解一元一次方程(习题)

合集下载

解一元一次方程习题精选附答案

解一元一次方程习题精选附答案

解一元一次方程一.解答题(共30小题)1.解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6(2)+215.(A类)解方程:5x﹣2=7x+8;(B 类)解方程:(x﹣1)﹣(x+5)=﹣;(C 类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x ﹣﹣318.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x).23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k 为什么数时,式子比的值少3.29.解下列方程:(I )12y ﹣2.5y=7.5y+5 (II ).30.解方程:.专题训练(七) 一元一次方程的解法1.解下列方程: (1)3x -5=2x ;(2)56-8x =11+x ;(3)32x =12x +13;(4)0.5y -0.7=6.5-1.3y.2.解下列方程:(2)2(x -3)+5(2x +1)=11;(3)3(2x +5)=2(4x +3)-3;(4)4y -3(20-y)=6y -7(9-y).3.解下列方程: (1)x -22=4x +15;(2)107x -17-20x 3=1;(3)2x -13-2x -34=1;(4)2(x +3)5=32x -2(x -7)3.4.解下列方程: (1)0.1-2x 0.3=1+x 0.15;(2)2x 0.3-1.6-3x 0.6=31x +83.5.解下列方程: (1)119x +27=29x -57;(3)32[23(x4-1)-2]-x =2;(4)x -13[x -13(x -9)]=19(x -9).1.解下列方程: ⑴ 8723-=+x x⑵623521-=+x x⑶ x x x 7)25(34=--⑷ 12)1(3=-x⑸ 4)20(34-=--x x⑹ x x 57)53(212-=-- ⑺ )2(512)1(21+-=-x x ⑻352)63(61-=-x x ⑼ 314125=-x x ⑽52221+-=-y y ⑾ 321513223=-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-x x ⑿343883x x =⎪⎭⎫ ⎝⎛+⒀ x x x 432132342=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⒁165.032.04=--+x x6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正乘以最小公倍数.13.解方程:(1)(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6(2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1系数化为1得:x=﹣4.点评:解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是去括号,移项合并.(4)两边同乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣2)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7(2).考点:解一元一次方程.专题:计算题.分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k 为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II ).考点:解一元一次方程.专题:计算题.分析:(Ⅰ)根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解;(Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.30.解方程:.考点:解一元一次方程.专题:计算题.分析:由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分)去分母,得3×(30x﹣11)﹣4×(40x﹣2)=2×(16﹣70x),(4分)去括号,得90x﹣33﹣160x+8=32﹣140x,(5分)移项,得90x﹣160x+140x=32+33﹣8,(6分)合并同类项,得70x=57,(7分)系数化为1,得.(8分)点评:本题考查一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同乘一个数,而是将分子、分母同乘一个数.参考答案1.(1)3x-2x=5,x=5. (2)-8x-x=11-56,-9x =-45,x=5. (3)32x-12x=13,x=13. (4) 0.5y+1.3y =0.7+6.5,1.8y=7.2,y=4.2.(1)4x-60+6x=10,4x+6x=60+10,10x=70,x =7. (2)2x-6+10x+5=11,12x=12,x=1. (3)6x +15=8x+6-3,6x-8x=-15+6-3,-2x=-12,x=6. (4)4y-60+3y=6y-63+7y,3y+4y-6y-7y=60-63,-6y =-3,y =12.3.(1)5(x -2)=2(4x +1),5x -10=8x +2,5x -8x =10+2,-3x =12,x =-4. (2)30x -7(17-20x)=21,30x -119+140x =21,30x +140x =119+21,170x =140,x =1417. (3)4(2x -1)-3(2x -3)=12,8x -4-6x +9=12,8x -6x =4-9+12,2x =7,x =72. (4)12(x+3)=45x -20(x -7),12x +36=45x -20x +140,12x -45x +20x =-36+140,-13x =104,x =-8. 4.(1)解法一:原方程整理,得1-20x 3=1+100x15.去分母,得5(1-20x)=15+100x.去括号,得5-100x =15+100x.移项,得-100x -100x =15-5.合并同类项,得-200x =10.系数化为1,得x =-0.05.解法二:去分母,得0.15(0.1-2x)=0.045+0.3x.去括号,得0.015-0.3x =0.045+0.3x.移项,得-0.3x -0.3x =0.045-0.015.合并同类项,得-0.6x =0.03.系数化为1,得x =-0.05. (2)20x 3-16-30x 6=31x +83,40x -(16-30x)=2(31x +8),40x -16+30x =62x +16,40x+30x -62x =16+16,8x =32,x =4. 5.(1)119x -29x =-57-27,x =-1. (2)278(x -3)+463×2(x-3)-888×7(x-3)=0,(278+463×2-888×7)(x-3)=0,x =3. (3)x4-1-3-x =2,x =-8. (4)x -13x +19(x -9)=19(x -9),23x =0,x =0.。

