2014年高考北京理科数学试题及答案(word解析版)

合集下载

2014年北京高考word版解析数学理答案

2014年北京高考word版解析数学理答案

2014北京高考(理科)数学题解析1.集合{}{}2|2002A x x x =-==,.故{}02AB =,,选C .2. A.y 在[)1-+∞,上为增函数,符合题意. B .2(1)y x =-在(01),上为减函数,不合题意. C .2x y -=为()-∞+∞,上的减函数,不合题意. D .0.5log (1)y x =+为(1)-+∞,上的减函数,不合题意. 故选A .3. 参数方程1cos 2sin x y θθ=-+⎧⎨=+⎩所表示的曲线为圆心在(12)-,,半径为1的圆.其对称中心为圆心(12)-,.逐个代入选项可知,(12)-,在直线2y x =-上,即选项B . 4. 当m 输入的7m =,3n =时,判断框内的判断条件为5k <.故能进入循环的k 依次为7,6,5.顺次执行S S k =⋅,则有765210S =⋅⋅=, 故选C . 5. D对于等比数列{}n a ,若1q >,则当10a <时有{}n a 为递减数列. 故“1q >”不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >. 综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件,即选D . 6. D若0k ≥,z y x =-没有最小值,不合题意.若0k <,则不等式组所表示的平面区域如图所示.由图可知,z y x =-在点20k ⎛⎫- ⎪⎝⎭,处取最小值.故204k ⎛⎫--=- ⎪⎝⎭,解得12k =-,即选项D 正确.7. D (23S S =且13S S ≠)D ABC -在xOy 平面上的投影为ABC △,故12S =, 设D 在yOz 和zOx 平面上的投影分别为2D 和3D ,则D AB C -在yOz 和zOx 平面上的投影分别为2OCD △和3OAD △.∵(201D ,,(310D ,.故23S S =综上,选项D 正确. 8. B用ABC 分别表示优秀、及格和不及格。

2014年北京高考理科数学试卷(带详解)

2014年北京高考理科数学试卷(带详解)

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B = ( )A.{0}B.{0,1}C.{0,2}D.{0,1,2}【测量目标】集合的基本运算(交集).【考查方式】用描述法、列举法写出集合,求其交集. 【难易程度】容易 【参考答案】D【试题分析】{}0,2A = ,{02}{012}{02}A B ∴ =,,,=,,故选D. 2.下列函数中,在区间(0,)+∞上为增函数的是( )A.y = 2B.(1)y x =-C.2xy -= 0.5D.l o g (1)y x =+【测量目标】基本初等函数的性质(单调性).【考查方式】初等函数在区间内的单调性. 【难易程度】容易 【参考答案】A【试题分析】 由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,故选A. 3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( )A.在直线2y x =上B.在直线2y x =-上C.在直线1y x =-上D.在直线1y x =+上【测量目标】曲线的参数方程.【考查方式】曲线方程消去参数化为普通方程,求经过对称中心的一条直线. 【难易程度】容易 【参考答案】B【试题分析】曲线方程消去参数化为22(1)(2)1x y ++-=,其对称中心点为(-1,2),验证知其在直线2y x =-上,故选B.4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ) A.7 B.42 C.210 D.480zxm9第4题图【测量目标】选择结构和循环结构程序框图.【考查方式】由循环语句、条件语句执行程序,直至结束. 【难易程度】容易 【参考答案】C【试题分析】1765210S ⨯⨯⨯==,故选C. 5.设{}n a 是公比为q 的等比数列,则1q >“”是{}n a “”为递增数列的( ) A.充分且不必要条件 B.必要且不充分条件C.充分必要条件D.既不充分也不必要条件 【测量目标】充分、必要条件,等比数列的性质. 【考查方式】结合数列的性质考查充分、必要条件. 【难易程度】容易 【参考答案】D【试题分析】当101a q <>,时,数列{}n a 递减;当10a <,数列{}n a 递增时,01q <<,故选D.6.若,x y 满足20200x y kx y y +-⎧⎪-+⎨⎪⎩≥≥≥,且z y x =-的最小值为4-,则k 的值为( )A.2B.-2C.12 D.12- 【测量目标】二元线性规划求目标函数的最值.【考查方式】给出约束条件和目标函数在此区域的最小值,求未知参数. 【难易程度】容易 【参考答案】D【试题分析】可行域如图所示,当0k >时,知z y x =-无最小值,当0k <时,目标函数线过可行域内A 点时z 有最小值.联立020y kx y =⎧⎨-+=⎩解得2,0A k ⎛⎫⎪⎝⎭,故min 2=0+=4z k 即1=2k -,故选D.zxm13第6题图7.在空间直角坐标系O xyz -中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,(D ,若1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )A.123S S S ==B.12S S =且 31S S ≠C.13S S =且 32S S ≠D.23S S =且 13S S ≠【测量目标】空间直角坐标系,投影.【考查方式】给出三棱锥中各点的坐标,求其在坐标平面的投影面积. 【难易程度】容易 【参考答案】D【试题分析】设顶点D 在三个坐标平面xOy 、yOz 、zOx 上的正投影分别为D 1、D 2、D 3,则11AD BD =2AB =,∴11S 22=22=⨯⨯,221=22OCD S S =⨯=△,331=22OAD S S =⨯=△,故选D.8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.满足条件的最多有多少学生( )A.2B.3C.4D.5 【测量目标】排列组合数的应用.【考查方式】利用排列与组合,求出其中的不同选法. 【难易程度】中等 【参考答案】B【试题解析】假设A 、B 两位学生的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩较高的学生比另一个学生“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两位学生数学成绩是相同的.因为数学成绩只有3种,因而学生数量最大为3,即 3位学生的成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件,故选B. 二、填空题(共6小题,每小题5分,共30分)9.复数21i 1i +⎛⎫= ⎪-⎝⎭________.【测量目标】复数代数形式的四则运算. 【考查方式】复数的乘、除运算,直接计算出结果. 【难易程度】容易 【参考答案】1-【试题解析】()()()22221i 1i 2i =11i 1i 1i 2⎡⎤++⎛⎫⎛⎫==-⎢⎥ ⎪ ⎪--+⎝⎭⎝⎭⎢⎥⎣⎦. 10.已知向量a 、b 满足1=a ,()2,1=b ,且()0λλ+=∈R a b ,则λ=________.【测量目标】向量的线性运算. 【考查方式】已知向量和向量的模,及两向量之间的关系,求λ的值.【难易程度】容易【试题解析】0λ +a b =,λ∴=-a b,||||λ∴===b a 11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.【测量目标】双曲线的简单几何性质. 【考查方式】利用双曲线简单的几何性质,求经过一点,与已知曲线有相同渐近线的双曲线. 【难易程度】容易【参考答案】22=1312x y - 2y x ±= 【试题解析】设双曲线C 的方程为224y x λ-=,将(2,2)代入得2222=3=4λ--,∴双曲线C 的方程为22=1312x y -.令22=04y x -得渐近线方程为2y x ±=. 12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.【测量目标】等差数列性质.【考查方式】考查等差数列的等差中项. 【难易程度】容易 【参考答案】8【试题解析】789830a a a a > ++=,710890a a a a <+=+,8900a a ∴><,,∴n =8时,数列{}n a 的前n 项和最大.13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 【测量目标】乘法原理,排列数的应用. 【考查方式】根据题目的要求,利用分步乘法计数原理与排列与组合,求出其中的不同摆法. 【难易程度】容易 【参考答案】36【试题解析】321323A A A =623=36⨯⨯.14. 设函数()sin()f x A x ωϕ=+,(A ωϕ,,是常数,0,0>>ωA ).若)(x f 在区间ππ[,]62上具有单调性,且π2ππ236f f f ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则)(x f 的最小正周期为________. 【测量目标】二次函数的图象与周期性.【考查方式】结合二次函数的图象与单调性,求最小正周期T. 【难易程度】中等 【参考答案】π【试题解析】结合图像得π2πππ+2326=422T +-,即πT =.zxm33第14题图 三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC △中,π,83B AB ∠==,点D 在BC 边上,且71cos ,2=∠=ADC CD . (1)求BAD ∠sin ; (2)求AC BD ,的长.zxm10第15题图【测量目标】三角函数的基本关系式,正弦定理、余弦定理.【考查方式】考查了三角函数的两角和差公式,及给出三角形的边、关于边与角的正弦余弦的等式,求出未知量. 【难易程度】中等【试题分析】(1)在ADC △中,因为1cos 7ADC ∠=,所以sin ADC ∠=. 所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B =∠-∠117272=-⨯14=. (2)在ABD △中,由正弦定理得8sin 3sin AB BAD BD ADB ⋅∠===∠, 在ABC △中,由余弦定理得2222cos AC AB BC AB BC B =+-⋅⋅22185285492=+-⨯⨯⨯=, 所以7AC =.16. (本小题13分)李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率;(2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率;(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论). 【测量目标】独立事件的概率、互斥事件的概率及数学期望.【考查方式】由互斥事件与独立事件的概率,设出基本事件,并求出概率.【难易程度】中等 【试题分析】(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C = AB AB ,,A B 独立根据投篮统计数据,32(),()55P A P B ==. ()()()P C P AB P AB =+33225555=⨯+⨯1325=所以在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325. (3)EX x =.17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P -中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,. (1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.zxm34第17题图(1)【测量目标】线线平行的判定,线面角的计算、空间直角坐标系.【考查方式】由线面平行推出线线平行,利用线面垂直、线线垂直这个条件,作出有关辅助线,建立空间直角坐标系求解. 【难易程度】中等 【试题分析】(1)在正方形中,因为B 是AM 的中点,所以AB ∥DE .又因为AB ⊄平面PDE , 所以AB ∥平面PDE ,因为AB ⊂平面ABF ,且ABF PDE FG 平面平面=,所以AB ∥FG .(2)因为PA ⊥底面ABCDE ,所以PA AB ⊥,PA AE ⊥.如图建立空间直角坐标系Axyz ,则(0,0,0)A ,(1,0,0)B ,(2,1,0)C ,(0,0,2)P ,(0,1,1)F ,BC(1,1,0)=.设平面ABF 的法向量为(,,)x y z =n ,则AB AF ⎧⋅=⎪⎨⋅=⎪⎩ n n ,即00x y z =⎧⎨+=⎩. 令1,z =,则1y =-.所以(0,1,1)=-n ,设直线BC 与平面ABF 所成角为α,则1sin cos ,2BC BC BCα⋅=== n n n .设点H 的坐标为(,,).u v w因为点H 在棱PC 上,所以可设(01)PH PC λλ=<<,即(,,2)(2,1,2)u v w λ-=-,所以2,,22u v w λλλ===-.因为n 是平面ABF 的法向量,所以0AH ⋅=n ,即(0,1,1)(2,,22)0λλλ-⋅-=.解得23λ=,所以点H 的坐标为422(,,).333所以2PH ==.zxm12第17题图(2)18.(本小题13分)已知函数π()cos sin ,[0,]2f x x x x x =-∈.(1)求证:()f x ≤0;(2)若sin x a b x <<在π(0,)2上恒成立,求a 的最大值与b 的最小值. 【测量目标】导数的几何意义,利用导数判断参数的范围.【考查方式】直接利用导数的几何意义,证明函数.第(2)问是求解未知参量的最值,函数求导,由函数值变化判断单调区间,进而求解最值. 【难易程度】较难【试题分析】(1)由()cos sin f x x x x =-得'()cos sin cos sin f x x x x x x x =--=-.因为在区间π(0,)2上'()sin 0f x x x =-<,所以()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减,从而()(0)0f x f =≤. (2)当0x >时,“sin x a x >”等价于“sin 0x ax ->”,“sin xb x<”等价于“sin 0x bx -<”.令()g x sin x cx =-,则'()cos g x x c =-.当0c ≤时,()0g x >对任意π(0,)2x ∈恒成立.当1c ≥时,因为对任意π(0,)2x ∈,'()g x cos 0x c =-<,所以()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.从而()g x (0)0g <=对任意π(0,)2x ∈恒成立.当01c <<时,存在唯一的0π(0,)2x ∈,使得'0()g x 0cos x c =-0=. ()g x 与'()g x 在区间π(0,)2上的情况如下:因为()g x 在区间[]00,x 上是增函数,所以0()(0)0g x g >=.进一步,“()0g x >对任意π(0,)2x ∈恒成立”当且仅当ππ()1022g =-≥,即20πc <≤.综上所述,当且仅当2πc ≤时,()0g x >对任意π(0,)2x ∈恒成立;当且仅当1c ≥时,()<0g x 对任意π(0,)2x ∈恒成立.所以,若sin x a b x <<对任意π(0,)2x ∈恒成立,则a 最大值为2π,b 的最小值为1. 19.(本小题14分) 已知椭圆2224C xy +=:,(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB与圆222xy +=的位置关系,并证明你的结论.【测量目标】椭圆的简单几何性质、曲线交点坐标求法,直线与曲线的位置关系.【考查方式】根据给出的椭圆方程找出离心率,然后利用椭圆方程与直线的关系及两线垂直,求出直线与圆的位置关系. 【难易程度】较难【试题分析】(1)由题意,椭圆C 的标准方程为22142x y +=.所以224,2a b ==,从而2222c a b =-=.因此2,a c ==故椭圆C 的离心率c e a ==. (2) 直线AB 与圆222x y +=相切.证明如下:设点A ,B 的坐标分别为00(,)x y ,(,2)t ,其中00x ≠.因为OA OB ⊥,所以0OA OB ⋅= ,即0020tx y +=,解得002y t x =-. 当0x t =时,202t y =,代入椭圆C的方程,得t =, 故直线AB的方程为x =圆心O 到直线AB的距离d =此时直线AB 与圆222x y +=相切.当0x t ≠时,直线AB 的方程为0022()y y x t x t--=--, 即0000(2)()20y x x t y x ty ---+-=,圆心O 到直线AB的距离d =.又220024x y +=,002y t x =-,故d === 此时直线AB 与圆222x y +=相切.20.(本小题13分)对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}k k k k T P b T P a a a -=++++ 2≤k ≤n ,其中112max{(),}k k T P a a a -+++ 表示1()k T P -和12k a a a +++ 两个数中最大的数.(1) 对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值;(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P c d a b ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小;(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).【测量目标】数学概念的新定义.【考查方式】给出数学概念的新定义,根据新定义,求值比较大小.【难易程度】较难【试题分析】(1)1()257T P =+=,{}21()1max (),24T P T P =++{}1max 7,6=+=8.(2)2()T P {}max ,a b d a c d =++++,2(')T P ={}max ,c d b c a b ++++. 当m =a 时,2(')T P ={}max ,c d b c a b ++++=c d b ++,因为c d b c b d ++++≤,且a c d c b d ++++≤,所以2()T P ≤2(')T P . 当m =d 时,2(')T P {}max ,c d b c a b =++++c a b =++,因为a b d ++≤c a b ++,且a c d c a b ++++≤所以2()T P ≤2(')T P . 所以无论m =a 还是m =d ,2()T P ≤2(')T P 都成立.(3)数对序列P :(4,6),(11,11),(16,11),(11,8),(5,2)的5()T P 值最小, 1()T P =10, 2()T P =26, 3()T P =42, 4()T P =50, 5()T P =52.。

