高等数学第21章第4节二重积分的变量变换

合集下载

4二重积分的变量交换

4二重积分的变量交换

D
o
d
2( ) f (r cos , r sin )rdr.
1 ( )
r 2()
A
②二重积分化为二次积分的公式(2)
区域特征如图
,
D
0 r ( ).
f (r cos ,r sin )rdrd o
D
( )
d f (r cos ,r sin )rdr.
0
r ( )
A
常见区域D'的确定
y
(1)D : x2 y 2 2Rx (如图)
r 2 2Rr cos
O R 2R x
D : , 0 r 2R cos
2
2
y
2R
(2)D : x2 y 2 2Ry (如图)
R
r 2 2Rr sin
O
x
D : 0 , 0 r 2Rsin
③二重积分化为二次积分的公式(3)
习惯上:设 x x(u, v), y y(u,v)
(2)求出J (u, v) (x, y) (u, v)
若是设u u(x, y), v v(x, y), 求J有两种办法
(i)先求出x x(u,v), y y(u,v),再求J
(ii)先求出
(u, (x,
v) y)
,
再求J=
1 (u,
v)
D
例 9 求广义积分 ex2dx .
0
2
D2 S
D1
ex2 y2 dxdy ex2 y2 dxdy ex2 y2 dxdy
D1
S
1 (1 ea2 ) (
a ex2 dx)2
D2
1 (1 e2a2 )
4
0
4
(2) 在 上雅可比式 J (u, v) (x, y) 0; (u, v)

21_4二重积分的变量变换

21_4二重积分的变量变换
2 0

1 0
r 1 r dr
2
4 3
abc .
4 3
特别当 a
b c R
时, 得到球的体积为
R .
3
二、小结
二重积分在极坐标下的计算公式

D
f ( r cos , r sin ) rdrd





d

2 ( )
1 ( )
f ( r cos , r sin ) rdr .
§4 二重积分的变量变换
本节将介绍二重积分的变量变换公式, 并 用格林公式加以证明. 特别对常用的极坐标 变换方法作了详细的讨论.
一、二重积分的变量变换公式 二、二重积分的极坐标变换 三、二重积分的广义极坐标变换
返回
一、二重积分的变量变换公式
在定积分的计算中, 我们得到了如下结论: 设 f ( x ) 在区间 [ a , b ] 上连续,
例8 求椭球体
x a
2 2

y b
2 2

z c
2 2
1
的体积.
解 由对称性, 椭球体的体积 V 是第一卦限部分体
积的 8 倍, 而这部分是以
z c 1
x a
2 2

y b
2 2
为曲顶,
b D ( x , y ) 0 y a
a x , 0 x a
,
其中 D 为圆域:
x
2
y
1.
解 由于原点为 D 的内点, 故由 (12) 式, 有

D
d 1 x
2
y
2
0

§4 二重积分的变量交换

§4 二重积分的变量交换

§4 二重积分的变量交换在二重积分中,变量交换是一种常见的操作方法。

它通过交换自变量和因变量的顺序来改变被积函数的表达式,从而可以使积分更容易进行或更加简洁。

一、变量交换的基本概念在二重积分中,变量交换指的是将积分区域中自变量和因变量的顺序进行交换,同时改变积分区域的形状,即将原来在 $xOy$ 平面上的区域变成在 $yOx$ 平面上的区域,并维持面积不变。

就积分意义而言,变量交换不改变积分的结果。

具体来说,设被积函数为 $f(x,y)$,积分区域为 $D$,其在 $xOy$ 平面上的投影为$\mathcal{D}$。

若令 $u=y,v=x$,则变量交换后的积分区域为 $D'$,在 $uOv$ 平面上的投影为 $\mathcal{D}'$,其面积为原先积分区域面积的倒数。

被积函数也相应地变为$f(v,u)$。

则可得变量交换后的二重积分为:$$\iint\limits_Df(x,y)dxdy=\iint\limits_{D'}f(v,u)dudv$$二、变量交换的条件和方法变量交换不是所有情况下都可以进行的,需要满足特定的条件才能进行。

根据积分区域的类型和被积函数的性质,有以下几种情况。

1. 镜面对称性若被积函数 $f(x,y)$ 关于某条直线 $L$ 对称,且积分区域 $D$ 也关于同一直线$L$ 对称,则可以采用镜面对称的方法进行变量交换。

具体来说,可以在积分区域$D$ 上作镜面对称的区域 $D'$,使得 $D$ 和 $D'$ 的交集恰好为 $L$,且在 $D'$ 中的积分限与 $D$ 相同。

则可得变量交换的式子:2. 极坐标变换若积分区域 $D$ 在极坐标下是简单区域,且被积函数 $f(x,y)$ 在极坐标下具有简单的表达式,则可以采用极坐标变换的方法进行变量交换。

具体来说,可以设极坐标变换为 $x=r\cos\theta,y=r\sin\theta$,则有:3. 三角函数变换其中,$\frac{\partial(x,y)}{\partial(u,v)}$ 是雅可比矩阵的行列式,并满足:$$\frac{\partial(x,y)}{\partial(u,v)}=\begin{vmatrix}\frac{\partialx}{\partial u} &\frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u} &\frac{\partial y}{\partial v}\end{vmatrix}$$4. 其他变换对于一些较为特殊的积分区域和被积函数,也可以采用其他的变换方式进行变量交换。

二重积分的变量变换

二重积分的变量变换

则有
f ( x , y )dxdy f ( x(u, v ), y(u, v )) | J ( u, v ) |dudv .
D
前页 后页 返回
例1 求
e
D
x y x y
dxdy , 其中
y
1
D是由 x 0, y 0, x y 1 所围的区域(图21-23). 解 为了简化被积函数, 令
0
4 3 2 R r r dr R . 3 2 3
2 2
前页 后页 返回
o
2 cos
D
2
x

D
x y d
2 2
d
2 2

0
r rdr
32 16 8 3 3 2 2 cos d 0 cos d . 9 3 3 2

前页 后页 返回
例5 计算
I
D
d 1 x y
2 2
,
其中 D 为圆域: x y 1.
二、二重积分的极坐标变换
当积分区域是圆域或圆域的一部分, 或者被积函数
的形式为 f ( x 2 y 2 ) 时, 采用极坐标变换
x r cos , T : 0 r , 0 2π , y r sin ,
变换 T 的函数行列式为
(8)
往往能达到简化积分区域或被积函数的目的. 此时,
T : x x ( u , v ), y y( u , v ) 将 uv 平面由按段光滑封
闭曲线所围成的闭区域 一对一地映成 xy 平面上 的闭区域 D, 函数 x( u , v ), y( u , v ) 在 内分别具有 一阶连续偏导数且它们的函数行列式

二重积分的变量变换公式 用极坐标计算二重积分知识讲解

二重积分的变量变换公式 用极坐标计算二重积分知识讲解
形, 其对应顶点为Mi (xi , yi ) (i 1, 2,3, 4)
y
M3
D M 4
M1 M2
令 h2 k2, 则
o
x
x2

x1

x(u

h,
v)

x(u,
v)

x u
(u, v)
h

o(
)
x4 x1 同理得 y2 y1
x(u,v k)

y u
(u,
)r
d
O
r

0
D
x
(iv) 若区域 D 可表示为
2(r) r r2
D : 1(r) 2(r), r1 r r2,
f (r cos , r sin )r d r d r r1
D
O
r1 r d r 2(r) f (r cos , r sin )d
D
例如, 直角坐标转化为极坐标时, x r cos , y r sin
J (x, y) cos (r, ) sin
r sin
r cos
r
D f (x, y) d x d y D f (r cos , r sin ) r d r d
x y
xy e x y dxdy
e
u v

1
dudv
1
1
dv
u v
e v du
D
D
2
20
v
1 2
u
1 0
(ve
v
)
|vv
dv
1 2
1 v(e - e1 )dv

二重积分变量变换

二重积分变量变换
{xv v, yv v}
M 2 {x u u , y u u } M1
M 2 M1 M 4 | | M 1
M 4 {x (u, v v ) x (u, v ), y (u, v v ) y (u, v )} M1
y
y y
x v du y v dv
vv
S
u A( u0 , v 0 )
B

u
C S uu
B
A( x0 , y0 )
O
O
x
dxdy
dx 0
0 dy

xu yu
x v du yv 0
(x , y ) dudv dv (u, v )
b

a
f ( x )dx f ( ( t )) ( t )dt .