解一元一次方程50道练习题

解一元一次方程50道练习题

解一元一次方程50道练习题解一元一次方程50道练题(含答案)1.2x+1=115/(x+4)2.8x-0.1=0.5x-0.73.x-4=x+3-x4.(2x^2-12x+3)/(x^2+13x+17)=1/235.5x+2=7x-86.(2x-1)/3 - (4x-1)/2 + (3x-2)/2 + 1 = -x+27.2[1-(x+1)] = (2x-3)8.(2x+3)+(2x+4) = (2x+5)+(2x+6)9.x = -510.(2x-1)/2 - 3(4x-1)/4 + 2(3x-2)/2 + 1 = -x+211.x = 1/312.y = 1/213.x = -1/314.(2x-1)^2/3 - x + 2 = 015.x = (2/3)16.(x-9)/2 = x+117.x = -1/3 or x = 3/718.XXX19.x = 220.x = -221.x = 2/322.x = 5/823.XXX24.x = -1/225.x = -2/326.x = 327.x = -928.x = -129.XXX30.x = 831.x = -1/232.XXX33.y = -2/534.y = 4/10 or y = 2/735.x = -1/6这里提供了50个一元一次方程的练题及其答案。

每个方程都需要求解,有些需要化简,有些需要代数运算,有些需要解方程组。

通过练这些题目,可以提高解方程的能力。

8x - 4 + 2x = 4x - 3XXX XXX:10x - 4 = 4x - 3Subtract 4x from both sides:6x - 4 = -3Add 4 to both sides:6x = 1Divide both sides by 6:x = 1/638) 2(3x + 4) = 6 - 5(x - 7) Distribute the 2 on the left side: 6x + 8 = 6 - 5x + 35 Combine like XXX:11x + 8 = 41Subtract 8 from both sides:11x = 33Divide both sides by 11:x = 339) x^2 - 5x + 12 = -1/236Add 1/236 to both sides:x^2 - 5x + 12 + 1/236 = 0 Find a common XXX:x^2 - 5x + (12*236+1)/236 = 0 XXX:x^2 - 5x + 2833/236 = 040) x - [x - (x-2)] = 2XXX inside the brackets:x - [x - x + 2] = 2XXX:x - 2 = 2Add 2 to both sides:x = 441) -2.5 = -3.5This n is not solvable because it is not true.42) -(x-5) + 3/(2x-3) = 5/3Distribute the negative:x + 5 + 3/(2x-3) = 5/3Subtract 5 from both sides:x + 3/(2x-3) = -10/3Multiply both sides by 3(2x-3):3x(2x-3) + 9 = -10(2x-3)Distribute the -3x:6x^2 + 9x + 9 = -20x + 30Add 20x to both sides:6x^2 + 29x + 9 = 30Subtract 30 from both sides:6x^2 + 29x - 21 = 0Use the XXX x:x = (-(29) ± sqrt((29)^2 - 4(-6)(-21))) / (2(-6))x = (-(29) ± sqrt(929)) / (-12)x = (29 ± sqrt(929)) / 1243) 4x - 1.55x - 0.81 / (1.2 - x) = 0.5 / (0.2 + 0.1) + 3.4y + 0.9y - 5.3 - 2y / 0.3XXX:4x - 1.55x - 0.81 / (1.2 - x) = 5.3 + 2.3y - 2y / 0.3Combine like XXX:2.45x - 0.81 / (1.2 - x) = 5.3 + 0.3yMultiply both sides by (1.2 - x):2.45x(1.2 - x) - 0.81 = (5.3 + 0.3y)(1.2 - x)Distribute the right side:2.45x(1.2 - x) - 0.81 = 6.36 - 5.08x + 0.36y Simplify and move all terms to one side: 2.94x^2 - 4.67x + 7.17 - 0.36y = 0This XXX for x or y without nal n.44) x - 1 / (x+2/3) = 6/3XXX (x+2/3):x(x+2/3) - 1 = 2Distribute the x:x^2 + 2/3x - 1 = 2Add 1 to both sides:x^2 + 2/3x = 3Multiply both sides by 3:3x^2 + 2x = 9Subtract 9 from both sides:3x^2 + 2x - 9 = 0Use the XXX x:x = (-2 ± sqrt(2^2 - 4(3)(-9))) / (2(3)) x = (-2 ± sqrt(100)) / 6x = (-2 ± 10) / 6x = 1 or x = -3/245) This n is not provided.46) 3(x+2) - 11/3(2x-3) = 2(2x-3) - 2(x+2) Distribute the 11/3 on the left side:3(x+2) - 11x/3 + 11 = 2(2x-3) - 2(x+2) Distribute the 2 on the right side:3(x+2) - 11x/3 + 11 = 4x - 6 - 2x - 4 Simplify the left side:3x + 6 - 11x/3 + 11 = 2x - 10Combine like XXX:3x - 11x/3 + 17 = 2x - 10 Multiply both sides by 3:9x - 11x + 51 = 6x - 30 Subtract 6x from both sides: 3x + 51 = -30Subtract 51 from both sides: 3x = -81Divide both sides by 3:x = -2747) This n is not provided.48) 5(y+8) - 5 = 4(2y-7) Distribute the 5 on the left side: 5y + 40 - 5 = 8y - 28 Combine like XXX:5y + 35 = 8y - 28Subtract XXX:35 = 3y - 28Add 28 to both sides:63 = 3yDivide both sides by 3:y = 2149) 233 - x^2 - 3x / (x-2) = 6XXX (x-2):233(x-2) - x^2(x-2) - 3x(x-2) = 6(x-2) Distribute the XXX:233x - 466 - x^3 + 2x^2 - 3x^2 + 6x = 6x - 12 Simplify:x^3 - x^2 + 236x - 454 = 0Use XXX to find a root:2 | -1 -1 236 -4542 2 4761 1 238 22The root is x = 2.Factor the quadratic:x-2)(x^2 + x - 476) = 0Use the XXX:x = (-1 ± sqrt(1^2 - 4(-476))) / 2x = (-1 ± sqrt(1905)) / 2x = 19.4 or x = -20.450) 1.8 - 8x / (1.3 - x^2) = 5x - 0.4 / (0.3 - x^2) Multiply both sides by (1.3 - x^2)(0.3 - x^2):1.8(1.3 - x^2)(0.3 - x^2) - 8x(0.3 - x^2) = (1.3 - x^2)(0.3 - x^2)(5x - 0.4)XXX and simplify:2.34x^4 + 0.9x^2 + 5.76x - 5.04 = 0This XXX for x without the use of numerical methods.。