2014年北京市高考理科数学试卷及答案解析(word版)

2014年北京市高考理科数学试卷及答案解析(word版)

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合2{|20},{0,1,2}A x x x B =-==,则AB =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D2.下列函数中,在区间(0,)+∞上为增函数的是( ).1A y x =+ 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上.C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,(2D ,若1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5 二、填空题(共6小题,每小题5分,共30分)9.复数211i i +⎛⎫= ⎪-⎝⎭________.10.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且 ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛6322πππf f f ,则)(x f 的最小正周期为________.三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin(2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论)17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P -中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,. (1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.18.(本小题13分)已知函数()cos sin ,[0,]2f x x x x x π=-∈,(1)求证:()0f x ≤; (2)若sin xa b x<<在(0,)2π上恒成立,求a 的最大值与b 的最小值.19.(本小题14分) 已知椭圆22:24C xy +=,(1)求椭圆C 的离心率. (2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.20.(本小题13分)对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤,其中112max{(),}k k T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数,(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).2014北京高考(理科)数学题解析1.集合{}{}2|2002A x x x =-==,.故{}02AB =,,选C .2. A .1y x =+[)1-+∞,上为增函数,符合题意. B .2(1)y x =-在(01),上为减函数,不合题意. C .2x y -=为()-∞+∞,上的减函数,不合题意. D .0.5log (1)y x =+为(1)-+∞,上的减函数,不合题意. 故选A .3. 参数方程1cos 2sin x y θθ=-+⎧⎨=+⎩所表示的曲线为圆心在(12)-,,半径为1的圆.其对称中心为圆心(12)-,.逐个代入选项可知,(12)-,在直线2y x =-上,即选项B .4. 当m 输入的7m =,3n =时,判断框内的判断条件为5k <.故能进入循环的k 依次为7,6,5.顺次执行S S k =⋅,则有765210S =⋅⋅=,故选C . 5.D对于等比数列{}n a ,若1q >,则当10a <时有{}n a 为递减数列. 故“1q >”不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >. 综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件,即选D . 6.D若0k ≥,z y x =-没有最小值,不合题意. 若0k <,则不等式组所表示的平面区域如图所示.由图可知,z y x =-在点20k ⎛⎫- ⎪⎝⎭,处取最小值.故204k ⎛⎫--=- ⎪⎝⎭,解得12k =-,即选项D 正确.7.D (23S S =且13S S ≠)D ABC -在xOy 平面上的投影为ABC △,故12S =,设D 在yOz 和zOx 平面上的投影分别为2D 和3D ,则D ABC -在yOz 和zOx 平面上的投影分别为2OCD △和3OAD △.∵(2012D ,,,(3102D ,,.D 1O D 3D 2DCB A zyx +y -2=0-2kkx -y +2=022O y x故232S S == 综上,选项D 正确. 8.B用ABC 分别表示优秀、及格和不及格。

2014年普通高等学校招生全国统一考试数学理试题(北京卷,扫描版,解析版)

2014年普通高等学校招生全国统一考试数学理试题(北京卷,扫描版,解析版)

2014年普通高等学校招生全国统一考试
数学(理)(北京卷)
本试卷共5页,150分。

考试时长120分钟。

考试生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)
一、选择题共8小题。

每小题5分.共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

第二部分(非选择题共110分) 二.填空题共6小题。

每小题5分。

共30分。

三、解答题共6小题,共80分。

解答应写出文字说明,演算步骤或证明过程。

绝密★考试结束前
2014年普通高等学校招生全国统一考试
数学(理)(北京卷)参考答案一、选择题(共8小题。

每小题5分.共40分)
二.填空题(共6小题。

每小题5分。

共30分)
三、解答题(共6小题,共80分)
11
12
13
14。

2014年高考北京卷数学理试题及答案解析

2014年高考北京卷数学理试题及答案解析

2014年高考北京卷数学理试题及答案解析一、选择题1. [2014•北京理卷]1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B =I ( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D【答案】C【解析】∵{}2,0=A ,∴{}{}{}2,02,1,02,0==I I B A . 2.[2014•北京理卷]下列函数中,在区间(0,)+∞上为增函数的是( ).A y = 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+【答案】A【解析】由初等函数的性质得选项B 在()1,0上递减,选项C 、D 在()+∞,0为减函数,所以排除B 、C 、D. 3.[2014•北京理卷]曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上【答案】B【解析】曲线方程消参化为()()12122=-++y x ,其对称中心为()2,1-,验证知其满足x y 2-=.4.[2014•北京理卷]当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D【答案】C【解析】2105671=⨯⨯⨯=S . 5.[2014•北京理卷]设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件【答案】D【解析】当01<a 时,1>q 数列{}n a 递减;01<a 时,数列{}n a 递增,10<<q . 理数6.E5[2014•北京理卷]若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -【答案】D【解析】可行域如图所示,当0>k 时,知x y z -=无最小值,当0<k 时,目标函数线过可行域内A 点时z 有最小值,联立⎩⎨⎧=+-=020y kx y ,解之得⎪⎭⎫⎝⎛-0,2k A ,420min -=+=k z ,即21-=k .7.[2014•北京理卷]在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,()1,1,2D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠ 【答案】D【解析】设顶点D 在三个坐标面xoy 、yoz 、zox 的正投影分为'1D 、'2D 、'3D ,则211='='BD AD ,2=AB ,∴2222211=⨯⨯⨯=S ,2222122=⨯⨯=='OCD S S ,2222133=⨯⨯=='OAD S S .8.[2014•北京理卷]有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5 【答案】B【解析】假设AB 两个同学的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩较高的同学比另一个同学“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两个同学数学成绩是相同的.因为数学成绩只有3种,因而同学数量最大为3.即 3位同学成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件. 二、填空题9.[2014•北京理卷]2=-+y x 02=+-y kx A=-x y复数211i i +⎛⎫= ⎪-⎝⎭________.【答案】1-【解析】()()()122111112222-=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛-+i i i i i i . 10.[2014•北京理卷]已知向量a r 、b r 满足1a =r,()2,1b =r ,且()0a b R λλ+=∈r r ,则λ=________.【答案】5【解析】∵0=+λ,∴-=λ,∴515||||===a b λ. 11.[2014•北京理卷]设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________.【答案】 112322=-y x ;x y 2±=【解析】设双曲线C 的方程为λ=-224x y ,将()2,2代入λ=-=-324222,∴双曲线方程为112322=-y x .令0422=-x y 得渐近线方程为x y 2±=. 12.[2014•北京理卷]若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大. 【答案】8【解析】∵038987>=++a a a a ,098107<+=+a a a a ,∴0,098<>a a ,∴8=n 时数列{}n a 前n 和最大. 13.[2014•北京理卷]把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 【答案】36【解析】36326132233=⨯⨯=A A A .14.[2014•北京理卷]设函数)sin()(ϕω+=xxf,0,0>>ωA ,若)(xf在区间]2,6[ππ上具有单调性,且⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛6322πππfff,则)(xf的最小正周期为________.【答案】π【解析】结合图象得26223224ππππ+-+≥T,即π≥T.15.[2014•北京理卷]如图,在ABC∆中,8,3==∠ABBπ,点D在BC边上,且71cos,2=∠=ADCCD(1)求BAD∠sin(2)求ACBD,的长解:(I)在ADC∆中,因为17COS ADC∠=,所以43sin7ADC∠=.所以sin sin()BAD ADC B∠=∠-∠sin cos cos sinADC B ADC B=∠-∠=1433237121734=⨯-⨯.(Ⅱ)在ABD∆中,由正弦定理得AA-6π2π32π338sin 143sin 437AB BAD BD ADB ⨯⋅∠===∠, 在ABC ∆中,由余弦定理得2222cos AC AB BC AB BC B =+-⋅⋅22185285492=+-⨯⨯⨯=, 所以7AC =.16.[2012•北京理卷]李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论).解:(I)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是05.(Ⅱ)设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”。

2014年高考理科数学北京卷(含详细答案)

2014年高考理科数学北京卷(含详细答案)
如图建立空间直角坐标系 ,则 , , , , ,
.
设平面ABF的法向量为 ,则 ,即 .
令 ,则 .所以 ,设直线BC与平面ABF所成角为 ,
则 .
设点H的坐标为
因为点H在棱PC上,所以可设 ,即 ,
所以 .
因为 是平面ABF的法向量,所以 ,即 .
解得 ,所以点H的坐标为ቤተ መጻሕፍቲ ባይዱ
所以 .
【提示】由线面平行推出线线平行,利用线面垂直、线线垂直这个条件,作出有关辅助线,建立空间直角坐标系求解.
圆心 到直线AB的距离 .此时直线AB与圆 相切.
当 时,直线AB的方程为 ,即 ,
圆心 到直线AB的距离 .
又 , ,故 ,
此时直线AB与圆 相切.
【提示】根据给出的椭圆方程找出离心率,然后利用椭圆方程与直线的关系及两线垂直,求出直线与圆的位置关系.
【考点】圆与圆锥曲线的综合,椭圆的简单性质
20.【答案】(1)
A.2人
B.3人
C.4人
D.5人
第Ⅱ卷(非选择题共110分)
二、填空题:本大题共6小题,每小题5分.共30分,把答案填写在题中的横线上.
9.复数 .
10.已知向量a,b满足 a ,b ,且 a b 0 ,则 .
11.设双曲线 经过点 ,且与 具有相同渐近线,则 的方程为;渐近线方程为.
12.若等差数列 满足 , ,则当 时, 的前 项和最大.
【提示】由循环语句、条件语句执行程序,直至结束.
【考点】循环结构
5.【答案】D
【解析】当 时,数列 递减;当 ,数列 递增时, ,故选D.
【提示】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论.
【考点】充分、必要条件,等比数列的性质

2014北京理科数学试题及标准答案(word解析版)

2014北京理科数学试题及标准答案(word解析版)