(1)
当 (即 ( t ) 0 )时, 记 X [a , b], Y [ , ], 则
X (Y ), Y 1 ( X ). 利用这些记号, 公式(1)又可
写成

X
二重积分的变量变换 与反常二重积分
二重积分的变量变换公式, 并对常用的 极坐标变换作详细的讨论.
一、二重积分的变量变换公式
二、二重积分的广义极坐标变换 三、反常二重积分
一、二重积分的变量变换公式
在定积分的计算中, 我们得到了如下结论: 设 f ( x ) 在区间 [a , b]上连续, x ( t ) 当 t 从 变到 时严格 单调地从a 变到 b, 且 ( t ) 连续可导, 则



f (x (u, v ), y (u, v )) ? dudv

数学分析(下)21-4二重积分的变量变换

数学分析(下)21-4二重积分的变量变换

§4二重积分的变量变换本节将介绍二重积分的变量变换公式, 并用格林公式加以证明. 特别对常用的极坐标变换方法作了详细的讨论.一、二重积分的变量变换公式二、二重积分的极坐标变换三、二重积分的广义极坐标变换返回一、二重积分的变量变换公式在定积分的计算中, 我们得到了如下结论: 设()f x [,]a b ()x t j =t a b 在区间上连续, 当从变到时严格单调地从a 变到b , 且()t j 连续可导, 则()d (())()d .(1)b a f x x f t t t b a j j ¢=òòa b <()0t j ¢>[,],[,],X a b Y a b ==当(即)时, 记则1(),().X Y Y X j j -==利用这些记号, 公式(1)又可写成1()()d (())()d .(2)X X f x x f t t t j j j -¢=òòa b >()0t j ¢<当(即)时, (1)式可写成1()()d (())()d .(3)X X f x x f t t t j j j -¢=-òò故当()t j 为严格单调且连续可微时, (2)式和(3)式可统一写成如下的形式:1()()d (())|()|d .(4)X X f x x f t t t j j j -¢=òò下面要把公式(4)推广到二重积分的场合. 为此先给出下面的引理.引理设变换:(,),(,)==将uv平面T x x u v y y u v(,)y u v D 证下面给出当在内具有二阶连续偏导数时的证明. ( 注: 对(,)y u v 具有一阶连续偏导数条件下的一般下的一般证明证明,将在本章将在本章§§9 中给出. ) (,)0,J u v ¹D 由于T 是一对一变换, 且因而T 把的D L D 内点变为D 的内点, 所以的按段光滑边界曲线D L 也变换为D 的按段光滑按段光滑边界曲线边界曲线. 设曲线L D 的参数方程为(),()().u u t v v t t a b ==££L D (),()u t v t ¢¢[,]a b 由于按段光滑, 因此在上至多除去有限个第一类间断点外, 在其他的点上都连续. 又另一方面, 在uv平面上y y ¶¶()(,)d d .D J u v u v m D=±òò()D m (,)J u v D 又因为总是非负的, 而在上不为零且连续, 故其函数值在D 上不变号, 所以()|(,)|d d .D J u v u v m D=òò定理21.13设(,)f x y 在有界闭区域D 上可积, 变换:(,),(,)T x x u v y y u v ==将uv 平面由按段光滑平面由按段光滑封封闭曲线所围成的闭区域D 一对一地映成xy 平面上(,),(,)x u v y u v D 的闭区域D , 函数在内分别具有一阶连续偏导数且它们的函数行列式加强条件下,由引理及二重积分中值定理, 有n åx y -2123-图1D11O 2124-图1Du =v=-111e e u--D2y=图2125-u()12121212,,.y t xy u x t u y t u -====即证令则二、二重积分的极坐标变换容易知道, 极坐标变换T 把r q 平面上的矩形[0,]R ´此对应不是一对一的,例如,xy 平面上原点(0,0)O 于r q 平面上两条直线段CD 和EF (图21-26). 又当0r =(,)0,J r q =时, 因此不满足因此不满足定理定理21.13 的条件.但是仍然有下面的结论.222:.D x y R +£变换成xy 平面上的圆域[0,2]p 但r q 0r =与平面上直线相对相对应应,x 轴上线段对应AA ¢21.平面上的有界闭域OyB ¢A BeD e(a)OqeFE(,)d d (cos ,sin )d d .(9)Df x y x y f r r r r q q q D =òòòò222,[0,][0,2].D x y R R p 为一圆:则+£D =´证若BB A A ¢¢e 为的扇形后所得的区域(图21-26(a )),则( 图21-26 (b ) ). 又因在D e e D 与之间是一一对应的设{}2222(,)|D x y x y Re e £+£为圆环除去中心角在变换(8)下, D e 对应于[,][0,2],R e e p e D =´-且上(,)0,J r q >于是由定理21.13, 有Dòòòòòòf r r r r(cos,sin)d dq q q(,),(,),(,)0,(,)\.R f x y x y D F x y x y D D Îì=íÎîR D 在中函数F 至多在有限条按段光滑曲线上至多在有限条按段光滑曲线上间断间断,因此因此由前述得到由前述得到(,)d d (cos ,sin )d d ,RRD F x y x y F r r r r q q q D =òòòòR D r q [0,][0,2].R p ´其中为平面上矩形区域由函数(,)F x y 的定义, (9)式对一般的D 也成立.R D 上定义函数并且在由定理21.14 看到, 用极坐标变换计算二重积分时, 除变量作相应的替换外, 还须把“面积微元”d d x y 换成d d .r r q 下面介绍二重积分在极坐标系下如何化为累次积分来计算.12()(),,r r r q q a q b ££££D r q q 1.常用的是将分解为平面中的型区域. ,O D Ï(i) 若原点则型区域型区域必可表示成必可表示成(图21-27) q 于是有r D0(),02.r r q q p ££££Dab()r r q =ODq r r =(iii)若原点在D 的边界上(图21-28(b)), 则为:DD() r rq12G 1x y +=1G 0x y +=y(a)13D 4D 1D 2D (b)π1ìüìüπ1例5计算2222x y z R ++£22x y Rx +=例6求球体被圆柱面2131-R2132-图cos r R =D积. 在第一卦限内的立体是一个曲顶柱体, 其底为例7计算22()ed ,x y DI s -+=òò其中D 为圆域:22x y +£2.R 解利用极坐标变换, 由公式(12),容易求得2220d ed (1e).Rr R I r r pq p --==-òò若不用极坐标变换, 而直接在直角坐标系下化为累次积分计算, 则会遇到无法算出2ed y y -ò的难的难题题.三、二重积分的广义极坐标变换里就不再赘述了.为底的曲顶柱体, 所以作业P254:2(1)(3);3(3);4(2);6(2)。

二重积分的变量代换

二重积分的变量代换

L1
L2
1 x2dx
1
(1
y4 )dy
23
0
0
15
选择(xuǎnzé)新路径应注
意: (1)新路径的起点与终点不变,
(2) 新路径 G,
(3)一般选与坐标轴平行的新路径.
精品资料
例6. 设曲线
x y2dx y( x)dy 与路径无关,其中( x)
(具qū有xi连àn续)积的分导L 数,且 (0) 0.
a
a2 y2
a2 y2
精品资料
§4 二重积分的变量(biànliàng)变换 一、二重积分的变量变换(biànhuàn)公
二、二重积分的极坐标变换 三、二重积分的广义极坐标变换
精品资料
一、二重积分的变量(biànliàng)变换公式
在定积分的计算中, 我们得到了如下结论: 设 f ( x)
P y
uxy ( x,
y)
,
Q x
uyx ( x,
y),
以及 P, Q 具有一阶连续偏导数(dǎo shù), 便可知道在
D 内每
一点处都有 ux y ( x, y) uyx ( x, y)

P y
Q . x
精品资料
例 5. 计算(Ijì ( x2 2xy)dx ( x2 y4 )dy,其中L
(x,y)
u(x, y) Pdx Qdy Pdx Qdy
( x0 , y0 )
M0CM
• M(x, y)
x
y
x0 P( x, y0 )dx
Q( x, y)dy
y0
• M0 ( x0 , y0 )
o
• C(x, y0 )
x

数学分析21.4二重积分的变量变换(含习题及参考答案)

数学分析21.4二重积分的变量变换(含习题及参考答案)

