又因为ρ=M V =M 43πR 3∝MR 3,所以T ∝R 3M .代入数据得T 1T 2=q 3p.选项D 正确.] 6.C [设地球质量为M ,半径为R ,火星质量为M ′,半径为R ′,根据万有引力定律有G Mm R 2=mg ,G M ′m ′R ′2=m ′g ′,g g ′=MR ′2M ′R 2=52, 又G Mm R 2=mv 2R,v =GMR,同理有v ′=GM ′R ′,vv ′=MR ′M ′R=5,故选C.] 7.D [由G Mm r 2=ma n =m v 2r =mω2r =m 4π2T2r 知D 对.]8.ACD [由题意知,行星表面的重力加速度g =v 202H ,而g =G M R 2,所以M =v 20R22GH,密度ρ=M43πR 3=3v 28πGHR ,A 对.第一宇宙速度v =gR =v 20R2H =v 0R2H,C 对.行星附近卫星的最小周期T =2πrv=2πR g =2πv 02RH ,D 对.] 9.CD [俄罗斯的西伯利亚北部在北半球,经过其上空的卫星是非同步卫星,A 错;因其轨道半径大于地球半径,故运行速度均小于7.9 km/s ,B 错;因轨道半径相同,所以它们的周期是相同的,向心加速度的大小也相同,C 、D 正确.]10.B [由G Mm r 2=m 4π2T2r 得T =2πr 3GM,因r A <r B <r C ,故T A <T B <T C ,B 对.] 11.60 235.2 3.92 150解析 人在地球上质量为60kg ,到火星上质量仍为60kg.忽略自转时,火星(地球)对物体的引力就是物体在火星(地球)上所受的重力,则人在火星上所受的重力为mg 火=G M 火m R 2火=G 110M 地m14R 2地==25mg 地=235.2N火星表面上的重力加速度为g 火=25g 地=3.92m/s 2人在地球表面和在火星表面用同样的力举起物体的重力相等,设在火星上能举起物体的质量为m ′,则有mg 地=m ′g 火,m ′=g 地g 火m =9.83.92×60kg=150kg 12.T 4F 316π4Gm3 解析 在月球表面质量为m 的物体重力近似等于物体受到的万有引力.设月球的半径为R ,则由F =GMmR2,得R =GMm F① 设指令舱的质量为m ′,指令舱在月球表面飞行,其轨道半径等于月球半径,做圆周运动的向心力等于万有引力,则有GMm ′R 2=m ′(2πT)2R ② 由①②得M =T 4F 316π4Gm3.13.(1)(R +h )4π2T2 (2)4π2R +h 3T 2R 2解析 (1)LRO 运行时的加速度 a =(R +h )ω2=(R +h )4π2T2.①(2)设月球的质量为M ,LRO 的质量为m ,根据万有引力定律与牛顿第二定律有G Mm R +h2=ma ②在月球表面附近的物体m ′受的重力近似等于万有引力,即G Mm ′R 2=m ′g ③ 由①②③式得g =4π2R +h 3T 2R2.14.见解析解析 不正确.热气球不同于人造卫星,热气球静止在空中是因为浮力与重力平衡,它绕地心运动的角速度应等于地球自转的角速度.(1)若补充地球表面的重力加速度为g ,可以认为热气球受到的万有引力近似等于其重力,则有G Mm R2=mg与第二个等式联立可得ω=R R +hgR +h.(2)若补充同步卫星的离地高度为H ,有:GMm ′R +H2=m ′ω20(R +H )与第二个等式联立可得ω=ω032R H R h15.(1)3gR 2t 24π2n 2-R (2)32πngR 2t解析 (1)飞船在轨道上做圆周运动,运动的周期T =tn,设飞船做圆周运动距地面的高度为h ,飞船的质量为m ,万有引力提供飞船做圆周运动的向心力,即GMm R +h2=m4π2R +hT 2,而地球表面上质量为m ′的物体受到的万有引力近似等于物体的重力,即GMm ′R 2=m ′g ,联立解得h =3gR 2t 24π2n2-R . (2)飞船运行的速度v =2πR +hT ,所以v =32πngR 2t. 16.(1)1∶2 2 (2)0.77 解析 (1)由T =4π2r3GM得T A =4π22R3GM,T B =4π24R3GM,所以T A ∶T B =1∶2 2.(2)设经过时间t 两卫星相距最远,则t T A =t T B +12即t T A =t 22T A +12,所以t =4+27T A ≈0.77T A ,故A 卫星至少经过0.77个周期两卫星相距最远.。
高中物理(人教版)必修第2册单元测试卷—万有引力与宇宙航行(提高卷)
高中物理(人教版)必修第2册单元测试卷—万有引力与宇宙航行(提高卷)一、单项选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项符合题意.请将解答填涂在答题卡的相应位置上。
)1.下列关于开普勒行星运动定律说法正确的是()A.所有行星绕太阳运动的轨道都是圆B.行星离太阳较近的时候,它的运行速度较小C.所有行星的轨道的半长轴的二次方跟公转周期的三次方的比值都相同D.对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等【答案】D【解析】【详解】A.根据开普勒第一定律,所有行星绕太阳运动的轨道都是椭圆,故A 错误;BD.根据开普勒第二定律,对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等,因此行星离太阳较近的时候,它的运行速度较大,故B 错误,D正确;C.根据开普勒第三定律,所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等,故C错误。
故选D 。
2.“神九”载人飞船与“天宫一号”成功对接及“蛟龙”号下潜突破7000米入选2012年中国十大科技进展新闻。
若地球半径为R ,把地球看作质量分布均匀的球体(质量分布均匀的球壳对球内任一质点的万有引力为零)。
“蛟龙”号下潜深度为d ,“天宫一号”轨道距离地面高度为h ,“天宫一号”所在处与“蛟龙”号所在处的重力加速度之比为()A.R d R h-+ B.32()()R R d R h -+C.23()()R d R h R -+ D.2()()R d R h R -+【答案】B 【解析】【详解】“天宫一号”绕地球运行,所以32243()()R mMm G G mg R h R h ρπ⋅==++“蛟龙”号在地表以下,所以3224()3()()R d m M m G G m g R d R d ρπ-⋅'''==''--“天宫一号”所在处与“蛟龙”号所在处的重力加速度之比为2323(()()1)g R R R g R h R h d d R =⋅'-+=+-故ACD 错误,B 正确。
人教版高中物理必修二《第2章 万有引力定律》单元测试卷(河北省
(精心整理,诚意制作)新人教版必修2《第2章万有引力定律》单元测试卷(河北省保定一中)一、选择题(每小题4分,共40分).1.如图所示,有一个质量为M,半径为R,密度均匀的大球体.从中挖去一个半径为的小球体,并在空腔中心放置一质量为m的质点,则大球体的剩余部分对该质点的万有引力大小为(已知质量分布均匀的球壳对壳内物体的引力为零)()A.G B.G C.4G D.02.火星表面特征非常接近地球,适合人类居住,近期,我国宇航员王跃与俄罗斯宇航员一起进行“模拟登火星”实验活动,已知火星半径是地球半径的,质量是地球质量的,自转周期与地球的基本相同,地球表面重力加速度为g,王跃在地面上能向上跳起的最大高度是h,在忽略自转影响的条件下,下列分析不正确的是()A.火星表面的重力加速度是B.火星的第一宇宙速度是地球第一宇宙速度的C.王跃在火星表面受的万有引力是在地球表面受万有引力的倍D.王跃以相同的初速度在火星上起跳时,可跳的最大高度是3.地球赤道上的物体随地球自转的向心加速度为a,角速度为ω,某卫星绕地球做匀速圆周运动的轨道半径为r1,向心力加速度为a1,角速度为ω1.已知万有引力常量为G,地球半径为R.下列说法中正确的是()A.向心力加速度之比=B.角速度之比=C.地球的第一宇宙速度等于D.地球的平均密度ρ=4.20xx年7月23日美国航天局宣布,天文学家发现“另一个地球”﹣﹣太阳系外行星开普勒452b.假设行星开普勒452b绕恒星公转周期为385天,它的体积是地球的5倍,其表面的重力加速度是地球表面的重力加速度的2倍,它与恒星的距离和地球与太阳的距离很接近,则行星开普勒452b与地球的平均密度的比值及其中心恒星与太阳的质量的比值分别为()A.和B.和C.和D.和5.如图为哈勃望远镜拍摄的银河系中被科学家称为“罗盘座T星”系统的照片,该系统是由一颗白矮星和它的类日伴星组成的双星系统,图片下面的亮点为白矮星,上面的部分为类日伴星(中央的最亮的为类似太阳的天体).由于白矮星不停地吸收由类日伴星抛出的物质致使其质量不断增加,科学家预计这颗白矮星在不到1000万年的时间内会完全“爆炸”,从而变成一颗超新星.现假设类日伴星所释放的物质被白矮星全部吸收,并且两星间的距离在一段时间内不变,两星球的总质量不变,不考虑其它星球对该“罗盘座T星”系统的作用,则下列说法正确的是()A.两星间的万有引力不变 B.两星的运动周期不变C.类日伴星的轨道半径减小D.白矮星的线速度增大6.对于环绕地球做圆周运动的卫星说,它们绕地球做圆周运动的周期会随着轨道半径的变化而变化,某同学根据测得的不同卫星做圆周运动的半径r与周期T 关系作出如图所示图象,则可求得地球质量为(已知引力常量为G)()A.B.C.D.7.一飞船在探测某星球时,在星球表面附近飞行一周所用的时间为T,环绕速度为ν,则()A.该星球的质量为B.该星球的密度为C.该星球的半径为D.该星球表面的重力加速度为8.我国未来将建立月球基地,并在绕月球轨道上建造空间站,如图所示,关闭发动机的航天飞机在月球引力作用下沿椭圆轨道向月球靠近,并将在椭圆轨道的近月点B处与空间站C对接,已知空间站绕月球圆轨道的半径为r,周期为T,引力常量为G,月球的半径为R,下列说法中正确的是()A.月球的质量为M=B.月球的第一宇宙速度为v=C.航天飞机从图示A位置飞向B的过程中,加速度逐渐变大D.要使航天飞机和空间站对接成功,飞机在接近B点时必须减速9.20xx年12月2日,牵动亿万中国心的“嫦娥3号”探测器顺利发射,“嫦娥3号”要求一次性进入近地点210公里、远地点约36.8万公里的地月转移轨道,如图所示,经过一系列的轨道修正后,在p点实施一次近月制动进入环月圆形轨道I,经过系列调控使之进入准备“落月”的椭圆轨道II,嫦娥3号在地月转移轨道上被月球引力捕获后逐渐向月球靠近,绕月运行时只考虑月球引力作用,下列关于嫦娥3号的说法正确的是()A.发射“嫦娥3号”的速度必须达到第二宇宙速度B.沿轨道I运行至P点的速度大于沿轨道II运行至P的速度C.沿轨道I运行至P点的加速度等于沿轨道II运行至P的加速度D.沿轨道I运行的周期小于沿轨道II运行的周期10.4月24日为首个“中国航天日”,中国航天事业取得了举世瞩目的成绩.