一元一次方程习题及答案

一元一次方程习题及答案

1、(1)解:设再用x小时两车相遇48(x+1)+60x=16248x+48+60x=162108x=114x=57/53(2)解:设x小时后追上60x-48x=16212x=162x=13.5小时答:13.5小时后追上2、解:设客船静水速度为每小时x千米2.5(x+4)=3.5(x-4)2.5x+10=3.5x-143.5x-2.5x=10+14x=24答:客船静水速度为每小时24千米3、解:设x小时后追上60x=5(x+3)60x=5x+1555x=15x=3/11答。

4、解:设慢车已经行了x小时48x+48×1.5=72×1.548x+72=72*1.548x=36x=0.75答:慢车已经行了0.75小时5、解:设预定时间为x小时4x+1.5=5(x-0.5)4x+1.5=5x-2.55x-4x=1.5+2.5x=4甲乙路程:4×4+1.5=17.5千米6、解:设甲速度为每分钟x米,乙速度为每分钟400/2-x米20x-20(400/2-x)=400x-(200-x)=20x-200+x=202x=220x=110400/2-x=200-110=90答:甲速度为每分钟110米,乙速度为每分钟90米7、解:设小王追上连队需要x小时14x=6*18/60+6x14x=1.8+6x8x=1.8x=0.2250.225小时=13.5分钟<15分钟小王能完成任务8、解:设客车速度为每分钟5x米,货车速度为每分钟3x米5x-3x=200+2802x=480x=2405x=240×5=12003x=240×3=720答:客车速度为每分钟1200米,货车速度为每分钟720米解:设交叉时间为y分钟1200y+720y=200+2801920y=480y=0.25答:相向而行,交叉时间为0.25分钟9、解:设第一仓原有3x吨,第二仓原有x吨(3x-20)*5/7=x+205(3x-20)=7(x+20)15x-100=7x+140 8x=240x=303x=3×30=90答:第一仓原有90吨,第二仓原有30吨10、解:设甲乙丙各分担3x,2x,4x元3x+2x+4x=14409x=1440x=1603x=3×160=4802x=2×160=3204x=4×160=640答:甲分担480元,乙分担320元,丙分担640元11、解:设原数十位数字为x,个位数字为11-x 10(11-x)+x-(10x+11-x)=63110-10+x-9x-11=6318x=36x=211-x=11-2=9答:原来两位数为2912、解:设还需要x天(1/10+1/15)*3+(1/12+1/15)x=11/2+3/20*x=13/20*x=1/2x=1/2*20/3x=10/3答:还需要10/3天13、1)解:设加盐x千克40×8%+x=(40+x)*20%3.2+x=8+0.2x0.8x=4.8x=6答:加盐6千克2)解:设蒸发水x千克(40-x)*20%=40*8%8-0.2x=3.20.2x=4.8x=24答:需要蒸发水24千克14、解:设需要70%酒精x千克,98%酒精100-x 千克7%x+98%(100-x)=100*84%0.07x+98-0.98x=840.91x=14x=200/13 100-x=100-200/13=1100/13答:需要70%酒精200/13千克,98%酒精1100/13千克15、解:设甲速度为每小时x千米,乙速度为每小时x+1千米(2+10)x+10(x+1)=12012x+10x+10=12022x=110x=5x+1=5+1=6答:甲速度为每小时5千米,乙速度为每小时6千米16解:手机原来的售价=2000元/部每部手机的成本=2000×60%=1200元设每部手机的新单价为a元a×80%-1200=a×80%×20%0.8a-1200=0.16a0.64a=1200a=1875元让利后的实际销售价是每部1875×80%=1500元20万元=200000元设至少销售b部利润=1500×20%=300元根据题意300b≥200000b≥2000/3≈667部至少生产这种手机667部。