第二十一章 重积分 4二重积分的变量变换一、二重积分的变量变换公式定积分的变量变换:设f(x) 在[a,b]上连续,x=φ(t)当t 从α变到β时,严格单调地从a 变到b ,且φ(t)连续可导,则⎰b a dx x f )(=⎰'βαϕϕdt t t f )())((. 当α<β(即φ’(t)>0)时,记X=[a,b], Y=[α,β],则X=φ(Y), Y=φ-1(X),则 上面的公式可以写成⎰X dx x f )(=⎰-')(1)())((X dt t t f ϕϕϕ.当α>β(即φ’(t)<0)时,又可改写成⎰X dx x f )(=-⎰-')(1)())((X dt t t f ϕϕϕ,即当φ(t)严格单调且连续可微时,有⎰X dx x f )(=⎰-')(1)())((X dt t t f ϕϕϕ.引理:设变换T :x=x(u,v), y=y(u,v)将uv 平面上由按段光滑封闭曲线所围的闭区域△一对一地映成xy 平面上的闭区域D ,函数x(u,v), y(u,v)在△内分别具有一阶连续偏导数且它们的函数行列式 J(u,v)=),(),(v u y x ∂∂≠0, (u,v)∈△,则区域D 的面积μ(D)=⎰⎰∆dudv v u J ),(. 证:当y(u,v)在△内具有二阶连续偏导数时, (后面章节证明只具有一阶连续导数的情况)∵T 为一对一变换, 且J(u,v)≠0, ∴T 把△的内点变成D 的内点, △的按段光滑边界曲线L △变换到D 时,其边界曲线L D 也按段光滑. 设曲线L △的参数方程为u=u(t), v=v(t) (α≤t ≤β), 由L △光滑知, u ’(t), v ’(t)在[α,β]上至多除去有限个第一类间断点外,在其他点上连续. ∵L D =T(L △), ∴x=x(t)=x(u(t),v(t)), y=y(t)=y(u(t),v(t)) (α≤t ≤β). 若规定t 从α变到β时,对应于L D 的正向,则根据格林公式,取P(x,y)=0, Q(x,y)=x, 有 μ(D)=⎰DL xdy =⎰'βαdt t y t x )()( =⎰⎥⎦⎤⎢⎣⎡'∂∂+'∂∂βαdt t v v y t u u y t v t u x )()())(),((, 又在uv 平面上,⎰∆⎥⎦⎤⎢⎣⎡∂∂+∂∂L dv v y du u y v u x ),(=⎰⎥⎦⎤⎢⎣⎡'∂∂+'∂∂±βαdt t v v y t u u y t v t u x )()())(),((, 其中t 从α变到β时,对应于L △的方向决定了上式的符号性质. ∴μ(D)=⎰∆⎥⎦⎤⎢⎣⎡∂∂+∂∂±L dv v y du uy v u x ),(=⎰∆∂∂+∂∂±L dv v y v u x du u y v u x ),(),(. 令P(u,v)=x(u,v)u y ∂∂, Q(u,v)=x(u,v)vy∂∂, 在uv 平面上应用格林公式,得 μ(D)=⎰⎰∆⎪⎭⎫⎝⎛∂∂-∂∂±dudv v P u Q , 又y(u,v)具有二阶连续偏导数,即有 u v y v u y ∂∂∂=∂∂∂22,∴v P u Q ∂∂-∂∂=J(u,v). ∴μ(D)=⎰⎰∆±dudv v u J ),(. 又μ(D)非负,而J(u,v)在△上不为零且连续,即其函数值在△上不变号, ∴μ(D)=⎰⎰∆dudv v u J ),(.定理21.13:设f(x,y)在有界闭域D 上可积,变换T :x=x(u,v), y=y(u,v)将uv 平面由按段光滑封闭曲线所围成的闭区域△一对一地映成xy 平面上的闭区域D ,函数x(u,v), y(u,v)在△内分别具有一阶连续偏导数且它们的函数行列式J(u,v)=),(),(v u y x ∂∂≠0, (u,v)∈△,则 ⎰⎰Ddxdy y x f ),(=⎰⎰∆dudv v u J v u y v u x f ),()),(),,((.证:用曲线网把△分成n 个小区域△i ,在变换T 作用下,区域D 也相应地被分成n 个小区域D i . 记△i 及D i 的面积为μ(△i )及μ(D i ) (i=1,2,…,n).由引理及二重积分中值定理,有μ(D i )=⎰⎰∆idudv v u J ),(=|J(u i ,v i )|μ(△i ),其中(u i ,v i )∈△i (i=1,2,…,n). 令ξi =x(u i ,v i ), ηi =y(u i ,v i ), 则 (ξi ,ηi )∈D i (i=1,2,…,n). 作二重积分⎰⎰Ddxdy y x f ),(的积分和,则得△上f(x(u,v),y(u,v))|J(u,v)|的积分和,即σ=)(),(1i ni i i D f μηξ∑==)(),()),(),,((1i ni i i i i i i v u J v u y v u x f ∆∑=μ. 由变换T 连续知,当区域△的分割T △:{△1,△2,…,△n }的细度∆T →0时, 区域D 相应的分割T D :{D 1,D 2,…,D n }的细度D T →0. ∴⎰⎰Ddxdy y x f ),(=⎰⎰∆dudv v u J v u y v u x f ),()),(),,((.例1:求⎰⎰+-Dyx y x dxdy e,其中D 是由x=0, y=0, x+y=1所围区域.解:令u=x-y, v=x+y, 则得变换T :x=21(u+v), y=21(v-u), 且J(u,v)=),(),(v u y x ∂∂=v y uyv x ux∂∂∂∂∂∂∂∂=21212121- =21>0. 在变换T 的作用下,得 区域D={(x,y)|x ≥0, y ≥0, x+y ≤1}的原象△={(u,v)|-v ≤u ≤v, 0≤v ≤1}, ∴⎰⎰+-Dyx y x dxdy e=⎰⎰∆⋅dudv e vu21=⎰⎰-v v v udu e dv 1021=⎰--101)(21vdv e e =)(411--e e .例2:求抛物线y 2=mx, y 2=nx 和直线y=ax, y=bx 所围区域D 的面积μ(D) (0<m<n, 0<a<b). 解:D={(x,y)|2b m ≤x ≤2a n ,ax ≤y ≤bx,nx ≤y 2≤mx}.作变换x=2v u , y=v u ,把D 对应到uv 平面上的△=[m,n]×[a,b]且J(u,v)=232121vu vv uv--=4v u >0. ∴μ(D)=⎰⎰Ddxdy =⎰⎰∆dudv v u4=⎰⎰n m b a du v u dv 4=⎰-b a dv v m n 42221 =3333226))((b a a b m n --.二、用极坐标计算二重积分定理21.14:设f(x,y)满足定理21.13的条件,且有极坐标变换 T :⎩⎨⎧==θθsin cos r y r x , 0≤r<+∞, 0≤θ≤2π, 则J(r,θ)=θθθθcos sin sin cos r r -=r>0.xy 平面上的有界闭域D 与r θ平面上区域△对应,则成立⎰⎰Ddxdy y x f ),(=⎰⎰∆θθθrdrd r r f )sin ,cos (.证:若D 为圆域{(x,y)|x 2+y 2≤R 2}, 则△为r θ平面上的区域[0,R]×[0,2π]. 设D ε为在圆环{(x,y)|0<ε2≤x 2+y 2≤R 2}中除去圆心角为ε的扇形所得 区域BB ’A ’A(如图1),则在变换T 下,D ε对应r θ平面上的矩形区域 △ε=[ε,R] ×[0,2π-ε](如图2). T 在D ε与△ε之间为一一变换,且J(r,θ)>0. 由定理21.13,有⎰⎰εD dxdy y x f ),(=⎰⎰∆εθθθrdrd r r f )sin ,cos (.∵f(x,y)在有界闭域D 上有界,令ε→0即得⎰⎰Ddxdy y x f ),(=⎰⎰∆θθθrdrd r r f )sin ,cos (.若D 是一般的有界闭区域,则取足够大的R>0,使D 包含在圆域D R ={(x,y)|x 2+y 2≤R 2}内, 并在D R 上定义函数: F(x,y)=⎩⎨⎧∉∈D y x ,Dy x ,y x f ),(0),(),( ,F 在D R 内至多在有限条按段光滑曲线上间断, ∴⎰⎰RD dxdy y x F ),(=⎰⎰∆Rrdrd r r F θθθ)sin ,cos (, 其中△R 为r θ平面上的矩形区域[0,R] ×[0,2π]. 由F 的定义即得:⎰⎰Ddxdy y x f ),(=⎰⎰∆θθθrdrd r r f )sin ,cos (.二重积分在极坐标下化为累次积分.1、若原点O ∉D ,且xy 平面上射线θ=常数与D 的边界至多交于两点(如图1),则△必可表示为r 1(θ)≤r ≤r 2(θ), α≤θ≤β, 于是有⎰⎰Ddxdy y x f ),(=⎰⎰)()(21)sin ,cos (θθβαθθθr r rdr r r f d .同理,若xy 平面上的圆r=常数与D 的边界至多交于两点(如图2),则△必可表示为θ1(r)≤θ≤θ2(r),r 1≤r ≤r 2, 于是有⎰⎰Ddxdy y x f ),(=⎰⎰)()(2121)sin ,cos (r r r r d r r f rdr θθθθθ.(2)若原点为D 的内点(如图3),D 的边界的极坐标方程为r=r(θ),则 △必可表示为0≤r ≤r(θ),0≤θ≤2π, 于是有⎰⎰Ddxdy y x f ),(=⎰⎰)(020)sin ,cos (θπθθθr rdr r r f d .(3)若原点O 在D 的边界上(如图4),则 △可表示为0≤r ≤r(θ),α≤θ≤β, 于是有⎰⎰Ddxdy y x f ),(=⎰⎰)(0)sin ,cos (θβαθθθr rdr r r f d .例3:计算I=⎰⎰--Dy x d 221σ, 其中D 为圆域x 2+y 2≤1.解:∵原点是D 的内点, ∴⎰⎰--Dy x d 221σ=⎰⎰--1222220sin cos 1dr r r rd θθθπ=⎰πθ20d =2π.例4:求球体x 2+y 2+z 2≤R 2被圆柱面x 2+y 2=Rx 所割下部分的体积(称为维维安尼体)解:由对称性,求出第一卦限内的部分体积,就能得到所求立体体积. 第一卦限内底为D={(x,y)|y ≥0, x 2+y 2≤Rx}, 曲顶方程:z=222y x R --. ∴V=4⎰⎰--Dd y x R σ222=4⎰⎰-θπθcos 02220R drr R r d=⎰-2033)sin 1(34πθθd R =)322(343-πR .例5:计算I=⎰⎰+-Dy x d eσ)(22,其中D 为圆域x 2+y 2≤R 2.解:I=⎰⎰+-Dy x d e σ)(22=⎰⎰-Rr dr re d 0202πθ=⎰--πθ20)1(212d e R =)1(2R e --π.注:与极坐标类似的,可作以下广义极坐标变换: T :⎩⎨⎧==θθsin cos br y ar x , 0≤r<+∞, 0≤θ≤2π,则J(r,θ)=θθθθcos sin sin cos br b ar a -=abr>0.例6:求椭球体222222cz b y a x ++≤1的体积.解:第一卦限部分是以z=c 22221by a x --为曲顶,D={(x,y)|0≤y ≤b 221ax -, 0≤x ≤a}为底的曲顶柱体,由对称性得:V=8c ⎰⎰--Dd by a x σ22221=8c ⎰⎰-102201abrdr r d πθ=38abc ⎰20πθd =34πabc.注:当a=b=c=R 时,得到球体的体积公式:34πR 3.习题1、对⎰⎰Dd y x f σ),(进行极坐标变换并写出变换后不同顺序的累次积分:(1)当D 为由不等式a 2≤x 2+y 2≤b 2, y ≥0所确定的区域; (2)D={(x,y)|x 2+y 2≤y, x ≥0}; (3)D={(x,y)|0≤x ≤1, 0<x+y ≤1}.