我国于16年1月启动了火星探测计划,假设将来人类登上了火星,航天员考察完毕后,乘坐宇宙飞船离开火星时,经历了如图所示的变轨过程,则有关这艘飞船的下列说法,正确的是()A.飞船在轨道Ⅰ上运动到P点的速度小于在轨道Ⅱ上运动到P点的速度B.飞船绕火星在轨道Ⅰ上运动的周期跟飞船返回地面的过程中绕地球以与轨道Ⅰ同样的轨道半径运动的周期相同C.飞船在轨道Ⅲ上运动到P点时的加速度大于飞船在轨道Ⅱ上运动到P点时的加速度D.飞船在轨道Ⅱ上运动时,经过P点时的速度大于经过Q点时的速度二、填空题(每小题5分,共20分)11.v=7.9km/s是人造卫星在地面附近环绕地球做匀速圆周运动必须具有的速度,叫做速度.v=11.2km/s是物体可以挣脱地球引力束缚,成为绕太阳运行的人造行星的速度,叫做速度.v=16.7km/s是使物体挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去的速度,叫做速度.12.有两颗人造地球卫星A和B,分别在不同的轨道上绕地球做匀速圆周运动,两卫星的轨道半径分别为r A和r B,且r A>r B,则两卫星的线速度关系为v Av B;两卫星的角速度关系为ωAωB、两卫星的周期关系为T AT B.(填“>”、“<”或“=”)13.万有引力定律告诉我们自然界中任何两个物体都相互吸引,引力的大小与物体的质量m1和m2乘积成,与它们之间距离r的二次方成,引力常量G = N•m2/kg2.14.两颗球形行星A和B各有一颗卫星a和b,卫星的圆形轨道接近各自行星的表面,如果两颗行星的质量之比=p,半径之比=q,则两颗卫星的周期之比等于.三、计算题(每小题10分,共40分)15.试将一天的时间记为T,地球半径记为R,地球表面重力加速度为g.(结果可保留根式)(1)试求地球同步卫星P的轨道半径R P;(2)若已知一卫星Q位于赤道上空且卫星Q运动方向与地球自转方向相反,赤道上一城市A的人平均每三天观测到卫星Q四次掠过他的上空,试求Q的轨道半径R Q.16.已知万有引力常量为G,地球半径为R,地球表面的重力加速度为g,用以上各量表示在地球表面附近运行的人造地球卫星的第一宇宙速度v1及地球的密度ρ.17.总质量为m的一颗返回式人造地球卫星沿半径为R的圆轨道绕地球运动到P 点时,接到地面指挥中心返回地面的指令,于是立即打开制动火箭向原来运动方向喷出燃气以降低卫星速度并转到跟地球相切的椭圆轨道,如图所示,要使卫星对地速度将为原来的,卫星在P处应将质量为△m的燃气以多大的对地速度向前喷出?(将连续喷气等效为一次性喷气,地球半径为R0,地面重力加速度为g)18.1957年第一颗人造卫星上天,开辟了人类宇航的新时代.四十多年来,人类不仅发射了人造地球卫星,还向宇宙空间发射了多个空间探测器.空间探测器要飞向火星等其它行星,甚至飞出太阳系,首先要克服地球对它的引力的作用.理论研究表明,物体在地球附近都受到地球对它的万有引力的作用,具有引力势能,设物体在距地球无限远处的引力势能为零,则引力势能可以表示为E=﹣G=,其中G是万有引力常量,M是地球的质量,m是物体的质量,r是物体距地心的距离.现有一个空间探测器随空间站一起绕地球做圆周运动,运行周期为T,已知探测器的质量为m,地球半径为R,地面附近的重力加速度为g.要使这个空间探测器从空间站出发,脱离地球的引力作用,至少要对它作多少功?新人教版必修2《第2章万有引力定律》单元测试卷(河北省保定一中)参考答案与试题解析一、选择题(每小题4分,共40分).1.如图所示,有一个质量为M,半径为R,密度均匀的大球体.从中挖去一个半径为的小球体,并在空腔中心放置一质量为m的质点,则大球体的剩余部分对该质点的万有引力大小为(已知质量分布均匀的球壳对壳内物体的引力为零)()A.G B.G C.4G D.0【考点】万有引力定律及其应用.【分析】采用割补法,先将空腔填满,根据万有引力定律列式求解万有引力,该引力是填入的球的引力与剩余部分引力的合力;注意均匀球壳对内部的质点的万有引力的合力为零.【解答】解:采用割补法,先将空腔填满;填入的球的球心与物体重合,填入球上各个部分对物体m的引力的矢量和为零;均匀球壳对内部的质点的万有引力的合力为零,根据万有引力定律,有:,解得:故选:B.2.火星表面特征非常接近地球,适合人类居住,近期,我国宇航员王跃与俄罗斯宇航员一起进行“模拟登火星”实验活动,已知火星半径是地球半径的,质量是地球质量的,自转周期与地球的基本相同,地球表面重力加速度为g,王跃在地面上能向上跳起的最大高度是h,在忽略自转影响的条件下,下列分析不正确的是()A.火星表面的重力加速度是B.火星的第一宇宙速度是地球第一宇宙速度的C.王跃在火星表面受的万有引力是在地球表面受万有引力的倍D.王跃以相同的初速度在火星上起跳时,可跳的最大高度是【考点】万有引力定律及其应用.【分析】根据万有引力定律公式求出王跃在火星上受的万有引力是在地球上受万有引力的倍数.根据万有引力等于重力,得出重力加速度的关系,从而得出上升高度的关系.根据万有引力提供向心力求出第一宇宙速度的关系.【解答】解:A、根据万有引力定律得,F=G知王跃在火星表面受的万有引力是在地球表面受万有引力的倍.则火星表面重力加速度为g.故A正确.B、根据万有引力提供向心力G=m,得v=,知火星的第一宇宙速度是地球第一宇宙速度的倍.故B正确;C、根据万有引力等于重力得,G=mg,g=,知火星表面重力加速度时地球表面重力加速度的倍,故C错误.D、因为火星表面的重力加速度是地球表面重力加速度的倍,根据h=,知火星上跳起的高度是地球上跳起高度的倍,为h.故D正确.本题选择错误的,故选:C3.地球赤道上的物体随地球自转的向心加速度为a,角速度为ω,某卫星绕地球做匀速圆周运动的轨道半径为r1,向心力加速度为a1,角速度为ω1.已知万有引力常量为G,地球半径为R.下列说法中正确的是()A.向心力加速度之比=B.角速度之比=C.地球的第一宇宙速度等于D.地球的平均密度ρ=【考点】第一宇宙速度、第二宇宙速度和第三宇宙速度;人造卫星的加速度、周期和轨道的关系.【分析】根据月球绕地球的轨道半径和向心加速度,结合万有引力提供向心力求出地球的质量,从而结合地球的体积求出地球的密度.根据万有引力提供向心力求出地球的第一宇宙速度.【解答】解:A、赤道上物体靠万有引力和支持力的合力提供向心力,根据题目条件无法求出向心加速度之比,故A错误.B、由A选项分析可知,因向心加速度之比无法,则角速度也无法确定,故B错误.C、根据G=m得,地球的第一宇宙速度v==,故C错误.D、根据G=ma1得,地球的质量M=,那么其平均密度ρ=.故D正确.故选:D.4.20xx年7月23日美国航天局宣布,天文学家发现“另一个地球”﹣﹣太阳系外行星开普勒452b.假设行星开普勒452b绕恒星公转周期为385天,它的体积是地球的5倍,其表面的重力加速度是地球表面的重力加速度的2倍,它与恒星的距离和地球与太阳的距离很接近,则行星开普勒452b与地球的平均密度的比值及其中心恒星与太阳的质量的比值分别为()A.和B.和C.和D.和【考点】万有引力定律及其应用.【分析】在行星表面,万有引力等于重力,据此列式,再根据密度、体积公式联立方程求解,根据万有引力提供向心力,结合公转周期列式求出恒星质量的表达式,进而求出质量之比即可.【解答】解:在行星表面,万有引力等于重力,则有:,而,解得:ρ=,而行星开普勒452b的体积是地球的5倍,则半径为地球半径的倍,则有:,行星绕恒星做匀速圆周运动过程中,根据万有引力提供向心力得:解得:M′=,轨道半径相等,行星开普勒452b绕恒星公转周期为385天,地球的公转周期为36 5天,则,故A正确.故选:A5.如图为哈勃望远镜拍摄的银河系中被科学家称为“罗盘座T星”系统的照片,该系统是由一颗白矮星和它的类日伴星组成的双星系统,图片下面的亮点为白矮星,上面的部分为类日伴星(中央的最亮的为类似太阳的天体).由于白矮星不停地吸收由类日伴星抛出的物质致使其质量不断增加,科学家预计这颗白矮星在不到1000万年的时间内会完全“爆炸”,从而变成一颗超新星.现假设类日伴星所释放的物质被白矮星全部吸收,并且两星间的距离在一段时间内不变,两星球的总质量不变,不考虑其它星球对该“罗盘座T星”系统的作用,则下列说法正确的是()A.两星间的万有引力不变 B.两星的运动周期不变C.类日伴星的轨道半径减小D.白矮星的线速度增大【考点】万有引力定律及其应用.【分析】组成的双星系统的周期T相同,根据万有引力定律提供向心力:G=M1R1=M2R2;推导周期以及轨道半径与什么因素有关;根据万有引力定律公式,分析两星间万有引力的变化.【解答】解:A、两星间距离在一段时间内不变,由万有引力定律可知,两星的质量总和不变而两星质量的乘积必定变化,则万有引力必定变化.故A错误;B、组成的双星系统的周期T相同,设白矮星与类日伴星的质量分别为M1和M2,圆周运动的半径分别为R1和R2,由万有引力定律提供向心力:G=M1R1=M2R2可得:GM1=GM2=两式相加:G(M1+M2)T2=4π2L3,白矮星与类日伴星的总质量不变,则周期T不变.故B正确;C、由G=M1R1=M2R2得:M1R1=M2R2.知双星运行半径与质量成反比,类日伴星的质量逐渐减小,故其轨道半径增大,白矮星的质量增大,轨道变小;故C错误;D、白矮星的周期不变,轨道半径减小,故v=,线速度减小,故D错误;故选:B.6.对于环绕地球做圆周运动的卫星说,它们绕地球做圆周运动的周期会随着轨道半径的变化而变化,某同学根据测得的不同卫星做圆周运动的半径r与周期T 关系作出如图所示图象,则可求得地球质量为(已知引力常量为G)()A.B.C.D.【考点】万有引力定律及其应用.【分析】根据万有引力提供向心力,得到轨道半径与周期的函数关系,再结合图象计算斜率,从而可以计算出地球的质量.【解答】解:由万有引力提供向心力有:,得:,由图可知:,所以地球的质量为:,故B正确、ACD错误.故选:B.7.一飞船在探测某星球时,在星球表面附近飞行一周所用的时间为T,环绕速度为ν,则()A.该星球的质量为B.该星球的密度为C.该星球的半径为D.该星球表面的重力加速度为【考点】万有引力定律及其应用.【分析】由周期与速度可求得半径,由轨道半径与周期据万有引力等于向心力可求得质量,因轨道半径为星球的半径则可求出密度.【解答】解:ABC、由v=可得r=则C正确,由万有引力提供向心力:可求得M==,则A错误其密度为=,则B正确D、星球表面的重力加速度g==,则D错误故选:BC8.我国未来将建立月球基地,并在绕月球轨道上建造空间站,如图所示,关闭发动机的航天飞机在月球引力作用下沿椭圆轨道向月球靠近,并将在椭圆轨道的近月点B处与空间站C对接,已知空间站绕月球圆轨道的半径为r,周期为T,引力常量为G,月球的半径为R,下列说法中正确的是()A.月球的质量为M=B.月球的第一宇宙速度为v=C.航天飞机从图示A位置飞向B的过程中,加速度逐渐变大D.要使航天飞机和空间站对接成功,飞机在接近B点时必须减速【考点】万有引力定律及其应用.