2014年普通高等学校招生全国统一考试(北京卷)数学(理科)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项. (1)【2014年北京,理1,5分】已知集合2{|20}A x x x =-=,{0,1,2}B =,则A B =( )(A ){0} (B ){0,1} (C ){0,2} (D ){0,1,2} 【答案】C【解析】集合{}{}2|2002A x x x =-==,.故{}02AB =,,故选C .(2)【2014年北京,理2,5分】下列函数中,在区间(0,)+∞上为增函数的是( )(A)y = (B )2(1)y x =- (C )2x y -= (D )0.5log (1)y x =+ 【答案】A【解析】对于A,y =[)1-+∞,上为增函数,符合题意,对于B ,2(1)y x =-在(01),上为减函数,不合题意,对于C ,2x y -=为()-∞+∞,上的减函数,不合题意,对于D ,0.5log (1)y x =+为(1)-+∞,上的减函数,不合题意,故选A .(3)【2014年北京,理3,5分】曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( )(A )在直线2y x =上 (B )在直线2y x =-上 (C )在直线1y x =-上 (D )在直线1y x =+上【答案】B【解析】参数方程1cos 2sin x y θθ=-+⎧⎨=+⎩,所表示的曲线为圆心在(12)-,,半径为1的圆.其对称中心为圆心(12)-,.逐个代入选项可知,(12)-,在直线2y x =-上,故选B .(4)【2014年北京,理4,5分】当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( )(A )7 (B )42 (C )210 (D )840 【答案】C【解析】当m 输入的7m =,3n =时,判断框内的判断条件为5k <.故能进入循环的k 依次为7,6,5.顺次执行S S k =⋅,则有765210S =⋅⋅=,故选C .(5)【2014年北京,理5,5分】设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a ”为递增数列的( )(A )充分且不必要条件 (B )必要且不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】D【解析】对于等比数列{}n a ,若1q >,则当10a <时有{}n a 为递减数列.故“1q >”不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >.综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件,故选D .(6)【2014年北京,理6,5分】若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为4-,则k 的值为( )(A )2 (B )2- (C )12 (D )12- 【答案】D【解析】若0k ≥,z y x =-没有最小值,不合题意.若0k <,则不等式组所表示的平面区域如图所示.由图可知,z y x =-在点20k ⎛⎫- ⎪⎝⎭,处取最小值.故204k ⎛⎫--=- ⎪⎝⎭,解得12k =-,故选D .(7)【2014年北京,理7,5分】在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C,(D ,若1S ,2S ,2S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( ) (A )123S S S == (B )12S S =且31S S ≠ (C )13S S =且32S S ≠ (D )23S S =且13S S ≠【答案】D【解析】D ABC -在xOy 平面上的投影为ABC △,故12S =,设D 在yOz 和zOx 平面上的投影分别为2D 和3D ,则D ABC -在yOz 和zOx 平面上的投影分别为2OCD △和3OAD △.∵(201D ,,(310D ,,故23S S ==D .(8)【2014年北京,理8,5分】有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好”,现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一 样,数学成绩也一样的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5 【答案】B【解析】用ABC 分别表示优秀、及格和不及格.显然语文成绩得A 的学生最多只有1个,语文成绩得B 的也最多只有1个,得C 的也最多只有1个,因此学生最多只有3个.显然,(AC )(BB )(CA )满足条件,故学生最多3个,故选B .第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分.(9)【2014年北京,理9,5分】复数21i 1i +⎛⎫= ⎪-⎝⎭.【答案】1-【解析】复数21i (1i)2ii 1i (1i)(1i)2++===--+,故221i ()i 11i+==--.(10)【2014年北京,理10】已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ= .【解析】由0a b λ+=,有b a λ=-,于是||||||b a λ=⋅,由(21)b =,,可得5b =,又||1a =,故||λ= (11)【2014年北京,理11,5分】设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为______. 【答案】221312x y -=,2y x =±【解析】双曲线2214y x -=的渐近线为2y x =±,故C 的渐近线为2y x =±,设C :224y x m -= 并将点(22),代入C 的方程,解得3m =-,故C 的方程为2234y x -=-,即221312x y -=.(12)【2014年北京,理12,5分】若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时,{}n a 的前n 项和最大. 【答案】8【解析】由等差数列的性质,78983a a a a ++=,71089a a a a +=+,于是有80a >,890a a +<,故90a <.故87S S >,98S S <,8S 为{}n a 的前n 项和n S 中的最大值. (13)【2014年北京,理13,5分】把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 【答案】36【解析】先只考虑A 与产品B 相邻.此时用捆绑法,将A 和B 作为一个元素考虑,共有4424A =种方法.而A 和B 有2种摆放顺序,故总计242=48⨯种方法.再排除既满足A 与B 相邻,又满足A 与C 相邻的情况,此时用捆绑法,将A B C ,,作为一个元素考虑,共有33A 6=种方法,而A B C ,,有2种可能的摆放顺序,故总计62=12⨯种方法.综上,符合题意的摆放共有481236-=种.(14)【2014年北京,理14,5分】设函数()sin()f x x ωφ=+,0A >,0ω>若()f x 在学科网区间,62ππ⎡⎤⎢⎥⎣⎦上具有单调性,且2236f f f πππ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()f x 的最小正周期为________. 【答案】π【解析】由()f x 在区间ππ62⎡⎤,⎢⎥⎣⎦上具有单调性,且ππ26f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭知,()f x 有对称中心π03⎛⎫, ⎪⎝⎭,由π2π23f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭知()f x 有对称轴1π27ππ22312x ⎛⎫=+= ⎪⎝⎭,记T 为最小正周期,则1ππ2π2263T T -⇒≥≥,从而7πππ1234T T -=⇒=. 三、解答题:共6题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)【2014年北京,理15,13分】如图,在ABC ∆中,3B π∠=,8AB =,点D 在BC 边上,且2CD =,1cos 7ADC ∠=. (1)求sin BAD ∠;(2)求BD ,AC 的长. 解:(1)在ADC ∆中,因为17COS ADC ∠=,所以sin ADC ∠=.所以11sin sin()sin cos cos sin 27BAD ADC B ADC B ADC B ∠=∠-∠=∠-∠=- (2)在ABD ∆中,由正弦定理得8sin 3sin AB BADBD ADB⋅∠===∠, 在ABC ∆中,由余弦定理得2222212cos 85285492AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=,所以7AC =. (16)【2014:(1 (2)从上述比赛中选择一个主场和一个客场,学科网求李明的投篮命中率一场超过0.6,一场不超过0.6概率;(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这比赛中的命中次数,比较()E X 与x 的大小(只需写出结论)解:(1)李明在该场比赛中命中率超过0.6的概率有:主场2 主场3 主场5 客场2 客场4所以李明在该场比赛中投篮命中超过0.6的概率51102P ==.(2)李明主场命中率超过0.6概率135P =,命中率不超过0.6的概率为1215P -=,客场中命中率超过0.6概率 225P =,命中率不超过0.6的概率为2315P -=.332213555525P =⨯+⨯=.(3)()E X x =.(17)【2014年北京,理17,14分】如图,正方形AMDE 的边长为2,,B C 分别为,AM MD 的中点,在五棱锥P ABCDE -中,F 为棱PE 的中点,平面ABF 与棱,PD PC 分别交于点,G H . (1)求证://AB FG ;(2)若PA ⊥底面ABCDE ,且AF PE ⊥,求直线BC 与平面ABF 所成角的大小,求线段PH 的长. 解:(1)AM ED //,AM ⊄面PED ,ED ⊂面PED .∴AM ∥面PED .AM ⊂面ABF ,即AB ⊂面ABF ,面ABF 面PDE FG =∴AB FG ∥.(2)如图建立空间直角坐标系A xyz -,各点坐标如下()0,0,0A ,()0,2,0E ,()1,0,0B ,()2,1,0C ,()0,1,1F ,()0,0,2P ,设面ABF 的法向量为()000,,n x y z =,()1,0,0AB =,()0,1,1AF =,00n AB n AF ⎧⋅=⎪⎨⋅=⎪⎩,即00x y z =⎧⎨+=⎩,令1y =,∴()0,1,1n =-,又()1,1,0BC =,∴1sin ,2BC n ==,直线BC 与平面ABF 所成的角为π6.设()111,,H x y z ,由PH tPC =,则()()111,,22,1,2x y z t -=-∴111222x t y tz t =⎧⎪=⎨⎪=-⎩∴()2,,22H t t t -,又H ∈面ABF ,()21,,22BH t t t =--,∴0n BH ⋅=,∴220t t +-=,∴23t =,∴422,,333H ⎛⎫ ⎪⎝⎭,∴424,,333PH ⎛⎫=- ⎪⎝⎭ ∴42PH ⎛= .(18)【2014年北京,理18,13分】已知函数()cos sin ,[0,]2f x x x x x π=-∈.(1)求证:()0f x ≤;(2)若sin x a b x <<在(0,)2π上恒成立,求a 的最大值与b 的最小值.解:(1)()()cos sin cos sin f x x x x x x x '=+--=-,π02x ⎡⎤∈,⎢⎥⎣⎦时,()0f x '≤,从而()f x 在π02⎡⎤,⎢⎥⎣⎦上单调递减,所以()f x 在π02⎡⎤,⎢⎥⎣⎦上的最大值为()00f =,所以()()00f x f =≤.(2)解法一:当0x >时,“sin x a x >”等价于“sin 0x ax ->”;“sin xb x<”等价于“sin 0x bx -<”,令()sin g x x cx =-,则()cos g x x c '=-.当0c ≤时,()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.当1c ≥时,因为对任意π02x ⎛⎫∈, ⎪⎝⎭,()cos 0g x x c '=-<,所以()g x 在区间π02⎡⎤,⎢⎥⎣⎦上单调递减.从而()()00g x g <=对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.当01c <<时,存在唯一的0π02x ⎛⎫∈, ⎪⎝⎭,使得()00cos 0g x x c '=-=,且当()00x x ∈,时,()0g x '>,D()g x 单调递增;当0π2x x ⎛⎫∈, ⎪⎝⎭时,()0g x '<,()g x 单调递减.所以()()000g x g >=.进一步,“()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立”当且仅当ππ1022g c ⎛⎫=- ⎪⎝⎭≥,即20πc <≤.综上所述,当且仅当2πc ≤时,()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立;当且仅当1c ≥时,()0g x <对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.所以若sin x a b x <<对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立,则a 最大值为2π,b 最小值为1. 解法二:令()sin π02x g x x x ⎛⎤=,∈, ⎥⎝⎦,则()2cos sin x x x g x x ⋅-'=,由⑴知,()0g x '≤,故()g x 在π02⎛⎤, ⎥⎝⎦上单调递减,从而()g x 的最小值为π22πg ⎛⎫= ⎪⎝⎭,故2πa ≤,a 最大值为2π,b 最小值为1,下面进行证明:()sin h x x bx =-,π02x ⎡⎫∈,⎪⎢⎣⎭,则()cos h x x b '=-,当1b =时,()0h x '≤,()h x 在π02⎡⎫,⎪⎢⎣⎭上单调递减,从而()()max 00h x h ==,所以sin 0x x -≤,当且仅当0x =时取等号.从而当π02x ⎛⎫∈, ⎪⎝⎭时,sin 1x x <.故b 的最小值小于等于1.若1b <,则()cos 0h x x b '=-=在π02⎛⎫, ⎪⎝⎭上有唯一解0x ,且()00x x ∈,时,()0h x '>,故()h x 在()00x ,上单调递增,此时()()00h x h >=,sin sin 0xx bx b x->⇒>与恒成立矛盾,故1b ≥,综上知:b 的最小值为1.(19)【2014年北京,理19,14分】已知椭圆22:24C x y +=.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.解:(1)由题意,椭圆C 的标准方程为2212x y +=.所以24a =,22b =,从而2222c a b =-=.因此2a =,c 故椭圆C 的离心率2c e a ==.(2)直线AB 与圆222x y +=相切.证明如下:解法一:设点A B ,的坐标分别为()()002x y t ,,,,其中00x ≠.因为OA OB ⊥,所以0OA OB ⋅=,即0020tx y +=,解得002y t x =-.当0x t =时,202t y =-,代入椭圆C 的方程,得t =故直线AB 的方程为x =圆心O 到直线AB 的距离d =.此时直线AB 与圆222x y +=相切.当0x t ≠时,直线AB 的方程为()0022yy x t x t --=--,即()()0000220y x x t y x ty ---+-=.圆心O 到直线AB 的距离d=220024x y +=,02y t x =-, 故d ===AB 与圆222x y +=相切.解法二:由题意知,直线OA 的斜率存在,设为k ,则直线OA 的方程为y kx =,OA OB ⊥,①当0k =时,()20A ±,,易知()02B ,,此时直线AB 的方程为2x y +=或2x y -+=, 原点到直线ABAB 与圆222x y +=相切;②当0k ≠时,直线OB 的方程为1y x k =-,联立2224y kx x y =⎧⎨+=⎩得点A的坐标⎛⎫,或⎛⎫ ⎝;联立12y xk y ⎧=-⎪⎨⎪=⎩得点B 的坐标()22k -,,由点A 的坐标的对称性知,取点A ⎛⎫计算,直线AB的方程为:))2222y x k x k k -=+=++,即((21220k x y k -+++=, 原点到直线AB 距离d ==,此时直线AB 与圆222x y +=相切.综上知,直线AB 一定与圆222x y +=相切.解法三:①当0k =时,()20A ±,,易知()02B ,,此时22OA OB =,=,AB =,原点到直线AB的距离OA OB d AB⋅===AB 与圆222x y +=相切;②当0k ≠时,直线OB 的方程为1y x k=-,设()()1122A xy B x y ,,,,则1OA,2OB ==,联立2224y kx x y =⎧⎨+=⎩得点A的坐标⎛⎫或⎛⎫⎝;于是A OA=,OB =,21k AB +=OA OBd AB⋅===直线AB 与圆222x y +=相切;综上知,直线AB 一定与圆222x y +=相切.(20)【2014年北京,理20,13分】对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤,其中112max{(),}k k T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数.(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值;(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小;(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最 小,并写出5()T P 的值.(只需写出结论).解:(1)()1257T P =+=,()(){}{}211max 241max 768T P T P =+,+=+,=. (2)当m a =时:()1T P a b =+,(){}{}2max max T P d a b a c a d b c =++,+=++,;()1T P c d '=+,(){}{}2max max T P b c d c a b c a d b c d '=++,+=++,=++;因为a 是a b c d ,,,中最小的数,所以{}max a b c b c +,+≤,从而()()22T P T P '≤; 当m d =时,()1T P a b =+,(){}{}2max max T P d a b a c a d b c =++,+=++,;()1T P c d '=+,(){}{}2max max T P b c d c a b c a d a b c '=++,+=++,=++;因为d 是a b c d ,,,中最小的数,所以{}max d b c b c +,+≤,从而()()22T P T P '≤. 综上,这两种情况下都有()()22T P T P '≤.(3)数列序列:P ()4,6,()11,11,()16,11,()11,8,()5,2的()5T P 的值最小;()110T P =,()226T P =,()342T P =,()450T P =,()552T P =.。