解:(1)当D 为由不等式a 2≤x 2+y 2≤b 2, y ≥0所确定的区域时,⎰⎰Dd y x f σ),(=⎰⎰b adr r r rf d )sin ,cos (0θθθπ=⎰⎰πθθθ0)sin ,cos (d r r rf dr b a.(2)当D={(x,y)|x 2+y 2≤y, x ≥0}时,⎰⎰Dd y x f σ),(=⎰⎰θπθθθsin 20)sin ,cos (adr r r rf d =⎰⎰2arcsin 1)sin ,cos (πθθθrd r r rf dr .(3)当D={(x,y)|0≤x ≤1, 0<x+y ≤1}时,⎰⎰Dd y x f σ),(=⎰⎰-θπθθθsec 004)cos ,cos (dr r r rf d +⎰⎰+θθπθθθsin cos 1020)cos ,cos (drr r rf d=⎰⎰-24220)sin ,cos (ππθθθd r r rf dr +⎰⎰--rd r r rf dr 21arccos44122)sin ,cos (ππθθθ+⎰⎰+221arccos4122)sin ,cos (ππθθθrd r r rf dr +⎰⎰--r d r r rf dr 1arccos421)sin ,cos (πθθθ.2、用极坐标计算下列二重积分:(1)⎰⎰+Dd y x σ22sin , 其中D={(x,y)|π2≤x 2+y 2≤4π2};(2)⎰⎰+Dd y x σ)(, 其中D={(x,y)|x 2+y 2≤x+y};(3)⎰⎰Dd xy σ, 其中D 为圆域x 2+y 2≤a 2;(4)⎰⎰+'Dd y x f σ)(22, 其中D 为圆域x 2+y 2≤R 2.解:(1)当D={(x,y)|π2≤x 2+y 2≤4π2}时,⎰⎰+Dd y x σ22sin =⎰⎰πππθ220sin rdr r d =⎰-πθπ203d =-6π2.(2)当D={(x,y)|x 2+y 2≤x+y}时,应用极坐标变换后积分区域为: D ’={(r,θ)|-45π≤θ≤-4π, r ≤cos θ+sin θ},即有 ⎰⎰+Dd y x σ)(=⎰⎰+--+θθππθθθsin cos 02445)sin (cos dr r d =⎰--+4454)sin (cos 31ππθθθd =2π.(3)当D 为圆域x 2+y 2≤a 2时,根据D 的对称性,有⎰⎰Dd xy σ=4⎰⎰adr r d 032sin cos θθθπ=θθπd a ⎰2042sin 2=24a .(4)当D 为圆域x 2+y 2≤R 2时,有⎰⎰+'Dd y x f σ)(22=⎰⎰'πθ2020)(d r f r dr R =π⎰'Rdr r f 022)(=π[f(R 2)-f(0)].3、在下列积分中引入新变量u,v 后,试将它化为累次积分. (1)⎰⎰--xx dy y x f dx 2120),(, 若u=x+y, v=x-y ;(2)⎰⎰D d y x f σ),(, 其中D={(x,y)|x +y ≤a }, 若x=ucos 4v, y=usin 4v ;(3)⎰⎰Dd y x f σ),(, 其中D={(x,y)|x+y ≤a, x ≥0, y ≥0}, 若x+y=u, y=uv.解:(1)若u=x+y, v=x-y ,则x=2v u +, y=2vu -, J(u,v)=21212121-=-21<0. 又变换后的区域D ’={(u,v)|1≤u ≤2, -u ≤v ≤4-u}, 如图:∴⎰⎰--xx dy y x f dx 2120),(=⎰⎰---+uu dv vu v u f du 421)2,2(21=⎢⎣⎡-+⎰⎰---212)2,2(21v du v u v u f dv+⎰⎰-+-2121)2,2(du v u v u f dv +⎥⎦⎤-+⎰⎰-v du v u v u f dv 4132)2,2(. (2)若x=ucos 4v, y=usin 4v, 则u=(x +y )2, v=arctan 41⎪⎭⎫⎝⎛x y ,∴变换后的区域D ’={(u,v)|0≤u ≤a, 0≤v ≤2π},又J(u,v)=vv u v v v u v cos sin 4sin sin cos 4cos 3434-=4usin 3vcos 3v>0,∴⎰⎰Dd y x f σ),(=⎰⎰2044330)sin ,cos (cos sin 4πdvv u v u vf v u du a=⎰⎰adu v u v u vf v u dv 0443320)sin ,cos (cos sin 4π. (3)若x+y=u, y=uv, 即x=u(1-v),则u=x+y, v=yx y +, ∴变换后的区域D ’={(u,v)|0≤u ≤a, 0≤v ≤1}, 又J(u,v)=uvu v --1=u ,∴⎰⎰Dd y x f σ),(=⎰⎰-100),(dv uv uv u uf du a=⎰⎰-adu uv uv u uf dv 010),(.4、试作适当变换,计算下列积分.(1)⎰⎰-+Dd y x y x σ)sin()(, D={(x,y)|0≤x+y ≤π, 0≤x-y ≤π};(2)⎰⎰+Dyx y d eσ, 其中D={(x,y)|x+y ≤1, x ≥0, y ≥0}.解:(1)令u=x+y, v=x-y ,则x=2v u +, y=2vu -, J(u,v)=21212121-=-21<0. 又变换后的区域D ’={(u,v)|0≤u ≤π, 0≤v ≤π},∴⎰⎰-+Dd y x y x σ)sin()(=⎰⎰ππ00sin 21vdv u du =⎰π0udu =22π.(2)令u=x+y, v=y ,则x=u-v, y=v, J(u,v)=111-= 1>0.又变换后的区域D ’={(u,v)|0≤u ≤1, 0≤v ≤u}, ∴⎰⎰+Dyx yd eσ=⎰⎰uuv dv e du 010=⎰-1)1(du e u =21-e .5、求由下列曲面所围立体V 的体积:(1)V 是由z=x 2+y 2和z=x+y 所围的立体;(2)V 是由曲面z 2=42x +92y 和2z=42x +92y 所围的立体.解:(1)由z=x 2+y 2和z=x+y 得x 2+y 2=x+y ,∴积分区域D :221⎪⎭⎫ ⎝⎛-x +221⎪⎭⎫⎝⎛-y ≤21.作变换T :x=21+rcos θ, y=21+rsin θ,得V=()[]⎰⎰+-+Dd y x y x σ22)(=⎰⎰⎪⎭⎫ ⎝⎛-22022021rdr r d πθ=⎰πθ20161d =8π. (2)由z 2=2z, 得z 1=0, z 2=2. 所得立体V 在xoy 平面上的投影为42x +92y ≤4,立体顶面为z=9422y x +, 底面为z=⎪⎪⎭⎫ ⎝⎛+942122y x , 作变换x=2rcos θ, y=3rsin θ,则J(r,θ)=θθθθcos 3sin 3sin 2cos 2r r -=6r>0.∴V=⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-+D d y x y x σ9421942222=⎰⎰⎪⎪⎭⎫⎝⎛-2022026rdr r r d πθ=4⎰πθ20d =8π.6、求由下列曲线所围的平面图形面积: (1)x+y=a, x+y=b, y=αx, y=βx (0<a<b, 0<α<β);(2)22222⎪⎪⎭⎫ ⎝⎛+b y a x =x 2+y 2; (3)(x 2+y 2)2=2a 2(x 2-y 2) (x 2+y 2≥a 2). 解:(1)令u=x+y, v=xy, 则x=v u +1, y=vuv +1, 变换后的区域D ’={(u,v)|a ≤u ≤b, α≤v ≤β},又J(r,θ)=22)1(1)1(11v u vv v uv+++-+=2)1(v u +>0. ∴曲线所围的平面图形面积 S D =⎰⎰Dd σ=⎰⎰+ba du v u dv 2)1(βα=⎰+-βαdv v a b 222)1(12=)1)(1(2))((22βααβ++--a b .(2)令x=arcos θ, y=brcos θ,则方程变换为r 4=a 2r 2cos 2θ+b 2r 2sin 2θ, 即 r=θθ2222sin cos b a +,又J=abr>0,∴曲线所围的平面图形面积 S D =⎰⎰+θθπθ2222sin cos 020b a rdr d ab =⎰+πθθθ202222)sin cos (2d b a ab =2)(22πb a ab +. (3)x=rcos θ, y=rcos θ,则方程变换为r 4=2a 2r 2cos2θ, 即r=θ2cos 2a . 当cos2θ=21, 即θ=±6π时,r=a. 由图形的对称性可知 S D =4⎰⎰θπθ2cos 260a a rdr d =2a2⎰-60)12cos 2(πθθd =(3-3π)a 2.7、设f(x,y)为连续函数,且f(x,y)=f(y,x). 证明:⎰⎰xdy y x f dx 010),(=⎰⎰--xdy y x f dx 010)1,1(.证:作变换:x=1-u, y=1-v, 则J(u,v)=101--=1>0, 又f(x,y)=f(y,x),∴⎰⎰xdy y x f dx 010),(=⎰⎰--vdu v u f dv 010)1,1(=⎰⎰--vdu u v f dv 010)1,1(=⎰⎰--xdy y x f dx 010)1,1(.8、试作适当变换,把下列二重积分化为单重积分: (1)⎰⎰+D d y x f σ)(22, D 为圆域x 2+y 2≤1;(2)⎰⎰+Dd y x f σ)(22, D={(x,y)||y|≤|x|, |x|≤1};(3)⎰⎰+Dd y x f σ)(, D={(x,y)||x|+|y|≤1};(4)⎰⎰Dd xy f σ)(, 其中D={(x,y)|x ≤y ≤4x, 1≤xy ≤2}.解:(1)作极坐标变换得:⎰⎰+D d y x f σ)(22=⎰⎰1020)(rdr r f d πθ=2π⎰10)(rdr r f .(2)如图,根据区域D 和被积函数的对称性知, 积分值是第一象限部分D 1上积分的4倍. D 1={(x,y)|y ≤x ≤1, y ≥0},作极坐标变换得:⎰⎰+1)(22D d y x f σ=⎰⎰4010)(πθrd r f dr +⎰⎰41arccos21)(πθrrd r f dr=⎰1)(4rdr r f π+⎰⎪⎭⎫ ⎝⎛-21)(1arccos 4rdr r f r π=⎰20)(4rdr r f π-⎰21)(1arccos dr r f r r . ∴⎰⎰+Dd y x f σ)(22=π⎰20)(rdr r f -4⎰21)(1arccos dr r f rr .(3)令u=x+y, v=x-y, 则x=2v u +, y=2vu -, J(u,v)=21212121-=-21<0. 原积分区域变换为:D ’={(u,v)|-1≤u ≤1, -1≤v ≤1}. ∴⎰⎰+Dd y x f σ)(=⎰⎰--1111)(21dv u f du =⎰-11)(du u f . (4)令u=xy, v=x y, 则x=v u , y=uv , J(u,v)=vuuv v uv vu 212121121-=v 21>0.原积分区域变换为:D ’={(u,v)|1≤u ≤2, 1≤v ≤4}. ∴⎰⎰Dd xy f σ)(=⎰⎰41211)(21dv vu f du =ln2⎰21)(du u f .。