【分析】A、根据可判断A选项;B、根据可得月球的第一宇宙速度,可判断B选项;C、航天飞机从图示A位置飞向B的过程中半径逐渐变小,由知,加速度逐渐增大,可判断C选项;D、要使航天飞机和空间站对接成功,飞机在接近B点时必须减速,否则航天飞机将做椭圆运动,可判断D选项.【解答】解:A、根据可得,月球的质量为,故A选项正确;B、根据得,月球的第一宇宙速度为,故B选项错误;C、航天飞机从图示A位置飞向B的过程中半径逐渐变小,由知,加速度逐渐增大,故C选项正确;D、要使航天飞机和空间站对接成功,飞机在接近B点时必须减速,否则航天飞机将做椭圆运动,故D选项正确;故选:ACD.9.20xx年12月2日,牵动亿万中国心的“嫦娥3号”探测器顺利发射,“嫦娥3号”要求一次性进入近地点210公里、远地点约36.8万公里的地月转移轨道,如图所示,经过一系列的轨道修正后,在p点实施一次近月制动进入环月圆形轨道I,经过系列调控使之进入准备“落月”的椭圆轨道II,嫦娥3号在地月转移轨道上被月球引力捕获后逐渐向月球靠近,绕月运行时只考虑月球引力作用,下列关于嫦娥3号的说法正确的是()A.发射“嫦娥3号”的速度必须达到第二宇宙速度B.沿轨道I运行至P点的速度大于沿轨道II运行至P的速度C.沿轨道I运行至P点的加速度等于沿轨道II运行至P的加速度D.沿轨道I运行的周期小于沿轨道II运行的周期【考点】人造卫星的环绕速度.【分析】通过宇宙速度的意义判断嫦娥三号发射速度的大小,根据卫星变轨原理分析轨道变化时卫星是加速还是减速,并由此判定机械能大小的变化,在不同轨道上经过同一点时卫星的加速度大小相同.【解答】解:A、嫦娥三号仍在地月系里,也就是说嫦娥三号没有脱离地球的束缚,故其发射速度需小于第二宇宙速度而大于第一宇宙速度,故A错误;B、在椭圆轨道II上经过P点时将开始做近心运动,月于卫星的万有引力将大于卫星圆周运动所需向心力,在圆轨道上运动至P点时万有引力等于圆周运动所需向心力根据F向=r知,在椭圆轨道II上经过P点的速度小于圆轨道I上经过P点的速度,故B正确;C、卫星经过P点时的加速度由万有引力产生,不管在哪一轨道只要经过同一个P点时,万有引力在P点产生的加速度相同,故C正确;D、根据开普勒行星运动定律知,由于圆轨道上运行时的半径大于在椭圆轨道上的半长轴故在圆轨道上的周期大于在椭圆轨道上的周期,故D错误.故选:BC10.4月24日为首个“中国航天日”,中国航天事业取得了举世瞩目的成绩.我国于16年1月启动了火星探测计划,假设将来人类登上了火星,航天员考察完毕后,乘坐宇宙飞船离开火星时,经历了如图所示的变轨过程,则有关这艘飞船的下列说法,正确的是()A.飞船在轨道Ⅰ上运动到P点的速度小于在轨道Ⅱ上运动到P点的速度B.飞船绕火星在轨道Ⅰ上运动的周期跟飞船返回地面的过程中绕地球以与轨道Ⅰ同样的轨道半径运动的周期相同C.飞船在轨道Ⅲ上运动到P点时的加速度大于飞船在轨道Ⅱ上运动到P点时的加速度D.飞船在轨道Ⅱ上运动时,经过P点时的速度大于经过Q点时的速度【考点】万有引力定律及其应用.【分析】根据开普勒第二定律可知,飞船在轨道Ⅱ上运动时,在P点速度大于在Q点的速度.飞船从轨道Ⅰ转移到轨道Ⅱ上运动,必须在P点时,点火加速,使其速度增大做离心运动,即机械能增大.飞船在轨道Ⅰ上运动到P点时与飞船在轨道Ⅱ上运动到P点时有r相等,则加速度必定相等.根据万有引力提供向心力与周期的关系确【解答】解:A、飞船在轨道Ⅰ上经过P点时,要点火加速,使其速度增大做离心运动,从而转移到轨道Ⅱ上运动.所以飞船在轨道Ⅰ上运动时经过P点的速度小于在轨道Ⅱ上运动时经过P点的速度.故A正确.B、根据周期公式T=2π,虽然r相等,但是由于地球和火星的质量不等,所以周期T不相等.故B错误.C、飞船在轨道上Ⅲ运动到P点时与飞船在轨道Ⅱ上运动到P点时受到的万有引力大小相等,根据牛顿第二定律可知加速度必定相等.故C错误.D、根据开普勒第二定律可知,飞船在轨道Ⅱ上运动时,在近地点P点速度大于在Q点的速度.故D正确.故选:AD二、填空题(每小题5分,共20分)11.v=7.9km/s是人造卫星在地面附近环绕地球做匀速圆周运动必须具有的速度,叫做第一宇宙速度速度.v=11.2km/s是物体可以挣脱地球引力束缚,成为绕太阳运行的人造行星的速度,叫做第二宇宙速度速度.v=16.7km/s是使物体挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去的速度,叫做第三宇宙速度速度.【考点】人造卫星的加速度、周期和轨道的关系;万有引力定律及其应用.【分析】物体在地面附近绕地球做匀速圆周运动的速度叫做第一宇宙速度,挣脱地球引力束缚的发射速度为第二宇宙速度,挣脱太阳引力的束缚的发射速度为第三宇宙速度.【解答】解:v=7.9km/s是人造卫星在地面附近环绕地球做匀速圆周运动必须具有的速度,叫做第一宇宙速度速度.v=11.2km/s是物体可以挣脱地球引力束缚,成为绕太阳运行的人造行星的速度,叫做第二宇宙速度速度.v=16.7km/s是使物体挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去的速度,叫做第三宇宙速度速度.故答案为:第一宇宙速度,第二宇宙速度,第三宇宙速度.12.有两颗人造地球卫星A和B,分别在不同的轨道上绕地球做匀速圆周运动,两卫星的轨道半径分别为r A和r B,且r A>r B,则两卫星的线速度关系为v A<v B;两卫星的角速度关系为ωA<ωB、两卫星的周期关系为T A>T B.(填“>”、“<”或“=”)【考点】人造卫星的加速度、周期和轨道的关系;万有引力定律及其应用.【分析】根据万有引力提供向心力得出线速度、角速度、周期与轨道半径的关系式,从而进行比较.【解答】解:根据得,v=,,T=,因为r A>r B,则v A<v B,ωA<ωB,T A>T B.故答案为:<,<,>.13.万有引力定律告诉我们自然界中任何两个物体都相互吸引,引力的大小与物体的质量m1和m2乘积成正比,与它们之间距离r的二次方成反比,引力常量G= 6.67×10﹣11N•m2/kg2.【考点】万有引力定律及其应用.【分析】根据万有引力定律可知自然界中任何两个物体都相互吸引,引力的大小与物体的质量m1和m2乘积成正比,与它们之间距离r的二次方成反比,引力常量为G=6.67×10﹣11N•m2/kg2【解答】解:根据万有引力定律可知:自然界中任何两个物体都相互吸引,引力的大小与物体的质量m1和m2乘积成正比,与它们之间距离r的二次方成反比,引力常量为G=6.67×10﹣11N•m2/kg2故答案为:正比、反比 6.67×10﹣11。
(高中物理)万有引力定律及其应用单元测试2
万有引力定律及其应用单元测试本试卷分第I卷〔选择题〕和第II卷〔非选择题〕两局部,考试时间90分钟,总分值100分。
第一卷〔选择题,48分〕一、此题共12小题:每题4分,共48分.在每题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错的或不答的得0分.×104km×104km×103km。
那么该卫星的周期约为〔〕A.3 h B.6 h C.10.6h D.12h2.两个质量均匀的球体相距较远的距离r,它们之间的万有引力为10-8N.假设它们的质量、距离都增加为原来的2倍,那么它们间的万有引力为〔〕A.4×10-8N B.10-8N C.2×10-8 N D.10 -4N3.两个质量为M的星体,其连线的垂直平分线为PQ,O为两星体连线的中点.如下列图,一个质量为m的物体从O沿OP方向一直运动下去,那么它受到的万有引力大小变化情况是〔〕A.一直增大B.一直减小C.先减小,后增大D.先增大,后减小4.一飞船在某行星外表附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体.要确定该行星的密度只需要测量〔〕A.飞船的轨道半径B.飞船的运行速度C.飞船的运行周期D.行星的质量5.最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕恒星运动一周所用的时间为1200 年,它与该恒星的距离为地球到太阳距离的100倍.假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个救据可以求出的量有〔〕A. 恒星质量与太阳质量之比B.恒星密度与太阳密度之比C.行星质量与地球质量之比D.行星运行速度与地球公转速度之比6.假设太阳系中天体的密度不变,天体直径和天体之间距离都缩小为原来的一半,地球绕太阳公转近似为匀速圆周运动,那么以下物理量变化正确的选项是〔〕A.地球的向心力变为缩小前的一半B.地球的向心力变为缩小前的1/16C.地球绕太阳公转周期与缩小前的相同D.地球绕太阳公转周期变为缩小前的一半7.关于“亚洲一号〞地球同步通讯卫星,下述说法正确的选项是〔〕A.它的质量是1.24t,假设将它的质量增为2.48t,其同步轨道半径变为原来的2倍B.它的运行速度为7. 9km/sC.它可以定点在的正上方,所以我国能利用其进行电视转播D.它距地面的高度约为地球半径的5倍,所以卫星的向心加速度约为其下方地面上物体的重力加速度的1/368.〔 ·高考〕现有两颗绕地球做匀速圆周运动的人造地球卫星A 和B ,它们的轨道半径分别为r A 和r B .如果r A >r B .那么 〔 〕 A .卫星A 的运动周期比卫星B 的运动周期大 B .卫星A 的线速度比卫星B 的线速度大 C .卫星A 的角速度比卫星B 的角速度大 D .卫星A 的加速度比卫星B 的加速度大9.在“神舟〞六号宇宙飞船中,随着航天员在轨道舱内停留时间的增加,体育锻炼成了一个必不可少的环节.以下器材适宜航天员在轨道舱中进行体育锻炼的是 〔 〕 A .单杠 B .哑铃 C .弹力拉力器 D .跑步机10.我国将要发射一颗绕月运行的探月卫星“嫦娥l 号〞。
万有引力定律单元测试题及解析
