九年级数学期中测试卷及答案
2024-2025学年九年级数学上学期期中测试卷(冀教版,九上全部)(全解全析)
2024-2025学年九年级数学上学期期中模拟卷(冀教版)(满分120分,时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:冀教版九年级上册。
5.难度系数:0.65。
第Ⅰ卷一、选择题(本大题共16个小题,共38分,1~6小题每题3分,7~16小题每题2分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.在某市体育中考期间,在运动技能测试“排球垫球”项目中,某市直中学有8位学生的垫球数分别为39,53,55,48,52,53,48,48.这组数据的中位数和众数分别是()A .50,48B .52,48C .52,53D .48,482.甲、乙、丙、丁四名同学参加科技知识竞赛,他们平时测验成绩的平均分相同,方差分别是2 1.7S =甲,2 2.4S =乙,20.5S =丙,24S =丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁【答案】C【解析】解:∵22221.72.40.54S S S S ====甲乙丙丁,,,,∴2222s s s s <<<甲乙丁丙,∴成绩最稳定的同学是丙,故选:C .3.若38m n =,则m n n +的值是( )A .118B .311C .113D .8114.如图,河坝横断面迎水坡AB 的坡度是BC =,则坡面AB 的长度是( )A .B .6mC .D .9m5.如图,AB 为O e 的直径,点C ,D 在圆上,若64D Ð=°,则BAC Ð的度数为( )A .64°B .34°C .26°D .24°【答案】C【解析】解:连接BC ,AC AC =Q ,64D B \Ð=Ð=°,AB Q 为O e 的直径,90ACB \Ð=°,90BAC B \Ð=°-Ð26=°,故选:C .6.将方程21010x x -=+利用配方法转化为()25x c -=的形式,则c 的值为( )A .24B .25C .26D .1007.下表是小明填写的综合实践活动报告的部分内容,请你借助小明的测量数据,计算河流的宽度AB .题目测量河流宽度AB目标示意图测量数据1.5m BC =,10m BD =, 1.8mDE =则AB =( )m A .20B .30C .40D .50【答案】D【解析】解:∵BC AD DE AD ^^,,∴BC DE P ,∴ABC ADE V V ∽,8.已知菱形OABC 在平面直角坐标系中如图放置,点C 在x 轴上,若点A 的坐标为(3,4),经过点A 的双曲线交BC 于点D ,则OAD △的面积为( )A .8B .9C .10D .129.如图,在由小正方形组成的网格中,小正方形的边长均为1,点A ,B ,O 都在小正方形的顶点上,则AOBÐ的正弦值是( )A B C .13D .12【答案】B【解析】解:如图,过点B 作BC OA ^于点C .222222BO =+=,AO 12222AOB S =´´=V Q ,425525BC \==.10.如图,直线y kx =与双曲线m y x=相交于点A 和B ,已知点A 的坐标为()4,1,则不等式mkx x ³的解集为( )A .4x ³B .04x <£C .4x ³或4x £-D .4x ³或40x -£<11.如图,A 、B 、C 、D 均为圆周上十二等分点,若用直尺测量弦CD 长时,发现C 点、D 点分别与刻度1和4对齐,则A 、B 两点的距离是( )A .B .C .D .6占2个分点,COD Ð为等边三角形,413CD =-=,即OC 为直径,12.在矩形ABCD 中,已知45AB AD ==,,点E 为BC 上一点,连接AE 并延长交DC 的延长线于点F ,连接DE ,若2DEC BAE Ð=Ð,则EF 的长为( )A .B .C .3D .5EDN Ð,5AD ==,2CE =,13.关于x 的方程22240x mx m -+-=的两个根1x ,2x 满足1223x x =+,且12x x >,则m 的值为( )A .3-B .1C .3D .9【答案】C【解析】解:Q 方程22240x mx m -+-=的两个根1x ,2x ,122x x m \+=,2124x x m =-,14.如图,当反比例函数()0ky x x=>的图象L 将矩形ABCD 的内部(不含边界)的横、纵坐标都为整数的点分成数量相等的两部分,则k 的取值范围为( )A .1215k <<B .1014k <<C .410k <<D .1516k <<15.某数学兴趣小组借助无人机测量一条河流的宽度BC .如图,无人机在P 处测得正前方河流的点B 处的俯角DPB a Ð=,点C 处的俯角45DPC Ð=o ,点A ,B ,C 在同一条水平直线上.若45m AP =,tan 3a =,则河流的宽度BC 为( )A .30mB .25mC .20mD .15m16.如图,已知A ,B ,C 为O e 上的三点,且2120AC BC ACB ==Ð=°,.点P 从点A 出发,沿着逆时针方向运动到点B ,连接CP 与弦AB 相交于点D ,当ACD V 为直角三角形时,弧AP 的长为( )A .2pB .12πC .23p 或12πD .2p 或43p90ACP =°,∴AP 为直径,第Ⅱ卷二、填空题(本大题共3个小题,共10分;17小题2分,18~19小题各4分,每空2分,答案写在答题卡上)17.如图,在O e 中,AM 是O e 的直径,8AM =,点B 是 AM 的中点,点C 在弦AB 上,且AC =,点D 在 AB 上,且CD OB ∥,则CD 的长为.18.如图①所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ED DC--运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s ,设P ,Q 同时出发t 秒时,BPQ V 的面积为2cm y .已知y 与t 的函数关系图象如图②(曲线OM 为抛物线的一部分),则:(1)cos ABE Ð= ;(2)当t = 时,ABE QBP ∽△△.19.如图,点(3,0)A ,(0,4)B ,连接AB ,点D 为x 轴上点A 左侧的一点,点E ,F 分别为线段AB ,线段BO上的点,点B ,D 关于直线EF 对称.(1)若DE AO ^,则四边形BEDF 的形状是 ;(2)当AD 最长时,点F 的坐标为.EDB ,FBD FDB Ð=Ð,,3=,4OB =,5AB =.25BD =,三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)解方程:(1)22125x x -+=;(2)()()3222x x x +=+.某校九年级男生进行了“引体向上”测试,每班随机抽取的人数相同,成绩分为“优秀”“良好”“及格”“不及格”四个等级,其中相应等级的得分分别为10分、8分、6分、4分.小聪将九(1)班和九(2)班的成绩整理并绘制了如图所示的不完整的统计图表.请你根据所给的信息解答下列问题:(1)请补充完成条形图和统计分析表;(2)若九(2)班少统计了一个学生“优秀”的成绩,则此次统计的数据中不受影响的是______(选填“平均数”“众数”“中位数”);(3)请你从两个方面分析出哪个班的男生“引体向上”成绩更好些.)班良好人数最多,对应分数为8,人,中位数是从小到大排列后的第8个,为优秀10分,分)平均数众数中位数从众数、中位数来看,九(2)班的分数大于九(1)班,说明九(2)班的高分层优于九(1)班,所以九(2)班的成绩要好些.(9分)22.(本小题满分9分)如图,ABCD Y 中,点E 是AD 的中点,连接CE 并延长交BA 的延长线于点F .(1)求证:AF AB =;(2)点G 是线段AF 上一点,满足,FCG FCD CG Ð=Ð交AD 于点H .①求证:AH CH DH GH ×=×;②若2,6AG FG ==,求GH 的长.图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A 的仰角、俯角均为15°,摄像头高度160cm OA =,识别的最远水平距离150cm OB =.(1)如图2,张亮站在摄像头前水平距离100cm 的点G 处,恰好能被识别(头的顶部在仰角线AD ), 求张亮的身高约是多少厘米;(2)夕夕身高136cm ,头部高度为18cm ,踮起脚尖可以增高3cm ,此时夕夕能被识别吗?请计算说明.(精确到0.1cm ,参考数据:sin150.26cos150.97°»°»,,tan150.27°»),160cm ,.同(1)知,四边形AOBP 是矩形,150cm AP OB \==,(6分)tan151500.2740.5(cm)PN AP \=×°»´=,16040.5119.5cm 136318121cm BN \=-=<+-=,(9分)\夕夕能被识别.(10分)24.(本小题满分10分)如图1,一汤碗的截面是以AB 为直径的半圆O (碗体厚度忽略不计),放置于水平桌面MN 上,碗中装有一些液体(图中阴影部分),其中液面截线∥CD MN .已知液面截线CD 宽8cm ,液体的最大深度为2cm .(1)求汤碗直径AB 的长;(2)如图2,在同一截面内,将汤碗(半圆O )沿桌面MN 向右作无滑动的滚动,使液体流出一部分后停止,再次测得液面截线CD 减少了2cm .①上述操作后,水面高度下降了多少?②通过计算比较半径12AB 和流出部分液体后劣弧 CD 的长度哪个更长.(参考数据:3tan 374°=)4cm ,34,如图,已知在平面直角坐标系中,矩形ABCD 的边AB x ∥轴,AD y ∥轴,点A 的坐标为(2,1),43AB AD ==,.(1)求直线BD 的解析式;(2)已知双曲线()0ky k x=>与折线ABC 的交点为E ,与折线ADC 的交点为F .①连接CE ,当3BCE S =V 时,求该双曲线的解析式,并求出此时点F 的坐标;②若双曲线()0ky k x=>与矩形ABCD 各边和对角线BD 的交点个数为3,请求k 的取值范围.3AD =,(6分)分)探究:如图1,若AC BC =,(1)当ACD V 与BDF V 全等时,求AD 的长;(2)当CDF V 为等腰三角形时,求CF 的长.延伸:如图2,若90DCF Ð=°,E 为BD 上一点,且45DEF Ð=°,(3)小东经过研究发现:“当点D 在AB 边上运动时,DE 的长度不变,是个定值.”你认为小东的结论是否正确,如果正确,请求出这个定值;如不正确,说明理由(4)若BF =sin B 的值.。
陕西省西安市长安区2024届九年级上学期期中学习评价数学试卷(含答案)
2023~2024学年度第一学期期中学习评价九年级数学纸笔测试第一部分(选择题共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.若关于x 的一元二次方程20x x m --=的一个根是3x =,则m 的值是()A.6- B.3- C.3D.62.用配方法解方程2620x x --=,配方后的方程是()A.()232x -= B.()239x -= C.()239x += D.()2311x -=3.若菱形两条对角线的长度是方程2680x x -+=的两根,则该菱形的边长为()B.4C.5D.254.如图,直线123l l l ,直线AC 分别交1l 、2l 、3l 于点A 、B 、C ,直线DF 分别交1l 、2l 、3l 于点D 、E 、F ,已知23BC AC =,若3DE =,则DF 的长是()A.94B.92C.9D.65.阳光明媚的一天,身高为1.6m 的小颖想测量校内一棵大树的高度.如图,她沿着树影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得 3.2m BC =,0.8m CA =,于是计算出树的高度应为()A.8mB.6.4mC.4.8mD.10m6.如图,在菱形ABCD 中,84BAD ∠=︒,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连接DF ,则CDF ∠的度数是()A.42︒B.48︒C.54︒D.60︒7.如图,在下列方格纸中的四个三角形,是相似三角形的是()A.①和②B.①和③C.②和③D.②和④8.如图,在ABC △中,BD AC ⊥于点D ,E 为BC 的中点,DE DC =,81A ∠=︒,则ABC ∠的度数是()A.31︒B.39︒C.41︒D.49︒9.阅览室有十本名著,小红和小燕都想借阅,于是她们通过摸球游戏决定谁先看,游戏规则:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同,先由小红从中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小燕从口袋中摸出1个乒乓球,记下颜色.若二人摸到乒乓球的颜色相同,则小红先看,否则小燕先看.则小燕先看的概率是()A.13 B.12C.49 D.5910.如图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点,PE BC ⊥于点E ,PF CD ⊥于点F ,连接AP 、EF .给出下列结论:①2PD EC =;②四边形PECF 的周长为8;③EF 的最小值为2;④AP EF =;⑤AP EF ⊥.其中正确的结论有()A.5个B.4个C.3个D.2个第二部分(非选择题共90分)二、填空题(共5小题,每小题3分,计15分)11.如图,AB CD ,AC 与BD 相交于点E ,已知1AE=,2CE =,3DE =,则BD 的长为________.12.一个口袋中有若干个白球,小明想用学过的概率知识估计口袋中白球的个数,于是将4个黑球放入口袋中搅匀(黑球与口袋中的白球除颜色外其余都相同),从口袋中随机摸出一球,记下其颜色,再把它放回口袋并摇匀,不断重复上述过程,共摸了300次,其中有48次摸到黑球,估计口袋中大约有________个白球.13.若a 、b 是一元二次方程2290x x +-=的两个根,则223a a ab ++的值为________.14.如图,在矩形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将ADE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为________.15.如图,边长为12的大正方形中有两个小正方形,若两个小正方形的面积分别为1S 、2S ,则12S S +的值为________.三、解答题(共9小题,计75分.解答应写出过程)16.(本小题6分)如图,在ABC △中,AB AC =,请用尺规作图法在BC 上求作一点D ,使得DAB ABC △△.17.(本小题8分)解方程:(1)()()2333x x x +=+(2)()()32514x x -+=-18.(本小题8分)已知532a b c ==.(1)求a bc+的值;(2)若29a b c +-=,求2a b c -+的值.19.(本小题8分)如图,在菱形ABCD 中,E 、F 分别是AB 、BC 上的点,且BE BF =.求证:(1)ADE CDF ≅△△;(2)DEFDFE ∠=∠.20.