二重积分的变量变换课件

二重积分的变量变换课件

柱坐标变换案例
总结词
柱坐标变换适用于处理二重积分中与圆有关的积分问题,通过柱坐标系可以将二重积分转化为更易于计算的形式 。
详细描述
柱坐标变换是指将直角坐标系中的点$(x, y)$转换为柱坐标系中的点$(r, varphi, z)$,其中$r$表示点到原点的距 离,$varphi$表示点与x轴的夹角,$z$表示点在垂直方向上的高度。通过柱坐标变换,可以将二重积分中的$x$ 和$y$变量转换为$r$、$varphi$和$z$变量,从而简化计算过程。
$int_{D_1}f(x,y)dxdy+int_{D_2}f(x,y)dxdy=int_{D _1cup D_2}f(x,y)dxdy$。
积分的上、下限的变换
$int_{a}^{b}f(x)dx=int_{a}^{c}f(x)dx+int_{ c}^{b}f(x)dx$。
二重积分的几何意义
表示体积
球坐标变换
01
球坐标变换公式
$x = rhosinthetacosphi, quad y = rhosinthetasinphi, quad z =
rhocostheta$
02
应用场景
当积分区域为球体或球壳时,使用球坐标变换可以简化积分计算。
03实例Βιβλιοθήκη 析计算$intint_{D} (x^2 + y^2 + z^2)^2 dxdydz$,其中D为球心在原
变量变换的精度问题
确定变换的近似程度
在进行变量变换时,需要考虑变换的 近似程度,以确保计算结果的精度。
考虑数值稳定性
在计算过程中,需要考虑数值稳定性 ,以避免计算误差的累积导致结果偏 离真实值。
变量变换的误差分析

二重积分的变量变换

二重积分的变量变换

映成 xy 平面上的闭区域 D. 函数 x(u, v), y(u, v)在
内分别具有一阶连续偏导数且它们的函数行列式
J(u, v) (x , y) 0, (u, v) , (u, v)
则区域 D 的面积
(D) | J (u, v) |dudv .
(5)

前页 后页 返回
)
dt
,
(7)
其中正号及负号分别由 t 从 变到 时, 是对应于L
的正方向或负方向所决定. 由(6)及(7)式得到

(
D)

Ñ L
x(u
,
v
)

y u
du

y v
dv

前页 后页 返回


Ñ L
x(u
,
v
)
y u
du

x(u
,
v
)
y v
dv
.
令 P(u, v) x(u, v) y , Q(u, v) x(u, v) y , 在uv平
x(u(t
),
v(t
))

y u
u(t )

y v
v(t ) dt
.
(6)
前页 后页 返回
另一方面, 在 uv 平面上Ñ Lຫໍສະໝຸດ x(u,v
)

y u
du

y v
dv




x(u(t ) ,
v(t ))

y u
u(t
)

y v
v(t
D

证 用曲线网把 分成 n 个小区域 i , 在变换 T 作用

二重积分的变量代换

二重积分的变量代换
作业P242:1(1)、(2),2(2)、(4),3(1)、(2),4,5(2),6(1)、(2).
附录:极坐标系下的二重积分的公式
1用定积分定义推导极坐标系下的二重积分的公式
极坐标变换: 。
设D是 中的有界闭区域,且 是 中的零测度集;再设f在D上几乎处处连续的有界函数,根据上节内容可知:f R(D)∴ 有意义的;它的值不因对区域D的分割方式不同而变化。
极坐标变换是一种特殊的变量替换.
极坐标变换 : (8)
此时 =
注5在定理21.13中,假设J≠0,但有时会遇到这种情形.变换行列式在区域内个别点上等于0.或只在区域个别线段上等于0,而在其它点上非0,此时定理21.13结论能成立.
定理21.14设 满足定理21.13的条件,在极坐标变换(8)下,有
= (9)
在直角坐标系中,我们是以平行于x轴和y轴的两族直线来分划区域D为一系列小矩形的,在极坐标系中,若用极坐标网分割,即用r=常数的一族同心圆以及θ=常数的一族过极点的射线来分划D(如左图示),得出若干个小块 ,这时小块的面积若极为 ,( )则Rieman和为 ,注意到
= = =
易见,当 , 充分小时, 可近似地看成一个矩形,边长分割为: 和 ,即 ,若有Rieman和 中以 代替 ,并按极坐标交换: , 。当分割的精度→0是,由上面分析知: → .
§4二重积分的变量代换
引言
有一种情形,函数f在D上可积,但无论采用哪种积分次序都“算不出来”。
例如 ,D=
分析:∵函数f(x,y)= 在有界区域D= 处处连续,∴f R(D)
=
或者 =
计算不出来!f R(D),但化为二次积分后算不出来,因此,我们有必要寻找更有效的计算二重积分的方法.联想到定积分的计算方法,换元法、分部积分法、N-L公式等,特别是换元法,是一种化难为易的有效方法.在二重积分中能否利用这种化难为易的思想呢?二重积分的变量代换,就是这种方法,。在定积分中,换元积分法对简化定积分计算起着重要的作用.对于二重积分也有相应的换元公式,用于简化积分区域或被积函数.

二重积分的变量变换

二重积分的变量变换

(1)
当 (即(t) 0 )时, 记 X [a , b], Y [ , ], 则
X (Y ), Y 1( X ). 利用这些记号, 公式(1)又可
写成
数学分析 第二十一章 重积分
高等教育出版社
§4 二重积分的变量变换 变量变换公式 极坐标变换
广义极坐标变换
f (x)dx
f ((t))(t)dt . (2)
图 21 24
所以
x y
e x ydxdy
u
ev
1
dudv
D
2
1
1
dv
v
u
ev du
1
1v(e e1 )dv
e e1 .
20
v
20
4
数学分析 第二十一章 重积分
高等教育出版社
§4 二重积分的变量变换 变量变换公式 极坐标变换
广义极坐标变换
例2 求抛物线 y2 mx , y2 nx 和直线 y x , y
高等教育出版社
§4 二重积分的变量变换 变量变换公式 极坐标变换
x y
例1 求 e x y dxdy , 其中
D
D是由 x 0, y 0, x y 1
广义极坐标变换
y
1
所围的区域(图21-23). 解 为了简化被积函数, 令
D O
1x
u x y,v x y. 即作变换
图 21 23
2
f ( xy )d ln 21 f ( t )dt.