万有引力定律单元测试题一、选择题(每小题7分,共70分)1.(2010·上海高考)月球绕地球做匀速圆周运动的向心加速度大小为a.设月球表面的重力加速度大小为g1,在月球绕地球运行的轨道处由地球引力产生的加速度大小为g2,则( )A.g1=a B.g2=aC.g1+g2=a D.g2-g1=a2.图4-3-5(2012·广东高考)如图4-3-5所示,飞船从轨道1变轨至轨道2.若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的( )A.动能大B.向心加速度大C.运行周期长D.角速度小3.(2010·北京高考)一物体静置在平均密度为ρ的球形天体表面的赤道上.已知万有引力常量为G ,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为( )A.⎝ ⎛⎭⎪⎫4π3Gρ12B.⎝ ⎛⎭⎪⎫34πGρ12 C.⎝ ⎛⎭⎪⎫πGρ12 D.⎝ ⎛⎭⎪⎫3πGρ12 4.(2012·山东高考)2011年11月3日,“神舟八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接.任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神舟九号”交会对接.变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R 1、R 2,线速度大小分别为v 1、v 2.则v1v2等于( ) A. R31R 32 B. R2R1 C.R22R 21 D.R2R15.(2012·北京高考)关于环绕地球运动的卫星,下列说法正确的是( )A .分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期B .沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C .在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合6.(2011·重庆高考)某行星和地球绕太阳公转的轨道均可视为圆.每过N年,该行星会运行到日地连线的延长线上,如图4-3-6所示,该行星与地球的公转半径之比为( )图4-3-6A.⎝⎛⎭⎪⎫N+1N23 B.⎝⎛⎭⎪⎫NN-123C.⎝⎛⎭⎪⎫N+1N32 D.⎝⎛⎭⎪⎫NN-132图4-3-77.(2010·临川质检)我国发射“神舟”号飞船时,先将飞船发送到一个椭圆轨道上如图4-3-7,其近地点M距地面200 km,远地点N距地面340 km.进入该轨道正常运行时,通过M、N点时的速率分别是v1、v2.当某次飞船通过N点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340km的圆形轨道,开始绕地球做匀速圆周运动.这时飞船的速率约为v3.比较飞船在M、N、P三点正常运行时(不包括点火加速阶段)的速率大小和加速度大小,下列结论正确的是( )A.v1>v3>v2,a1>a3>a2B.v1>v2>v3,a1>a2=a3C.v1>v2=v3,a1>a2>a3D.v1>v3>v2,a1>a2=a38.(2012·桂林模拟)我国于2011年9月29日和11月1日相继成功发射了“天宫一号”目标飞行器和“神舟八号”宇宙飞船,并成功实现了对接,标志着我国向建立空间实验站迈出了重要一步,我国还将陆续发射“神舟九号”、“神舟十号”飞船,并与“天宫一号”实现对接,下列说法正确的是( )A.飞船和“天宫一号”必须在相同的轨道运行,通过加速完成与“天宫一号”的对接B.飞船必须改在较高的轨道上运行,通过加速完成与“天宫一号”的对接C.飞船必须改在较高的轨道上运行,通过减速完成与“天宫一号”的对接D.飞船必须改在较低的轨道上运行,通过加速完成与“天宫一号”的对接【答案】D9.“嫦娥二号”卫星在中国首颗月球探测卫星“嫦娥一号”备份星基础上进行技术改进和适应性改造,于北京时间2010年10月1日19∶26成功星箭分离.如图4-3-8,若“嫦娥二号”在地球表面发射时重力为G,达到月球表面附近绕月飞行时重力为G2,已知地球表面的重力加速度为g,地球半径R1,月球半径R2,则( )图4-3-8A.“嫦娥二号”在距地面高度等于2倍地球半径R1的轨道上A点运行时,其速度为v=G1R1 3B.“嫦娥二号”在距地面高度等于2倍地球半径R1的轨道上A点运行时,其速度为v=gR1 3C.“嫦娥二号”达到月球表面附近绕月飞行时周期为T=2πG1R1G2gD.“嫦娥二号”达到月球表面附近绕月飞行时周期为T=2πG2R1G1g图4-3-910.2008年12月1日的傍晚,在西南方低空出现了一种有趣的天象,天空中两颗明亮的行星——金星和木星以及一弯月牙聚在了一起.人们形象的称其为“双星拱月”,如图4-3-9所示这一现象的形成原因是:金星、木星都是围绕太阳运动,与木星相比,金星距离太阳较近,围绕太阳运动的速度较大,到12月1日傍晚,金星追赶木星达到两星相距最近的程度,而此时西侧的月牙也会过来凑热闹,形成“双星拱月”的天象美景.若把金星、木星绕太阳的运动当作匀速圆周运动,并用T1、T2分别表示金星、木星绕太阳运动的周期,金星、木星再次运动到相距最近的时间是( )A.T2-T1B.T2+T1C.T1T2T2-T1 D.T1T2T2+T1二、非选择题(11题14分,12题16分,共30分)11.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)12.(2011·浙江五校联考)2007年4月24日,瑞士天体物理学家斯蒂芬妮·尤德里(右)和日内瓦大学天文学家米歇尔·迈耶(左)拿着一张绘制图片,如图4-3-10图片上显示的是在红矮星581(图片右上角)周围的行星系统.这一代号“581c”的行星正围绕一颗比太阳小、温度比太阳低的红矮星运行,现测得“581c”行星的质量为M2、半径为R2,已知地球的质量为M1、半径为R1,且已知地球表面的重力加速度为g,则:图4-3-10(1)求该行星表面的重力加速度;(2)若宇宙飞船在地面附近沿近地圆轨道做匀速圆周运动的周期为T,求宇宙飞船在距离“581c”行星表面为h的轨道上绕该行星做匀速圆周运动的线速度v.万有引力定律单元测试题解析一、选择题(每小题7分,共70分)1.(2010·上海高考)月球绕地球做匀速圆周运动的向心加速度大小为a.设月球表面的重力加速度大小为g1,在月球绕地球运行的轨道处由地球引力产生的加速度大小为g2,则( )A.g1=a B.g2=aC.g1+g2=a D.g2-g1=a【解析】月球因受地球引力的作用而绕地球做匀速圆周运动.由牛顿第二定律可知地球对月球引力产生的加速度g2就是向心加速度a,故B选项正确.【答案】 B2.图4-3-5(2012·广东高考)如图4-3-5所示,飞船从轨道1变轨至轨道2.若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的( )A.动能大B.向心加速度大C.运行周期长D.角速度小【解析】飞船绕中心天体做匀速圆周运动,万有引力提供向心力,即F 引=F 向,所以GMm r2=ma 向=mv2r =4π2mr T2=mrω2,即a 向=GM r2,E k =12m v 2=GMm 2r ,T =4π2r3GM ,ω=GM r3(或用公式T =2πω求解).因为r 1<r 2所以E k1>E k2,a 向1>a 向2,T 1<T 2,ω1>ω2,选项C 、D 正确.【答案】 CD3.(2010·北京高考)一物体静置在平均密度为ρ的球形天体表面的赤道上.已知万有引力常量为G ,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为( )A.⎝ ⎛⎭⎪⎫4π3Gρ12B.⎝ ⎛⎭⎪⎫34πGρ12 C.⎝ ⎛⎭⎪⎫πGρ12 D.⎝ ⎛⎭⎪⎫3πGρ12 【解析】 物体对天体表面压力恰好为零,说明天体对物体的万有引力提供向心力:G Mm R2=m 4π2T2R ,解得T =2πR3GM ① 又密度ρ=M 43πR3=3M 4πR3②①②两式联立得T =3πGρ.D 选项正确. 【答案】 D4.(2012·山东高考)2011年11月3日,“神舟八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接.任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神舟九号”交会对接.变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R 1、R 2,线速度大小分别为v 1、v 2.则v1v2等于( ) A. R31R 32 B. R2R1 C.R22R 21 D.R2R1【解析】 “天宫一号”运行时所需的向心力由万有引力提供,根据G Mm R2=mv2R 得线速度v =GM R ,所以v1v2=R2R1,故选项B 正确,选项A 、C 、D 错误.【答案】 B5.(2012·北京高考)关于环绕地球运动的卫星,下列说法正确的是( )A .分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期B .沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C .在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同D .沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合【解析】 根据开普勒第三定律,a3T2=恒量,当圆轨道的半径R与椭圆轨道的半长轴a 相等时,两卫星的周期相等,故选项A 错误;卫星沿椭圆轨道运行且从近地点向远地点运行时,万有引力做负功,根据动能定理,知动能减小,速率减小;从远地点向近地点移动时动能增加,速率增大,且两者具有对称性,故选项B 正确;所有同步卫星的运行周期相等,根据G Mm r2=m (2πT )2r 知,同步卫星轨道的半径r 一定,故选项C 错误;根据卫星做圆周运动的向心力由万有引力提供,可知卫星运行的轨道平面过某一地点,轨道平面必过地心,但轨道不一定重合,故北京上空的两颗卫星的轨道可以不重合,选项D 错误.【答案】 B6.(2011·重庆高考)某行星和地球绕太阳公转的轨道均可视为圆.每过N 年,该行星会运行到日地连线的延长线上,如图4-3-6所示,该行星与地球的公转半径之比为( )图4-3-6A.⎝⎛⎭⎪⎫N+1N23 B.⎝⎛⎭⎪⎫NN-123C.⎝⎛⎭⎪⎫N+1N32 D.⎝⎛⎭⎪⎫NN-132【解析】根据ω=θt可知,ω地=2Nπt,ω星=2(N-1)πt,再由GMmr2=mω2r可得,r星r地=⎝⎛⎭⎪⎫ω地ω星23=⎝⎛⎭⎪⎫NN-123,答案为B选项.【答案】 B图4-3-77.(2010·临川质检)我国发射“神舟”号飞船时,先将飞船发送到一个椭圆轨道上如图4-3-7,其近地点M距地面200 km,远地点N距地面340 km.进入该轨道正常运行时,通过M、N点时的速率分别是v1、v2.当某次飞船通过N点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340km的圆形轨道,开始绕地球做匀速圆周运动.这时飞船的速率约为v3.比较飞船在M、N、P三点正常运行时(不包括点火加速阶段)的速率大小和加速度大小,下列结论正确的是( )A.v1>v3>v2,a1>a3>a2B.v1>v2>v3,a1>a2=a3C.v1>v2=v3,a1>a2>a3D.v1>v3>v2,a1>a2=a3【解析】飞船在太空中的加速度为a=GMmR2·m=GMR2,由此知a1>a2=a3,由M到N,飞船做离心运动,该过程重力做负功,则v1>v2,由N点进入圆轨道时飞船需加速,否则会沿椭圆轨道做向心运动,故v3>v2,比较两个轨道上的线速度由v2=GMR知v3<v1,则v1>v3>v2.故D正确.【答案】D8.