2014年北京高考数学理科(含答案)

2014年北京高考数学理科(含答案)

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项) 1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B =I ( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D2.下列函数中,在区间(0,)+∞上为增函数的是( ).1A y x =+ 2.(1)B y x =- .2xC y -= 0.5.log (1)D y x =+3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件.C 充分必要条件 .D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.C 1.D -7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,(D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5二、填空题(共6小题,每小题5分,共30分)9.复数211i i +⎛⎫= ⎪-⎝⎭________.10.已知向量a r 、b r 满足1a =r ,()2,1b =r ,且()0a b R λλ+=∈r r,则λ=________.11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种.14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在学科网区间]2,6[ππ上具有单调性,且 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为________.三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin (2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小学科网(只需写出结论)17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P - 中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,. (1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.已知函数()cos sin ,[0,]2f x x x x x π=-∈,(1)求证:()0f x ≤;(2)若sin x a b x <<在(0,)2π上恒成立,求a 的最大值与b 的最小值.已知椭圆22:24C xy +=,(1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.对于数对序列1122(,),(,),,(,)n n P a b a b a b L,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤L ,其中112max{(),}k k T P a a a -+++L 表示1()k T P -和12k a a a +++L 两个数中最大的数,(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).2014年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分) (1)C (2)A (3)B (4)C (5)D (6)D (7)D (8)B二、填空题(共6小题,每小题5分,共30分) (9)-1 (10(11)221312x y -= 2y x =± (12)8(13)36 (14)π三、解答题(共6小题,共80分) (15)(共13分)解:(I )在ADC ∆中,因为17COS ADC∠=,所以sin ADC ∠=。

2014北京高考数学(理科)含答案

2014北京高考数学(理科)含答案

2014年普通高等学校招生全国统一考试数学(理)(北京卷)房山区良乡中学 任宝泉录入整理一、选择题(共8道小题,每小题5分,共40分,在每小题的四个选项中,选出符合题目要求的一项)1.已知集合{}2|20A x x x =-=,{}0,1,2B =,则AB =( )A .{}0 B.{}0,1 C.{}0,2 D.{}0,1,2 2.下列函数中,在区间()0,+∞上为增函数的是( ) A.y =B.2(1)y x =-C.2x y -=D.0.5log (1)y x =+3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩,(θ为参数)的对称中心( )A .在直线2y x =上 B.在直线2y x =-上 C.在直线1y x =-上 D.在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( )5.设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a ”为递增数列的( )A .充分且不必要条件 B.必要且不充分条件 C .充分必要条件 D.既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为4-,则k 的值为( )A .2 B.2- C.12 D.12- 7.在空间直角坐标系O x y z 中,已知(2,0,0)A ,(2,2,0)B ,(0,2,0)C,(1,1D ,若123,,S S S 分别表示三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S == B. 12S S =且31S S ≠ C. 13S S =且32S S ≠ D. 23S S =且13S S ≠ 8.有语文、数学两学科,成绩评定为“优秀”、“合格”、“不合格”三种。

若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好”。

2014年高考理科数学北京卷(含答案解析)

2014年高考理科数学北京卷(含答案解析)

绝密★启用前2014年普通高等学校招生全国统一考试(北京卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20}A x x x =-=,{0,1,2}B =,则A B = ( )A .{0}B .{0,1}C .{0,2}D .{0,1,2}2.下列函数中,在区间(0,)+∞上为增函数的是( )A.y B .2(1)y x =- C .2x y -=D .0.5log (1)y x =+3.曲线1cos ,2sin ,x y θθ=-+⎧⎨=+⎩(..为参数)的对称中心( )A .在直线2y x =上B .在直线2y x =-上C .在直线1y x =-上D .在直线1y x =+上4.当7m =,3n =时,执行如图所示的程序框图,输出的S 值为( )A .7B .42C .210D .840 5.设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.若x ,y 满足20,20,0,x y kx y y +-⎧⎪-+⎨⎪⎩≥≥≥且z y x =-的最小值为4-,则k 的值为( )A .2B .2-C .12D .12-7.在空间直角坐标系O xyz -中,已知()2,0,0A ,()2,2,0B ,(0),2,0C,(D .若1S ,2S ,3S 分别是三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( ) A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠8.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A .2 人B .3 人C .4 人D .5 人第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分.共30分,把答案填写在题中的横线上.9.复数21i ()1i+=- . 10.已知向量a ,b 满足|a |1=,b (2,1)=,且λa +b =0()λ∈R ,则||λ= .11.设双曲线C 经过点(2,2),且与2214y x =-具有相同渐近线,则C 的方程为 ;渐近线方程为 .12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n = 时,{}n a 的前n 项和最大.13.把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 种.14.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0A >,0)ω>.若()f x 在区间ππ,62⎡⎤⎢⎥⎣⎦上具有单调性,且π2ππ()()()236f f f ==-,则()f x 的最小正周期为 . 三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)如图,在ABC △中,π3B ∠=,8AB =,点D 在BC 边上,且2CD =,1cos 7ADC ∠=.(Ⅰ)求sin BAD ∠; (Ⅱ)求BD ,AC 的长.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________16.(本小题满分13分)(Ⅰ)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(Ⅱ)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(Ⅲ)记x为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数.比较EX与x的大小.(只需写出结论)17.(本小题满分14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P ABCDE-中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(Ⅰ)求证:AB FG;(Ⅱ)若PA⊥底面ABCDE,且PA AE=,求直线BC与平面ABF所成角的大小,并求线段PH的长. 18.(本小题满分13分)已知函数()cos sinf x x x x=-,π0,2x⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求证:()0f x≤;(Ⅱ)若sin xa bx<<对π(0,)2x∈恒成立,求a的最大值与b的最小值.19.(本小题满分13分)已知椭圆C:2224x y+=.(Ⅰ)求椭圆C的离心率;(Ⅱ)设O为原点.若点A在椭圆C上,点B在直线2y=上,且OA OB⊥,试判断直线AB与圆222x y+=的位置关系,并证明你的结论.20.(本小题满分13分)对于数对序列P:11(,)a b,22(,)a b,⋅⋅⋅,(),n na b,记111()T P a b=+,()k kT P b=+ 112max{(),}k kT P a a a-+⋅⋅⋅++(2)k n≤≤,其中112(ma}x{),k kT P a a a-++⋅⋅⋅+表示1()kT P-和12ka a a++⋅⋅⋅+两个数中最大的数.(Ⅰ)对于数对序列P:(2,5),(4,1),求1()T P,2()T P的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(,)a b,(,)c d组成的数对序列P:(,)a b,(,)c d和P':(,)c d,(,)a b,试分别对m a=和m d=两种情况比较2()T P和2()T P'的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使5()T P最小,并写出5()T P的值.(只需写出结论)2014年普通高等学校招生全国统一考试(北京卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】C 【解析】{}0,2A =,{0,2}{0,1,2}{0,2}AB ∴==,故选C.【提示】用描述法、列举法写出集合,求其交集. 【考点】交集及其运算 2.【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,)+∞上为减函数,所以排除B ,C ,D ,故选A.【提示】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【考点】对数函数的单调性与特殊点 3.【答案】B【解析】曲线方程消去参数化为22(1)(2)=1x y ++-,其对称中心点为(1,2)-,验证知其在直线2y x =-上,故选B.【提示】曲线方程消去参数化为普通方程,求经过对称中心的一条直线. 【考点】曲线的参数方程 4.【答案】C【解析】=1765=210S ⨯⨯⨯,故选C.【提示】由循环语句、条件语句执行程序,直至结束. 【考点】循环结构 5.【答案】D【解析】当101a q <>,时,数列{}n a 递减;当10a <,数列{}n a 递增时,01q <<,故选D.【提示】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【考点】充分、必要条件,等比数列的性质 6.【答案】D【解析】可行域如图所示,当0k >时,知z y x =-无最小值,当0k <时,目标函数线过可行域内A 点时z 有最小值.联立020y kx y =⎧⎨-+=⎩解得2,0A k ⎛⎫⎪⎝⎭,故min 2=0+=4z k 即1=2k -,故选D.【提示】给出约束条件和目标函数在此区域的最小值,求未知参数. 【考点】简单线性规划 7.【答案】D【解析】设顶点D 在三个坐标平面xOy 、yOz 、zOx 上的正投影分别为1D 、2D 、3D ,则11AD BD ==2AB =, ∴11S 22=22=⨯⨯,22122OCD S S ==⨯=△,33122OAD S S ==⨯△,故选D.【提示】分别求出三棱锥在各个面上的投影坐标即可得到结论. 【考点】空间直角坐标系 8.【答案】B【解析】假设A 、B 两位学生的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩较高的学生比另一个学生“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两位学生数学成绩是相同的.因为数学成绩只有3种,因而学生数量最大为3,即3位学生的成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件,故选B. 【提示】分别用ABC 分别表示优秀、及格和不及格,根据题干中的内容推出成绩得A ,B ,C 的学生各最多只有1个,继而推得学生的人数. 【考点】排列组合数的应用第Ⅱ卷二、填空题 9.【答案】1-【解析】22221i (1i)2i 11i (1i)(1i)2⎡⎤+-⎛⎫⎛⎫==-⎢⎥ ⎪ ⎪--+⎝⎭⎝⎭=⎣⎦. 【提示】复数的乘、除运算,直接计算出结果. 【考点】复数代数形式的四则运算 10.【解析】0a b λ+=,a b λ∴=-,||5||||b a λ∴===. 【提示】已知向量和向量的模,及两向量之间的关系,求||λ的值. 【考点】向量的线性运算11.【答案】22=1312x y -2y x ±=【解析】设双曲线C 的方程为224y x λ-=,将(2,2)代入得2222=3=4λ--, ∴双曲线C 的方程为22=1312x y -.令22=04y x -得渐近线方程为2y x =±.【提示】利用双曲线简单的几何性质,求经过一点,与已知曲线有相同渐近线的双曲线. 【考点】双曲线的简单几何性质 12.【答案】8 【解析】7898=30a a a a ++>,710890a a a a +=+<,8900a a ∴><,,∴8n =时,数列{}n a 的前n 项和最大.【提示】可得等差数列{}n a 的前8项为正数,从第9项开始为负数,进而可得结论. 【考点】等差数列性质 13.【答案】36【解析】32132362336A A A =⨯⨯=.【提示】根据题目的要求,利用分步乘法计数原理与排列与组合,求出其中的不同摆法. 【考点】乘法原理,排列数的应用 14.【答案】π【解析】结合图像得π2πππ2326+=422T +-,即πT =.【提示】结合二次函数的图象与单调性,求最小正周期T. 【考点】二次函数的图象与周期性 三、解答题 15.【答案】(1)14(2)37BD AC ==,【解析】(1)在ADC △中,因为1cos 7ADC ∠=,所以sin ADC ∠=. 所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B =∠-∠1127=-=(2)在ABD △中,由正弦定理得sin 3sin AB BAD BD ADB ∠===∠,在ABC △中,由余弦定理得2222cos AC AB BC AB BC B =+-22185285492=+-⨯⨯⨯=,所以7AC =.【提示】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【考点】三角函数的基本关系式,正弦定理,余弦定理 16.【答案】(1)0.5 (2)1325(3)EX x =【解析】(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C ABAB =,A B ,独立根据投篮统计数据,32()()55P A P B ==,.()()()P C P AB P AB =+33225555=⨯+⨯1325=所以在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325. (3)EX x =.【提示】由互斥事件与独立事件的概率,设出基本事件,并求出概率. 【考点】离散型随机变量的期望与方差,相互独立事件的概率乘法公式 17.【答案】(1)在正方形中,因为B 是AM 的中点,所以AB DE ∥.又因为AB ⊄平面PDE ,所以AB PDE ∥平面,因为AB ⊂平面ABF ,且平面ABF平面PDE FG =,所以AB FG ∥.(2)因为PA ⊥底面ABCDE ,所以PA AB ⊥,PA AE ⊥.如图建立空间直角坐标系Axyz ,则(0,0,0)A ,(1,0,0)B ,(2,1,0)C ,(0,0,2)P ,(0,1,1)F ,(1,1,0)BC =.设平面ABF 的法向量为(,,)n x y z =,则0n AB n AF ⎧=⎪⎨=⎪⎩,即00x y z =⎧⎨+=⎩. 令1,z =,则1y =-.所以(0,1,1)n =-,设直线BC 与平面ABF 所成角为α, 则1sin |cos ,|2|||n BC n BC n BC α===|.设点H 的坐标为(,,).u v w因为点H 在棱PC 上,所以可设(01)PH PC λλ=<<,即(,,2)(2,1,2)u v w λ-=-, 所以2,,22u v w λλλ===-.因为n 是平面ABF 的法向量,所以0n AH =,即(0,1,1)(2,,22)0λλλ--=.解得23λ=,所以点H 的坐标为422,,333⎛⎫⎪⎝⎭所以2PH =.【提示】由线面平行推出线线平行,利用线面垂直、线线垂直这个条件,作出有关辅助线,建立空间直角坐标系求解. 【考点】直线与平面所成的角18.【答案】(1)由()cos sin f x x x x =-得()cos sin cos sin f x x x x x x x '=--=-.因为在区间π0,2⎛⎫ ⎪⎝⎭上()sin 0f x x x '=-<,所以()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减,从而()(0)0f x f ≤=.(2)当0x >时,“sin xa x>”等价于“sin 0x ax ->”,“sin x b x <”等价于“sin 0x bx -<”. 令()g x sin x cx =-,则()cos g x x c '=-.当0c ≤时,()0g x >对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立.当1c ≥时,因为对任意π0,2x ⎛⎫∈ ⎪⎝⎭,()cos 0g x x c '=-<,所以()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.从而()(0)0g x g <=对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立.当01c <<时,存在唯一的0π0,2x ⎛⎫∈ ⎪⎝⎭,使得00()cos 0g x x c '=-=.()g x 与()g x '在区间π0,⎛⎫⎪上的情况如下:因为()g x 在区间[]00,x 上是增函数,所以0()(0)0g x g >=.进一步,“()0g x >对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立”当且仅当ππ1022g ⎛⎫=-≥ ⎪⎝⎭,即20πc <≤.综上所述,当且仅当2πc ≤时,()0g x >对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立;当且仅当1c≥时,()<0g x 对任意π0,2x ⎛⎫∈⎪⎝⎭恒成立.所以,若sin x a b x <<对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 最大值为2π,b 的最小值为1 【提示】直接利用导数的几何意义,证明函数.第(2)问是求解未知参量的最值,函数求导,由函数值变化判断单调区间,进而求解最值. 【考点】导数的几何意义,利用导数判断参数的范围19.【答案】(1)由题意,椭圆C 的标准方程为22142x y +=.所以224,2a b ==,从而2222c a b =-=.因此2,a c ==故椭圆C 的离心率2c e a ==(2)直线AB 与圆222x y +=相切.证明如下:设点A ,B 的坐标分别为00(,)x y ,(,2)t ,其中00x ≠. 因为OA OB ⊥,所以0OA OB =,即0020tx y +=,解得02y t x =-. 当0x t =时,202t y =,代入椭圆C 的方程,得t =AB 的方程为x =.圆心O 到直线AB 的距离d .此时直线AB 与圆222x y +=相切.当0x t ≠时,直线AB 的方程为0022()y y x t x t--=--,即0000(2)()20y x x ty x t y ---+-=,圆心O 到直线AB的距离d =.又220024x y +=,02y t x =-,故d ===此时直线AB 与圆222x y +=相切.【提示】根据给出的椭圆方程找出离心率,然后利用椭圆方程与直线的关系及两线垂直,求出直线与圆的位置关系.【考点】圆与圆锥曲线的综合,椭圆的简单性质 20.【答案】(1)12()7()8T P T P ==, (2)22()()T P T P '≤(3)1()10T P =,2()26T P =,3()42T P =,4()50T P =,5()52T P =【解析】(1)1()257T P =+=,21()1max{(),24}T P T P =++1max{7,6}=+=8. (2)2()T P {}max ,a b d a c d =++++,2()T P '={}max ,c d b c a b ++++. 当m =a 时,2()T P '={}max ,c d b c a b ++++=c d b ++,因为c d b c b d ++≤++,且a c d c b d ++≤++,所以2()T P ≤2()T P '. 当m =d 时,2()T P '{}max ,c d b c a b =++++c a b =++,因为a b d ++≤c a b ++,且a c d c a b ++≤++所以2()T P ≤2()T P '. 所以无论m a =还是m d =,22()()T P T P '≤都成立.(3)数对序列P :(4,6),(11,11),(16,11),(11,8),(5,2)的5()T P 值最小, 1()10T P =,2()26T P =,3()42T P =,4()50T P =,5()52T P =【提示】给出数学概念的新定义,根据新定义,求值比较大小. 【考点】分析法和综合法。