D
t xy, u
y
即 x t1 2u1 2 , y t1 2u1 2 . 则
x
(t, u) [1,2][1,4], 有

二重积分的变量变换

二重积分的变量变换
r2 0 0
2
R
R2
).
若不用极坐标变换, 而直接在直角坐标系下化为累 次积分计算, 则会遇到无法算出 e
y2
dy 的难题.
前页 后页 返回
前页 后页 返回
y
2 2

E
F

O
A B
A

D
x
B
O

C
D R r
(a)
(b)
图 21 26
定理21.14 设 f ( x , y ) 满足定理21.13 的条件, 且在 极坐标变换 (8)下, xy 平面上的有界闭域 D 与 r 平
面上区域 对应, 则成立
前页 后页 返回
此对应不是一对一的, 例如,xy 平面上原点 O (0 , 0) 与 r 平面上直线 r 0 相对应,x 轴上线段 AA 对应 于 r 平面上两条直线段 CD 和 EF (图21-26). 又当
r 0 时, J ( r , ) 0 , 因此不满足定理21.13 的条件.
但是仍然有下面的结论.
所割下部分的体积 ( 称为维维安尼 (Viviani) 体 ). 解 由所求立体的对称性(图21-31),只要求出在第 一卦限内的部分体积,再乘以4,即得所求立体的体
z
y
O
y
r R cos
D
x
图 21 32
R
图 21 31
x
前页 后页 返回
积. 在第一卦限内的立体是一个曲顶柱体, 其底为 xy 平面内由 y 0 和 x 2 y 2 Rx 所确定的区域 D
f ( x , y)dxdy f (r cos , r sin ) r drd .

二重积分的变量变换

二重积分的变量变换

x v du y v dv
vv
S
u A( u0 , v 0 )
B

u u ( x , y ) v v ( x ,y )
C S uu
B
A( x0 , y0 )
O
O
u
x
dxdy
dx 0
0 dy
v
vk v
M4 M1
u u (x , y ) v v (x , y )
u u ( x ,y )
v v ( x ,y ) x x ( u ,v ) y y ( u ,v )
y
M4
D
M3
M3
u uh u

M1
M2
o x M 1M 4 {x v v, y v v }
j yu yv k xu 0 || xv 0 yu | u v yv
i | M 1M 2 M 1M 4 | | x u xv
当 u, v 充分小时, 曲边四边形 M1M2M3M4 近似于 平行四边形,故其面积为
v
vk v
M4 M1
D
M3
o
M2
x x (u , v ) T : y y (u , v )
y
M4
M3
D
u uh u

M1
M2
o
x
M 1(x (u, v ), y (u, v )) , M 2 (x (u u, v ), x (u u, v ))
D D
推广一般
: f (x, y )d xd y
D
f (x (u, v), y(u, v)) |

21.4二重积分的变量变换

21.4二重积分的变量变换

§4 二重积分的变量变换教学目的 了解二重积分的一般的变量变换公式,掌握用极坐标计算二重积分. 教学内容 二重积分的一般的变量变换公式;极坐标变换公式.(1) 基本要求:了解二重积分的一般的变量变换公式,掌握二重积分的极坐标变换.(2) 较高要求:理解二重积分的一般的变量变换公式的证明. 教学建议(1) 本节的重点是极坐标变换公式,要求学生必须熟练掌握.(2) 本节的难点是二重积分的一般的变量变换公式的证明,可要求较好学生了解. 教学程序一、二重积分的变量变换公式引理 设变换T :()v u x x ,=,()v u y y ,=将uv 平面上由按段光滑封闭曲线所围成的闭区域∆,一对一地映成xy 平面上的闭区域D ,函数()v u x x ,=,()v u y y ,=在∆内分别具有一阶连续偏导数且它们的函数行列式()v u J ,=()()v u y x ,,∂∂≠0,()v u ,∈∆,则区域的面积()D μ=()dudv v u J ⎰⎰∆, . (5)证明 现给出()v u y y ,=在∆内分别具有二阶连续偏导数时的证明,()v u y y ,=在∆内分别具有一阶连续偏导数的证明以后给出.由于变换T 是一对一的,且()v u J ,≠0,因而T 把∆的内点变为D 的内点,所以∆的按段光滑边界曲线∆L 变换到D 时,其边界曲线D L 也是按段光滑曲线,设曲线∆L 的参数方程为u =()t u ,v =()t v ()βα≤≤t .由于∆L 按段光滑,所以()t u ',()t v '在[]βα,上至多除去有限个第一类间断点外,在其他点上都是连续的.因为()∆=L T L D ,所以D L 的参数方程为:()()()(),,t v t u x t x x ==()()()(),,t v t u y t y ==()βα≤≤t .若规定t 从α变β到时,对应于D L 的正向,则根据格林公式,取()()x y x Q y x P ==,,0,,有()D μ=()()dtt y t x xdy DL'=⎰⎰βα=()()()()()dt t v v y t u u y t v t u x ⎰⎥⎦⎤⎢⎣⎡'∂∂+'∂∂βα,, (6) 另一方面,在uv 平面上()⎰∆⎥⎦⎤⎢⎣⎡∂∂+∂∂L dv v y du u y v u x ,=±()()()()()dt t v v y t u u y t v t u x ⎰⎥⎦⎤⎢⎣⎡'∂∂+'∂∂βα, , (7) 其中正号及负号分别由t 从α变β到时,是对应于D L 的正向或是负方向所决定.由(6)及(7)得到()D μ=±()⎰∆⎥⎦⎤⎢⎣⎡∂∂+∂∂L dv v y du u yv u x ,=±()()⎰∆∂∂+∂∂L dv vyv u x du u y v u x ,,.令()()u y v u x v u P ∂∂=,,,()()v yv u x v u Q ∂∂=,,在平面uv 上对上式应用格林公式,得到()D μ=±⎰⎰∆⎪⎭⎫⎝⎛∂∂-∂∂dudv v P u Q由于函数()v u y y ,=具有二阶连续偏听偏信导数,即有u v yv u y ∂∂∂=∂∂∂22,因此v Pu Q ∂∂-∂∂=()v u J ,,于是()D μ=±()⎰⎰∆dudvv u J ,.又因为()D μ总是非负的,而()v u J ,在∆上不为零且连续,故其函数值∆在上不变号,所以()D μ=()dudvv u J ⎰⎰∆,.定理21.13 设()y x f ,在有界闭区域D 上可积,变换T :()v u x x ,=,()v u y y ,=将uv 平面上由按段光滑封闭曲线所围成的闭区域∆一对一地映成xy 平面上的闭区域D ,函数()v u x x ,=,()v u y y ,=在∆内分别具有一阶连续偏导数且它们的函数行列式()v u J ,=()()v u y x ,,∂∂≠0,()v u ,∈∆,则()⎰⎰Ddxdy y x f ,=()()()()⎰⎰∆dudvv u J v u y v u x f ,,,,.证明 用曲线网∆把分成n 个小区域i ∆,在变换T 作用下区域D 也相应地分成个n 小区域i D ,记i ∆及i D 的面积为()i ∆μ及()i D μ()n i ,,1Λ=由引理及二重积分的中值定理,有()iD μ=()dudv v u J i⎰⎰∆,=()ii v u J ,()i∆μ,其中()i i v u ,∈i ∆()n i ,,1Λ=.令x i =ξ()i i v u ,,y i =η()i i v u ,,则()i i ηξ,∈i D .作二重积分()y x f ,的积分和σ=()()∑=n i iiiD f 1,μηξ=()()()()()∑=∆ni iiiiiiiv u J v u y v u x f 1,,,,μ,上式右边的和式是上的可积函数()()()()v u J v u y v u x f ,,,,的积分和.又由变换T 的连续性可知,当区域∆的分割的细度0→∆T 时,区域D 相应的分割的细度D T 也趋于零.因此得到()⎰⎰Ddxdy y x f ,=()()()()⎰⎰∆dudvv u J v u y v u x f ,,,,.例1 求⎰⎰+-Dyx yx dxdye,其中D 是由1,0,0=+==y x y x 所围区域.解 作变换y x v y x u +=-=,即()()u v y v u x -=+=21,21,则()v u J ,=021>,⎰⎰+-Dyx yx dxdy e=⎰⎰∆⋅dudv e vu21=⎰⎰-1021du e dv v v v u=⎰⎰-1021du e dv vv v u=()421111---=-⎰e e dv e e v .例2 求抛物线mxy=2,nxy=2和直线xyα=,xyβ=所围成区域D的面积()Dμ()βα<<<<0,0nm.解D的面积()Dμ=⎰⎰Ddxdy作变换vuyvux==,2,()v u J,=4vu.()Dμ=⎰⎰Ddxdy=⎰⎰∆dudvvu4=⎰⎰βαduvudvnm4=()()333326βααβ--mn.二、用极坐标计算二重积分T :⎩⎨⎧==θθsincosryrx,πθ20,0≤≤+∞<≤r(8)定理21.14 设()y x f ,满足定理21.13的条件,且在极坐标变换(8)下,xy 平面上有界区域D 与θr 平面上区域∆对应,则成立()⎰⎰Ddxdy y x f ,=()⎰⎰∆θθθrdrd r r f sin ,cos .证明 若D 为圆域(){}222,R y xy x ≤+,则∆为θr 平面上的矩形区域[][]π2,0,0⨯R .设εD 为在圆环(){}22220,R y x y x ≤+≤<ε中除去中心角为ε的扇形A A B B ''所得的区域,则在变换(8)下,εD 对应于平面上的矩形区域ε∆=[][]επε-⨯2,0,R .但极坐标变换(8)在εD 与ε∆之间是一对一变换,且ε∆在上函数行列式()0,>θr J .于是由定理21.13有()⎰⎰εD dxdy y x f ,=()⎰⎰∆εθθθrdrd r r f sin ,cos ,因为()y x f ,在有界闭区域D 上有界,在上式中令0→ε即得()⎰⎰Ddxdy y x f ,=()⎰⎰∆θθθrdrd r r f sin ,cos .若D 是一般的有界区域,则取足够大的0>R ,使D 包含在圆域R D =(){}222,Ry x y x ≤+内,并且在R D 上定义函数()y x f ,=()()()⎩⎨⎧∉∈D y x D y x y x f ,,0,,,, (ⅰ)若原点D O ∉,xy 平面上射线θ=常数与D 的边界至多交于两点.∆表示为()()βθαθθ≤≤≤≤,21r r r ,于是有()⎰⎰Ddxdy y x f ,=()()()⎰⎰βαθθθθθ21sin ,cos r r rdr r r f d .若原点D O ∉,xy 平面上的圆r =常数与D 的边界至多交于两点.∆表示为()()2121,r r r r r ≤≤≤≤θθθ,于是有()⎰⎰Ddxdy y x f ,=()()()⎰⎰2121sin ,cos r r r rd r r f rdr θθθθθ.(ⅱ)若原点O为D的内点,D的边界方程表示为()θrr=,则∆表示为()πθθ20,0≤≤≤≤rr,于是有()⎰⎰Ddxdyyxf,=()()⎰⎰πθθθθ200sin,cosrrdrrrfd.(ⅲ)若原点O在D的边界上,则∆为()βθαθ≤≤≤≤,0rr,于是有()⎰⎰Ddxdyyxf,=()()⎰⎰βαθθθθrrdrrrfdsin,cos.例3 计算I=⎰⎰--Ddyxσ2211,其中为圆域122≤+yx.解⎰⎰--Ddyxσ2211=⎰⎰-πθ2121drrrd=[]⎰--πθ2211dr=⎰πθ2d=π2.例4 球2222Rzyx=++被圆柱面Rxyx=+22所割下部分的体积.解 V =4⎰⎰--Dd y x R σ222=4⎰⎰-2cos 022πθθR rdr r R d =334R ()⎰-23sin 1πθθd=⎪⎭⎫ ⎝⎛-322343πR .例5 计算I =()⎰⎰+-Dy xd e σ22,其中D 为圆域:222R y x ≤+解 I =⎰⎰-πθ202Rrdr re d =()21Re --π,作广义极坐标变换T :⎩⎨⎧==θθsin cos br y ar x ,πθ20,0≤≤+∞<≤r ,()abr r J =θ,,例6 求椭球体1222222≤++c z b y a x 的体积.解 V =8⎰⎰--D dxdy b y a x c 22221,广义极坐标变换V =8⎰⎰-201021πθabrdr r c d =abc π34,当R c b a ===时得到球的体积为334R π.作业 P242: 1-8。