(2012·桂林模拟)我国于2011年9月29日和11月1日相继成功发射了“天宫一号”目标飞行器和“神舟八号”宇宙飞船,并成功实现了对接,标志着我国向建立空间实验站迈出了重要一步,我国还将陆续发射“神舟九号”、“神舟十号”飞船,并与“天宫一号”实现对接,下列说法正确的是( )A.飞船和“天宫一号”必须在相同的轨道运行,通过加速完成与“天宫一号”的对接B.飞船必须改在较高的轨道上运行,通过加速完成与“天宫一号”的对接C.飞船必须改在较高的轨道上运行,通过减速完成与“天宫一号”的对接D.飞船必须改在较低的轨道上运行,通过加速完成与“天宫一号”的对接【解析】初态时,飞船和“天宫一号”在同一轨道上运行,故其线速度大小相等,若不改变轨道是不可能追上“天宫一号”的,A错;若先加速到高轨道后减速到原轨道,由v=GMr可知,飞船在高轨道上运行的线速度要比“天宫一号”的小.且运行路程长,故B、C均错;若先减速到低轨道后加速到原轨道,由v=GMr可知,飞船在低轨道上运行的路程短,且线速度要比“天宫一号”的大,所以可以追上,D正确.【答案】D9.“嫦娥二号”卫星在中国首颗月球探测卫星“嫦娥一号”备份星基础上进行技术改进和适应性改造,于北京时间2010年10月1日19∶26成功星箭分离.如图4-3-8,若“嫦娥二号”在地球表面发射时重力为G,达到月球表面附近绕月飞行时重力为G2,已知地球表面的重力加速度为g,地球半径R1,月球半径R2,则( )图4-3-8A.“嫦娥二号”在距地面高度等于2倍地球半径R1的轨道上A点运行时,其速度为v=G1R1 3B.“嫦娥二号”在距地面高度等于2倍地球半径R1的轨道上A点运行时,其速度为v = gR13C .“嫦娥二号”达到月球表面附近绕月飞行时周期为T =2πG1R1G2gD .“嫦娥二号”达到月球表面附近绕月飞行时周期为T =2πG2R1G1g【解析】 “嫦娥二号”在距地面高度等于2倍地球半径R 1的轨道上A 点运行时,其轨道半径r =3R 1,由万有引力等于向心力知G Mm (3R1)2=m v23R1 又GM =gR 21联立解得v = gR13,故选项B 对A 错.“嫦娥二号”到达月球表面附近绕月飞行时轨道半径r =R 2,重力等于向心力则G 2=mR 2(2πT )2G 1=mg联立解得T =2πG1R1G2g故选项C 正确D 错误.【答案】 BC图4-3-910.2008年12月1日的傍晚,在西南方低空出现了一种有趣的天象,天空中两颗明亮的行星——金星和木星以及一弯月牙聚在了一起.人们形象的称其为“双星拱月”,如图4-3-9所示这一现象的形成原因是:金星、木星都是围绕太阳运动,与木星相比,金星距离太阳较近,围绕太阳运动的速度较大,到12月1日傍晚,金星追赶木星达到两星相距最近的程度,而此时西侧的月牙也会过来凑热闹,形成“双星拱月”的天象美景.若把金星、木星绕太阳的运动当作匀速圆周运动,并用T1、T2分别表示金星、木星绕太阳运动的周期,金星、木星再次运动到相距最近的时间是( )A.T2-T1B.T2+T1C.T1T2T2-T1 D.T1T2T2+T1【解析】因为两星的角速度之差Δω=2πT1-2πT2=2π(T2-T1T1T2),所以Δt=2πΔω=T1T2T2-T1,故C正确.【答案】 C二、非选择题(11题14分,12题16分,共30分)11.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G )【解析】 设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别是ω1、ω2.根据题意有ω1=ω2①r 1+r 2=r ②根据万有引力定律和牛顿运动定律,有G m1m2r2=m 1ω21r 1③G m1m2r2=m 2ω2r 2④联立以上各式解得r 1=m2r m1+m2⑤ 根据角速度与周期的关系知ω1=ω2=2πT ⑥联立③⑤⑥式解得m 1+m 2=4π2r3T2G ⑦【答案】 4π2r3T2G12.(2011·浙江五校联考)2007年4月24日,瑞士天体物理学家斯蒂芬妮·尤德里(右)和日内瓦大学天文学家米歇尔·迈耶(左)拿着一张绘制图片,如图4-3-10图片上显示的是在红矮星581(图片右上角)周围的行星系统.这一代号“581c”的行星正围绕一颗比太阳小、温度比太阳低的红矮星运行,现测得“581c”行星的质量为M 2、半径为R 2,已知地球的质量为M 1、半径为R 1,且已知地球表面的重力加速度为g ,则:图4-3-10(1)求该行星表面的重力加速度;(2)若宇宙飞船在地面附近沿近地圆轨道做匀速圆周运动的周期为T ,求宇宙飞船在距离“581c”行星表面为h 的轨道上绕该行星做匀速圆周运动的线速度v .【解析】 (1)物体在星球表面所受万有引力近似等于物体的重力,即GM2m2R22=m 2g 2GM1m1R21=m 1g 解得星球表面重力加速度g 2=M2R21M 1R 2g (2)飞船在地面附近绕地球运行的周期为T ,根据万有引力定律和牛顿第二定律,有GM1m R21=m ⎝ ⎛⎭⎪⎫2πT 2R 1 飞船在距离“581c ”行星表面为h 的轨道上绕该行星做匀速圆周运动,根据万有引力定律和牛顿第二定律,有GM2m (R2+h )2=m v2(R2+h )解得v =2πR1T M2R1M1(R2+h )【答案】 (1)M2R21M 1R 2g (2)2πR1TM2R1M1(R2+h )。
2023《 万有引力与航天》单元测试题(解析版)
万有引力与航天测试题一、单选题(每小题只有一个正确答案)1.物理学发展历史中,在前人研究基础上经过多年的尝试性计算,首先发表行星运动的三个定律的科学家是()A.哥白尼B.第谷C.伽利略D.开普勒2.通过一个加速装置对电子加一很大的恒力,使电子从静止开始加速,则对这个加速过程,下列描述正确的是()A.根据牛顿第二定律,电子将不断做匀加速直线运动B.电子先做匀加速直线运动,后以光速做匀速直线运动C.电子开始近似于匀加速直线运动,后来质量增大,牛顿运动定律不再适用D.电子是微观粒子,整个加速过程根本就不能用牛顿运动定律解释3.卫星绕某一行星的运动轨道可近似看成是圆轨道,观察发现每经过时间t,卫星运动所通过的弧长为L,该弧长对应的圆心角为θ弧度,如图所示.已知万有引力常量为G,由此可计算出太阳的质量为()A.M=B.M=C.D.4.宇宙中有这样一种三星系统,系统由两个质量为m的小星体和一个质量为M的大星体组成,两个小星体围绕大星体在同一圆形轨道上运行,轨道半径为r.关于该三星系统的说法中正确的是( )①在稳定运行情况下,大星体提供两小星体做圆周运动的向心力②在稳定运行情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧③小星体运行的周期为T=④大星体运行的周期为T=A.①③ B.②③ C.①④ D.②④5.设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度比为k(均不计阻力),且已知地球与该天体的半径之比也为k,则地球与此天体的质量之比为()A. 1B.k2C.k D.6.我国绕月探测工程的预先研究和工程实施已取得重要进展.设地球、月球的质量分别为m1、m2,半径分别为R1、R2,人造地球卫星的第一宇宙速度为v,对应的环绕周期为T,则环绕月球表面附近圆轨道飞行的探测器的速度和周期分别为()A.v,T B.v,TC.v,T D.v,T7.土星周围有美丽壮观的“光环”,组成环的颗粒是大小不等、线度从1 μm到10 m的岩石、尘埃,类似于卫星,它们与土星中心的距离从7.3×104km延伸到1.4×105km.已知环的外缘颗粒绕土星做圆周运动的周期约为14 h,引力常量为6.67×10-11N·m2/kg2,则土星的质量约为(估算时不考虑环中颗粒间的相互作用)()A. 9.0×1016kg B. 6.4×1017kg C. 9.0×1025kg D. 6.4×1026kg8.一艘宇宙飞船绕一个不知名的行星表面飞行,要测定该行星的密度,仅仅需要()A.测定飞船的运行周期B.测定飞船的环绕半径C.测定行星的体积D.测定飞船的运行速度9.甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是()A.乙的周期大于甲的周期B.乙的速度大于第一宇宙速度C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方10.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动.由此可知,冥王星绕O点运动的().A.轨道半径约为卡戎的B.角速度大小约为卡戎的C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍11.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.火星与木星公转周期相等B.火星和木星绕太阳运行速度的大小始终不变C.太阳位于木星运行椭圆轨道的某焦点上D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积12.某星球的半径为R,在其表面上方高度为aR的位置,以初速度v0水平抛出一个金属小球,水平射程为bR,a,b均为数值极小的常数,则这个星球的第一宇宙速度为()A.v0B.v0C.v0D.v013.关于我国发射的“亚洲一号”地球同步通讯卫星的说法,正确的是()A.若其质量加倍,则轨道半径也要加倍B.它在北京上空运行,故可用于我国的电视广播C.它以第一宇宙速度运行D.它运行的角速度与地球自转角速度相同14.人造卫星环绕地球运行的速率v=,其中g为地面处的重力加速度,R为地球半径,r为卫星离地球中心的距离.下列说法正确的是()A.从公式可见,环绕速度与轨道半径成反比B.从公式可见,环绕速度与轨道半径的平方根成反比C.从公式可见,把人造卫星发射到越远的地方越容易D.以上答案都不对15.如图所示,A为地球赤道上的物体,B为地球同步卫星,C为地球表面上北纬60°的物体.已知A、B的质量相同.则下列关于A、B和C三个物体的说法中,正确的是()A.A物体受到的万有引力小于B物体受到的万有引力B.B物体的向心加速度小于A物体的向心加速度C.A、B两物体的轨道半径的三次方与周期的二次方的比值相同D.A和B线速度的比值比C和B线速度的比值大,都小于1二、多选题(每小题至少有两个正确答案)16.(多选)2013年12月2日,我国探月卫星“嫦娥三号”在西昌卫星发射中心成功发射升空,飞行轨道示意图如图所示.“嫦娥三号”从地面发射后奔向月球,先在轨道∶上运行,在P点从圆形轨道∶进入椭圆轨道∶,Q为轨道∶上的近月点,则“嫦娥三号”在轨道∶上()“嫦娥三号”飞行轨道示意图A.运行的周期小于在轨道∶上运行的周期B.从P到Q的过程中速率不断增大C.经过P的速度小于在轨道∶上经过P的速度D.经过P的加速度小于在轨道∶上经过P的加速度17.