(本小题8分)某校九年级1班为准备学校元旦演讲比赛,通过班级预赛共评选出两位男生和三位女生共5名推荐人选.(1)若该班随机选一名同学参加比赛,求选中男生的概率;(2)若该班随机选出两名同学组成一组选手参加比赛,求恰好选中一男一女的概率(用列表或树状图的方法求解).21.(本小题9分)已知关于x 的一元二次方程()22210x k x k +-+=有实数解.(1)求实数k 的取值范围;(2)设方程的两个实数根分别为1x 、2x ,若()()125114x x --=,求k 的值.22.(本小题9分)某商品专卖店,平均每天可售出40件,每件盈利50元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于35元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若该商品降价5元,那么平均每天销售数量是多少件?(2)若专卖店每天销售该商品盈利2400元,那么每件商品应降价多少元?23.(本小题9分)如图,在四边形ABCD 中,AB CD ,90D ∠=︒,ABC ∠的平分线BE 交CD 于点E ,F 是AB 的中点,连接AE 、EF ,且AE BE ⊥.求证:(1)四边形BCEF 是菱形;(2)2BE AEAD EF ⋅=⋅.24.(本小题10分)如图,在Rt ABC △中,90B ∠=︒,8cm AB =,6cm BC =.点P 从A 点出发沿AC 向C 点运动,速度为每秒2cm ,同时点Q 从C 点出发沿CB 向B 点运动,速度为每秒1cm ,当点P 到达顶点C 时,P 、Q 同时停止运动,设P 点运动时间为秒.(1)当为何值时,PQC △是以C ∠为顶角的等腰三角形?(2)当为何值时,PQC △的面积为25cm (3)当为何值时,PQC △与ABC △相似?2023~2024学年度第一学期期中学习评价九年级数学纸笔测试参考答案及评分标准一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.D2.D3.A4.C5.A6.C7.B8.B9.C 10.B二、填空题(共5小题,每小题3分,计15分)11.9212.2113.18-14.10315.68三、解答题(共9小题,计75分,解答应写出过程)16.解:作图(略)……………………………………………………………………(5分)则点D 即为所求.…………………………………………………………………………(6分)17.解:(1)原方程可化为()()23330x x x +-+=.……………………………………(1分)即()()3230x x +-=,……………………………………………………………………(2分)∴30x +=或230x -=,………………………………………………………………(3分)∴13x =-,232x =.……………………………………………………………………(4分)(2)原方程可化为22561514x x x +--=-,即2210x x --=,……………………………………………………………………(1分)这里2a =,1b =-,1c =-.∵()()224142190b ac -=--⨯⨯-=>,………………………………………………(2分)∴()113224x --±==⨯,……………………………………………………………………(3分)∴11x =,212x =-.…………………………………………………………………………(4分)18.解:(1)∵532a b c==,∴532a b c +=+,……………………………………………………………………………………(2分)∴842a b c +==.………………………………………………………………………………(3分)(2)∵532a b c ==,∴532252a b c a +-⨯=+-,…………………………………………………………………………(5分)∴459a=.……………………………………………………………………………………(6分)∵532a b c==,∴25325429a b c a ⨯-+==-+,……………………………………………………………………(7分)∴8124a b c -+=.…………………………………………………………………………(8分)19.证明:(1)∵四边形ABCD 是菱形,∴AD CD AB BC ===,A C ∠=∠,………………………………………………(2分)∵BE BF =,∴AE CF =.……………………………………………………………………(3分)在ADE △与CDF △中,,,,AD CD A C AE CF =⎧⎪∠=∠⎨⎪=⎩∴ADE CDF ≅△△.(2)∵ADE CDF ≅△△,∴DE DF =,∴DEFDFE ∠=∠.20.解:(1)随机选一名同学参加比赛有5种等可能结果数,而选中男生的结果有2种,∴选中男生的概率为:25P =.………………………………………………………………(3分)(2)5名推荐人选中,两位男生分别记为A ,B ,三位女生分别记为c ,d ,e 列表为:A Bc d eA ABAc Ad Ae BBABc Bd BeccA cB cdceddA dB dcdee eAeBeced…………………………………………………………………………(6分)共有20种等可能的结果数,其中恰好选中一男一女的结果数为12种.所以恰好选中一男一女的概率为:123205P ==.………………………………………………(8分)21.解:(1)∵关于x 的方程()22210x k x k +-+=有实数根,∴()22242141b ac k k ∆=-=--⨯⨯……………………………………………………(2分)410k =-+≥,………………………………………………………………………………(3分)∴14k ≤.……………………………………………………………………………………(4分)(2)∵方程()22210x k x k +-+=的两个实数根分别为1x ,2x .∴()1221x x k +=--,212x x k =.……………………………………………………(5分)由()()125114x x --=,∴()1212514x x x x -++=,………………………………………………………………(6分)∴()252114k k +-+=,即24850k k +-=,…………………………………………(7分)∴152k =-,212k =(舍去),…………………………………………………………(8分)∴52k =-.……………………………………………………………………(9分)22.解:(1)若该商品降价5元,平均每天销售数量是405250+⨯=(件).………………(3分)(2)设每件商品应降价x 元,则每件盈利为:()50x -元,日销售量为:()402x +件,…………(5分)根据题意得:()()504022400x x -+=,……………………………………………………(7分)解这个方程得:110x =,220x =.…………………………………………………………(8分)由于每件盈利不少于35元,那么每件应降价10元.………………………………………………(9分)23.证明:(1)∵AE BE ⊥,F 是AB 的中点.∴EFBF AF ==,∴FEB FBE ∠=∠.……………………………………………………………………………………(1分)∵BE 是ABC ∠的平分线,∴FBE CBE ∠=∠,∴FEB CBE ∠=∠,……………………………………………………………………(2分)∴EFBC ,………………………………………………………………………………(3分)∵AB CD ,∴四边形BCEF 是平行四边形.………………………………………………………………(4分)∵EFBF =,∴四边形BCEF 是菱形.……………………………………………………………………(5分)(2)∵AB CD ,∴DEA EAB ∠=∠.……………………………………………………………………(6分)∵90D AEB ∠=∠=︒,∴ADE BEA △△,………………………………………………………………(7分)∴AE ABAD BE=,…………………………………………………………………………(8分)∴BE AEAD AB ⋅=⋅,即2BE AE AD EF ⋅=⋅.………………………………………………………………(9分)24.解:(1)∵8cm AB =,6cm BC =,∴10cm AC =.由题意2AP t =,102PC t =-,CQ t =,()05t <≤………………………………(1分)∵PQC △是以C ∠为顶角的等腰三角形,∴PC CQ =,……………………………………………………………………(2分)∴102t t -=,解得103t =.……………………………………………………………………………………(3分)(2)过点P 作PD BC ⊥于点D ,∴PD PC AB AC=,………………………………………………………………………………(4分)∴()()810285105t t AB PC PD AC --⋅===,…………………………………………(5分)∴()85115225PQC t S CQ PD t -=⋅=⋅=△,解得:1252t t ==.……………………………………………………………………(6分)(3)当11PQ C ABC △△时,11CP AC CQ BC=,…………………………………………(7分)∴102106t t -=,解得:3011t =.…………………………………………………………………………(8分)当22P Q C BAC △△时,22CP BCCQ AC=,…………………………………………(9分)∴102610t t -=,解得:5013t =.综上所述3011t =或5013t =时,PQC △与ABC △相似.…………………………(10分)11。
2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)
2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
2024-2025学年第一学期九年级数学期中测评卷(21-23章) 答案
2024-2025学年第一学期期中测评卷九年级数学(卷面分值:100分 考试时间:100分钟)一、选择题(每题3分,共27分,请将选择题的答案写在下面的表格中)题号 1 2 3 4 5 6 7 8 9 答案1.下列是一元二次方程的是( )0.2=++c bx ax A 0.23=−x x B 052.=−y x C 01.2=−x D2.函数32+=x y 的图像经过点(-2,m ),则m 的值为( )1.A 7.B 5.C 4.D3.下列图形中,是中心对称图形但不是轴对称图形的是( )4.若抛物线142−+=x ax y 与x 轴有两个交点,则a 的取值范围是( )4.>a A 4.−>a B 04.≠−a a C 且> 4.−<a D5.如果将方程0262=+−x x 配方成b a x =+2)(的形式,则a-b 的值为( )10.−A 10.B 5.C 9.D6.关于函数342++=x x y 的图像和性质,下列说法错误的是( )A.函数图像开口向上B.当x >-2时,y 随x 的增大而增大C.函数图像的顶点坐标是(-2,-1)D.函数图像与x 轴没有交点7.三角形的两边长分别是3和6,第三边长是方程0862=+−x x 的根,则该三角形的周长等于( )11.A 13.B 1311.或C 12.D8.已知方程0252=+−x x 的两根分别是21x x ,,则2221x x +的值为( )18.A 19.B 20.C 21.D9.如图所示为长20米、宽 15米的矩形空地,现计划要在中间修建三条等宽的小道,其余面积种植绿植,种植面积为 400平方米,若设小道的宽为 xx 米,则根据题意,列方程为( )40021520.2=−×+x x A 40021520.=−×x B400)15)(220.(=−−x x C 400)215)(20.(=−−x x D二.填空题(每空3分,共18分)10.将方程1322+=−x x x 化为一般式,其结果是____________. 11.若m 是方程0752=−−x x 的根,则152+−m m 的值等于________.12.已知关于x 的方程0142=−+x kx 没有实数根,则k 的取值范围是________. 13.将二次函数2)1(3+−=x y 的图像先向右平移2个单位长度,再向下平移4个单位长度,所得到的函数解析式为____________.14.已知抛物线c ax y +=2与22x y =的形状相同,开口方向相反,且经过点(-1,5),则其解析式为_____________.15.超市搞促销活动,将某商品经过两次降价,售价由86元降至52元,若两次降价的百分率相同均为x,可列方程为_____________.三.解答题(共6小题,共55分) 16.(10分)解方程091012=+−x x )( 6)6()2(+=+x x x17.(8分)已知关于x 的一元二次方程024)12(2=−++−m x m x . 求证:无论 m 取何值,这个方程总有实数根.18.(10分)已知抛物线的顶点坐标为(-1,3),且经过点(2,12). (1)求函数解析式.(2)当21≤≤−x 时,求函数的最大值.19.(8分)冬季易引发流感,刚开始有2人患流感,经过两轮传染共有288人患病,求每轮传染中平均一个人传染几个人?20.(9分)某商品售价为每件60元,每周可卖出300件,为提高利润,商家决定涨价销售,经过一段时间发现,每涨价5元,每周少卖50件,已知商品的进价为每件40元,当售价定为多少时利润最大?求最大利润.21.(10分)如图为抛物线c=2,图像经过点(-1,8).直线3−y+x=axy与抛物+线交于B,C两点.点A,B在x轴上.(1)求抛物线与直线的函数解析式.(2)求△ABC的面积.。
辽宁省大连市西岗区2024-2025学年九年级上学期期中数学质量抽测试题(含答案)
23.抛物线 y x2 bx c 经过 A1, 0 , B 3, 0 ,与 y 轴交于 C 点.
(1)求抛物线的解析式;
(2) D 为抛物线在第一象限内一点,当 S△BDC 的最大值时,求 D 点坐标.
(3)在②问基础上,作 DE x 轴于 E ,点 M m, 0 是一动点, N 为线段 DE 上一点,若
令 y 10
得 x 4 或 x 5 (舍) 2
B 4, 10 ……2 分
(2)不会
E 1, 10 ,当 x 3 时, y 9 ……3 分
2
调整点的坐标为 3, 4.5
运动员此时距离水面10 4.5 5.5 5 ……4 分 运动员此次跳水不会失误……5 分
(3) EM 7 , EN 9 , E 1, 10 ,
n2 x2 4n2 8 x2
x 3 n2 4 ……10 分 16
又ACB CFB
cos ACB cos CFB
3 16
n2
4
HF
n
4
HF 3 n 16 ……11 分 4n
又CD CF CH BF
DF 2HF 3 n 32 2n
BD BF DF 3 n ……12 分 2
20.某果农销售每箱成本为 40 元的红富士苹果,市场调查发现,若每箱以 60 元的价格销售,平均每天销售 20 箱,若每箱苹果售价每降低 5 元,平均每天多销售 10 箱.