2014年全国普通高等学校招生统一考试理科数学(北京卷带解析)试题

2014年全国普通高等学校招生统一考试理科数学(北京卷带解析)试题

2014年全国普通高等学校招生统一考试理科(北京卷)数学试题1、【题文】已知集合,,则()A.B.C.D.2、【题文】下列函数中,在区间上为增函数的是()A.B.C.D.3、【题文】曲线,(为参数)的对称中心()A.在直线上B.在直线上C.在直线上D.在直线上4、【题文】当时,执行如图所示的程序框图,输出的值为()A.7 B.42 C.210 D.8405、【题文】设是公比为的等比数列,则“”是“为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6、【题文】若、满足,且的最小值为,则的值为()A.2 B.C.D.7、【题文】在空间直角坐标系中,已知.若分别是三棱锥在坐标平面上的正投影图形的面积,则()A.B.且C.且D.且8、【题文】学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人B.3人C.4人D.5人9、【题文】复数 .10、【题文】已知向量、满足,,且(),则 .11、【题文】设双曲线经过点(2,2),且与具有相同渐近线,则的方程为;渐近线方程为 .12、【题文】若等差数列满足,则当时,的前项和最大.13、【题文】把5件不同产品摆成一排,若产品与产品相邻,且产品与产品不相邻,则不同的摆法有种.14、【题文】设函数(是常数,).若在区间上具有单调性,且,则的最小正周期为 .15、【题文】如图,在中,,点在边上,且,.(1)求;(2)求,的长.(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记为表中10个命中次数的平均数,从上述比赛中随机选择一场,记为李明在这场比赛中的命中次数,比较与的大小(只需写出结论)17、【题文】如图,正方体的边长为2,,分别为,的中点,在五棱锥中,为棱的中点,平面与棱,分别交于,. (1)求证:;(2)若底面,且,求直线与平面所成角的大小,并求线段的长.18、【题文】已知函数.(1)求证:;(2)若对恒成立,求的最大值与的最小值.19、【题文】已知椭圆:.(1)求椭圆的离心率;(2)设为原点,若点在椭圆上,点在直线上,且,试判断直线与圆的位置关系,并证明你的结论.20、【题文】对于数对序列,记,,其中表示和两个数中最大的数.(1)对于数对序列,求的值;(2)记为,,,四个数中最小的数,对于由两个数对组成的数对序列和,试分别对和两种情况比较和的大小;(3)在由五个数对组成的所有数对序列中,写出一个数对序列使最小,并写出的值.(只需写出结论).。

2014年高考北京卷数学(理)试题解析(精编版)(精品解析版)

2014年高考北京卷数学(理)试题解析(精编版)(精品解析版)

2014年普通高等学校招生全国统一考试(北京卷)数学(理科)一.选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合2{|20}A x x x =-=,{0,1,2}B =,则AB =( )A.{0} B .{0,1} C .{0,2} D .{0,1,2}2. 下列函数中,在区间(0,)+∞上为增函数的是( ) A .1y x =+ B .2(1)y x =- C .2x y -= D .0.5log (1)y x =+3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩,(θ为参数)的对称中心( )A .在直线2y x =上B .在直线2y x =-上C .在直线1y x =-上D .在直线1y x =+上 【答案】B4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( )A .7B .42C .210D .840【答案】C 【解析】试题分析学科网:当输入7=m 、3=n ,判断框内的条件为5<k ?所以进入循环的k 的值依次为7,6,5,因此执行k S S ⋅=后,则由210567=⨯⨯=S .故选C. 考点:程序框图,容易题.5.设{}n a 是公比为q 的等比数列,则“1>q ”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】D 【解析】6.若x 、y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为( )A .2B .2-C .12 D .12- 7.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,8.学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( ) A .2人 B .3人 C .4人 D .5人二.填空题:本大题共6小题,每小题5分,共30分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分.9.复数21()1i i+=- . 【答案】1- 【解析】试题分析:i i i i i i i ==+-+=-+22)1)(1()1(112,所以1)11(22-==-+i ii . 考点:复数的运算学科网,容易题.10.已知向量a 、b 满足1||=a ,)1,2(=b ,且0b a =+λ(R λ∈),则||λ= .11.设双曲线C 经过点(2,2),且与2214y x -=具有相同渐近线,则C 的方程为 ;渐近线方程为 . 12.若等差数列{}n a 满足7897100,0a a a a a ++>+<,则当n = 时,{}n a 的前n 项和最大. 【答案】8 【解析】试题分析:由等差数列的性质,89873a a a a =++,08>a ,又因为0107<+a a ,所以098<+a a 所以09<a ,所以78S S >,98S S >,故数列}{n a 的前8项最大. 考点:等差数列的性质,前n 项和的最值,容易题.13.把5件不同产品摆成一排,若产品A 与产品B 相邻, 且产品A 与产品C 不相邻,则不同的摆法有 种. 【答案】3614.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]62ππ上具有单调性,且2()()()236f f f πππ==-,则()f x 的最小正周期为 . 三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分) 如图,在ABC ∆中,,83B AB π∠==,点D 在BC 边上,且2CD =,1cos 7ADC ∠=. (1)求sin BAD ∠; (2)求BD ,AC 的长.【答案】(1)1433;(2)7. 【解析】16.(本小题满分13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x 为表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这场比赛中的命中次数,比较EX 与x 的大小(只需写出结论)17.(本小题满分分)如图,正方体MADE 的边长为2,B ,C 分别为AM ,MD 的中点,在五棱锥ABCDE P -中,F 为棱PE 的中点,平面ABF 与棱FD ,PC 分别交于G ,H . (1)求证:FG AB //;(2)若PA ⊥底面ABCDE ,且PA AE =,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长. (2)因为⊥PA 底面ABCDE ,所以AB PA ⊥,AE PA ⊥,如图建立空间直角坐标系xyz A -,则)0,0,1(),0,0,0(B A ,)2,0,0(),0,1,2(P C ,)1,1,0(F ,)0,1,1(=BC ,设平面ABF 的法向量为),,(z y x =n ,则⎪⎩⎪⎨⎧=•=•0AF AB n n ,即⎩⎨⎧=+=00z y x ,令1=z ,则1-=y ,所以)1,1,0(-=n , 设直线BC 与平面ABF 所成的角为α,则21|||||||,cos |cos =⋅•=><=BC BC BC n n n α, 因此直线BC 与平面ABF 所成的角为6π,18. (本小题满分13分)已知函数()cos sin ,[0,]2f x x x x x π=-∈.(1)求证:()0f x ≤(2)若sin x a b x <<对(0,)2x π∈恒成立,求a 的最大值与b 的最小值. 当0≤c 时,0)(>x g 对任意)2,0(π∈x 恒成立,当1≥c 时,因为对任意)2,0(π∈x ,0cos )(<-='c x x g ,所以)(x g 在区间]2,0[π上单调递减,从而0)0()(=<g x g 对任意)2,0(π∈x 恒成立.当10<<c 时 ,存在唯一的)2,0(0π∈x 使得0cos )(00=-='c x x g ,)(x g 、)(x g '在区间)2,(π上的情况如下表:场次 投篮次数 命中次数 场次 投篮次数 命中次数 主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场52420客场52512x),0(0x 0x)2,(0πx)(x g ' +-)(x g↑↓19.(本小题满分14)已知椭圆C :2224x y +=.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,试判断直线AB 与圆222x y +=的位置关系,并证明你的结论. 【答案】(1)22;(2)直线AB 与圆222x y +=相切. 【解析】试题分析:(1)把椭圆C :2224x y +=化为标准方程,确定学科网2a ,2b ,利用ace =求得离心率;(2)设点),(00y x A ,)2,(t B ,其中00≠x ,由OB OA ⊥,即0=•OB OA ,用0x 、0y 表示t ,当t x =0或考点:椭学科网圆的性质,直线与圆的位置关系. 20. (本小题满分13分) 对于数对序列1122:(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112(){(),}(2)k k k k T P b Max T P a a a k n -=++++≤≤,其中112{(),}k k Max T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数.(1)对于数对序列:(2,5),(4,1)P ,求12(),()T P T P 的值;(2)记m 为a ,b ,c ,d 四个数中最小的数,对于由两个数对(,),(,)a b c d 组成的数对序列:(,),(,)P a b c d 和:(,),(,)P c d a b ',试分别对m a =和m d =两种情况比较2()T P 和2()T P '的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).。