21-4二重积分的变量变换

21-4二重积分的变量变换

x x( t ) x( u( t ), v ( t )) y y( t ) y( u( t ), v ( t ))
( t ).
若规定 t 从 变到 时, 对应于 LD 的正向, 则根据格 林公式, 取 P ( x , y ) 0, Q( x , y ) x , 有
( u ,v )S d ( S ) 0
lim
S* S

x, y u, v
.
证1 下面给出当 y( u , v ) 在 内具有二阶连续偏导数 时的证明. ( 注: 对 y( u , v ) 具有一阶连续偏导数条件 下的一般证明,将在本章§9 中给出. )
由于 T 是一对一变换, 且 J ( u , v ) 0, 因而 T 把 的 内点变为 D 的内点, 所以 的按段光滑边界曲线 L
Q P ( D ) dudv . u v
( D ) J ( u , v )dudv .

又因为 ( D) 总是非负的, 而 J ( u , v ) 在 上不为零且
连续, 故其函数值在 上不变号, 所以
( D ) | J ( u , v ) |dudv .
M4 M3
M1
M2
可见在四边形 M 1 M 2 M 3 M 4中,两两对边相等,所以
当忽略高阶无穷小量时,曲边四边形 M1 M 2 M 3 M 4是
一个平行四边形 M 1 M 2 M 3 M 4,
M 1 M 2 M 1 M 4 =
x h u = x k v y h u y k v x u x v
(2)
当 (即 ( t ) 0 )时, (1)式可写成

二重积分的变量变换公式

二重积分的变量变换公式
(r, ) sin r cos
D f ( x, y)d x d y D f (r cos , r sin ) r d r d
首页 ×
(i) 若原点在 D 外,D : r1( ) r r2( ), ,

D f (r cos , r sin )r d r d
被圆柱面
x2 y2 R x 所截得的(含在柱面内的)立体的体积.
解 由对称性可知
V 4
D
R2 x2 y2 d 4
D
R cos R2 r 2 r d r 0
R2 r2 r d r d
z
4 R3( 2 )
3 23
y r Rcos o
D
J (x, y) cos (r, ) sin
r sin
r cos
r
D f (x, y) d x d y D f (r cos , r sin ) r d r d
首页 ×
x y
例1 计算 e x y dxdy 其中D 是 x = 0, y = 0,
0
0
r r( ) D
O
x
首页 ×
(iii) 若原点在 D 的边界上,则
r r( )
D f (r cos , r sin )r d r d

d
r ( )
f
(r cos , r
sin
)r
d
O
r

0
D
x
(iv) 若区域 D 可表示为
2(r) r r2
R
xx
y
首页 ×
例5 计算
rR
其中 D : x2 y2 R2 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一章 重 积 分§4 二重积分的变量变换一 二重积分的变量变换公式 复习在定积分的计算中,我们得到了如下结论:结论..1.:.设.)(x f 在区间...[]b a ,上连续,....)(t x ϕ=当.t 从.α到.β时,严格单调地从........a 变到..b ,且..)(t ϕ连续可导,则......⎰⎰=βαϕϕ.)('))(()(dt t t f dx x f b a(.1.).讨论:1)当βα<(即0)('>t ϕ)时记[][],,,,βα==Y b a X 则).(),(1X Y Y X -==ϕϕ利用这些记号,公式(1)又可写成⎰⎰-=)(1.)('))(()(x Xdt t t f dx x f ϕϕϕ (2)2)当βα>(即0)('<t ϕ)时,(1)式可写成⎰⎰-=)(1.)('))(()(x Xdt t t f dx x f ϕϕϕ(3)结论..2.:.当.)(t ϕ为严格单调且连续可微时,(.............2.)式和(....3.)式可统一写成如下的形式:.............⎰⎰-=).(1)('))(()(x Xdt t t f dx x f ϕϕϕ (.4.).☆ 下面我们把公式(4)推广到二重积分的场合。

为此,先给出下面的引理。

引理 设变换),(),,(:v u y y v u x x T ==将uv 平面上由按段光滑封闭曲线所围的闭区域∆,一对一地映成xy 平面上的闭区域D ,函数),(),,(v u y v u x 在∆内分别具有一阶连续偏导数且它们的函数行列式 ),(),(),(v u y x v u J ∂∂=,),(,0∆∈≠v u则区域D 的面积.),()(dudv v u J D ⎰⎰∆=μ (5)证明: 下面给出当),(v u y 在∆内具有二阶连续偏导数时的证明。

对),(v u y 具有一阶偏导数条件下的证明在本章§9中给出。

由于T 是一对一变换,且,0),(≠v u J 因而T 把∆的内点变为D 的内点,所以∆的按段光滑边界曲线∆L 变换到D 时,其边界曲线D L 也是按段光滑的。

设曲线∆L 的参数方程为).)((),(βα≤≤==t t v v t u u由于∆L 按段光滑,所以)('),('t v t u 在[]βα,上至多除去有限个第一类间断点外,在其他的点上都连续。

因为D L ),(∆=L T 所以D L 的参数方程为).()(),(()()),(),(()(βα≤≤====t t v t u y t y y t v t u x t x x若规定t 从α变到β时,对应与D L 的正向,则根据格林公式,取,),(,0),(x y x Q y x P ==有dt t v v y t u u y t v t u x dtt y t x xdy D DL ⎰⎰⎰⎥⎦⎤⎢⎣⎡∂∂+∂∂===βαβαμ)(')('))(),(()(')()( (6)另一方面,在uv 平面上⎰∆⎥⎦⎤⎢⎣⎡∂∂+∂∂L dv v y du u y v u x ),( ⎰⎥⎦⎤⎢⎣⎡∂∂+∂∂±=βα,)(')('))(),((dt t v v y t u u y t v t u x (7) 其中正号及负号分别由t 从α变到β时,是对应与∆L 的正方向或负方向所决定。