(1)求平均每天销售量 y (箱)与销售价 x (元/箱)之间的函数关系式,并写出自变量的取值范围;
(2)每箱苹果的销售价为多少元时,该果农每天获得利润最大,最大利润是多少元? 21.在刚刚结束的巴黎奥运会上全红婵以绝对优势获得冠军,为我们树立了鲜明的时代标杆,实际上在跳水
湖北省武汉市武昌区武珞路中学2023-2024学年九年级上学期期中数学试题(含答案)
2023—2024学年度九年级上学期期中测试数学试卷(考试时间为120分钟,满分为120分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑1.将化成一般式后,,,的值分别是()A .1,2,B .1,,C .1,,5D .1,2,52.数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线是中心对称图形的是()A .B .C .D .3.把抛物线向右平移2个单位,再向下平移3`个单位,得到抛物线为()A .B .C .D .4.将二次函数化成的形式应为()A .B .C .D .5.已知一元二次方程的两根分别为,,则的值是()A .B .C .3D .56.如图,在中,,,在同一平面内,将绕点顺时针旋转到的位置,连接,若,则的度数是()A .B .C .D .7.如图,有一张长12cm ,宽9cm的矩形纸片,在它的四个角各剪去一个同样大小的小正方形,然后折叠成()25x x +=20ax bx c ++=a b c 5-2-5-2-2y x =-()223y x =-++()223y x =--+()223y x =-+-()223y x =---262y x x =+-()2y x h k =-+()237y x =++()2311y x =-+()2311y x =+-()237y x =+-2410x x +-=m n m n mn ++5-3-ABC △AB AC =100BAC ∠=︒ABC △A 11AB C △1BB 11BB AC ∥1CAC ∠10︒20︒30︒40︒一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是,求剪去的小正方形的边长.设剪去的小正方形的边长是,根据题意,可列方程为()A .B .C .D .8.如图,圆内接四边形中,,连接,,,,.则的度数是()A .B .C .D .9.如图,在中,顶点,,.将与正方形组成的图形绕点逆时针旋转,每次旋转,则第2023次旋转结束时,点的坐标为()A .B .C .D .10.如图,平行四边形中,,,,是边上一点,且,是边上的一个动点,将线段绕点顺时针旋转,得到,连接、,则的最小值是()270cm cm x 1294970x ⨯-⨯=2129470x ⨯-=()()12970x x --=()()1229270x x --=ABCD 105BCD ∠=︒OB OC OD BD 2BOC COD ∠=∠CBD ∠20︒25︒30︒35︒OBC △()0,0O ()2,2B -()2,2C OBC △ABCD O 90︒A ()6,2()2,6-()6,2-()6,2--ABCD 12AB =10AD =60A ∠=︒E AD 6AE =F AB EF E 60︒EN BN CN BN CN +A .B .D .14C .二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答题卡指定的位置。
九年级期中数学试卷及答案
九年级期中数学试卷及答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.若a>b,则下列哪个选项一定成立?A.ac>bcB.a+c>b+cC.ac>bcD.a/c>b/c(c≠0)答案:A2.下列哪个是无理数?A.√9B.√16C.√3D.π答案:C3.若x^25x+6=0,则x的值为?A.2或3B.1或6C.-2或-3D.-1或-6答案:A4.下列哪个函数是增函数?A.y=-2x+3B.y=x^2C.y=1/xD.y=-x^2答案:A5.若一个等腰三角形的底边长为8,腰长为10,则该三角形的周长为?A.26B.28C.30D.32答案:C6.下列哪个图形不是正多边形?A.矩形B.菱形C.正五边形D.正六边形答案:A7.若一个数的算术平方根是3,则该数为?A.9B.6C.12D.18答案:A二、判断题(每题1分,共20分)8.若a>b,则ac>bc。
(c>0)答案:错误9.两个无理数的和一定是无理数。
答案:错误10.两个等腰三角形的面积相等,则它们的周长也相等。
答案:错误11.若一个数的平方是正数,则该数一定是正数。
答案:错误12.任何两个奇数之和都是偶数。
答案:正确13.任何两个负数相乘都是正数。
答案:正确14.若一个数的立方是负数,则该数一定是负数。
答案:正确三、填空题(每空1分,共10分)15.若a=3,b=-2,则a+b=___________,ab=___________。
答案:1516.若x^25x+6=0,则x的值为___________或___________。
答案:2317.若一个等腰三角形的底边长为8,腰长为10,则该三角形的周长为___________。
答案:2818.若一个数的算术平方根是3,则该数为___________。
答案:919.两个等腰三角形的面积相等,则它们的周长也相等。
(判断对错)答案:错误四、简答题(每题10分,共10分)20.请简述勾股定理的内容。
2024-2025学年九年级数学上学期期中测试卷(江苏通用,测试范围:苏科版九上第1章-第2章)解析
2024-2025学年九年级数学上学期期中模拟卷(江苏通用)(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版九年级上册第1章-第2章。
5.难度系数:0.75。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若关于x 的一元二次方程23510x x a +++= 有一个根为0,则a 的值为( )A .1±B .1C .1-D .02.直线 l 与半径为 r 的 O e 相交,且点 O 到直线 l 的距离为 6,则 r 的取值范围是( )A .6r <B .6r =C .6r >D .6r ³【答案】C【详解】解:∵直线 l 与半径为 r 的 O e 相交,且点 O 到直线 l 的距离为 6,∴6r >.故选:C .3.关于x 的一元二次方程22310x kx +-=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .只有一个实数根【答案】A【详解】解:在关于x 的一元二次方程22310x kx +-=中,2a =,3b k =,1c =-,22Δ498b ac k =-=+,因为20k >,所以22Δ4980b ac k =-=+>,所以关于x 的一元二次方程22310x kx +-=根的情况是有两个不相等的实数根.故选A .4.如图,在 O e 中,A ,B ,D 为 O e 上的点,52AOB Ð=°,则ADB Ð的度数是 ( )A .104°B .52°C .38°D .26°5.若12x x ,是一元二次方程20x x +-=的两个实数根,则12124x x x x +-的值为( )A .4B .3-C .0D .7【答案】D【详解】解:∵12x x ,是一元二次方程220x x +-=的两个实数根,∴121x x +=-,122x x =-,∴()121241427x x x x +-=--´-=,故选:D .6.如图,等边三角形ABC 和正方形DEFG 均内接于O e ,若2EF =,则BC 的长为( )A.B.C D7.把一根长50cm的铁丝围成一个等腰三角形,使其中一边的长比另一边的2倍少5cm,则该三角形的边长不可能为()A .12cmB .19cmC .22.5cmD .13cm8.如图,AB 是O e 的直径,4AB =,点C 是上半圆AB 的中点,点D 是下半圆AB 上一点,点E 是BD的中点,连接AE CD 、交于点F .当点D 从点A 运动到点B 的过程中,点F 运动的路径长是( )A 2BC .πD .【答案】B【详解】解:连接,,,AC BC BD OE ,∵AB 是O e 的直径,点C 是上半圆 AB 的中点,∴ AC BC=,90ACB Ð=°,∴点F 的轨迹为 AB 的长90=故选B .第Ⅱ卷二、填空题:本题共10小题,每小题2分,共20分。
2023-2024学年黑龙江省哈尔滨市阿城区九年级第一学期期中考试数学试卷及参考答案
2023~2024学年度九年级(上学期)期中测试试卷第Ⅰ卷 选择题(共30分)(涂卡)一、选择题(每小题3分,共计30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2.方程23x x =的解是( )A.3x =B.10x =,23x =C.10x =,23x =−D.11x =,23x = 3.已知函数()273m y m x −=−是二次函数,则m 的值为( )A.3−B.3±C.3D. 4.O 的半径为5,同一平面内有一点P ,且7OP =,则点P 与O 的位置关系是( )A.点P 在圆内B.点P 在圆上C.点P 在圆外D.无法确定5.已知22y x =的图象是抛物线,若抛物线不动,把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( )A.()2222y x =−+B.()2222y x =++C.()2222y x =−−D.()2222y x =+− 6.如图,点A ,B ,C 在O 上,22.5OAB ∠=︒,则ACB ∠的度数是( )A.11.5°B.112.5°C.122.5°D.135° 7.设()12,A y −、()21,B y 、()32,C y 是抛物线()212y x =−++上的三点,则1y ,2y ,3y 的大小关系为( )A.123y y y >>B.132y y y >>C.321y y y >>D.312y y y >>8.如图,以O 为圆心的两个同心圆,大圆的弦AB 是小圆的切线,点P 为切点.若大圆半径为2,小圆半径为1,则AB 的长为( )A.2B. D.2 9.O 的半径为5cm ,弦AB ∥弦CD ,且8cm AB =,6cm CD =,则AB 与CD 之间的距离为( )A.1cmB.7cmC.3cm 或4cmD.1cm 或7cm 10.如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于点A 、B 两点,与y 轴交于点C ,对称轴为直线1x =−,点B 的坐标为()1,0,则下列结论:①4AB =;②240b ac −>;③0ab <;④2a ab ac −+其中正确的结论有( )个.A.1个B.2个C.3个D.4个第Ⅱ卷 非选择题(共90分)二、填空题(每小题3分,共24分)11.已知关于x 的方程2230x x k ++=的一个根是1−,则k =______.12.在直角坐标系中,点()1,2A −关于原点对称的点的坐标是______.13.如图,P 是O 的直径BA 延长线上一点,点D 在O ,PD 交O 于点C ,且PC OD =,如果24P ∠=︒,则DOB ∠=______.14.如果二次函数281y x x m =−+−的顶点在x 轴上,那么m =______.15.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这块扇形铁皮的半径是______.16.一种药品原价每盒25元,两次降价后每盒16元.设两次降价的百分率都为x ,可列方程为______.17.如图,已知P 的半径为2,圆心P 在抛物线2112y x =−上运动,当P 与x 轴相切时,圆心P 的坐标为______.18.如图,已知直线334y x =−与x 轴、y 轴分别交于A 、B 两点,点P 是以()0,1C 为圆心,1为半径的圆上一动点,连接P A ,PB .则PAB △面积的最大值与最小值的差为______.三、解答题(19~24题每题6分,25~27题每题10分,共66分)19.解方程(1)2890x x −−= (2)210x x −−= 20.如图,ABC △三个顶点的坐标分别为()2,4A ,()1,1B ,()4,3C .(1)请画出ABC △关于原点对称的111A B C ;(2)请画出ABC △绕点B 逆时针旋转90°后的22A BC △,并写2A 的坐标.21.如图,已知二次函数223y x x =−−的图象与x 轴交于点A 、B ,与y 轴交于点C .(1)将223y x x =−−化成()2y a x h h =−+的形式; (2)求点A 、B 、C 的坐标;(3)观察图象直接写出不等式2230x x −−>的解集.22.如图,某渔船向正东方向以12海里时的速度航行,在A 处测得岛C 在北偏东60°方向,1小时后渔船航行到B 处,测得岛C 在北偏东30°方向,已知该岛C 上有一部信号发射塔,方圆20海里内的船只能够收到它发射的信号.(1)求B 处离岛C 的距离;(2)求该渔船在整个航行过程中收到岛C 发射信号的时间.23.先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图1,点A ,B ,C ,D 均为O 上的点,则有C D ∠=∠.小明还发现,若点E 在O 外,且与点D 在直线AB 同侧,则有D E ∠>∠.请你参考小明得出的结论,解答下列问题:图1 图2问题:如图2,在平面直角坐标系xOy 中,点A 的坐标为()0,10,点B 的坐标为()0,4,点C 的坐标为()2,0.(1)在图2中作出ABC △的外接圆(保留必要的作图痕迹,不写作法),并求出此圆与x 轴的另一个交点的坐标;(2)点P 为x 轴正半轴上的一个动点,连接AP 、BP ,当APB ∠达到最大时,直接写出此时点P 的坐标.24.某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC 与AFE 按如图1所示位置放置,现将Rt AEF △绕A 点按逆时针方向旋转,旋转角为()090αα︒<<︒,得到图2,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P .(1)求证:AM AN =;(2)当旋转角30α=︒时,四边形ABPF 是怎样的特殊四边形?请说明理由.图1 图225.如图,在足够大的空地上有一段长为20米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD MN ≤,已知矩形菜园的一边靠墙,另三边一共用了100米木栅栏.(1)若围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长;(2)求矩形菜园ABCD 面积的最大值.26.