2014年高考真题——理科数学(北京卷)解析版 Word版含解析

2014年高考真题——理科数学(北京卷)解析版 Word版含解析

课标理数【2014·北京理卷】一、选择题1. [2014•北京理卷]1.已知集合2{|20},{0,1,2}A x x x B =-==,则AB =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D【答案】C【解析】∵{}2,0=A ,∴{}{}{}2,02,1,02,0== B A . 2.[2014•北京理卷]下列函数中,在区间(0,)+∞上为增函数的是( ).A y = 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+【答案】A【解析】由初等函数的性质得选项B 在()1,0上递减,选项C 、D 在()+∞,0为减函数,所以排除B 、C 、D. 3.[2014•北京理卷] 曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上【答案】B【解析】曲线方程消参化为()()12122=-++y x ,其对称中心为()2,1-,验证知其满足x y 2-=.4.[2014•北京理卷]当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D【答案】C【解析】2105671=⨯⨯⨯=S . 5.[2014•北京理卷]设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件【答案】D【解析】当01<a 时,1>q 数列{}n a 递减;01<a 时,数列{}n a 递增,10<<q . 理数6.E5[2014•北京理卷]若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -【答案】D【解析】可行域如图所示,当0>k 时,知x y z -=无最小值,当0<k 时,目标函数线过可行域内A 点时z 有最小值,联立⎩⎨⎧=+-=020y kx y ,解之得⎪⎭⎫⎝⎛-0,2k A ,420min -=+=k z ,即21-=k .7.[2014•北京理卷]在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C,(D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠ 【答案】D【解析】设顶点D 在三个坐标面xoy 、yoz 、zox 的正投影分为'1D 、'2D 、'3D ,则211='='BD AD ,2=AB ,∴2222211=⨯⨯⨯=S ,2222122=⨯⨯=='OCD S S ,2222133=⨯⨯=='OAD S S .8.[2014•北京理卷]有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5 【答案】B【解析】假设AB 两个同学的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩较高的同学比另一个同学“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两个同学数学成绩是相同的.因为数学成绩只有3种,因而同学数量最大为3.即 3位同学成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件. 二、填空题9.[2014•北京理卷]2=-+y x 02=+-y kx A=-x y复数211i i +⎛⎫= ⎪-⎝⎭________.【答案】1-【解析】()()()122111112222-=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛-+i i i i i i . 10.[2014•北京理卷]已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.【答案】5【解析】∵0=+b a λ,∴b a -=λ,∴515||||===a b λ. 11.[2014•北京理卷]设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.【答案】112322=-y x ;x y 2±= 【解析】设双曲线C 的方程为λ=-224x y ,将()2,2代入λ=-=-324222,∴双曲线方程为112322=-y x .令0422=-x y 得渐近线方程为x y 2±=. 12.[2014•北京理卷]若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大. 【答案】8【解析】∵038987>=++a a a a ,098107<+=+a a a a ,∴0,098<>a a ,∴8=n 时数列{}n a 前n 和最大. 13.[2014•北京理卷]把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 【答案】36【解析】36326132233=⨯⨯=A A A . 14.[2014•北京理卷]设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛6322πππf f f ,则)(x f 的最小正周期为________. 【答案】π【解析】结合图象得26223224ππππ+-+≥T ,即π≥T .15.[2014•北京理卷] 如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin (2)求AC BD ,的长解:(I )在ADC ∆中,因为17COS ADC ∠=,所以sin ADC ∠=. 所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B =∠-∠=1433237121734=⨯-⨯. (Ⅱ)在ABD ∆中,由正弦定理得AA-6π2π32π8sin 3sin AB BAD BD ADB ⋅∠===∠, 在ABC ∆中,由余弦定理得2222cos AC AB BC AB BC B =+-⋅⋅22185285492=+-⨯⨯⨯=, 所以7AC =.16.[2012•北京理卷]李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论).解:(I)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是05.(Ⅱ)设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”。

2014年高考数学(北京卷)(word版)

2014年高考数学(北京卷)(word版)

2014年普通高等学校招生全国统一考试(北京卷)理科数学一、选择题(共8小题,每小题5分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项)1. 已知集合 , ,则 ( )A{0} B {0,1} C{0,2} D{0,1,2}2.下列函数中在(0,+∞)上为增函数的是( )A. y=x+1B.y=(x-1)2C. y=2-xD. log 0.5(x+1)3. 曲线 (θ为参数)的对称中心(A.在直线y=2x 上B.在直线y= -2x 上C.在直线y=x-1上D.在直线y=x+1上4.当m=7,n=3时执行如图所示程序框图 输出的s 值为( )A.7B.42C.210D.8405.设{ }是公比为q 的等比数列,则“q >1”是“{ }为递增数列”的( ) A.充分且不必要条件 B.必要且不充分 C.充分必要条件 D.既不充分也不必要条件6.若x ,y 满足 且z=-y-x 的最小值为-4,则k 的值为( ) A. 2 B. -2 C. D.A=x|x 2-2x=0{}B=0,1,2{}A∩B {x=-1+cos θy=2+sin θαn αn {x+y-2≥0kx-y+2≥0y ≥012-127.在空间直角坐标系Oxyz 中,已知A (2,0,0)B(2,2,0 ) C(0,2,0) D(1,1, )若 分别表示三棱锥D-ABC 在xOy yOz zOx 坐标平面上正投影图形的面积,则( ) A. B. C. D.8.有语文数学两个学科,成绩评定为“优秀”“合格”“不合格”三种,若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A同学比B 同学成绩好”现有若干同学,他们之中没有一个人比另一个人成绩好,且没有两个人语文成绩一样,数学成绩也一样的,问满足条件的最多有多少学生( ) A.2 B.3 C.4 D.5一、填空题(共6小题,每小题5分,共30分)9.复数 =10.11. 12. 13.14.2S 1S2S 3S 1=S 2=S 3S 1=S 3且S 3≠S 2S 1=S 2且S 3≠S 1S 2=S 3且S 1≠S 31+i 1-i ()2已知向量a 、b ,b=(2,1),且λa+b=0,(λ∈R )则λ=设函数f(x)=Asin(wx+φ)(A ,w ,φ为常数A>0φ>0)且在π6,π2[]上单调,f π2()=f 2π3()= - f π6(),则f (x )最小正周期PA=AE20(小题13分)2014年北京高考数学(理)参考答案一、 选择题 1. 【答案】C【解析】解:集合{}{}2200,2A x x =-==.故{}0,2A B ⋂=,选C .2. 【答案】A【解析】解:A.y =[)1,-+∞上为增函数,符合题意.B.()21y x =-在()0,1上为减函数,不合题意. C.2xy -=为(),-∞+∞上的减函数,不合题意.D.()0.5log 1y x =+为()1,-+∞上的减函数,不合题意. 故选A3. 【答案】B【解析】解:参数方程1cos 2+sin x y θθ=-+⎧⎨=⎩所表示的曲线为圆心在()1,2-,半径为1的圆.其对称中心为圆心()1,2-.逐个带入选项可知,()1,2-在直线2y x =-上,即选项B .4. 【答案】C【解析】解:当m 输入的7,3m n ==时,判断框内的判断条件为5k <.故能进入循环的k 依次为7,6,5,顺次执行S S k =⋅,则有765210S =⋅⋅=,故选C.5. 【答案】D【解析】解:对于等比数列{}n a ,若1q >,则当10a <时有{}n a 为递减数列.故1q >不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >.综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件,即选D.6. 【答案】D【解析】解:若0,k z y x =-≥没有最小值,不合题意.若0k <,则不等式组所表示的平面区域如图所示. 由图可知,z y x =-在点2,0k ⎛⎫-⎪⎝⎭处取最小值. 故204k ⎛⎫--=- ⎪⎝⎭,解得12k =-,即选项D 正确7. 【答案】D【解析】解:D ABC -在平面上的投影为ABC ∆,故12S =.设D 在yOz 和zOx 平面上的投影分别为2D 和3D ,则D A B C -在yOz 和zOx 平面上的投影分别为2OCD ∆和3OAD ∆.∵(2D,(3D .故23S S =.综上,选项D 正确.8. 【答案】B【解析】解:用ABC 分别表示优秀、及格和不及格.显然语文成绩得A 的学生最多只有1个.语文成绩得B 的也最多只有一个.得C 的也最多只有一个,因此学生最多只有3个. 显然,(AC )(BB )(CA )满足条件,故学生最多3个.二、填空题9. 【答案】1-【解析】解:复数()()()21i 1i 2i i 1i 1i 1i 2++===--+,故221i i 11i +⎛⎫==- ⎪-⎝⎭.10.【解析】解:由λ+=0r r a b ,有λ=-r rb a ,于是λ=⋅u u r r b a ,由()2,1=rb ,可得=r b 1=r a ,故λ=.11. 【答案】221312x y -=;2y x =±【解析】解:双曲线2214y x -=的渐近线为2y x =±,故C 的渐近线为2y x =±;设C :224y x m -=,因为C 过()2,2,所以代入并解得3m =-,故C 的方程为221312x y -=,渐近线方程为2y x =±.12. 【答案】8【解析】解:根据等差数列的性质,78983a a a a ++=,71089a a a a +=+,于是8890,0a a a >+<,即890,0a a ><,所以8798,S S S S ><, 故8S 为{}n a 的前n 项和中最大值.13. 【答案】36【解析】解:因为A 与B 相邻,所以应用捆绑法,将A 和B 当成一个整体捆绑成一个元素,又因为A 与C 不相邻,所以分两种情况;(1)C 与A 和B 这个整体相邻,这时应采用插空法,摆法有223223A A A 24⋅⋅=种;(2)B 正好在A 与C 之间,这是将A 、B 、C 当成一个元素,摆法有2323A A 12⋅=种;故不同的摆法有122436+=种14. 【答案】π【解析】解:由()f x 在区间ππ,62⎡⎤⎢⎥⎣⎦上具有单调性,π2ππ236f f f ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可知, ()f x 有对称中心1πππ,0,02263⎛⎫⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,对称轴1π2π7π22312x ⎛⎫=+= ⎪⎝⎭;故()f x 的周期为7ππ4π123⎛⎫-=⎪⎝⎭. 三、解答题(共6小题,共80分)15.(共13分) 【解析】(1)sin ADC ∠==sin sin()sin cos cos sin 11727214BAD ADC B ADC B ADC B∴∠=∠-∠=∠⋅∠-∠⋅∠=-⨯=(2)在ABD ∆中,sin sin sin AB AD BD ADB B BAD ==∠∠∠==解得:3,7BD AD == 在ACD ∆中,222222cos 172272497AC AD DC AD DC ADC=+-⋅⋅∠=+-⨯⨯⨯=7AC ∴=16.(共13分)解:(1)设李明在该场比赛中投篮命中率超过0.6的概率为事件A , 由题可知,李明在该场比赛中命中率超过0.6的场次有: 主场2、主场3、主场5、客场2、客场4,共计5场 所以李明在该场比赛中投篮命中率超过0.6的概率()51102P A ==.(2)设李明一场投篮命中率超过0.6,一场命中率不超过0.6的概率为事件B ,同理可知,李明主场命中率超过0.6的概率135P =,客场命中率超过0.6的概率225P =故()()()122133221311=+=555525P B P P P P =⨯-+⨯-⨯⨯. (3)()E X x =.17.(共14分) 【解析】 (1) 证明://,,ED AM ED AM PED PED ⊄⊂面面//AM PED ∴面,AM ABF AB ABF ⊂⊂面即面ABF PED FG =面面Ç//AB FG ∴(2) 如图建立空间坐标系A x y -,各点坐标如下:(0,0,0),E (0,2,0),B (,1),P (0,0,2)A 设ABF 面的法向量为000(,,z )n x y =,(1,0,0)AB =,(0,1,1),AF =n AB n AF ⎧⋅=⎪⎨⋅=⎪⎩,即00x y z =⎧⎨+=⎩,令1y =得:(0,1,1)n =- 又(1,1,0)BC =,1sin ,2BC n ∴<>==直线BC 与平面ABF 所成角为6π 设111(,,z )H x y ,由,PH tPC =则111(,,z 2)t(2,1,2)x y -=-(21,,22)H t t t ∴--又,(21,,22)H ABF BH t t t ∈=--面0n BH ∴⋅=,2220,3t t t ∴+-=∴=,422(,,)333H ∴,424,,333PH ⎛⎫= ⎪⎝⎭|PH|=2∴18.(共13分)解:(1)证明:()()'cos sin cos sin ,f x x x x x x x =+--=-∵π0,2x ⎡⎤∈⎢⎥⎣⎦,∴()'0f x …,即()f x 在π0,2⎡⎤⎢⎥⎣⎦上单调递增,∴()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值为()00f =,所以()0f x …. (2)一方面令()sin x g x x =,π0,2x ⎛⎫∈ ⎪⎝⎭,则()2cos sin 'x x xg x x ⋅-=,由(1)可知,()'0g x <,故()g x 在π0,2⎛⎫ ⎪⎝⎭上单调递减,从而()π22πg x g ⎛⎫>= ⎪⎝⎭,故2πa …,所以m a x 2πa =. 令()sin h x x bx =-,π0,2x ⎛⎫∈ ⎪⎝⎭,则()'cos h x x b =-,当1b …时,()'0h x <,故()h x 在π0,2x ⎛⎫∈ ⎪⎝⎭上单调递减,从而()()00h x h <=, 所以()s i n 0h x x bx =-<恒成立.当1b <时,()'cos 0h x x b =-=在π0,2⎛⎫ ⎪⎝⎭有唯一解0x ,且()00,x x ∈,()'0h x >,故()h x 在()00,x 上单调递增,从而()()00h x h >=, 即sin sin 0sin x x bx x bx b x ->⇒>⇒>与sin x b x<恒成立矛盾, 综上,1b …,故min 1b =.19.(共14分)(1)椭圆的标准方程为:22142x y +=,故2,a b ==,则c =故离心率e c a ==;(2)由题可得,直线OA 的斜率存在,设为k ,则直线OA 的方程为y k x =,OA OB ⊥,○1当0k =时,()2,0A ±,已知()0,2B ,此时直线AB 方程为20x y +-=或+2=0x y -,原点到直线AB 的距离均为故满足直线AB 与圆222x y +=相切; ○2当0k ≠时,直线OB 方程为1y x k=-, 联立22142y kxx y =⎧⎪⎨+=⎪⎩得,()221+24k x =,故,A ⎛⎫或,⎛⎫, 联立12y x k y ⎧=-⎪⎨⎪=⎩得,()2,2B k -,由A 的对称性,那么不妨去点,A ⎛⎫进行计算,于是直线AB 方程为))2222y x k x k k-+=++,((21+220k x y k -++=原点到直线AB 的距离d =,此时与圆222x y +=相切;综上所述,直线AB 与圆222x y +=相切.20.(共13分)解:(1)()1257T P =+=,()(){}{}211max ,241max 7,6178T P T P =++=+=+=;(2)当m a =时,()1T P a b =+,(){}{}2,+max +max ,a c T P d a b a d b c =++=+; ()1'+T P c d =,(){}{}2'max ,max ,T P b c d c a b c a d b c d =+++=++=++;因为a 是a b c d 、、、中最小的数,所以{}max ,a b c b c ++…,从而()()22'T P T P …;当m d =时,()1T P a b =+,(){}{}2,+max +max ,a c T P d a b a d b c =++=+; (){}{}2'max ,max ,T P b c d c a b c a d a b c =+++=++=++;因为d 是a b c d 、、、中最小的数,所以{}max ,d b c b c ++…,从而()()22'T P T P …; 综上,这两种情况下都有()()22'T P T P ….(3)52.分布为:(4,6)(16,11)(11,11)(11,8)(5,2)。