(多选)假如地球自转角速度增大,关于物体所受的重力,下列说法正确的是()A.放在赤道地面上的物体的万有引力不变B.放在两极地面上的物体的重力不变C.放在赤道地面上的物体的重力减小D.放在两极地面上的物体的重力增加18.(多选)“嫦娥一号”探月卫星发动机关闭,轨道控制结束,卫星进入地月转移轨道,图中MN之间的一段曲线表示转移轨道的一部分,P是轨道上的一点,直线AB过P点且和两边轨道相切,下列说法中正确的是()A.卫星在此段轨道上,动能不变B.卫星经过P点时动能最小C.卫星经过P点时速度方向由P指向BD.卫星经过P点时加速度为019.2016年中国将发射“天宫二号”空间实验室,并发射“神舟十一号”载人飞船和“天舟一号”货运飞船,与“天宫二号”交会对接.“天宫二号”预计由“长征二号F”改进型无人运载火箭或“长征七号”运载火箭从酒泉卫星发射中心发射升空,由长征运载火箭将飞船送入近地点为A、远地点为B的椭圆轨道上,B点距离地面的高度为h,地球的中心位于椭圆的一个焦点上.“天宫二号”飞行几周后进行变轨进人预定圆轨道,如图所示.已知“天宫二号”在预定圆轨道上飞行n圈所用时间为t,引力常量为G,地球半径为R.则下列说法正确的是()A. “天宫二号”从B点沿椭圆轨道向A点运行的过程中,引力为动力B. “天宫二号”在椭圆轨道的B点的向心加速度大于在预定圆轨道上B点的向心加速度C. “天宫二号”在椭圆轨道的B点的速度大于在预定圆轨道上B点的速度D.根据题目所给信息,可以计算出地球质量20.(多选)在中国航天骄人的业绩中有这些记载:“天宫一号”在离地面343 km的圆形轨道上飞行;“嫦娥一号”在距月球表面高度为200 km的圆形轨道上飞行;“北斗”卫星导航系统由“同步卫星”(地球静止轨道卫星,在赤道平面,距赤道的高度约为 36 000千米)和“倾斜同步卫星”(周期与地球自转周期相等,但不定点于某地上空)等组成.则以下分析正确的是()A.设“天宫一号”绕地球运动的周期为T,用G表示引力常量,则用表达式求得的地球平均密度比真实值要小B. “天宫一号”的飞行速度比“同步卫星”的飞行速度要小C. “同步卫星”和“倾斜同步卫星”同周期、同轨道半径,但两者的轨道平面不在同一平面内D. “嫦娥一号”与地球的距离比“同步卫星”与地球的距离小三、填空题21.已知地球半径为R,质量为M,自转周期为T.一个质量为m的物体放在赤道处的海平面上,则物体受到的万有引力F=______,重力G=______.22.对太阳系的行星,由公式=,F=,=k可以得到F=________,这个公式表明太阳对不同行星的引力,与________成正比,与________成反比.23.地球赤道上的物体A,近地卫星B(轨道半径等于地球半径),同步卫星C,若用TA、TB、TC;v A、v B、v C;分别表示三者周期,线速度,则满足________,________.24.据报道,美国计划2021年开始每年送15 000名游客上太空旅游.如图所示,当航天器围绕地球做椭圆运行时,近地点A的速率________(填“大于”“小于”或“等于”)远地点B的速率.25.如图所示是某行星围绕太阳运行的示意图,则行星在A点的速率________在B点的速率.四、计算题26.假设几年后,你作为航天员登上了月球表面,如果你已知月球半径R,那么你用一个弹簧测力计和一个已知质量的砝码m,能否测出月球的质量M?怎样测定?27.宇宙中两个相距较近的天体称为“双星”,它们以两者连线上的某一点为圆心做匀速圆周运动,但两者不会因万有引力的作用而吸引到一起.设两者的质量分别为m1和m2,两者相距为L.求:(1)双星的轨道半径之比;(2)双星的线速度之比;(3)双星的角速度.答案解析1.【答案】D【解析】哥白尼提出了日心说,第谷对行星进行了大量的观察和记录,开普勒在第谷的观察记录的基础上提出了行星运动的三个定律,选项D正确,A、B、C错误.2.【答案】C【解析】电子在加速装置中由静止开始加速,开始阶段速度较低,远低于光速,此时牛顿运动定律基本适用,可以认为在它被加速的最初阶段,它做匀加速直线运动.随着电子的速度越来越大,接近光速时,相对论效应越来越大,质量加大,它不再做匀加速直线运动,牛顿运动定律不再适用.3.【答案】B【解析】线速度为v=∶角速度为ω=∶根据线速度和角速度的关系公式,有v=ωr∶卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律,有G=mvω∶联立解得M=,故选项B正确.4.【答案】B【解析】三星应该在同一直线上,并且两小星体在大星体相对的两侧,只有这样才能使某一小星体受到大星体和另一小星体的引力的合力提供向心力.由G+G=mr2,解得小星体的周期T=,所以选项B正确.5.【答案】C【解析】在地球上:h=某天体上;h′=因为=k所以=k根据G=mg,G=mg′可知=又因为=k联立得:=k6.【答案】A【解析】由向心力公式=,=,两式联立,得v2=v;由T2=,T=,两式联立,得T2=T,故A项正确.7.【答案】D【解析】环的外缘颗粒绕土星做圆周运动,根据万有引力提供向心力,列出等式:G=mR()2M=,其中R为轨道半径,大小为1.4×105km,T为周期,约为14 h.代入数据得:M≈6.4×1026kg.8.【答案】A【解析】取飞船为研究对象,由G=mR及M=πR3ρ,知ρ=,故选A.9.【答案】C【解析】人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m、轨道半径为r、地球质量为M,有:G=m=mω2r=m()2r=ma解得:v=∶T=2π∶a=∶由∶∶∶式可以知道,人造卫星的轨道半径越大,线速度越小、周期越大、加速度越小,由于甲卫星的高度大,轨道半径大,故甲卫星的线速度小、周期大,加速度小;第一宇宙速度是近地圆轨道的环绕速度,也是圆轨道运行的最大速度;则C正确;甲只能在赤道上空,则D错误,故选C.10.【答案】A【解析】设冥王星和卡戎的质量分别为m1和m2,轨道半径分别为r1和r2,它们之间的距离为L.冥王星和卡戎绕它们连线上的某点做匀速圆周运动,转动周期和角速度相同,选项B错误;对于冥王星有=m1ω2r1,对于卡戎有=m2ω2r2,可知m1ω2r1=m2ω2r2,故==,选项A正确;又线速度v=ωr,故线速度大小之比==,选项C错误;因两星的向心力均由它们之间的万有引力提供,故大小相等,选项D错误.11.【答案】C【解析】根据开普勒第三定律,=k,k为常量,火星与木星公转的半径不等,所以火星与木星公转周期不相等,故A错误;开普勒第二定律:对每一个行星而言,太阳与行星的连线在相同时间内扫过的面积相等.行星在此椭圆轨道上运动的速度大小不断变化,故B错误;相同时间内,太阳行星的连线在相同时间内扫过的面积相等是对同一个行星而言,故D错误;开普勒第一定律的内容为所有行星分别沿不同大小的椭圆轨道绕太阳运动,太阳处于椭圆的一个焦点上,故C正确.12.【答案】A【解析】设该星球表面重力加速度为g,小球落地时间为t,抛出的金属小球做平抛运动,根据平抛运动规律得aR=gt2,bR=v0t,联立以上两式解得g=,第一宇宙速度即为该星球地表卫星线速度,根据地表卫星重力充当向心力得mg=m,所以第一宇宙速度v===v0,故选项A正确.13.【答案】D【解析】由G=m得r=,可知轨道半径与卫星质量无关,A错.同步卫星的轨道平面必须与赤道平面重合,即在赤道上空运行,不能在北京上空运行,B错.第一宇宙速度是卫星在最低圆轨道上运行的速度,而同步卫星在高轨道上运行,其运行速度小于第一宇宙速度,C错.所谓“同步”就是卫星保持与地面赤道上某一点相对静止,所以同步卫星的角速度与地球自转角速度相同,D对.14.【答案】B【解析】由于g是地球表面处的重力加速度,R是地球半径,都是定值,根据v=可得环绕速度与轨道半径的平方根成反比,B正确,A、D错误;虽然r越大,v越小,但把卫星发射到越远的地方火箭会有更多的动能转化为重力势能,需要的发射速度就越大,C错误.15.【答案】D【解析】根据万有引力定律F=G,且A、B的质量相同,可知,间距越大的,引力越小,因此A物体受到的万有引力大于B物体受到的万有引力,故A错误;由an=ω2r,因A与B的角速度相同,当半径越大时,则向心加速度越大,故B错误;A在地球表面,不是环绕地球做匀速圆周运动,因此不满足开普勒第三定律,故C错误;根据v=ωr,可知,B点线速度最大,而C的线速度最小,因此A与B的线速度之比,C与B的线速度之比,均小于1,再根据同步卫星轨道半径约是地球半径的5.7倍,则=,C为地球表面上北纬60°的物体,那C轨道半径为地球半径的一半,则=,因此=,故D正确.16.【答案】ABC【解析】根据开普勒第三定律=k,可判断嫦娥三号卫星在轨道∶上的运行周期小于在轨道∶上的运行周期,A正确;因为P点是远地点,Q点是近地点,故从P点到Q点的过程中速率不断增大,B正确;根据卫星变轨特点可知,卫星在P点从圆形轨道∶进入椭圆轨道∶要减速,C正确;根据牛顿第二定律和万有引力定律可判断在P点,卫星的加速度是相同的,D错误.17.【答案】ABC【解析】地球自转角速度增大,物体受到的万有引力不变,选项A正确;在两极,物体受到的万有引力等于其重力,则其重力不变,选项B正确,D错误;而对放在赤道地面上的物体,F万=G重+mω2R,由于ω增大,则G重减小,选项C正确.18.【答案】BCD19.【答案】AD【解析】“天宫二号”从B点沿椭圆轨道向A点运行的过程中,速度是变大的,故受到的地球引力为动力,所以A正确;在B点“天宫二号”产生的加速度都是由万有引力产生的,因为同在B点万有引力大小相等,故不管在哪个轨道上运动,在B点时万有引力产生的加速度大小相等,故B错误;“天宫二号”在椭圆轨道的B点的加速后做离心运动才能进入预定圆轨道,故“天宫二号”在椭圆轨道的B点的速度小于在预定圆轨道的B点的速度,故C错误;“天宫二号”在预定圆轨道上飞行n 圈所用时间为t,故周期为T=,根据万有引力提供向心力G=m,得地球的质量M==,故D正确.20.【答案】AC【解析】设地球轨道半径为R,“天宫一号”的轨道半径为r,运行周期为T,地球密度为ρ,则有=m()2r,M=ρ·,解得ρ=,A正确;轨道半径小,运动速度大,B错误;“同步卫星”和“倾斜同步卫星”周期相同,则轨道半径相同,轨道平面不同,C正确;“嫦娥一号”绕月球运动,与地球距离大于同步卫星与地球距离,D错误.21.【答案】-【解析】根据万有引力定律的计算公式,得F万=.物体的重力等于万有引力减去向心力,即mg=F万-F向=-.22.【答案】行星的质量行星和太阳间距离的二次方【解析】=k与F=得F=,再与=k联立消去T可以得到F=,这个公式表明太阳对不同行星的引力与行星的质量成正比,与行星和太阳间距离的二次方成反比.23.【答案】TA=TC>TB v B>v C>v A【解析】卫星A为同步卫星,周期与C物体周期相等,根据卫星绕地球做圆周运动,万有引力提供向心力得周期T=2π,所以TA=TC>TB;AC比较,角速度相等,由v=ωr,可知v A<v C;BC比较,同为卫星,由人造卫星的速度公式v=,可知v B>v C,故TA=TC>TB,v B>v C>v A.24.【答案】大于【解析】25.【答案】大于【解析】26.【答案】将砝码挂在弹簧测力计上,测出弹簧测力计的读数F,由F=mg月,得g月=①在月球表面,砝码的重力应等于月球的引力,mg月=G,则M=,②将①代入②,解得M==.故能测出月球的质量,用弹簧测力计测出砝码的重力F,依据表达式M=求出月球质量.【解析】将砝码挂在弹簧测力计上,测出弹簧测力计的读数F,由F=mg月,得g月=①在月球表面,砝码的重力应等于月球的引力,mg月=G,则M=,②将①代入②,解得M==.故能测出月球的质量,用弹簧测力计测出砝码的重力F,依据表达式M=求出月球质量.27.【答案】(1)(2)(3)【解析】这两颗星必须各自以一定的速度绕某一中心转动才不至于因万有引力而被吸引在一起,从而保持两星间距离L不变,且两者做匀速圆周运动的角速度ω必须相同.如图所示,两者轨迹圆的圆心为O,圆半径分别为R1和R2.由万有引力提供向心力,有G=m1ω2R1①G=m2ω2R2②(1)由,得=.(2)因为v=ωR,所以==.(3)由几何关系知R1+R2=L③联立①②③式解得ω=.。