如图,在ABC △中,点O 是AC 的中点,以O 为圆心,OA 为半径作O ,交BC 于点D ,交AB 于点E ,弧ED 与弧DC 相等,点F 在线段BE 上,2BAC BDF ∠=∠.(1)求证:AB AC =;(2)判断DF 与O 的位置关系,并加以证明;(3)若O 的半径为5,EB DF AO +=,求BD 的长.27.如图,在平面直角坐标系xOy 中,直线AB 的解析式为34y x m =−+,与x 轴、y 轴分别交于点B 、点A ,抛物线21y ax bx =++经过点A ,与直线AB 交于点C ,点C 的横坐标为4,抛物线的对称轴为54x =. (1)求抛物线的解析式;(2)动点P 在直线AC 上方的抛物线上,点P 的横坐标为t ,过点P 作x 轴的平行线交AC 于点M ,过点P 作y 轴的平行线交AC 于点N ,当AM BN =时,求t 值;(3)点Q 是坐标平面内一点,将AOB △绕点Q 沿逆时针方向旋转90°后,得到111AO B △,点A 、O 、B 的对应点分别是点1A 、1O 、1B .若111AO B △的两个顶点恰好落在抛物线上,请直接写出此时点1A 的横坐标.备图初三数学参考答案一、选择题(每小题3分,共30分)1.B2.B3.A4.C5.A6.B7.A8.B9.D 10.C二、填空题(每小题3分,共24分)11.12.()1,2− 13.72︒ 14.1715.40cm 16.()225116x −= 17.)或()2 18.5三、解答题(19~24题每题6分,25~27题每题10分,共66分)19.解(1)19x = 21x =−(2)112x x == 212x −= 20.(1)如图 (2)如图2A 的坐标()1,2−21.解:(1)()22223213114y x x x x x =−−=−+−−=−−,即()214y x =−−; (2)令0x =,则3y =−,即该抛物线与y 轴的交点C 坐标是()0,3−,令0y =,则2230x x −−=,()()310x x −+=,11x =−,23x = 所以该抛物线与x 轴的交点坐标是()3,0B 、()1,0A −.(3)不等式2230x x −−>,即0y >,由图可知1x <−或3x >.22.解:(1)过C 作CO AB ⊥于O ,则CO 为渔船向东航行到C 道最短距离,∵在A 处测得岛C 在北偏东的60︒,∴30CAB ∠=︒,又∵B 处测得岛C 在北偏东30︒,∴60CBO ∠=︒,120ABC ∠︒=∴30ACB CAB ∠∠==︒,∴12112AB BC ==⨯=(海里)(等边对等角);(2)以点C 为圆心,20为半径作圆,与直线AB 交点E 、F ,连接OE ,2EF EO =,在BCO △中,60CBO ∠=︒,90COB ∠=︒,12BC =,6BO =,CO =Rt ECO △中,20CE =勾股定理求EO =2EF EO == 12÷=23.(1)如图,过圆心G 作GH OC ⊥垂足为H ,连接GB 、GC ,可证四边形GHON 为矩形,OH GN =,3BN AN ==,7GH ON ==,222GB BN GN =+,222GC CH GH =+GB GC =,2222BN GN CH GH +=+设CH 长为x ,()2222327x x ++=+ 9x =9CH = 18CK = 20OK OC CK =+=()20,0K(2)()P (D 经过AB 两点,与x 轴相切于的Q ,由阅读材料可的APB AQB ∠≤∠,点P 在切点时取等号.)24.(1)证明:∵用两块完全相同的且含60︒角的直角三角板ABC 与AFE ,∴ABC AFE ≌△△,∴AB AF = B F ∠=∠,∵Rt AEF △绕A 点按逆时针方向旋转,旋转角为α,∴BAM FAN α∠=∠=∴ABM AFN ≌△△,∴AM AN =(1)四边形ABPF 是菱形,理由如下:∵用两块完全相同的且含60︒角的直角三角板ABC 与AFE , ∴30E C ∠=∠=︒,∵30BAM FAN α∠=∠==︒,∴E BAM ∠=∠,C FAN ∠=∠∴AF BP ∥,AB FP ∥∴四边形ABPF 是平行四边形∵AB AF =,∴四边形ABPF 是菱形25.解:(1)设AD 长x 米,则BC 长为()11002x −米, 根据题意得()11004502x x −=,解得110x =,290x =不合题意舍去; 答:AD 的长为10米. (2)设AD 长x 米,∴()()21110050125022S x x x =−=−−+, 则50x =时,S 的最大值为1250;S 的最大值为1250.(1)证明:连接AD ,∵弧ED 与弧DC 相等∴CAD BAD ∠=∠,∵AC 是O 的直径∴90ADC ∠=︒,∴90ADB ∠=︒,∴90CAD ACD ∠+∠=︒,90BAD ABD ∠+∠=︒,∴ACD ABD ∠=∠,∴AB AC =(2)DF 与0相切,证明:连接OD ,∵90ADC ∠=︒∴AD BC ⊥∵AB AC =∴CD BD =∵点O 是AC 的中点∴OD AB ∥∵CAD BAD ∠=∠∴2BAC BAD ∠=∠∵2BAC BDF ∠=∠∴BAD BDF ∠=∠∵90ADB ∠=︒∴90ADF BDF ∠+∠=︒∴90ADF BAD ∠+∠=︒∴90AFD ∠=︒∴180ODF AFD ∠+∠=︒∴90ODF ∠=︒∴OD DF ⊥∴DF 与O 相切(3)解:连接DE ,CE ,∵弧ED 与弧DC 相等∴DE DC =∵CD BD =∴DE BD =∵90AFD ∠=︒∴DF BE ⊥∴EF FB =∴2EC DF =设EF 长为x ,则2BE x =,∵EB DF AO +=∴52DF x =−∴104EC x =−∵AB AC =∴10AB =∴102AE AB EB x =−=−∵AC 是O 的直径∴90AEC ∠=︒在Rt AEC △中,222AE EC AC += ()()22210210410x x −+−= 解得1x = 5x =(舍)1BF = 3DF =在Rt DFB △中,222BF DF BD +=BD =26.解:(1)抛物线21y ax bx =++与y 轴交于点A 令0x =,1y =,∴()0,1A ∵直线34ABy x m =−+经过点()0,1A ,∴1m =,∴直线AB 的解析式为314y x =−+直线AB 交于点C ,点C 的横坐标为4,令4x =,2y =−,∴()4,2C −∵抛物线21y ax bx =++经过点()4,2C −,对称轴为54x = ∴16412524a b b a ++=−⎧⎪⎨−=⎪⎩解得1254a b ⎧=−⎪⎪⎨⎪=⎪⎩∴抛物线的解析式为215124y x x =−++;(2)∵AM AN =∴AM BM AN BM −=−∴AB MN = ∵PM x ∥轴PN y ∥轴∴PMN PBN ABO ∠=∠=∠ OAB PNM ∠=∠∴ABO NMP ≌△△∴1PN AO ==215,124P t t t ⎛⎫−++ ⎪⎝⎭,3,14N t t ⎛⎫−+ ⎪⎝⎭2153111244t t t ⎛⎫⎛⎫−++−−+= ⎪ ⎪⎝⎭⎝⎭解得2t =±(3)点1A 的横坐标34或712−.。
浙江省宁波市鄞州区2023-2024学年九年级上学期期中数学试题 (含答案)
2023学年第一学期期中测试初三数学试题卷一、选择题(本大题有10个小题共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,图象一定经过原点的函数是( )A .B .C .D .2.已知,且,,则的度数为( )A .40°B .60°C .80°D .10°3.如图,在Rt △ABC 中,,AB =5,AC =3,则等于( )A.B .CD .4.已知二次函数,则下列关于这个函数图象和性质的说法,正确的是( )A .图象的开口向上B .当时,y 随x 的增大而增大C .图象的顶点坐标是D .图象与x 轴有唯一交点5.如图,某同学利用镜面反射的原理巧妙地测出了树的高度,已知人的站位点A ,镜子O ,树底B 三点在同一水平线上,眼睛与地面的高度为1.6米,OA =2.4米,OB =6米,则树高为( )米.A .4B .5C .6D .7第5题6.如图,AB 是半圆O 的直径,C 是OB 的中点,过点C 作,交半圆于点D ,则与AD 的长度的比为()32y x =-1y x=22y x x -+21y x =+111ABC A B C △∽△60A ∠=︒140B ∠=︒1C ∠90C ∠=︒sin B 344535224y x x =-++1x <()1,3CD AB ⊥ BD第6题A .1:2B .1:3C .1:4D .1:57.如图,一只松鼠先经过第一道门(A ,B 或C ),再经过第二道门(D 或E )出去,则松鼠走出笼子的路线是“先经过A 门,再经过E 门”的概率是()第7题A.B .C .D8.如图,在中,AB 是直径,弦AC =5,.则AB 的长为()第8题A .5B .10C .D .9.已知抛物线经过点,,且,则下列不等式一定成立的是()A .B .C .D .10.如图,在中,直径AB =10,弦BC =6,点D 在BC 的延长线上,线段AD 交于点E ,过点E 作12131516O BAC D ∠=∠()22y a x h =-+()11,A x y ()22,B x y 1222x x -<-120y y -≥120y y -<()120a y y ->()120a y y -<O O //EF BC分别交,AB 于点F ,G .若,则EG :FG 的值为( )第10题A.B .C .D二、填空题(本题有6小题,每小题4分,共24分)11.抛物线经过点,则______.12.己知a =3,b =12,则a ,b 的比例中项为_____.13.如图,△ABC 中,,.若△ADE 的面积为3,则△ABC 的面积为_____.第13题14.二次函数的图象过点,则方程的解为_____.15.如图,在△ABC 中,于点D ,E ,F 分别为AB ,AC 的中点,G 为边BC 上一点,,连结EF .若,,BC =14,则GD 的长为_____.第15题16.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点Р沿折线BE -ED -DCO 45D ∠=︒72525142y ax =()3,5a =//DE BC 12AD AB =20(2y ax ax c a =-+≠)()3,0220ax ax c -+=AD BC ⊥EGB FDC ∠=∠4tan 5B =tan 2C =运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1m/s .设P ,Q 同时出发t 秒时,△BPQ 的面积为.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则_____﹔当t =_____时,.第16题三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)计算:.18.(6分)在一只不透明的口袋里,装有若干个除了颜色外均相同的小球,某数学学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.如表是活动进行中的一组统计数据:摸球的次数n 1001502005008001000摸到白球的次数m5896b 295480601摸到白球的频率a0.640.590.590.600.601(1)上表中的a =______,b =______;(2)“摸到白球”的概率的估计值是______(精确到0.1);(3)如果袋中有15个白球,那么袋中除了白球外,还有多少个其它颜色的球.19.(6分)如图,已知D ,E 分别是△ABC 的边AC ,AB 上的点,,AE =5,AC =9,DE =6.(1)求证:.(2)求BC 的长.20.(8分)某校数学兴趣小组借助无人机测量一条河流的宽度BC .如图所示,一架水平飞行的无人机在A 处测得正前方河流的点B 处的俯角,点C 处的俯角,线段AD 的长为无人机距地面的2cm y cos ABE ∠=ABE QBP △∽△2sin 60cos 45tan 60︒+︒-︒m nAED C ∠=∠ABC ADE △∽△FAB α∠=37FAC ∠=︒高度,点D 、B 、C 在同一条水平直线上,,BD =5米.(1)求无人机的飞行高度AD .(2)求河流的宽度BC .(参考数据:,,)21.(8分)如图,在6×6的正方形网格中,每个小正方形的边长都为1,点A ,B ,C 均在格点上.请按要求在网格中画图,所画图形的顶点均需在格点上.(1)在图1中以线段AB 为边画一个△ABD ,使其与△ABC 相似,但不全等.(2)在图2中画一个△EFG ,使其与△ABC 相似,且面积为8.图1图222.(10分)如图,△ABC 内接于,AD 平分交于点D ,过点D 作交AC 的延长线于点E .(1)求证::(2)若,的半径为5,求AB 的长;(3)在(2)的条件下,求AD 的长.23.(10分)在平面直角坐标系内,二次函数 (a 为常数).tan 3α=sin 370.60︒≈cossin 370.80︒≈tan 370.75︒≈O BAC ∠O //DE BC OD DE ⊥60E ∠=︒O ()21y x a a =-+-(1)若函数的图象经过点,求函数的表达式.(2)若的图象与一次函数的图象有两个交点,横坐标分别为,2,请直接写出当时x 的取值范围.(3)已知在函数的图象上,当时,求证:.24.(12分)[基础巩固](1)如图1,正方形ABCD 和正方形BHGF ,其中D ,G ,F 三点共线,延长BG 交CD 于E ,连结AH .①求证:;②不难证明:,因此的值为_______;【尝试应用】(2)在(1)的条件下,如图1,若CE =1,DE =3,求正方形BHGF 的边长;【拓展提高】(3)如图2,正方形ABCD 和正方形BHGF ,P 是AB 中点,连结CP ,F 恰在CP 上,连结DG ,AG ,若,求AG 的最小值.图1 图21y ()1,01y 1y 21y x =+1-12y y >()1,x n 1y 020x a ≥>54n >-EDG EBD △∽△BHA BGD △∽△DGAH4AB =2023学年第一学期期中测试初三数学答案一、选择题(每小题3分,共30分)12345678910CCDBAADCDA二、填空题(每小题4分,共24分)11121314151612,3说明:第16题每空2分三、解答题(本题有8小题,共66分)17.(6分)计算:.18.(1)上表中的a =0.58,b =118;(2)“摸到白球”的概率的估计值是0.6(精确到0.1);(3)(个),答:除白球外,还有大约10个其它颜色的小球.19.(6分)(1)证明:∵,,∴.(2)∵∴,∴,∴.20.