2014年北京高考理科数学试题含答案(Word版)

2014年北京高考理科数学试题含答案(Word版)

2014 年北京高考数学(理科)试题一 .选择题(共 8小题,每题 5 分,共 40分 .在每题列出的四个选项中,选出切合题目要求的一项)1.已知会合A{ x | x22x0}, B{0,1, 2} ,则A B ()A.{0}B.{ 0, 1}C.{ 0, 2}D.{ 0,1, 2}2.以下函数中,在区间(0,) 上为增函数的是()A.y x1B. y( x12)C.y 2 x D . y l o 0g. 5x( 1 )3.曲线x1cos(为参数)的对称中心()y2sinA. 在直线y2x 上B.在直线y2x 上C. 在直线y x1上D.在直线y x 1上4.当m7, n 3 时,履行以下图的程序框图,输出的S 值为()A.7B.42C.210D.8405.设{ a n}是公比为q的等比数列,则" q1" 是 "{ a n }" 为递加数列的()A. 充足且不用要条件B. 必需且不充足条件C. 充足必需条件D. 既不充足也不用要条件x y206.若x, y知足kx y20 且z y x 的最小值为-4,则 k 的值为()y0A.2B.21D .1 C .2 27.在空间直角坐标系Oxyz 中,已知 A 2,0,0 , B 2,2,0 , C 0,2,0,D 1,1, 2,若S1, S2, S3分别表示三棱锥D ABC 在xOy,yOz, zOx坐标平面上的正投影图形的面积,则()(A)S1S2S3(B)S1S2且 S3S1(C)S1S3且 S3S2(D)S2S3且 S1S38.有语文、数学两,成绩评定为“优异”“合格”“不合格”三种 .若A同学每科成绩不低于 B 同学,且起码有一科成绩比B高,则称“ A 同学比 B 同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,且没有随意两个人语文成绩同样,数学成绩也同样的 .问知足条件的最多有多少学生()(A)2(B)3(C)4(D)5二、填空题(共 6 小题,每题 5 分,共30 分)12i________.9.复数i110.已知向量a、b知足a 1 ,b2,1,且 a b 0R ,则________.11.设双曲线C经过点2,2,且与 y2x21拥有同样渐近线,则 C 的方程为________;4渐近线方程为 ________.12.若等差数列a n知足a7a8 a90 , a7a10 0 ,则当 n________时a n的前n项和最大 .13.把 5 件不一样产品摆成一排,若产品 A 与产品 C 不相邻,则不一样的摆法有_______种.14.设函数 f ( x) sin( x) , A0,0 ,若 f (x) 在区间 [6,] 上拥有单一性,且2f f 2,则 f (x) 的最小正周期为________.f236试题剖析:平等比数列{ a n} ,若 q 1 ,则当 a1 ,0 时数列 { a n} 是递减数列;若数列{ a n } 是递加数列,则二.填空题:本大题共 6 小题,每题 5 分,共 30 分. 请将答案天灾答题卡对应题的位置上,答错地点,书写不清,含糊其词均不得分.9.【答案】 1【分析】试题剖析:1i(1 i )22i i ,因此 (1i )2i 21. 1i(1 i )(1 i )21i10.【答案】 5【分析】三.解答题(共 6 题,满分80 分)15. (本小题 13 分)如图,在ABC 中,B, AB 8,点D在BC边上,且 CD1 2,cos ADC37( 1)求sin BAD(2)求BD, AC的长16.(本小题 13 分) .李明在 10 场篮球竞赛中的投篮状况以下(假定各场竞赛相互独立):(1)从上述竞赛中随机选择一场,求李明在该场竞赛中投篮命中率超出0.6 的概率.(2)从上述竞赛中选择一个主场和一个客场,求李明的投篮命中率一场超出0.6 ,一场不超出0.6 的概率.(3)记x 是表中10 个命中次数的均匀数,从上述竞赛中随机选择一场,记X为李明在这竞赛中的命中次数,比较E(X)与x 的大小(只要写出结论)17.(本小题14 分)如图,正方形AMDE的边长为2,B,C分别为AM ,MD的中点,在五棱锥P ABCDE 中,F为棱PE 的中点,平面ABF与棱PD , PC 分别交于点G, H.( 1)求证:AB // FG;( 2)若PA底面ABCDE,且AF PE ,求直线BC 与平面ABF所成角的大小,并求线段PH的长 .18.(本小题13 分)f (x)xcosxsin,[0, ],已知函数x x2( 1)求证:f ( x)0 ;( 2)若a sin x b在 (0,) 上恒建立,求a的最大值与 b 的最小值.x219.(本小题14 分)已知椭圆 C : x2 2 y2( 1)求椭圆C的离心率( 2)设O为原点,若点.4 ,A 在椭圆C上,点B 在直线y 2 上,且OA OB ,求直线AB与圆x2y2 2 的地点关系,并证明你的结论.20.(本小题13 分)关于数对序列P(a1,b1),( a2,b2 ),,( a n, b n ) ,记T1(P)a1b1,T k ( P)b k max{T k 1(P), a1a2a k }(2k n) ,此中max{T k 1( P), a1a2a k }表示 T k 1(P)和 a1a2a k两个数中最大的数,( 1)关于数对序列P(2,5), P(4,1) ,求 T1 (P),T2 (P) 的值.( 2)记m为a,b,c, d四个数中最小值,对于由两个数对(a, b),( c, d )组成的数对序列P(a,b),( c,d ) 和 P '(a,b),( c, d) ,试分别对m a 和m d 的两种状况比较T2 ( P) 和 T2 (P ') 的大小 .( 3)在由 5 个数对(11,8),(5,2),(16,11),(11,11),(4,6)构成的全部数对序列中,写出一个数对序列P 使 T5( P) 最小,并写出 T5 (P) 的值.(只要写出结论).。

2014北京高考理科数学试题与答案

2014北京高考理科数学试题与答案

k<m n+1 是 输出S 结束

S=S•k
5.
1 ”是 an 为递增数 设 an 是公比为 q 的等比数列,则“ q>
列的(
) B.必要且不充分条件 D.既不充分也不必要条件
A.充分且不必要条件 C.充分必要条件
6.
x y 2 0 若 x, y 满足 kx y 2 0 且 z y x 的最小值为 4 ,则 k 的值为( y 0
2014 年普通高等学校招生全国统一考试 数 学(理) (北京卷) 第一部分(选择题 共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40 分.在每个小题列出的四个选项中,选出符合题目要求的 一项. 1. 已知集合 A {x x 2 2 x 0} , B {0,1, 2} ,则 A A. {0} C. {0, 2} 2. B. {0,1} D. {0,1, 2} )
3 3 2 2 13 故 P B P + = . 1 1 P 2 P 2 1 P 1= 5 5 5 5 25
( III ) E X x . 17 . ( 共 14 分 ) 解:
8 / 14
பைடு நூலகம்
8
(I)证明:
AM / / ED, AM 面PED, ED 面PED
3
17. (本小题共 14 分) 如图,正方形 AMDE 的边长为 2, B, C 分别为 AM 、 MD 的中点,在五棱锥 P ABCDE 中, F 为 棱 PE 的中点,平面 ABF 与棱 PD , PC 分别交于点 G 、 H (Ⅰ)求证: AB / / FG ; (Ⅱ)若 PA 平面 ABCDE ,且 PA = AE ,求直线 BC 与平面 ABF 所成角的大小,并求线段 PH 的长.