由(6)式及(7)式得到⎰∆⎥⎦⎤⎢⎣⎡∂∂+∂∂±=L dv v y du uyv u x D ),()(μ⎰∆∂∂+∂∂±=L dv vy v u x du u y v u x .),(),( 令,),(),(,),(),(vyv u x v u Q u y v u x v u P ∂∂=∂∂=在uv 平面上对上式应用格林公式,得到 ⎰⎰∆⎪⎭⎫⎝⎛∂∂-∂∂±=.)(dudv v P u Q D μ 由于函数),(v u y 具有二阶偏导数,即有,22uv yv u y ∂∂∂=∂∂∂因此),,(v u J v P u Q =∂∂-∂∂于是.),()(⎰⎰∆±=dudv v u J D μ又因为)(D μ总是非负的,而),(v u J 在∆上不为零且连续,故其函数值在∆上不变号,所以.),()(⎰⎰∆=dudv v u J D μ ▌定理21.13 设),(y x f 在有界闭区域D 上可积,变换),(),,(:v u y y v u x x T ==将uv 平面由按段光滑封闭曲线所围成的闭区域∆一对一地映成xy 平面上的闭区域D ,函数),(),,(v u y v u x 在∆内分别具有一阶连续偏导数且它们的函数行列式,),(,0),(),(),(∆∈≠∂∂=v u v u y x v u J则.),()),(),,((),(⎰⎰⎰⎰∆=dudv v u J v u y v u x f dxdy y x f D证明:用曲线网把∆分成n 个小区域i ∆,在变换T 作用下,区域D 也相应 地被分成n 个小区域i D .记i ∆及i D 的面积为)(i ∆μ及)(i D μ).,,2,1(n i = 由引理及二重积分中值定理,有)(i ∆μ),(),(),(i i i v u J dudv v u J i∆==⎰⎰∆μ其中i i i v u ∆∈),().,,2,1(n i = 令=i ξ),(i i v u x ,),(i i i v u y =η,则).,,2,1(),(n i D i i i =∈ηξ作二重积分⎰⎰Ddxcdy y x f ),(的积分和∑==ni i i i D f 1)(),(μηξσ∑=∆=ni iiiiiiiv u J v u y v u x f 1)(),()),(),,((μ.上式右边的和式是∆上可积函数),()),(),,((v u J v u y v u x f 的积分和.又由变换T 的连续性可知,当区域∆的分割{}n T ∆∆∆∆,,,:21 的细度→∆T0时,区域D 相应的分割{}n D D D D T ,,,:21 的细度D T 也趋于零.因此得到.),()),(),,((),(⎰⎰⎰⎰∆=dudv v u J v u y v u x f dxdy y x f D▌例1 求⎰⎰+-Dyx y x dxdy e,其中D 是由1,0,0=+==y x y x 所围区域(图21-20).解:为了简化被积函数,令.,y x v y x u +=-=为此作变换=x T :)(21),(21u v y v u -=+,则 .02121212121),(>=-=v u J 在变换T 得作用下,区域D 的原象∆如图21-21所示.所以 ⎰⎰⎰⎰⎰⎰-∆+-=⋅=v v v uvuDyx y x du dv dudv dxdy102121⎰--=101)(21dv e e v .41--= ▌例2 求抛物线nx y mx y ==22,和直线x y x y βα==,所围区域D 的面积).0,0)((βαμ<<<<n m D解: D 的面积.)(⎰⎰=Ddxdy D μ为了简化积分区域,作变换.,2v u y vu x ==它把xy 平面上的区域D (图21-22中的阴 影部分)对应到uv 平面上的矩形区域[][]βα,,⨯=∆n m .由于,),(,0121),(4232∆∈>=--=v u v u vu vv uv v u J所以⎰⎰⎰⎰∆==dudv v ud D D4)(σμ.6))((3333224βααββα--=⋅=⎰⎰m n udu v dv n m ▌ 二 用极坐标计算二重积分 分析:当积分区域是圆域与圆域的一部分,或者被积函数的形式为)(22y x f +时,采用极坐标变换⎩⎨⎧≤≤+∞<≤==)8(,20,0,sin ,cos :πθθθr r y r x T往往能达到简化积分区域或被积函数的目的.此时,变换T 的函数行列式为.cos sin sin cos ),(r r r r J =-=θθθθθ容易知道,极坐标变换T 把θr 平面上的矩形[][]π2,0,0⨯R 变换成xy 平面上的圆域{}.),(222R y x y x D ≤+=但对应不是一对一的.例如,xy 平面上原点)0,0(O 与θr 平面上直线0=r 相对应,x 轴上线段'AA 对应于θr 平面上两条线段CD 和EF (图21-23).又当0=r 时,0),(=θr J ,因此不满足定理21.13的条件.但是,我们仍然有下面的结论.定理21.14设),(y x f 满足定理21.13的条件,且在极坐标变换(8)下,xy 平面上有界闭区域θr D 与平面上区域∆对应,则成立.)sin ,cos (),(⎰⎰⎰⎰∆=θθθrdrd r r f dxdy y x f D(9)证明: 若D 为圆域{}222),(R y x y x ≤+,则∆为θr 平面上矩形区域[][].2,0,0π⨯R 设εD 为在圆环{}22220),(R yx y x ≤+≤<ε中除去中心角为ε的扇形A A BB ''所得的区域(图21-23)(a ),则在变换(8)下,εD 对应于θr 平面上的矩形区域[][]επεε-⨯=∆2,0,R (图21-23)(b ).但极坐标变换(8)在εD 与ε∆之间是一对一变换,且在ε∆上函数行列式.0),(>θr J 于是由定理21.13,有.)sin ,cos (),(⎰⎰⎰⎰=εεθθθD D rdrd r r f dxdy y x f因为),(y x f 在有界闭域D 上有界,在上式中令ε0→,即得.)sin ,cos (),(⎰⎰⎰⎰∆=θθθrdrd r r f dxdy y x f D若D 是一般的有界闭区域,则取足够大的,0>R 使D 包含在圆域=R D {}222),(R y x y x ≤+内,并且在R D 上定义函数),(y x f =⎩⎨⎧∉∈.),(,0,),(),,(D y x D y x y x f函数),(y x F 在R D 内至多在有限条按段光滑曲线上间断,因此,对函数),(y x F ,由前述有⎰⎰⎰⎰∆=RRrdrd r r F dxdy y x F D ,)sin ,cos (),(θθθ其中R ∆为θr 平面上矩形区域[][].2,0,0π⨯R .由函数),(y x F 的定义,即得(9)式. ▌ 注.:1)由定理21.14看到,用极坐标变换计算二重积分,除变量作相应的替换外,还须把”面积微元”dxdy 换成.θrdrd☆ 下面介绍二重积分在极坐标系下如何化为累次积分计算.讨论)(i :若原点D O ∉,且xy 平面上射线=θ常数与D 的边界至多交于两点 (图21-24),则∆必可表示成 ,),()(21βθαθθ≤≤≤≤r r r 于是有⎰⎰⎰⎰=)()(21.)sin ,cos (),(θθβαθθθr r Drdr r r f d dxdy y x f (10)类似地,若xy 平面上的圆=r 常数与D 的边界至多交与两点(图21-25),则∆必可表示成,2121),()(r r r r r ≤≤≤≤θθθ所以⎰⎰⎰⎰=)()(2121.)sin ,cos (),(r r r r Dd r r f rdr dxdy y x f θθθθθ (11)讨论)(ii :若原点为D 的内点(图21-26),D 的边界的极坐标方程为),(θr r =则∆可表示成 .20),(0πθθ≤≤≤≤r r 所以⎰⎰⎰=)(0.)sin ,cos (),(θθθr Drdr r r f dxdy y x f (12)讨论)(iii :若原点O 在D 的边界上(图21-27),则∆为,),(0βθαθ≤≤≤≤r r于是⎰⎰⎰⎰=)(0.)sin ,cos (),(θβαθθθr Drdr r r f d dxdy y x f (13)例3 计算⎰⎰--=Dyx d I ,122σ其中D 为圆域:.122≤+y x解: 由于原点为D 的内点,故由(12)式,有dr rr d yx d D⎰⎰⎰⎰-=--102202211πθσ[].201120202πθθππ==--=⎰⎰d d r例 4 求球面2222R z y x =++被圆柱面Rx y x =+22所割下部分的体积(称为维维安尼)(Viviani 体).解: 由所求立体的对称性(图21-28),我们只要求出在第一卦限内的部分体积后乘以4,即得所求立体的体积.在第一卦限内的立体是一个曲顶柱体,其底为xy 平面内由0≥y 和Rx y x ≤+22所确定的区域,曲顶的方程为.222y x R z --=所以,4222⎰⎰--=Dd y x R V σ其中{}Rx y x y y x D ≤+≥=22,0),((图21-29).用极坐标变换后,由(13)式,有⎰⎰-=θπθcos 022204R rdr r R d V).322(34)sin 1(3432033-=-=⎰πθθπR d R ▌例5 计算,)(22σd e I Dy x ⎰⎰+-=其中D 为圆域:.222R y x ≤+解: 利用极坐标变换,由公式(12),有 ).1(22020R Rr e dr re d I ---==⎰⎰πθπ▌注.:1)由例5可见,若不用极坐标变换计算,而用直角坐标系下化为累次积分计算,就会遇到计算⎰-dye R 2的问题,但我们不能把⎰-dye R2表示成初等函数.2)与极坐标相类似,我们也可以作下面的广义极坐标变换:⎩⎨⎧≤≤+∞≤≤==,20,0,sin ,cos :πθθθr br y ar x T并计算得..cos sin sin cos ),(abr br b ar a r J =-=θθθθθ3)对广义极坐标变换也有与定理21.14相应的定理,这里不再赘述了.例6 求椭球体1222222≤++cz b y a x 的体积.解: 由对称性,椭球体的体积V 是第一卦限部分体积的8倍,这一部分是以22221by a x c z --=为曲顶,⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤≤-≤≤=a x a x b y y x D 0,10),(22为底的曲顶柱体,所以⎰⎰--=Ddxdy b y a x c V .182222应用广义极坐标变换,由于,12r c z -=因此⎰⎰-=1022018abrdr r c d V πθ⎰⎰=-=2012.3418θπθabc dr r r d abc 当R c b a ===时,得到球的体积为.343R π▌。

相关文档
最新文档