最新-2018高中物理 第5章万有引力定律及其应用单元测试18 必修21 精品
第5章 万有引力定律及其应用 单元测试(90分钟 100分)一、选择题:本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,至少有一个是正确的,每小题全部选对的得4分,选对但不全的得2分,不选和有选错的均得零分。
1. 关于万有引力定律和引力常量的发现,下面说法中哪个是正确的( ) A .万有引力定律是由开普勒发现的,而引力常量是由伽利略测定的 B .万有引力定律是由开普勒发现的,而引力常量是由卡文迪许测定的 C .万有引力定律是由牛顿发现的,而引力常量是由胡克测定的 D .万有引力定律是由牛顿发现的,而引力常量是由卡文迪许测定的2. 关于地心说和日心说的下列说法中,正确的是( ) A.地心说的参考系是地球 B.日心说的参考系是太阳C.地心说和日心说只是参考系不同,两者具有等同的价值D.日心说是由开普勒提出来的3.如图所示,关于物体的重力,下列说法中正确的是( ) A.同一物体在地球上的任何位置所受重力都相同 B.把物体从地面移向高空中,物体所受重力减小 C.同一物体在赤道上受到的重力比两极大D.物体所受重力的方向与所受万有引力的方向一定不相同 4. 关于引力常量G,以下说法正确的是( ) A.在国际单位制中,G 的单位是N •m 2/kgB.在国际单位制中,G 的数值等于两个质量各1kg 的物体,相距1m 时相互吸引力的大小C.在不同星球上,G 的数值不一样D.在不同的单位制中,G 的数值不一样5. 已知地球的半径为R ,质量为M ,将地球看作均匀球体,若有可能将一质量为m 的物体放在地球的球心处,则此物体受到地球的万有引力大小为( )A .2GMmR B .无穷大 C .零 D .无法确定6.某行星绕太阳运动轨迹如图所示,图中A 、B 为椭圆轨迹的两个焦点,太阳位于A 处,a 为近日点,c 为远日点,O 为椭圆的几何中心,则行星( ) A .在a 处的速率比在c 处小B .在a 处的速率比在c 处大C .在a 处的向心力等于万有引力D .在b 处的加速度方向指向O 7. 关于万有引力定律的正确说法是( )A.天体间的万有引力与它们的质量成正比,与它们之间的距离成反比B.任何两个物体都是相互吸引的,引力的大小跟两个物体的质量的乘积成正比,跟它们的距离的平方成反比C.万有引力与质量、距离和万有引力恒量都成正比D.万有引力定律对质量大的物体适用,对质量小的物体不适用 8. 关于万有引力定律的适用范围,下列说法中正确的是( ) A.只适用于天体,不适用于地面物体B.只适用于球形物体,不适用于其他形状的物体C.只适用于质点,不适用于实际物体D.适用于自然界中任意两个物体之间9. 行星绕恒星运动的轨道如果是圆,那么它的轨道的长半轴三次方与公转周期T 的平方的比为常数,设32R k T,则常数k 的大小( )A.只与行星的质量有关B.只与恒星的质量有关C.与恒星的质量及行星的质量有关D.与恒星的质量及行星的速度有关10. 现有一绕太阳做圆周运动的行星,质量是地球质量的2倍,轨道半径也是地球轨道半径的2倍,那么下列说法中正确的是( )A.由F=mv 2/r 可知,行星所需向心力与地球所需的向心力相同 B.由v=ωr 可知,行星的线速度是地球线速度的2倍 C.由GmM/r 2=mv 2/r 可知,行星的线速度是地球线速度22倍 D.由GmM/r 2=ma ,行星的向心加速度是地球向心加速度的1/4二、填空题:本题共3小题,每题4分,满分12分;将正确、完整的答案填入相应的横线中。
最新精编高中人教版高中物理课时9单元测验----万有引力定律及解析
课时9 单元测试1.发现万有引力定律和测出引力常量的家分别是( )A.开普勒、卡文迪许B.牛顿、伽利略.牛顿、卡文迪许D.开普勒、伽利略2.太空舱绕地球飞行时,下列说法中正确的是( )A.太空舱做圆周运动所需的向心力由地球对它的吸引力提供B.太空舱内宇航员感觉舱内物体失重。
地球对舱内物体无吸引力D.太空舱内无法使用天平3.行星绕恒星的运动轨道近似是圆形,那么它运行周期T的平方与轨道半径R的三次方的比为常,设T2/R3=,则常的大小( ) A.只与恒星的质量有关B.只与行星的质量有关I’.与恒星的质量及行星的质量都有关系D.与恒星的质量及行星的质量都没关系4.有两颗行星A、B,在此两星球附近各有—颗卫星,若这两卫星运动的周期相等,由此可知( )A.行星A、B表面重力加速度与它们的半径—定成正比B.两卫星的线速度一定相等.行星A、B 的质量可能相等D .行星A 、B 的密度一定相等5两颗人造卫星绕地球做匀速圆周运动,它们的质量之比A :B =1∶2,轨道半径之比r A :r B =3∶1,某—时刻它们的连线恰好通过地心,下列说法中错误的是 ( )A .,它们的线速度之比v A :vB = 1∶3B .它们的向心加速度之比A ∶B =1∶9.它们的向心力之比F A ∶F B = ∶18D .它们的周期之比T A ∶T B = 3∶6.设第一、第二、第三宇宙速度分别是v 1、v 2、v 3,则 ( )A .v 1=7.9 /,7.9 /<v 2≤11.2/,11.2/s<v 3≤16.7/B .7.9 /≤v 1<11.2/,v 2=11.2 /,11.2/s<v 3≤16.7/. 7.9 /≤v 1<11.2/,11.2/s≤v 2<16.7/ v 3=16.7 /,D .v 1=7.9 /, v 2=11.2/,1v 3=16.7/7.两个质量相等的球体,球心相距r 时,它们之间的引力为10-8N ,若它们的质量都加倍,球心间的距离也加倍,则它们之间的引力为 N .8.某人在一星球上以速度v 0竖直上抛一物体,经时间后物体落回手中.已知星球半径为R ,那么物体沿星球表面抛出并不再落回星球表面的最低速度是 。
高一物理万有引力定律单元检测题
高一物理万有引力定律单元检测题高一物理万有引力定律单元检测题班级:________姓名:____________得分:____________命题人:毛永辉一.不定项选择题(共48分,每小题6分,漏选得3分,错选或不答均不得分.请将答案填在题后的方框里)1.下列说法正确的是()A.行星绕太阳的椭圆轨道可以近似地看作圆轨道,其向心力来源于太阳对行星的引力B.太阳对行星的引力大于行星对太阳的引力,所以行星绕太阳运转而不是太阳绕行星运转C.万有引力定律适用于天体,不适用于地面上的物体D.行星与卫星之间的引力.地面上的物体所受的重力和太阳对行星的引力,性质相同,规律也相同2.关于万有引力的说法正确的是( )A.万有引力只有在天体与天体之间才能明显地表现出来B.一个苹果由于其质量很小,所以它受到的万有引力几乎可以忽略C.地球对人造卫星的万有引力远大于卫星对地球的万有引力D.地球表面的大气层是因为万有引力约束而存在于地球表面附近3.一星球密度和地球密度相同,它的表面重力加速度是地球表面重力加速度的2倍,则该星球质量是地球质量的(忽略地球.星球的自转)( )A.2倍B.4倍C.8倍D.16倍4.若已知某行星绕太阳公转的半径为,公转周期为,万有引力常量为,则由此可求出( )A. 某行星的质量B.太阳的质量C. 某行星的密度D.太阳的密度5.宇宙飞船进入一个围绕太阳运动的近乎圆形的轨道上运动,如果轨道半径是地球轨道半径的9倍,那么宇宙飞船绕太阳运行的周期是( )A.3年B.9年C.27年D.81年6.近地卫星线速度为7.9km/s,已知月球质量是地球质量的1/81,地球半径是月球半径的3.8倍,则在月球上发射〝近月卫星〞的环绕速度约为( )A.1.0 km/sB.1.7 km/sC.2.0 km/sD.1.5 km/s7.由于空气阻力的作用,人造卫星缓慢地靠近地球,则()A.卫星运动速率减小B.卫星运动速率增大C.卫星运行周期变小D.卫星的向心加速度变大8.地球同步卫星距地面高度为,地球表面的重力加速度为,地球半径为,地球的自转角速度为,那么同步卫星绕地球转动的角速度为( )A.B.C.D.选择题答题表题号12345678答案二.填空题(共24分,每小题6分,直接填写在题中相应位置)9.某物体在地球表面上受到地球对它的引力大小为960N,为使此物体受到的引力减至60N,物体距地面的高度应为_____.(为地球的半径)10.一物体在一星球表面时受到的吸引力为在地球表面所受吸引力的倍,该星球半径是地球半径的倍.若该星球和地球的质量分布都是均匀的,则该星球的密度是地球密度的_________倍.11.两颗人造地球卫星,它们的质量之比,它们的轨道半径之比,那么它们所受的向心力之比__________;它们的角速度之比____________.12.若已知某行星的平均密度为,引力常量为,那么在该行星表面附近运动的人造卫星的角速度大小为____________.三.解答题(共28分.要写出必要的文字说明.方程式和重要的演算步骤)13.(14分)对某行星的一颗卫星进行观测,已知运行的轨迹是半径为的圆周,周期为,求:(1)该行星的质量;(2)测得行星的半径为卫星轨道半径的1/10,则此行星表面重力加速度为多大?14.(14分)在地球某处海平面上测得物体自由下落高度所需的时间为,到某高山顶测得物体自由落体下落相同高度所需时间增加了,已知地球半径为,求山的高度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西昌一中2021届单元检测试题(万有引力定律)学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共10小题,共40.0分)1.在物理学的发展过程中,许多物理学家都做出了重大贡献,他们也创造出了许多物理学研究方法,下列关于物理学史和物理学方法的叙述中正确的是()A. 牛顿发现了万有引力定律,他被称为“称量地球质量”第一人B. 牛顿进行了“月−地检验”,得出天上和地下的物体间的引力作用都遵从万有引力定律C. 卡文迪许在利用扭秤实验装置测量引力常量时,应用了微元法D. 在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法是转换法【答案】B【解析】【分析】牛顿发现引力定律,而卡文迪许通过实验测量并计算得出了万有引力常量,使用了放大法;用质点来代替物体的方法是等效替代法,从而即可一一求解.本题考查了物理学史以及一些物理定律的意义,对于物理定律我们不仅要会应用还要了解其推导过程,有助于提高我们研究问题的能力和兴趣,注意引力定律与引力常量发现者的不同,及理解微元法、等效法、转换法的含义.【解答】A、牛顿发现了万有引力定律,而卡文迪许通过实验测量并计算得出了万有引力常量,因此卡文迪许被称为“称量地球的质量”的人。