解一元一次方程习题精选附答案

解一元一次方程习题精选附答案
2.
考点:
解一元一次方程.
专题:
计算题.
分析:
这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.
解答:
解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),
化简可得:3x+3=8x﹣8,
移项可得:5x=11,
解可得x= .
故原方程的解为x= .
点评:
若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.
解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1
3x﹣7=4x﹣2
∴x=﹣5;
(2)原方程可化为:
去括号得:6﹣3x﹣18=﹣3,
移项合并得:﹣3x=9,
∴x=﹣3.
点评:
本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.
5.解方程
(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);
(2)x﹣ =2﹣ .
考点:
解答:
解:(1)3x﹣3=2x+3
3x﹣2x=3+3
x=6;
(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)
x+3=6x﹣3x+3
x﹣6x+3x=3﹣3
﹣2x=0
∴x=0.
点评:
本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.

解一元一次方程50道练习题(带答案)

解一元一次方程50道练习题(带答案)

解一元一次方程50道练习题(带答案)解一元一次方程50道练习题(带答案)
1. 问题:解方程2x + 5 = 9
解答:将已知方程写成标准形式,得到2x = 9 - 5 = 4
将方程两边同时除以2,得到x = 2
答案:x = 2
2. 问题:解方程3(x - 4) = 5
解答:将已知方程通过分配律展开,得到3x - 12 = 5
将方程两边同时加上12,得到3x = 17
将方程两边同时除以3,得到x = 17/3
答案:x = 17/3
3. 问题:解方程4 - 2x = 6x - 8
解答:将已知方程进行整理,得到-2x - 6x = -8 - 4
将方程进行合并,得到-8x = -12
将方程两边同时除以-8,注意要将负号带到分子,得到x = -12/-8
答案:x = 3/2
4. 问题:解方程6(x + 3) = 4(x - 2)
解答:将已知方程展开,得到6x + 18 = 4x - 8
将方程两边同时减去4x,得到2x + 18 = -8
将方程两边同时减去18,得到2x = -8 - 18
将方程两边同时除以2,得到x = -26/2
答案:x = -13
5. 问题:解方程2(x + 1) - 3(x - 2) = 4 - 2x
解答:将已知方程进行整理,得到2x + 2 - 3x + 6 = 4 - 2x 将方程两边同时减去2x,得到-2x + 8 = 4 - 2x
将方程两边同时加上2x,得到8 = 4
答案:此方程无解
......依次类推,解答剩下的题目。

一元一次方程练习题

一元一次方程练习题

一元一次方程练习题题目一:解一元一次方程1. 求解方程:3x + 2 = 11解析:将方程转化为一元一次方程的标准形式:ax + b = c。

根据等式,我们可以得到:3x = 11 - 2 = 9。

再将方程转化为计算形式,即可得到解:x = 9 / 3 = 3。

答案:x = 32. 求解方程:2(x - 4) = 5解析:展开方程,得到2x - 8 = 5。

将方程转化为计算形式,即可得到解:x = (5 + 8) / 2 = 13 / 2。

答案:x = 6.53. 求解方程:4x + 7 = 3x + 12解析:首先将方程转化为一元一次方程的标准形式:ax + b = cx + d。

根据等式,我们可以得到:4x - 3x = 12 - 7,即x = 5。

答案:x = 5题目二:应用一元一次方程1. 小明的年龄是小红年龄的两倍,而小红今年10岁,那么小明今年几岁?解析:设小明今年的年龄为x岁,根据题意可以得到方程:x = 2 * 10。