(8分)(1)由题意得:,596±13x =21x =-452942sin 60cos 45tan 60︒+︒-︒2=+=150.61510÷-=AED C ∠=∠A A ∠=∠ABC ADE △∽△ABC ADE △∽△BC AC DE AE =965BC =545BC =//AF C∴..在Rt △ARD 中.,∵,米,∴(米),答:无人机的飞行高度AD 为75米(2)在Rt △ACD 中,,∴(米),∴(米),答:河流的宽度BC 为75米.21.(8分)下图每小题各4分21.(10分)(1)证明:∵BC 为的直径,∴,FAB ABD α∠=∠=37FAC ACD ∠=∠=︒tan ADABD BD∠=tan 3α=25BD =-tan -25375AD BD a ⋅⨯=tan 4ADCD CD∠=7575100tan tan 370.75AD CD ACD ==≈=∠︒1002575BC CD BD =-=-=O 90BAC ∠=︒∵AD 平分,∴,∵,∴,∴;(2)解:∵,∴,∴,∵,∴;(3)连CD ,作于F易得, ∴∴∴说明:AD 的长也可通过旋转求得(如下图)23.(10分)(1)解:∵函数y 的图象经过点,∴,解得:或1,BAC ∠290BOD BAD ∠=∠=︒//DE BC 90ODE ∠=︒OD DE ⊥//DE BC 60ACB E ∠=∠=︒30B ∠=︒10BC =152AC AB ==AB ==CF AD ⊥145∠=︒230B ∠=∠=︒AF CF AC ===FD ==AD AF FD =+=()1,0()2110a a -+-=0a =∴函数y 1的表达式为或;(2)解:根据题意作出草图如下,由函数图象可知,当时x 的取值范围是:或; (3)证明:∵,∴-∵抛物线的对称轴为直线,抛物线开口方向向上,∴和时的函数值相同,∴由图象可知当时的函数值小于当时的函数值,即:,∵,∴,∴.24.(12分)(1)①∵,,∴∵∵211y x =-2121y x x =-+12y y >1x <-2x >02x a >002x a +>x a =0x =2x a =0x =0x x -21n a a >+-22151()24a a a +-=+-2514a a +-≥-54n >-12245∠==︒45BDE ∠=︒1BDE ∠=∠33∠=∠EDG EBD△∽△②不难证明:,因此;(2)易得:∵∴∴∴,∴(3)连BG ,延长DG 交AB 于Q ,作于K 易证,则∴为定值点G 是射线DG上的动点,当时,AG 最小.设,则∵∴BHA BGD △∽△DG AHBE =EDGEBD△∽△2·DE EG EB =EG ==BG=BH BG ==QK BD ⊥DGB EFB △∽△1tan 1tan 22∠=∠=3452∠=︒-∠AG DG ⊥QK BK x ==2DK x =3BD BK DK x =+==OK BK x ===∴∴,∴∵∴∴AG 最小值为说明证明或建模、建系均可求得AG的最小值83BQ ==43AQ=DQ =··AQ AD DQ AG=AG=12∠=∠。
九年级上学期数学期中考试试卷及答案解析
九年级上学期数学期中考试试卷及答案解析一、选择题(每题4分,共40分)1. 有下列四个数:-1, 0, 1, √2,其中无理数是()A. -1B. 0C. 1D. √2答案:D解析:无理数是指不能表示为两个整数比的数,√2无法表示为两个整数的比,故选D。
2. 下列各数中,与-3的平方相等的是()A. 3B. -3C. 9D. -9答案:C解析:-3的平方为9,故选C。
3. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 25B. -25C. 1D. -1答案:A解析:将a和b的值代入a² - 2ab + b²,得(2)² -22(-3) + (-3)² = 4 + 12 + 9 = 25,故选A。
4. 下列等式中,正确的是()A. (a²)³ = a⁶B. (a³)² = a⁶C. (a²)³ = a⁹D. (a³)² = a⁹答案:B解析:幂的乘方规则,(a³)² = a³² = a⁶,故选B。
5. 已知|a| = 5,且a < 0,则a的值为()A. 5B. -5C. 10D. -10答案:B解析:绝对值表示一个数的非负值,|a| = 5表示a的绝对值为5,由于a < 0,所以a = -5,故选B。
6. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = x² + 1答案:B解析:奇函数的定义是f(-x) = -f(x),y = x³满足这个条件,故选B。
7. 下列关于x的不等式中,有解的是()A. x² < 0B. x² ≤ 0C. x² > 0D. x² ≥ 0答案:D解析:任何数的平方都是非负数,所以x² ≥ 0对所有的x都有解,故选D。
九年级数学上册期中考试试卷及答案
九年级数学上册期中考试试卷及答案(试卷满分:150分;考试时间:120分钟)一.选择题(共10小题,每小题4分,共40分)1.﹣2023的绝对值是()A.﹣2023B.12023C.﹣12023D.20232.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200用科学记数法表示应为()A.2912×102B.29.12×104C.2.912×105D.2.912×1064.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.55.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a37.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2 B.3 C.7 D.109.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>bC.ab>0D.﹣a>c①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020二.填空题(共6小题,每小题4分,24分共)11.比较大小:﹣7﹣5.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=.15.用符号(a,b)表示a、b两数中较小的一个数,用符号[a,b]表示a、b两数中较大的一个数,计算[﹣2,1]﹣(﹣1,﹣2.5)=.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为.三.解答题(共7小题)17.(12分)(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)(﹣+﹣)×(﹣24)(3)(﹣)÷+(﹣)÷(﹣15)(4)﹣14﹣×[2﹣(﹣3)2]18.(6分)(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.19.(6分)化简.(1)(6m﹣5n)﹣(7m﹣8n)(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)20.(8分)先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.21.(6分)如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是.22.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.23.(12分)校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?24.(10分)书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?25.(12分)探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=+.(2)像这样继续排列下去,你会发现一些有趣的规律,﹣n2=+.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.26.(12分)已知|a+30|+(c﹣20)2=0,在数轴上点A表示的数是a,点C表示的数是c,A,C两点之间的距离AC=|a﹣c|.(1)直接写出a、c的值,a=,c=;(2)若数轴上有一点D满足CD=3AD,且点D在A,C之间,则D点表示的数为;(3)点M从原点O出发在O,A之间以v1的速度沿数轴负方向运动,点N从点C出发在O,C之间以v2的速度沿数轴负方向运动,运动时间为t,点Q为O,N之间一点,且QN=AN,若M,N运动过程中MQ的值固定不变,求的值.参考答案一.选择题(共10小题)1.﹣2023的绝对值是()A.﹣2023B.C.D.2023【分析】一个数在数轴上对应的点到原点的距离即为这个数的绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,据此即可求得答案.【解答】解:|﹣2023|=2023故选:D.【点评】本题考查绝对值的定义及绝对值的性质,此为基础且重要知识点,必须熟练掌握.2.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.【分析】根据每一个几何体的特征判断即可.【解答】解:A、将所示图形绕直线旋转一周,可以得到圆柱,故A符合题意;B、将所示图形绕直线旋转一周,可以得到球体,故B不符合题意;C、将所示图形绕直线旋转一周,可以得到圆锥,故C不符合题意;D.将所示图形绕直线旋转一周,可以得到圆台,故D不符合题意;故选:A.【点评】本题考查了点、线、面、体,熟练掌握每一个几何体的特征是解题的关键.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200A.2912×102B.29.12×104C.2.912×105D.2.912×106【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:291200=2.912×105.故选:C.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.5【分析】根据绝对值、有理数的乘方、负数解决此题.【解答】解:∵8>0,﹣0.5<0,﹣|﹣2|=﹣2<0,0,(﹣3)2=9>0,﹣12=﹣1<0∴负数有﹣0.5,﹣|﹣2|,﹣12,共3个.故选:B.【点评】本题主要考查绝对值、有理数的乘方、负数,熟练掌握绝对值、有理数的乘方、负数是解决本题的关键.5.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a3【分析】A.根据去括号法则,去掉括号,进行判断即可;B.根据合并同类项法则,进行合并,然后判断;C,D选项均观察各个加数是不是同类项,能否合并,进行判断即可.【解答】解:A.∵﹣(x+6)=﹣x﹣6,∴此选项计算正确,故符合题意;B.∵﹣y2﹣y2=﹣2y2,∴此选项计算错误,故不符合题意;D.∵a和a2不是同类项,不能合并,∴此选项计算错误,故不符合题意;故选:A.【点评】本题主要考查了整式的加减运算,解题关键是熟练掌握去括号法则和合并同类项法则.7.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:A、﹣的系数是﹣,此选项错误;B、单项式x的系数为1,次数为1,此选项错误;C、﹣22xyz2的次数是4,此选项错误;D、xy+x﹣1是二次三项式,此选项正确;故选:D.【点评】此题主要考查了单项式,关键是掌握单项式的系数、次数的定义,以及多项式的次数的计算方法.8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2B.3C.7D.10【分析】由代数式2x2﹣x+3的值是4,可得2x2﹣x=1,再将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5,再整体代入计算即可.【解答】解:∵2x2﹣x+3的值是4,即2x2﹣x+3=4∴2x2﹣x=1∴﹣4x2+2x+5=﹣2(2x2﹣x)+5=﹣2×1+5=﹣2+5=3故选:B.【点评】本题考查代数式求值,将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5是正确解答的关键.9.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>b C.ab>0D.﹣a>c【分析】根据数轴上点的位置,先确定a、b、c对应点的数,再逐个判断得结论.【解答】解:A、由数轴知:﹣4<a<﹣3,故选项A错误;B、由数轴知,a<b,故选项B错误;C、因为a<0,b>0,所以ab<0,故选项C错误;D、因为﹣4<a<﹣3,所以3<﹣a<4,因为2<c<3,所以﹣a>c,故选项D正确.故选:D.【点评】本题考查了数轴及有理数乘法的符号法则.认真分析数轴得到有用信息是解决本题的关键.10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020【分析】通过计算可知从第4次开始,运算结果1,4循环出现,则第2022次“F”运算的结果与第1次运算结果相同,再求解即可.【解答】解:当n=13时第1次运算结果为13×3+1=40第2次运算结果为=5第3次运算结果为5×3+1=16第4次运算结果为=1第5次运算结果为1×3+1=4第6次运算结果为=1第7次运算结果为1×3+1=4……∴从第4次开始,运算结果1,4循环出现∵(2022﹣3)÷2=1009 (1)∴第2022次“F”运算的结果是1故选:A.二.填空题(共6小题)11.比较大小:﹣7 <﹣5.【分析】根据两个负数,绝对值大的其值反而小判断即可.【解答】解:∵|﹣7|=7,|﹣5|=5而7>5∴﹣7<﹣5.故答案为<.【点评】本题考查了有理数大小比较,关键是掌握有理数大小比较法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.【分析】根据正数与负数的意义可直接求解.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故答案为零下3℃.【点评】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是﹣7.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:由图可知:﹣4与﹣3相对∴﹣4+(﹣3)=﹣7故答案为:﹣7.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=﹣1.【分析】根据同类项的定义判断出a,b的值,可得结论.【解答】解:由题意a=3,b=2∴b﹣a=2﹣3=﹣1.故答案为:﹣1.【点评】本题考查整式的加减,解题的关键是理解题意,灵活运用所学知识解决问题.1,﹣2.5)= 3.5.