故A错误;B、牛顿进行了“月−地检验”,得出天上和地下的物体间的引力作用都遵从万有引力定律,故B正确;C、卡文迪许在利用扭秤实验装置测量引力常量时,应用了放大法,故C错误。
D、不需要考虑物体本身的大小和形状时,用质点来代替物体的方法是等效替代法,故D错误。
故选:B。
2.地球半径为R,地面附近的重力加速度为g,物体在离地面高度为h处的重力加速度的表达式是()A. (R+ℎ)R g B. RgR+ℎC. (R+ℎ)2gR2D. R2g(R+ℎ)2【答案】D【解析】【分析】由地面的万有引力等于重力,再列高空的万有引力等于重力,联合可得高空重力加速度表达式。
无论地面还是高空,万有引力都可以直接表达为:G Mmr2=ma【解答】地面万有引力等于重力:G MmR2=mg高空处:GMm(R+ℎ)2=ma解得:a=R 2g(R+ℎ)2故ABC 错误,D 正确。
故选D 。
3. 我国的“神舟”系列航天飞船的成功发射和顺利返回,显示了我国航天事业取得的巨大成就.已知地球的质量为M ,引力常量为G ,飞船的质量为m ,设飞船绕地球做匀速圆周运动的轨道半径为r ,则( )A. 飞船在此轨道上的运行速率为√Gm rB. 飞船在此圆轨道上运行的向心加速度为√rGM C. 飞船在此圆轨道上运行的周期为2π√r 3GMD. 飞船在此圆轨道上运行所受的向心力为GMr 2【答案】C【解析】【分析】研究飞船绕地球做匀速圆周运动,根据万有引力提供向心力,列出等式,根据等式表示出飞船在圆轨道上运行的速率、角速度以及向心加速度。
该题考查万有引力的应用,关键要注意向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用。
【解答】A .研究飞船绕地球做匀速圆周运动,根据万有引力提供向心力,列出等式:G Mm r 2=m v 2r ,解得:v =√GM r,故A 错误;B .根据万有引力提供向心力,得:G Mm r 2=ma ,所以:a =GM r 2,故B 错误;C .根据万有引力提供向心力,得GMm r 2=m4π2r T 2,所以:T =2π√r 3GM ,故C 正确;D .飞船在此圆轨道上运行所受的向心力为万有引力,得:F =G Mm r 2,故D 错误。
故选C 。
4. 太阳系中有一颗绕太阳公转的行星,距太阳的平均距离是地球到太阳平均距离的4倍,则该行星绕太阳公转的周期是( ) A. 2年 B. 4年 C. 8年 D. 10年 【答案】C【解析】解:设地球半径为R ,则行星的半径为4R ; 根据开普勒第三定律得:R 2T 2=(4R)3T 行2则T 行=√43T =8T ;地球的公转周期为1年,则说明该行星的公转周期为8年; 故选:C 。
据开普勒第三定律得出地球和该行星公转半径的三次方与周期的二次方的比值相等,列式求解。
解决本题的关键掌握开普勒第三定律,并能正确应用,也可以根据万有引力提供向心力这一思路进行求解。
5.如图所示,A,B,C三颗人造地球卫星绕地球做匀速圆周运动,已知三颗卫星的质量关系为m A=m B<m C,轨道半径的关系为r A<r B=r C,则三颗卫星()A. 线速度大小关系为v A<v B=v CB. 加速度大小关系为a A>a B=a CC. 向心力大小关系为F A=F B<F CD. 周期关系为T A>T B=T C【答案】B【解析】【分析】根据人造卫星的万有引力等于向心力,列式求出线速度、周期、向心加速度、向心力的表达式进行讨论即可.本题关键抓住万有引力提供向心力,先列式求解出线速度、周期、向心力、向心加速度的表达式,再进行讨论.【解答】人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m、轨道半径为r、地球质量为M,有:F=F向G Mmr2=mv2r=ma=m4π2T2r解得:F向=GMmr2,v=√GMr,a=GMr2,T=2π√r3GM 。
根据题意有:r A<r B=r C因此:A、由v=√GMr可知,v A>v B=v C,故A错误。
B、由a=GMr2可知,a A>a B=a C,故B正确。
C、根据F向=GMmr2和已知条件m A=m B<m C,可以判断:F A>F B,F B<F C,故C错误。
D、由T=2π√r3GM 可知,T A<T B=T C,故D错误。
故选:B。
6.一宇航员在一星球上以速度v0竖直上抛一物体,经t秒钟后物体落回手中,已知星球半径为R,使物体不再落回星球表面,物体抛出时的速度至少为()A. √2v0Rt B. √v0RtC. √v0R2tD. √2v0Rt【答案】A【解析】【分析】以初速度v0竖直上抛一物体,物体在重力作用下做匀减速直线运动,根据匀变速直线运动的速度时间关系公式可以求出该星球表面的重力加速度。
为了使沿星球表面抛出的物体不再落回星球表面,卫星将绕星球表面做匀速圆周运动,重力提供万有引力,据此列式可得卫星运行的线速度。
认清竖直上抛运动的本质,根据匀减速直线运动规律求出物体的重力加速度。
卫星运行的速度根据重力提供圆周运动的向心力列式求解即可。
【解答】解:物体抛出后,在星球表面上做竖直上抛运动,设星球对物体产生的“重力加速度”为g,则v0=g×t2①,设抛出时的速度至少为v,物体抛出后不再落回星球表面,根据牛顿第二定律有mg=m v2R ②,由①②得v=√2v0Rt,故A正确,BCD错误。
故选A。
7.如图,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。
据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动,以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小。
以下判断正确的是()A. a2>a3>a1B. a2>a1>a3C. a3>a1>a2D. a3>a2>a1【答案】D【解析】解:在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动,根据向心加速度a n=4π2T2r,由于拉格朗日点L1的轨道半径小于月球轨道半径,所以a2>a1,同步卫星离地高度约为36000公里,故同步卫星离地距离小于拉格朗日点L1的轨道半径,根据a=GMr2得a3>a2>a1,故选:D。
由题意知,空间站在L1点能与月球同步绕地球运动,其绕地球运行的周期、角速度等于月球绕地球运行的周期、角速度,由a n=4π2T2r,分析向心加速度a1、a2的大小关系。
根据a=GMr2分析a3与a1、a2的关系。
本题比较简单,对此类题目要注意掌握万有引力充当向心力和圆周运动向心加速度公式的联合应用。
8.已知地球质量为月球质量的81倍,地球半径约为月球半径的4倍。
若在月球和地球表面同样高度处,以相同的初速度水平抛出物体,抛出点与落地点间的水平距离分别为s月和s地,则s月:s地约为()A. 9:4B. 6:1C. 3:2D. 1:1【答案】A【解析】【分析】重力加速度g是天体运动研究和天体表面宏观物体运动研究联系的物理量。
把月球表面的物体运动和天体运动结合起来是考试中常见的问题。
根据万有引力等于重力,求出月球表面重力加速度和地球表面重力加速度关系,运用平抛运动规律求出两星球上水平抛出的射程之比。
【解答】设地球质量为M′,半径为R′,月球质量为M,半径为R。
已知M′M =81,R′R =4, 根据万有引力等于重力得:GMm R 2=mg则有:g =GM R 2因此由题意从同样高度抛出, ℎ=12gt 2=12g′t′2…②, ①②联立,解得t′=94t , 在地球上的水平位移s =v 0t , 在月球上的s′=v 0t′;因此s 月:s 地约为9:4,故A 正确,BCD 错误。
故选A 。
9. 我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射.量子卫星成功运行后,我国将在世界上首次实现卫星和地面之间的量子通信,构建天地一体化的量子保密通信与科学实验体系.假设量子卫星轨道在赤道平面,如图所示.已知量子卫星的轨道半径是地球半径的m 倍,同步卫星的轨道半径是地球半径的n 倍,图中P 点是地球赤道上一点,由此可知( )A. 同步卫星与量子卫星的运行周期之比为n3m 3 B. 同步卫星与P 点的速度之比为√1nC. 量子卫星与同步卫星的速度之比为nm D. 量子卫星与P 点的速度之比为√n 3m【答案】D【解析】解:A 、根据GMm r 2=m4π2T 2r ,得T =√4π2r 3GM,由题意知r 量子=mR ,r 同步=nR ,所以T 同T 量=√r 同3r 量3=√(nR)3(mR)3=√n 3m 3,故A 错误;B 、P 为地球赤道上一点,P 点角速度等于同步卫星的角速度,根据v =ωr ,所以有v 同v P=r 同r P=nR R=n1,故B 错误;C 、根据GMm r 2=m v 2r ,得v =√GM r,所以v 量v 同=√r 同r 量=√nR mR =√nm ,故C 错误;D、综合BC,有v同=nv P,v量nv P=√nm,得v量v P=√n3m,故D正确;故选:D。
研究量子卫星和同步卫星绕地球做匀速圆周运动,根据万有引力提供向心力,列出等式表示出所要比较的物理量;研究地球赤道上的点和同步卫星,具有相等角速度;求一个物理量之比,我们应该把这个物理量先用已知的物理量表示出来,再根据表达式进行比较.向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用.10.假设地球可视为质量均匀分布的球体,已知地球表面重力加速度在两极的大小为g0,赤道的大小为g;地球自转的周期为T,引力常量为G.则地球的密度为()A. 3πGT2g0−gg0B. 3πGT2g0g0−gC. 3πGT2D. 3πGT2g0g【答案】B【解析】解:在两极,引力等于重力,则有:mg0=G mMR2,由此可得地球质量M=g0R2G,在赤道处,引力与支持力的合力提供向心力,由牛顿第二定律,则有:G mMR2−mg=m4π2T2R,而密度公式ρ=MV,ρ=g0R2G43πR3=3πg0GT2(g0−g),故B正确,ACD错误;故选:B。