将方程转化为计算形式,即可得到解:x = 20。

答案:小明今年20岁。

2. 学校一共举行了5场文艺演出,总共卖出了360张演出票。

每场演出卖出的票数都相同,请问每场演出卖出了多少张票?解析:设每场演出卖出的票数为x张,根据题意可以得到方程:5x = 360。

将方程转化为计算形式,即可得到解:x = 360 / 5 = 72。

答案:每场演出卖出了72张票。

3. 一个长方形的宽是长度的一半,如果长度为12米,那么长方形的面积是多少平方米?解析:设长方形的宽为x米,根据题意可以得到方程:x = 12 / 2。

将方程转化为计算形式,即可得到解:x = 6。

长方形的面积为长乘以宽,即12米乘以6米。

答案:长方形的面积为72平方米。

4. 两个数的和为29,相差为3,求这两个数分别是多少?解析:设较大的数为x,较小的数为y,根据题意可以得到方程组:x + y = 29x - y = 3将方程组转化为计算形式,可以通过消元或代入法求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解一元一次方程(习题)
➢ 巩固练习
1. 下列是一元一次方程的是( )
A .23x +
B .32143x y +--=
C .2560x x -+=
D .27(3)32x x +-=- 2. 把方程12432
x x +--=变形为2(1)243(2)x x +-=-的依据是( ) A .乘法法则 B .分数的基本性质
C .等式的基本性质
D .移项法则
3. 把方程0.170.210.70.03
x x --=中的分母化为整数,正确的是( ) A .172173x x --= B .10172173
x x --= C .1017201073x x --= D .101720173
x x --= 4. 下列变形正确的是( )
A .4532x x -=+移项得4325x x -=-+
B .
211332
x x -=+去分母得46318x x -=+ C .3(1)2(3)x x -=+去括号得3126x x -=+ D .3223
x -=系数化为1得1x =- 5. 方程12
73422-=--x x 去分母得( )A .)7()42(42--=--x x B .7)42(24-=--x x
C .)7()42(424--=--x x
D .7)42(424-=--x x
6. 当a =______时,关于x 的方程41210a x -+=是一元一次方程.
7. 若2是关于x 的方程21x a -=的解,则a =_______.
8. 若关于x 的方程
24(1)2x m x +=-的解是3x =,则m =______. 9. 若代数式415+m 与154m ⎛⎫- ⎪⎝
⎭的值互为相反数,则m =______. 10. 当x =___________时,单项式2125x a b +与428x a b +是同类项.
11. 在梯形面积公式1()2
S a b h =+中,若S =24,b =5,h =4,则a =_________. 12. 解方程:
(1)12(23)3(21)x x -+=-+;
(2)2(2)3(41)9(1)
x x x
---=-;
(3)421
1 34
y y
-+
-=;
(4)
22
2
23
x x
x
--
-=+;
(5)212567
1 236
y y y
-+-
-=-;
(6)3 1.521 1.2
1 0.30.50.2
x x x
---
-=+;
(7)1.4 2.11
0.70.2
x x
x
--
-=.
➢ 思考小结
1. 把方程0.170.210.70.03x x --=变形为101720173
x x --=的依据是( ) A .乘法法则
B .分数的基本性质
C .等式的基本性质
D .移项法则 2. 阅读下面解方程的过程
21101211364
4(21)2(101)3(21)1
84201631
8206314
180
0x x x x x x x x x x x x x x -+--=---+=-----=----=--+-==()()()()()
解:第一步第二步第三步第四步第五步 请回答:
上面的解题过程中出现了3处错误,第1处是第______步,错误的原因是______________________________;
第2处是第_____步,错误的原因是____________________;第3处是第_____步,错误的原因是____________________.
【参考答案】➢巩固练习
1. D
2.C
3.D
4. B
5. D
6.1 2
7.1 2
8.10
9.
1 10
10.3
11.7
12.(1)x=1;(2)x=-10;(3)y=
1
10
;(4)x=2;
(5)y=0;(6)
10
11
x=;(7)
1
2
x=.
➢思考小结
1. B
2.一,去分母要乘以每一项;
二,去括号没有乘以每一项;
三,移项后项数应不变.。

相关文档
最新文档