2014年全国高考北京市数学(理)试卷及答案【精校版】

2014年全国高考北京市数学(理)试卷及答案【精校版】

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D 2.下列函数中,在区间(0,)+∞上为增函 数的是( ).A y = 2.(1)B y x =- .2x C y -= 0.5.l o g (1)D y x=+ 3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ) .7A .42B .210C .840D5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件.C 充分必要条件 .D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的 最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,(D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标 平面上的正投影图形的面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好,学科 网且没有任意两个人语文成绩一样,数学成绩也一样的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5 二、填空题(共6小题,每小题5分,共30分)9.复数211i i +⎛⎫= ⎪-⎝⎭________.10.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在 区间]2,6[ππ上具有单调性,且 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛6322πππf f f ,则)(x f 的最小正周期为________. 三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin (2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,学科 网求李明的投篮命中率一场超过6.0,一场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小 (只需写出结论)17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P -中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,.(1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.18.(本小题13分) 已知函数()cos sin ,[0,]2f x x x x x π=-∈,(1)求证:()0f x ≤;(2)若sin x a b x<<在(0,)2π上恒成立,求a 的 最大值与b 的最小值.19.(本小题14分) 已知椭圆22:24C xy +=,(1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB与圆222xy +=的位置关系,并证明 你的结论.20.(本小题13分)对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤,其中112max{(),}k k T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数,(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.(2)记m 为,,,a b c d 四个数中最小值,学科 网对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组 成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).2014年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分)(1)C (2)A (3)B (4)C (5)D (6)D (7)D (8)B二、填空题(共6小题,每小题5分,共30分) (9)-1 (10(11)221312x y -= 2y x =± (12)8 (13)36 (14)π三、解答题(共6小题,共80分) (15)(共13分) 解:(I )在ADC ∆中,因为17COS ADC ∠=,所以sin ADC ∠=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(北京卷)数学(理科)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项. (1)【2014年北京,理1,5分】已知集合2{|20}A x x x =-=,{0,1,2}B =,则A B =I ( )(A ){0} (B ){0,1} (C ){0,2} (D ){0,1,2} 【答案】C【解析】集合{}{}2|2002A x x x =-==,.故{}02A B =I ,,故选C . (2)【2014年北京,理2,5分】下列函数中,在区间(0,)+∞上为增函数的是( )(A )1y x =+ (B )2(1)y x =- (C )2x y -= (D )0.5log (1)y x =+【答案】A【解析】对于A ,1y x =+在[)1-+∞,上为增函数,符合题意,对于B ,2(1)y x =-在(01),上为减函数,不合题意,对于C ,2x y -=为()-∞+∞,上的减函数,不合题意,对于D ,0.5log (1)y x =+为(1)-+∞,上的减函数,不合题意,故选A .(3)【2014年北京,理3,5分】曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( )(A )在直线2y x =上 (B )在直线2y x =-上 (C )在直线1y x =-上 (D )在直线1y x =+上【答案】B【解析】参数方程1cos 2sin x y θθ=-+⎧⎨=+⎩,所表示的曲线为圆心在(12)-,,半径为1的圆.其对称中心为圆心(12)-,.逐个代入选项可知,(12)-,在直线2y x =-上,故选B .(4)【2014年北京,理4,5分】当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( )(A )7 (B )42 (C )210 (D )840 【答案】C【解析】当m 输入的7m =,3n =时,判断框内的判断条件为5k <.故能进入循环的k 依次为7,6,5.顺次执行S S k =⋅,则有765210S =⋅⋅=,故选C .(5)【2014年北京,理5,5分】设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a ”为递增数列的( )(A )充分且不必要条件 (B )必要且不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】D【解析】对于等比数列{}n a ,若1q >,则当10a <时有{}n a 为递减数列.故“1q >”不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >.综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件,故选D .(6)【2014年北京,理6,5分】若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为4-,则k 的值为( )(A )2 (B )2- (C )12 (D )12- 【答案】D【解析】若0k ≥,z y x =-没有最小值,不合题意.若0k <,则不等式组所表示的平面区 域如图所示.由图可知,z y x =-在点20k ⎛⎫- ⎪⎝⎭,处取最小值.故204k ⎛⎫--=- ⎪⎝⎭,解x +y -2=0-2kkx -y +2=022Oy x得12k =-,故选D .(7)【2014年北京,理7,5分】在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C,(D ,若1S ,2S ,2S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( ) (A )123S S S == (B )12S S =且31S S ≠ (C )13S S =且32S S ≠ (D )23S S =且13S S ≠ 【答案】D【解析】D ABC -在xOy 平面上的投影为ABC △,故12S =,设D 在yOz 和zOx 平面上的投影分别为2D 和3D ,则D ABC -在yOz 和zOx 平面上的投影分别为2OCD △和3OAD △.∵(201D ,,(310D ,,故23S S ==D .(8)【2014年北京,理8,5分】有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好”,现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一 样,数学成绩也一样的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5 【答案】B【解析】用ABC 分别表示优秀、及格和不及格.显然语文成绩得A 的学生最多只有1个,语文成绩得B 的也最多只有1个,得C 的也最多只有1个,因此学生最多只有3个.显然,(AC )(BB )(CA )满足条件,故学生最多3个,故选B .第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分.(9)【2014年北京,理9,5分】复数21i 1i +⎛⎫= ⎪-⎝⎭.【答案】1-【解析】复数21i (1i)2i i 1i (1i)(1i)2++===--+,故221i ()i 11i+==--.(10)【2014年北京,理10】已知向量a r 、b r 满足1a =r,()2,1b =r ,且()0a b R λλ+=∈r r ,则λ= .【解析】由0a b λ+=r r r ,有b a λ=-r r,于是||||||b a λ=⋅r r ,由(21)b =r ,,可得b =r ||1a =r ,故||λ= (11)【2014年北京,理11,5分】设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为______. 【答案】221312x y -=,2y x =±【解析】双曲线2214y x -=的渐近线为2y x =±,故C 的渐近线为2y x =±,设C :224y x m -= 并将点(22),代入C 的方程,解得3m =-,故C 的方程为2234y x -=-,即221312x y -=.(12)【2014年北京,理12,5分】若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时,{}n a 的前n 项和最大. 【答案】8【解析】由等差数列的性质,78983a a a a ++=,71089a a a a +=+,于是有80a >,890a a +<,故90a <.故87S S >,98S S <,8S 为{}n a 的前n 项和n S 中的最大值. (13)【2014年北京,理13,5分】把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 【答案】36【解析】先只考虑A 与产品B 相邻.此时用捆绑法,将A 和B 作为一个元素考虑,共有4424A =种方法.而A 和B 有2种摆放顺序,故总计242=48⨯种方法.再排除既满足A 与B 相邻,又满足A 与C 相邻的情况,此时用捆绑法,将A B C ,,作为一个元素考虑,共有33A 6=种方法,而A B C ,,有2种可能的摆放顺序,故总计62=12⨯种方法.综上,符合题意的摆放共有481236-=种.(14)【2014年北京,理14,5分】设函数()sin()f x x ωφ=+,0A >,0ω>若()f x 在学科网区间,62ππ⎡⎤⎢⎥⎣⎦上具有单调性,且2236f f f πππ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()f x 的最小正周期为________. 【答案】π【解析】由()f x 在区间ππ62⎡⎤,⎢⎥⎣⎦上具有单调性,且ππ26f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭知,()f x 有对称中心π03⎛⎫, ⎪⎝⎭,由π2π23f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭知()f x 有对称轴1π27ππ22312x ⎛⎫=+= ⎪⎝⎭,记T 为最小正周期,则1ππ2π2263T T -⇒≥≥,从而7πππ1234TT -=⇒=. 三、解答题:共6题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)【2014年北京,理15,13分】如图,在ABC ∆中,3B π∠=,8AB =,点D 在BC 边上,且2CD =,1cos 7ADC ∠=. (1)求sin BAD ∠;(2)求BD ,AC 的长. 解:(1)在ADC ∆中,因为17COS ADC ∠=,所以43sin ADC ∠=.所以4311333sin sin()sin cos cos sin 27BAD ADC B ADC B ADC B ∠=∠-∠=∠-∠=⨯-⨯=. (2)在ABD ∆中,由正弦定理得338sin 143sin 43AB BADBD ADB⨯⋅∠===∠, 在ABC ∆中,由余弦定理得2222212cos 85285492AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=,所以7AC =. (16)【2014:场次 投篮次数 命中次数 场次 投篮次数 命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4238客场41815主场5 24 20 客场5 25 12(1 (2)从上述比赛中选择一个主场和一个客场,学科网求李明的投篮命中率一场超过0.6,一场不超过0.6概率;(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这比赛中的命中次数,比较()E X 与x 的大小(只需写出结论)解:(1)李明在该场比赛中命中率超过0.6的概率有:主场2 主场3 主场5 客场2 客场4所以李明在该场比赛中投篮命中超过0.6的概率51102P ==.(2)李明主场命中率超过0.6概率135P =,命中率不超过0.6的概率为1215P -=,客场中命中率超过0.6概率225P =,命中率不超过0.6的概率为2315P -=.332213555525P =⨯+⨯=. (3)()E X x =.(17)【2014年北京,理17,14分】如图,正方形AMDE 的边长为2,,B C 分别为,AM MD 的中点,在五棱锥P ABCDE -中,F 为棱PE 的中点,平面ABF 与棱,PD PC 分别交于点,G H . (1)求证://AB FG ;(2)若PA ⊥底面ABCDE ,且AF PE ⊥,求直线BC 与平面ABF 所成角的大小,求线段PH 的长. 解:(1)Q AM ED //,AM ⊄面PED ,ED ⊂面PED .∴AM ∥面PED .Q AM ⊂面ABF ,即AB ⊂面ABF ,面ABF I 面PDE FG =∴AB FG ∥.(2)如图建立空间直角坐标系A xyz -,各点坐标如下()0,0,0A ,()0,2,0E ,()1,0,0B ,()2,1,0C ,()0,1,1F ,()0,0,2P ,设面ABF 的法向量为()000,,n x y z =r ,()1,0,0AB =u u u r,()0,1,1AF =u u u r ,00n AB n AF ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u ur ,即00x y z =⎧⎨+=⎩,令1y =,∴()0,1,1n =-r ,又Q ()1,1,0BC =u u u r , ∴1sin ,222BC n ==⨯u u u r r,直线BC 与平面ABF 所成的角为π6.设()111,,H x y z ,由PH tPC =u u u r u u u r ,则()()111,,22,1,2x y z t -=-∴111222x ty tz t =⎧⎪=⎨⎪=-⎩ ∴()2,,22H t t t -,又Q H ∈面ABF ,()21,,22BH t t t =--u u u r,∴0n BH ⋅=r u u u r ,∴220t t +-=,∴23t =,∴422,,333H ⎛⎫⎪⎝⎭,∴424,,333PH ⎛⎫=- ⎪⎝⎭u u u r∴2224242333PH ⎛⎫⎛⎫⎛⎫=++-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭u u u r .(18)【2014年北京,理18,13分】已知函数()cos sin ,[0,]2f x x x x x π=-∈.(1)求证:()0f x ≤;(2)若sin x a b x <<在(0,)2π上恒成立,求a 的最大值与b 的最小值.解:(1)()()cos sin cos sin f x x x x x x x '=+--=-,π02x ⎡⎤∈,⎢⎥⎣⎦时,()0f x '≤,从而()f x 在π02⎡⎤,⎢⎥⎣⎦上单调递减,所以()f x 在π02⎡⎤,⎢⎥⎣⎦上的最大值为()00f =,所以()()00f x f =≤.(2)解法一:当0x >时,“sin x a x >”等价于“sin 0x ax ->”;“sin xb x<”等价于“sin 0x bx -<”,令()sin g x x cx =-,则()cos g x x c '=-.当0c ≤时,()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.当1c ≥时,因为对任意π02x ⎛⎫∈, ⎪⎝⎭,()cos 0g x x c '=-<,所以()g x 在区间π02⎡⎤,⎢⎥⎣⎦上单调递减.从而()()00g x g <=对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.当01c <<时,存在唯一的0π02x ⎛⎫∈, ⎪⎝⎭,使得()00cos 0g x x c '=-=,且当()00x x ∈,时,()0g x '>,()g x 单调递增;当0π2x x ⎛⎫∈, ⎪⎝⎭时,()0g x '<,()g x 单调递减.所以()()000g x g >=.z yx ABCDEFG PMH进一步,“()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立”当且仅当ππ1022g c ⎛⎫=- ⎪⎝⎭≥,即20πc <≤.综上所述,当且仅当2πc ≤时,()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立;当且仅当1c ≥时,()0g x <对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.所以若sin x a b x <<对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立,则a 最大值为2π,b 最小值为1. 解法二:令()sin π02x g x x x ⎛⎤=,∈, ⎥⎝⎦,则()2cos sin x x x g x x ⋅-'=,由⑴知,()0g x '≤,故()g x 在π02⎛⎤, ⎥⎝⎦上单调递减,从而()g x 的最小值为π22πg ⎛⎫= ⎪⎝⎭,故2πa ≤,a 最大值为2π,b 最小值为1,下面进行证明:()sin h x x bx =-,π02x ⎡⎫∈,⎪⎢⎣⎭,则()cos h x x b '=-,当1b =时,()0h x '≤,()h x 在π02⎡⎫,⎪⎢⎣⎭上单调递减,从而()()max 00h x h ==,所以sin 0x x -≤,当且仅当0x =时取等号.从而当π02x ⎛⎫∈, ⎪⎝⎭时,sin 1x x <.故b 的最小值小于等于1.若1b <,则()cos 0h x x b '=-=在π02⎛⎫, ⎪⎝⎭上有唯一解0x ,且()00x x ∈,时,()0h x '>,故()h x 在()00x ,上单调递增,此时()()00h x h >=,sin sin 0xx bx b x->⇒>与恒成立矛盾,故1b ≥,综上知:b 的最小值为1.(19)【2014年北京,理19,14分】已知椭圆22:24C x y +=.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.解:(1)由题意,椭圆C 的标准方程为2212x y +=.所以24a =,22b =,从而2222c a b =-=.因此2a =,c = 故椭圆C 的离心率c e a ==.(2)直线AB 与圆222x y +=相切.证明如下:解法一:设点A B ,的坐标分别为()()002x y t ,,,,其中00x ≠.因为OA OB ⊥,所以0OA OB⋅=u u u r u u u r,即0020tx y +=,解得002y t x =-.当0x t =时,202t y =-,代入椭圆C 的方程,得t =故直线AB 的方程为x =圆心O 到直线AB 的距离d =.此时直线AB 与圆222x y +=相切.当0x t ≠时,直线AB 的方程为()0022y y x t x t --=--,即()()0000220y x x t y x ty ---+-=.圆心O 到直线AB 的距离d=.又220024x y +=,02y t x =-, 故d ===AB 与圆222x y +=相切.解法二:由题意知,直线OA 的斜率存在,设为k,则直线OA 的方程为y kx =,OA OB ⊥,①当0k =时,()20A ±,,易知()02B ,,此时直线AB 的方程为2x y +=或2x y -+=,原点到直线AB AB 与圆222x y +=相切;②当0k≠时,直线OB的方程为1y xk=-,联立2224y kxx y=⎧⎨+=⎩得点A的坐标⎛⎫,或⎛⎫⎝;联立12y xky⎧=-⎪⎨⎪=⎩得点B的坐标()22k-,,由点A的坐标的对称性知,取点A⎛⎫计算,直线AB的方程为:))2222y x k x kk-=+=++,即((21220k x y k-+++=,原点到直线AB距离d==,此时直线AB与圆222x y+=相切.综上知,直线AB一定与圆222x y+=相切.解法三:①当0k=时,()20A±,,易知()02B,,此时22OA OB=,=,AB=,原点到直线AB的距离OA OBdAB⋅===AB与圆222x y+=相切;②当0k≠时,直线OB的方程为1y xk=-,设()()1122A x yB x y,,,,则1OA,2OB==,联立2224y kxx y=⎧⎨+=⎩得点A的坐标⎛⎫或⎛⎫⎝;于是AOA=,OB=,21kAB+=OA OBdAB⋅===直线AB与圆222x y+=相切;综上知,直线AB一定与圆222x y+=相切.(20)【2014年北京,理20,13分】对于数对序列1122(,),(,),,(,)n nP a b a b a bL,记111()T P a b=+,112()max{(),}(2)k k k kT P b T P a a a k n-=++++≤≤L,其中112max{(),}k kT P a a a-+++L表示1()kT P-和12ka a a+++L两个数中最大的数.(1)对于数对序列(2,5),(4,1)P P,求12(),()T P T P的值;(2)记m为,,,a b c d四个数中最小值,对于由两个数对(,),(,)a b c d组成的数对序列(,),(,)P a b c d和'(,),(,)P a b c d,试分别对m a=和m d=的两种情况比较2()T P和2(')T P的大小;(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使5()T P最小,并写出5()T P的值.(只需写出结论).解:(1)()1257T P=+=,()(){}{}211max241max768T P T P=+,+=+,=.(2)当m a=时:()1T P a b=+,(){}{}2max maxT P d a b a c a d b c=++,+=++,;()1T P c d'=+,(){}{}2max maxT P b c d c a b c a d b c d'=++,+=++,=++;因为a是a b c d,,,中最小的数,所以{}maxa b c b c+,+≤,从而()()22T P T P'≤;当m d=时,()1T P a b =+,(){}{}2max max T P d a b a c a d b c =++,+=++,;()1T P c d '=+,(){}{}2max max T P b c d c a b c a d a b c '=++,+=++,=++;因为d 是a b c d ,,,中最小的数,所以{}max d b c b c +,+≤,从而()()22T P T P '≤. 综上,这两种情况下都有()()22T P T P '≤.(3)数列序列:P ()4,6,()11,11,()16,11,()11,8,()5,2的()5T P 的值最小;()110T P =,()226T P =,()342T P =,()450T P =,()552T P =.。

相关文档
最新文档