【分析】根据定义,所求式子可化为1﹣(﹣2.5),再求值即可.【解答】解:[﹣2,1]﹣(﹣1,﹣2.5)=1﹣(﹣2.5)=1+2.5=3.5故答案为:3.5.【点评】本题考查有理数的加减法,熟练掌握有理数的加减法运算,会比较有理数的大小,弄清定义是解题的关键.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为2035.【分析】根据题中所给“任意相邻三个数的和为同一个常数”可求出这一列数,进而可解决问题.【解答】解:由题知因为这列数中任意相邻三个数的和为同一个常数所以a1+a2+a3=a2+a3+a4则a1=a4.同理可得a1=a4=a7=…=a100a2=a5=a8=…=a98a3=a6=a9=…=a99所以这列数按2002,﹣2023,22循环出现.又因为100÷3=33余1且2002+(﹣2023)+22=1所以a1+a2+a3+…+a98+a99+a100=1×33+2002=2035.故答案为:2035.【点评】本题考查数字变化的规律,能根据题意得出这列数按2002,﹣2023,22循环出现是解题的关键.三.解答题(共7小题)17.(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(﹣+﹣)×(﹣24);(3)(﹣)÷+(﹣)÷(﹣15);(4)﹣14﹣×[2﹣(﹣3)2].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算除法,再算加法即可;(4)先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:(1)(﹣12)﹣5+(﹣14)﹣(﹣39)=(﹣12)+(﹣5)+(﹣14)+39=8;(2)(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=20+(﹣9)+6=17;(3)(﹣)÷+(﹣)÷(﹣15)=(﹣)×9+(﹣)×(﹣)=﹣24+=﹣23;(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.18.(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.【分析】(1)在数轴上准确找到各数对应的点,即可解答;(2)利用(1)的结论,即可解答.【解答】解:(1)如图:(2)由(1)可得:.【点评】本题考查了有理数的大小比较,数轴,绝对值,准确熟练地在数轴上找到各数对应的点是解题的关键.19.化简.(1)(6m﹣5n)﹣(7m﹣8n);(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y);【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;【解答】解:(1)(6m﹣5n)﹣(7m﹣8n)=6m﹣5n﹣7m+8n=﹣m+3n;(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)=15x2y﹣5xy2+4xy2﹣8x2y=7x2y﹣xy2;20.先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b)=﹣a2b﹣8ab2﹣a2b﹣10ab2+2a2b=﹣18ab2当a=﹣1,b=时原式=﹣18×(﹣1)×()2=2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是48cm3.【分析】(1)根据三视图的定义画图即可.(2)用1个小立方块的体积乘以小方块的个数即可.【解答】解:(1)如图所示.(2)该几何体的体积是23×6=48(cm3).故答案为:48cm3.【点评】本题考查作图﹣三视图,解题的关键是理解三视图的定义,难度不大.22.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.【分析】(1)根据题意可知:所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1),然后计算即可;(2)将x=﹣2代入(1)中的结果计算即可.【解答】解:(1)由题意可得所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1)=﹣x2﹣4x﹣3+2x2﹣2x+1=x2﹣6x﹣2;(2)当x=﹣2时,x2﹣6x﹣2=(﹣2)2﹣6×(﹣2)﹣2=4+12﹣2=14.【点评】本题考查整式的加减、代数式求值,解答本题的关键是明确去括号法则和合并同类项的方法.23.校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是10米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处4次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?【分析】(1)分别求出小明每次运动后的位置,即可得到答案;(2)结合(1),在数轴上标出最后位置即可;(3)由运动过程可求出经过仲裁处的次数;(4)根据每步行1米消耗0.04卡路里列式计算即可.【解答】解:(1)∵+10﹣8=2;2+6=8;8﹣13=﹣5;﹣5+7=2,2﹣12=﹣10;﹣10+2=﹣8;﹣8﹣2=﹣10;∴小明离主席台最远是10米;故答案为:10;(2)如图所示,点A即为所求;(3)从主席台出发,+10经过仲裁处,由+10到﹣8经过仲裁处,﹣8到+6经过仲裁处,+6到﹣13经过仲裁处∴经过仲裁处4次;故答案为:4;(4)(10+8+6+13+7+12+2+2)×0.04=60×0.04=2.4(卡路里)答:小明在拍照过程中步行消耗2.4卡路里.【点评】本题考查有理数混合运算,解题的关键是读懂题意,理解小明的运动过程.24.书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?【分析】(1)由题意列式计算即可;(2)当x=2cm时,求出包书纸长和宽,即可解决问题.【解答】解:(1)小海所用包书纸的周长为:2(18.5×2+1+2x)+2(26+2x)=2(38+2x)+2(26+2x)=(8x+128)cm答:小海所用包书纸的周长为(8x+128)cm;(2)当x=2cm时,包书纸长为:18.5×2+1+2×2=42(cm)包书纸宽为:26+2×2=30(cm)∴包书纸的面积=42×30﹣2×2×4﹣2×1×2=1240(cm2)答:包书纸的面积为1240cm2.【点评】本题考查了矩形的性质以及列代数式,熟练掌握矩形的性质是解题的关键.25.探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=5+4.(2)像这样继续排列下去,你会发现一些有趣的规律,(n+1)2﹣n2=n+1+n.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.【分析】(1)根据所给的等式的形式进行求解即可;(2)根据(1)进行总结,从而可求解;(3)利用(2)中的规律进行求解即可.【解答】解:(1)由题意得:图③空白部分小正方形的个数是52﹣42=5+4故答案为:5,4;(2)(n+1)2﹣n2=n+1+n故答案为:(n+1)2,n+1,n;(3)(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012=(2024+2023+2022+2021+2020+2019+2018+…+2+1)÷1012=[(2024+1)+(2023+2)+(2022+3)+…+(1013+1012)]÷1012=2025×1012÷1012=2025.【点评】本题主要考查数字的变化规律,解答的关键是由所给的等式总结出存在的规律.26.已知|a +30|+(c ﹣20)2=0,在数轴上点A 表示的数是a ,点C 表示的数是c ,A ,C 两点之间的距离AC =|a ﹣c |.(1)直接写出a 、c 的值,a = ﹣30 ,c = 20 ;(2)若数轴上有一点D 满足CD =3AD ,且点D 在A ,C 之间,则D点表示的数为 ﹣ ; (3)点M 从原点O 出发在O ,A 之间以v 1的速度沿数轴负方向运动,点N 从点C 出发在O ,C 之间以v 2的速度沿数轴负方向运动,运动时间为t ,点Q 为O ,N 之间一点,且QN =AN ,若M ,N 运动过程中MQ 的值固定不变,求的值.【分析】(1)根据绝对值和平方的非负性求解即可;(2)根据两点间距离公式求解即可;(3)写出MQ 距离的代数式,根据MQ 距离不变,得出v 1,v 2的比值即可.【解答】解:(1)∵|a +30|≥0,(c ﹣20)2≥0,|a +30|+(c ﹣20)2=0∴|a +30|=0,(c ﹣20)2=0∴a =﹣30,c =20故答案为:﹣30,20.(2)设D 点表示的数为x则有:20﹣x =3{x ﹣(﹣30)}解得:x =﹣故答案为:﹣.(3)OM 的长度为:v 1t ,CN 的长度为v 2t∴AM =﹣v 1t ﹣(﹣30)=﹣v 1t +30,AN =20+20﹣v 2t =50﹣v 2t∵QN =AN∴AQ =AN =(50﹣v 2t )∴MQ =AQ ﹣AM =(50﹣v 2t )﹣(﹣v 1t +30)=+(v 1﹣v 2)t∵MQ 的长度不随t 的变化而变化∴v 1﹣v 2=0 ∴=.【点评】本题主要考查了数轴,确定MQ 长度不变的条件是本题解题的关键.。
2024-2025学年吉林省长春市南关区九年级(上)期中数学试卷(含答案)
2024-2025学年吉林省长春市南关区九年级(上)期中数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若a−5有意义,则a的值可以是( )A. −3B. 0C. 4D. 62.下列各式计算正确的是( )A. (−2)2=−2B. −22=−2C. −(±2)2=±2D. 22=±23.用配方法解一元二次方程x2−6x+7=0配方后得到的方程是( )A. (x+6)2=29B. (x−6)2=29C. (x+3)2=2D. (x−3)2=24.关于x的一元二次方程3x2+bx−1=0根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根5.一架梯子的示意图如图所示,其中AA1//BB1//CC1//DD1//EE1,且AB=BC=CD=DE.为了使梯子更加稳固,在A、E1之间加绑一条安全绳(线段AE1)分别交BB1、CC1、DD1于点F、G、H.量得AF=0.4米,则安全绳(线段AE1)的长为( )A. 0.8米B. 1.2米C. 1.6米D. 1.8米6.如图,△ABC是△DEF经过位似变换得到的,点O是位似中心,AD=2OD.若△DEF的面积为3,则△ABC的面积为( )A. 6B. 9C. 18D. 277.在平面直角坐标系中,将抛物线y=−x2先向左平移3个单位,再向下平移4个单位,得到的抛物线的函数表达式为( )A. y=−(x−3)2−4B. y=−(x+3)2−4C. y=−(x−3)2+4D. y=−(x+3)2+48.已知二次函数y=x2−2x(−1≤x<n+1),当x=−1时,函数取得最大值;当x=1时,函数取得最小值,则n的取值范围是( )A. n≥2B. 0<n≤2C. 1<n≤3D. 2<n≤4二、填空题:本题共6小题,每小题3分,共18分。
24-25学年九年级数学期中测试卷(北师大版)(解析版)【测试范围:第一章~第四章】A4版
2024-2025学年九年级数学上学期期中测试卷(北师大版)(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第四章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)用配方法解一元二次方程2x2﹣2x﹣1=0,下列配方正确的是( )A.(x―14)2=34B.(x―14)2=32C.(x―12)2=34D.(x―12)2=32【分析】方程整理后,利用完全平方公式配方得到结果,即可作出判断.【解答】解:方程2x2﹣2x﹣1=0,整理得:x2﹣x=1 2,配方得:x2﹣x+14=34,即(x―12)2=34.故选:C.2.(3分)如图,AB∥CD∥EF,AF交BE于点G,若AC=CG,AG=FG,则下列结论错误的是( )A .DG BG =12B .CD EF =12C .DG BE =13D .CG CF =13【分析】根据平行线分线段成比例定理进行逐项判断即可.【解答】解:∵AB ∥CD ,∴DG BG =CG AG ,∵AC =CG ,∴DG BG =CG AG =12,故A 正确,不符合题意;∵CD ∥EF ,∴CD EF =CG FG ,∵AC =CG ,AG =FG ,∴FG =2CG ,∴EG =2DG ,∴CD EF =CG FG =12,故B 正确,不符合题意;∵AB ∥CD ∥EF ,∴BG EG =AG FG ,∵AG =FG ,∴BG =EG ,∴BE =2BG ,∵DG BG =CG AG =12,∴BG =2DG ,∵BE =4DG ,∴DGBE=14,故C错误,符合题意;∵CD∥EF,∴CGCF=DGDE∵BG=2DG,BE=4DG,∴DE=3DG,∴CGCF=DGDE=13,故D正确,不符合题意;故选:C.3.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AE⊥BC于点E,连接OE.若OB=6,菱形ABCD的面积为54,则OE的长为( )A.4B.4.5C.5D.5.5【分析】由菱形的性质得出BD=12,由菱形的面积得出AC=9,再由直角三角形斜边上的中线性质即可得出结果.【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD=12BD,BD⊥AC,∴BD=2OB=12,∵S菱形ABCD =12AC•BD=54,∴AC=9,∵AE⊥BC,∴∠AEC=90°,∴OE=12AC=4.5,故选:B.4.(3分)已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是( )A .m ≥23B .m <23C .m >23且m ≠1D .m ≥23且m ≠1【分析】利用一元二次方程有实数根的条件得到关于m 的不等式组,解不等式组即可得出结论.【解答】解:∵关于x 的一元二次方程(m ﹣1)x 2+2x ﹣3=0有实数根,∴Δ=22―4(m ―1)×(―3)≥0m ―1≠0,解得:m ≥23且m ≠1.故选:D .5.(3分)下列说法正确的是( )A .邻边相等的平行四边形是矩形B .矩形的对角线互相平分C .对角线互相垂直的四边形是菱形D .一组对边相等,另一组对边平行的四边形是平行四边形【分析】由菱形的判定、矩形的判定与性质、平行四边形的判定与性质分别对各个选项进行判断即可.【解答】解:A 、邻边相等的平行四边形是菱形,故选项A 不符合题意;B 、矩形的对角线互相平分,故选项B 符合题意;C 、对角线互相垂直的平行四边形是菱形,故选项C 不符合题意;D 、一组对边相等,另一组对边平行的四边形不一定是平行四边形,故选项D 不符合题意;故选:B .6.(3分)在第十九届亚运会中国国家象棋队选拔赛的第一阶段中,采用分组单循环(每两人之间都只进行一场比赛)制,每组x 人.若每组共需进行15场比赛,则根据题意可列方程为( )A .12x (x ﹣1)=15B .12x (x +1)=15C .x (x ﹣1)=15D .x (x +1)=15【分析】设一共邀请了x 支球队参加比赛,赛制为单循环形式(每两支球队之间都进行一场比赛),则每个队参加(x ﹣1)场比赛,则共有x(x―1)2场比赛,可以列出一元二次方程.【解答】解:由题意得,x(x―1)2=15.故选:A .7.(3分)掷一个骰子,向上一面的点数大于2且小于5的概率为p 1,抛两枚硬币,正面均朝上的概率为p 2,则( )A .p 1<p 2B .p 1>p 2C .p 1=p 2D .不能确定【分析】计算出各种情况的概率,然后比较即可.【解答】解:大于2小于5的数有2个数,∴p1=26=13;投掷一次正面朝上的概率为12,两次正面朝上的概率为p2=12×12=14,∵13>14,∴p1>p2.故选:B.8.(3分)顶角为36°的等腰三角形我们把这种三角形称为“黄金三角形”,它的底与腰的比值为黄金比.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC交AC于点D,若CD=1,则AC的长为( )A B C D【分析】根据等腰三角形的性质得到∠ABC=∠ACB,根据角平分线的性质得到∠ABD=∠DBC,证明△CBD∽△CAB,根据相似三角形的性质列出比例式,解方程得到答案.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠DBC=∠A,∠ABD=∠A,∠BDC=36°+36°=72°=∠C,∴AD=BD=BC,∵∠C=∠C,∴△CBD∽△CAB,∴BCAC=CDBC,即AD1+AD=1AD,整理得:AD2﹣AD﹣1=0,解得:AD1=AD2=则AC=AD+CD=+1=故选:D .9.(3分)如图,在平面直角坐标系中,四边形OABC 为矩形,且A (0,2),C (4,0).点E 为OC 上一点,连接AE ,射线AF ⊥AE .以点A 为圆心,适当长为半径作弧,分别交AE ,AF 于点N ,M ,再分别以点M ,N 为圆心,大于12MN 的长为半径作弧,两弧交于点P ,作射线AP ,交BC 于点G .若OE =1,则点G 的坐标为( )A .(4,23)B .(4,1)C .(4D .(4【分析】延长CB 交射线AF 于点Q ,过点G 作GH ⊥AF 于点H ,求出CG ,可得结论.【解答】解:延长CB 交射线AF 于点Q ,过点G 作GH ⊥AF 于点H ,如解图所示.∵AE ⊥AF ,四边形ABCO 是矩形,∴∠EAF =∠OAB =90°,∴∠OAE =∠BAF ,∵GH ⊥AF ,∴∠GHF =∠ABQ =∠AOE =90°,∵∠AQB =∠CQH ,∴△GHQ ∽△ABQ ∽△AOE ,∴GH HQ =AB BQ =AO OE =21,∴GH =2HQ ,BQ =12AB =2.∴AQ ==AP 平分∠EAF ,∴∠HAG =45°.又∵GH⊥AF,∴AH=HG.设HQ=x,则AH=HG=2x.∴AQ=AH+HQ=3x,即3x=∴x=∴HG=∴GQ===10 3.∴CG=BC+BQ―GQ=2+2―103=23.∴点G的坐标为(4,23 ),故选:A.10.(3分)如图,在正方形ABCD中,点E是CD上一点,延长CB至点F,使BF=DE,连结AE,AF,EF,EF交AB于点K,过点A作AG⊥EF,垂足为点H,交CF于点G,连结HD,HC.下列四个结论:①AH=HC;②HD=CD;③∠FAB=∠DHE;④AK•HD=2.其中正确结论的个数为( )A.1个B.2个C.3个D.4个【分析】①证明△EAF是等腰直角三角形,根据直角三角形斜边中线可得AH=12EF=CH,可得①正确;②证明∠DAH与∠AHD不一定相等,则AD与DH不一定相等,可知②不正确;③证明△ADH≌△CDH(SSS),则∠ADH=∠CDH=45°,再由等腰直角三角形的性质可得结论正确;④证明△AKF∽△HED,列比例式可得结论正确.【解答】解:①∵四边形ABCD是正方形,∴AD=AB,∠ADE=∠ABC=90°,∴∠ADE=∠ABF=90°,∵DE=BF,∴△ADE≌△ABF(SAS),∴AE=AF,∠DAE=∠BAF,∵∠DAE+∠EAB=90°,∴∠BAF+∠EAB=90°,即∠EAF=90°,∵AG⊥EF,∴EH=FH,∴AH=12 EF,Rt△ECF中,∵EH=FH,∴CH=12 EF,∴AH=CH;故①正确;③∵AH=CH,AD=CD,DH=DH,∴△ADH≌△CDH(SSS),∴∠ADH=∠CDH=45°,∵△AEF为等腰直角三角形,∴∠AFE=45°,∴∠AFK=∠EDH=45°,∵四边形ABCD为正方形,∴AB∥CD,∴∠BKF=∠CEH,∴∠AKF=∠DEH,∴∠FAB=∠DHE,故③正确;②∵∠ADH=∠AEF,∴∠DAE=∠DHE,∵∠BAD=∠AHE=90°,∴∠BAE=∠AHD,∵∠DAE与∠BAG不一定相等,∴∠DAH与∠AHD不一定相等,则AD与DH不一定相等,即DH与CD不一定相等,故②不正确;④∵∠FAB=∠DHE,∠AFK=∠EDH,∴△AKF∽△HED,∴AKEH=AFDH,∴AK•DH=AF•EH,在等腰直角三角形AFH中,AF==,∴AK•HD=2.故④正确;∴本题正确的结论有①③④,共3个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.(3分)若xy=23,则代数式x―yx+2y的值是 .【分析】利用x与y的比可x=2t,y=3t,然后把它们代入代数式中进行分式的运算.【解答】解:∵xy=23,∴设x=2t,y=3t,∴x―yx+2y=2t―3t2t+6t=―t8t=―18.故答案为―1 8.12.(3分)在一个不透明的袋子中,有除颜色外完全相同的6个白球和若干个红球.通过大量重复摸球试验后,发现摸到红球的频率稳定在0.4,由此可估计袋中红球的个数为 .【分析】根据摸到红球的频率,可以得到摸到白球的概率,从而可以求得总的球数,从而可以得到红球的个数.【解答】解:由题意可得:摸到白球的频率之和为:1﹣0.4=0.6,∴总的球数为:6÷0.6=10,∴红球有:10﹣6=4(个),故答案为:4.13.(3分)设α,β是x2+x﹣18=0的两个实数根,则α2+3α+2β的值是 .【分析】先根据一元二次方程根的定义得到α2+α=18,则α2+3α+2β化为(α2+α)+2(α+β),再根据根与系数的关系得到x1+x2=﹣1,然后利用整体代入的方法计算.【解答】解:∵α,β是x2+x﹣18=0的两个实数根,∴α2+α﹣18=0,α+β=﹣1,∴α2+α=18,∴α2+3α+2β=(α2+α)+2(α+β)=18﹣2=16.故答案为:16.14.(3分)菱形有一个内角为120°,较长的对角线长为 .【分析】由菱形ABCD中,对角线AC和BD相交于点O,∠BAD=120°,BD=BAC的度数,利用菱形的性质可求出∠ABO的度数,进而得到AO的长,根据菱形的面积等于对角线乘积的一半则可求得答案.【解答】解:∵菱形ABCD中,∠BAD=120°,∴∠BAC=12∠BAD=60°,AC⊥BD,∴∠ABO=30°,∵BD=∴BO=设AO=x,则AB=2x,故x2+(2=(2x)2,解得:x=3,∴AO=3,∴AC=6,∴菱形的面积=×6÷2=故答案为:15.(3分)如图,在△ABC中,E是BC上一点,EC=2BE,点F是AC的中点,若S△ABC=12,求S△ADF ﹣S△BED= .【分析】过F 作FH ∥AE 交BC 于H ,由EC =2BE ,得到S △AEC =23S △ABC =23×12=8,根据点F 是AC 的中点,得到S △BCF =S △ABF =12S △ABC =12×12=6,根据平行线等分线段定理得到CH =EH ,求得BD =DF ,得到S △BFH =23S △BCF =23×6=4,S △ADF =12S △ABF =3,根据相似三角形的性质得到S △BDE =14×4=1,于是得到结论.【解答】解:过F 作FH ∥AE 交BC 于H ,∵EC =2BE ,∴S △AEC =23S △ABC =23×12=8,∵点F 是AC 的中点,∴S △BCF =S △ABF =12S △ABC =12×12=6,∵FH ∥AE ,点F 是AC 的中点,∴CH =EH ,∵EC =2BE ,∴BE =EH ,∵DE ∥FH ,∴BD =DF ,∴S △BFH =23S △BCF =23×6=4,S △ADF =12S △ABF =3,∵DE ∥FH ,∴△BDE ∽△BFH ,∴S △BDE S △BFH =14,∴S △BDE =14×4=1,∴S △ADF +S △BED 的值为1+3=4,故答案为:4.16.(3分)如图,在边长为4的菱形ABCD 中,∠ABC =120°,将△ADC 沿射线AC 的方向平移得到△A 'D 'C ',分别连接A 'B ,D ′B ,则A 'B +D ′B 的最小值为 .【分析】根据菱形的性质得到AB =4,∠ABC =120°,得出∠BAC =30°,根据平移的性质得到A ′D ′=AD =4,A ′D ′∥AD ,推出四边形A ′BCD ′是平行四边形,得到A ′B =D ′C ,于是得到A 'B +BD '的最小值=CD ′+BD ′的最小值,根据平移的性质得到点D ′在过点D 且平行于AC 的定直线上,作点C 关于定直线的对称点E ,连接BE 交定直线于D ′,则BE 的长度即为BA '+BD '的最小值,求得CE =CB ,得到∠E =∠CBE =30°,于是得到结论.【解答】解:∵在边长为4的菱形ABCD 中,∠ABC =120°,∴AB =CD =4,∠BAC =∠DAC =30°,∵将△ADC 沿射线AC 的方向平移得到△A 'D 'C ',∴A ′D ′=AD =4,A ′D ′∥AD ,∵四边形ABCD 是菱形,∴AD=CB,AD∥CB,∴∠ADC=120°,∴A′D′=CB,A′D′∥CB,∴四边形A′BCD′是平行四边形,∴A′B=D′C,∴A'B+BD'的最小值=BD′+CD′的最小值,∵点D′在过点D且平行于AC的定直线上,∴作点C关于定直线的对称点E,连接BE交定直线于D′,则BE的长度即为BD'+BA'的最小值,在Rt△CHD中,∵∠D′DC=∠ACD=30°,AD=4,∴CH=EH=12AD=2,∴CE=4,∴CE=CB,∵∠ECB=∠ECA′+∠ACB=90°+30°=120°,∴∠E=∠BCE=30°,∴BE=2×=故答案为:三.解答题(共8小题,满分72分)17.(6分)解方程:(1)x2﹣4x+2=0;(2)3(x﹣5)2+2(x﹣5)=0.【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.【解答】解:(1)∵x2﹣4x+2=0,∴x2﹣4x=﹣2,∴x2﹣4x+4=﹣2+4,即(x﹣2)2=2,∴x―2=±∴x1=2+x2=2―(2)3(x﹣5)2+2(x﹣5)=0,(x﹣5)[3(x﹣5)+2]=0,x﹣5=0或3x﹣13=0,∴x1=5,x2=13 3.18.(6分)小华和小林想用标杆来测量如图1所示的古塔的高,如图2,小林在F处竖立了一根标杆EF,小华走到C处时,站立在C处恰好看到标杆顶端E和塔的顶端B在一条直线上,此时测得小华的眼睛到地面的距离DC=1.5米,EF=2.4米,CF=1.8米,FA=71.2米,点C、F、A在一条直线上,CD⊥AC,EF⊥AC,AB⊥AC,根据以上测量数据,请你求出该塔的高AB.【分析】过D作DP⊥AB于P,交EF于N,根据相似三角形的判定和性质即可得到结论.【解答】解:过D作DP⊥AB于P,交EF于N,则DN=CF=1.8米,AP=DC=1.5米,DP=AC=CF+AF=1.8+71.2=73(米),EN=EF﹣CD=2.4﹣1.5=0.9(米),由题意得,∠EDN=∠BDP,∠BPD=∠END=90°,∴△DEN∽△DBP,∴BPEN=DPDN,∴AB―1.50.9=731.8,∴AB=38(米),答:树AB的高度为38米.19.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,(1)将△ABC向上平移4个单位长度,得到△A1B1C1;(点A、B、C分别对应A1、B1、C1)(2)以原点O为位似中心,在第二象限将△ABC放大得到△A2B2C2,使得△ABC与△A2B2C2的位似比为12,并直接写出C2的坐标.【分析】(1)先根据平移的性质在坐标系中描点,再顺次连接即可得;(2)先根据位似图形的性质在坐标系中描点并顺次连接即可得.【解答】解:(1)如图1,△A1B1C1即为所作.;(2)如图2,△A2B2C2即为所作.C2(﹣6,6).20.(8分)如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的边长.【分析】(1)先证四边形BEDF是平行四边形,再证BE=DE,即可证四边形BEDF为菱形;(2)过点D作DH⊥BC于H,由含30°角的直角三角形的性质可求解.【解答】(1)证明:∵DE∥BC DF∥AB,∴四边形BEDF是平行四边形,∵DE∥BC,∴∠EDB=∠DBF,∵BD平分∠ABC,∴∠ABD=∠DBF,∴∠ABD=∠EDB,∴DE=BE,∴平行四边形BEDF是菱形;(2)解:如图,过点D作DH⊥BC于H,∵∠A=90o,∠C=30o,∴∠ABC=60°,由(1)得:四边形BEDF是菱形,∴BE=DE=BF=DF,∵DF∥AB,∴∠ABC=∠DFC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∵BD=12,∴DH=12BD=6,∵∠FDH=90°﹣∠DFC=30°,∴FH==∴DF=2DH=即菱形BEDF的边长为21.(10分)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术;D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了 名学生;②补全条形统计图(要求在条形图上方注明人数);③扇形统计图中圆心角α= 度;(2)若该校有1600名学生,估计该校参加D 组(阅读)的学生人数;(3)学校计划从E 组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.【分析】(1)①由B 组的人数除以所占百分比即可;②求出A 组、C 组的人数,补全条形统计图即可;③由360°乘以C 组所占的比例即可;(2)由该校共有学生人数乘以参加D 组(阅读)的学生人数所占的比例即可;(3)画树状图,共有12种等可能的结果,其中恰好抽中甲、乙两人的结果有2种,再由概率公式求解即可.【解答】(1)①此次调查一共随机抽取学生人数为:100÷25%=400(名),故答案为:400;②A 组的人数:400×15%=60(名),C 组的人数:400﹣100﹣140﹣40﹣60=60(名),补全条形统计图如下:③扇形统计图中圆心角α=360°×60400=54°,故答案为:54;(2)1600×140400=560(名),答:参加D 组(阅读)的学生人数为560名;(3)画树状图如下:共有12种等可能的结果,其中恰好抽中甲、乙两人的结果有2种,∴恰好抽中甲、乙两人的概率为212=16.22.(10分)根据以下销售情况,解决销售任务.任务2:,由盈利=每件盈利×销售量,分别列式计算即可;任务3,设每件衬衫下降m元时,两家分店一天的盈利和为2244元,列出一元二次方程,解方程即可.【解答】解:任务1,甲店每天的销售量为(20+2a)件,乙店每天的销售量为(32+2b)件,故答案为:(20+2a)件,(32+2b)件;任务2,当a=5时,甲店每天的盈利为(40﹣5)×(20+2×5)=1050(元);当b=4时,乙店每天的盈利为(30﹣4)×(32+2×4)=1040(元);任务3,设每件衬衫下降m元时,两家分店一天的盈利和为2244元,由题意得:(40﹣m)(20+2m)+(30﹣m)(32+2m)=2244,整理得:m2﹣22m+121=0,解得:m1=m2=11,即每件衬衫下降11元时,两家分店一天的盈利和为2244元.23.(12分)阅读下面材料:小元遇到这样一个问题:如图1,在正方形ABCD中,点E、F分别为DC、BC边上的点,∠EAF =45°,连结EF,设DE=a,EF=b,FB=c,则把关于x的一元二次方程ax2﹣bx+c=0叫做正方形ABCD的关联方程,正方形ABCD叫做方程ax2﹣bx+c=0的关联四边形.探究方程ax2﹣bx+c=0是否存在常数根t.小元是这样思考的:要想解决这个问题,首先应想办法把这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是把△ADE绕点A顺时针旋转90°得到△ABG(如图2),此时GF即是DE+BF.请回答:t= .参考小元得到的结论和思考问题的方法,解决下列问题:(1)如图1,若AD=10,DE=4,则正方形ABCD的关联方程为 ;(2)正方形ABCD的关联方程是2x2﹣bx+3=0,则正方形ABCD的面积= .【分析】阅读下面材料:由四边形ABCD是正方形,把△ADE绕点A顺时针旋转90°得到△ABG,可证明△GAF≌△EAF (SAS),从而GF=EF,即BG+BF=EF,有a+c=b,即a﹣b+c=0,故关于x的一元二次方程ax2﹣bx+c=0有一个根是x=1,即t=1;(1)在Rt△CEF中,CF2+CE2=EF2,可得(10﹣c)2+62=(c+4)2,从而可解得正方形ABCD的关联方程为4x2―587x+307=0;(2)由阅读材料知,正方形ABCD的关联方程2x2﹣bx+3=0存在常数根x=1,可得b=5,即得DE=2,BF=3,EF=5,设正方形ABCD的边长为m,有(m﹣2)2+(m﹣3)2=52,解得正方形ABCD的边长为6,正方形ABCD的面积为36.【解答】解:阅读下面材料:如图:∵四边形ABCD是正方形,∴∠D=∠ABC=∠BAD=90°,∵把△ADE绕点A顺时针旋转90°得到△ABG,∴AE=AG,∠ABG=∠D=90°,∠GAB=∠EAD,DE=BG=a,∴∠AGB+∠ABC=180°,∠EAD+∠BAE=90°=∠GAB+∠BAE,∴G,B,F共线,∠GAE=90°,∵∠EAF=45°,∴∠GAF=∠EAF=45°,在△GAF和△EAF中,AG=AE∠GAF=∠EAF AF=AF,∴△GAF≌△EAF(SAS),∴GF=EF,即BG+BF=EF,∵BG=a,EF=b,FB=c,∴a+c=b,即a﹣b+c=0,∴关于x的一元二次方程ax2﹣bx+c=0有一个根是x=1,∴t=1,故答案为:1;(1)如图:∵四边形ABCD是正方形,∴BC=CD=AD=10,∵DE=4=a,∴CE=CD﹣DE=6,由阅读材料知DE+BF=EF=b,FB=c,∴EF=4+c,CF=BC﹣BF=10﹣c,在Rt△CEF中,CF2+CE2=EF2,∴(10﹣c)2+62=(c+4)2,解得c=30 7,∴b=EF=4+c=58 7,而a=4,∴正方形ABCD的关联方程为4x2―587x+307=0,化简整理得14x2﹣29x+15=0,故答案为:14x2﹣29x+15=0;(2)如图:由阅读材料知,正方形ABCD的关联方程2x2﹣bx+3=0存在常数根x=1,∴2×12﹣b+3=0,解得b=5,∴正方形ABCD的关联方程是2x2﹣5x+3=0,∴DE=2,BF=3,EF=5,设正方形ABCD 的边长为m ,在Rt △CEF 中,CF 2+CE 2=EF 2,∴(m ﹣2)2+(m ﹣3)2=52,解得m =6,∴正方形ABCD 的边长为6,∴正方形ABCD 的面积为36,故答案为:36.24.(12分)教材再现:(1)如图1,在矩形ABCD 中,AB =3,AD =4,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足分别为E ,F ,则PE +PF 的值为 125 .知识应用:(2)如图2,在矩形ABCD 中,点M ,N 分别在边AD ,BC 上,将矩形ABCD 沿直线MN 折叠,使点D 恰好与点B 重合,点C 落在点C 1处,点P 为线段MN 上一动点(不与点M ,N 重合),过点P 分别作直线BM ,BC 的垂线,垂足分别为E 和F ,以PE ,PF 为邻边作平行四边形PEQF ,若DM =13,CN =5,▱PEQF 的周长是否为定值?若是,请求出▱PEQF 的周长;若不是,请说明理由.(3)如图3,当点P 是等边△ABC 外一点时,过点P 分别作直线AB 、AC 、BC 的垂线、垂足分别为点E 、D 、F .若PE +PF ﹣PD =3,请直接写出△ABC 的面积.【分析】(1)由矩形的性质得出S 矩形ABCD =12,OA =OC =OB =OD ,S △ABD =S △BCD ,∠ABC =90°,BC =AD =4,再由勾股定理得AC =5,则S △AOD =3,OA =OD =52,然后由三角形面积即可得出结论;(2)先求DM =BM =BN =13,则AD =BC =18,再由勾股定理得AB =12,然后由三角形面积求出PE +PF =12,即可解决问题;(3)由S △ABC =S △ABP +S △BCP ﹣S △ACP ,可求AB 的长,从而求出S △ABC .【解答】解:(1)如图1,设AC 与BD 的交点为O ,连接PO ,∵四边形ABCD 是矩形,∴S 矩形ABCD =AB •BC =3×4=12,OA =OC =OB =OD ,S △ABD =S △BCD ,∠ABC =90°,BC =AD =4,∴AC ==5,S △AOD =S △ABO =S △BOC =S △COD ,∴S △AOD =14S 矩形ABCD =14×12=3,OA =OD =12AC =52,∴S △AOD =S △AOP +S △DOP =12OA •PE +12OD •PF =12OA (PE +PF )=12×52×(PE +PF )=3,解得:PE +PF =125,故答案为:125;(2)▱PEQF 的周长是定值,理由如下:∵四边形ABCD 是矩形,∴AD =BC ,∠A =∠ABC =90°,AD ∥BC ,∴∠DMN =∠BNM ,连接BP ,过点M 作MH ⊥BC 于H ,如图2所示:则四边形ABHM 是矩形,∴MH =AB ,由折叠的性质得:DM =BM ,∠DMN =∠BMN ,∴∠BNM =∠BMN ,∴DM =BM =BN =13,∴AD =BC =BN +CN =13+5=18,∴AM =AD ﹣DM =18﹣13=5,在Rt △ABM 中,由勾股定理得:AB ===12,∴MH =12,∵S △BMN =S △PBM +S △PBN ,PE ⊥BM ,PF ⊥BN ,∴12BN •MH =12BM •PE +12BN •PF ,∵BM =BN ,∴PE +PF =MH =12,∴▱PEGF 的周长=2(PE +PF )=2×12=24;(3)如图3,连接AP ,BP ,CP ,∵S △ABC =S △ABP +S △BCP ﹣S △ACP ,2=12AB •PE +12BC •PF ―12AC •PD=PE +PF ﹣PD ,∵PE +PF ﹣PD =3,∴AB =∴S △ABC =2=。
2023~2024学年第一学期期中九年级数学期中练习卷【含答案】
2023-2024学年度第一学期期中练习卷九年级数学(本试卷共6页.全卷满分120分.时间为120分钟)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在括号内) 1.下列方程中,是一元二次方程的是( ) A . 2x -y =5B .x +1x=0C .5x 2=1D .y 2-x +3=02.一元二次方程x 2-4x =-4的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定3.已知1是关于x 的一元二次方程x 2+x +k 2-3k -6=0的一个实数根,则实数k 的值是( ) A .4或-1 B .-4或1C .-1D .4 4.甲、乙两名运动员在6次射击测试中的成绩如下表(单位:环):甲的成绩 6 7 8 8 9 9 乙的成绩596 ?910如果两人测试成绩的中位数相同,那么乙第四次射击的成绩(表中标记为?)可以是( ) A .6环 B .7环 C .8环 D .9环5.如图,四边形ABCD 是⊙O 的内接四边形,若∠BCD =110°,则∠BOD 的度数是( ) A .70° B .120° C .140°D .160°6.如图,△ABC 内接于⊙O ,∠BAC =45°,AD ⊥BC ,垂足为D ,BD =6,DC =4. 则AB 的长( )A .6 2B .10C .12D .6 5 二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置.......上) 7.数据2、4、3、-4、1的极差是 .8.已知x 1,x 2是方程x 2-3x +2=0的实数根,则x 1+x 2- x 1x 2= .(第6题)(第5题)C9.已知⊙O 的半径为6cm ,点P 在⊙O 内,则线段OP 的长 6cm (填“<”、“=”或“>”).10.某公司决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:测试项目 创新能力综合知识语言表达测试成绩/分708090将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是 分.11.如图,AB 是半圆的直径,P 是AB 延长线上一点,PC 切半圆于点C ,若∠CAB=31°,则∠P = °.12.在⊙O 中,弦AB 的长为4,OC ⊥AB ,交AB 于点D ,交⊙O 于点C ,OD ∶CD =3∶2,则⊙O 半径长 .13.一个圆锥的底面半径为3,母线长为4,其侧面积是 .14.某企业2020年盈利3000万元,2022年盈利3662万元,该企业盈利的年平均增长率不变.设年平均增长率为x ,根据题意,可列出方程 .15.如图,AE 是正八边形ABCDEFGH 的一条对角线,则∠BAE = °.16.如图,在等腰直角三角形ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长 .P(第11题)D EABC(第15题) FG H(第16题)(第12题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(8分)解方程:(1)x 2+2x -3=0; (2)(x -2)2=3x -6. 18.(8分)关于x 的一元二次方程x 2-4x -k -6=0有两个不相等的实数根x 1,x 2. (1)求k 的取值范围;(2)若x 1 =3x 2,求k 的值.19.(6分)如图,在⊙O 中,AB 是非直径的弦,CD 是直径,且CD 平分AB ,并交AB 于点M ,求证:CD ⊥AB ,AC ⌒=BC ⌒,AD ⌒=BD ⌒.(第20题)20.(9分)甲、乙两名同学本学期五次某项测试的成绩(单位:分)如图所示.(1)甲、乙两名同学五次测试成绩的平均数分别是 分、 分; (2)利用方差判断这两名同学该项测试成绩的稳定性; (3)结合数据,请再写出一条与(1)(2)不同角度的结论.21.(6分)要建一个面积为150 m 2的长方形养鸡场,为了节省材料,养鸡场的一边利用原有的一道墙,另三边用铁丝网围成,如果铁丝网的长为35 m .若墙足够长,则养鸡场的长与宽各为多少?(第19题)甲 乙(第21题)墙22.(8分)用直尺和圆规完成下列作图:(不写作法,保留作图的痕迹)(1)如图①,经过A 、B 、C 三点作⊙P ;(2)如图②,已知M 是直线l 外一点.作⊙O ,使⊙O 过M 点,且与直线l 相切.23.(8分)如图,在△ABC 中,AB =AC ,过点A ,C 的⊙O 与BC ,AB 分别交于点D ,E ,连接DE . (1)求证DB =DE ;(2)延长ED ,AC 相交于点P ,若∠P =33°,则∠A 的度数为▲________°.B(第23题)AED CO(第22题) BAClM①②24.(7分)某商店将进价为30元的商品按售价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得12000元的利润,且尽量减少库存,应涨价为多少元?25.(8分)如图,D为⊙O上一点,点C是直径BA延长线上的一点,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线BE交CD的延长线于点E.若BC=12,AC=4,求BE的长.C(第25题)26.(10分)如果关于x的一元二次方程ax2+bx+c=0满足a+b+c=0,那么称这样的方程为“美好方程”.例如,方程x2-4x+3=0,1-4+3=0,则这个方程就是“美好方程”.(1)下列方程是“美好方程”的是▲ ;①x2+2x-3=0 ②x2-3x=0 ③x2+1=0 ④x(x-1)=2(x-1)(2)求证:“美好方程”ax2+bx+c=0总有两个实数根;(3)若美好方程(b-c)x2+(c-a)x+(a-b)=0有两个相等的实数根,求证:a+c=2 b.27.(10分)(1)证明定理:圆内接四边形的对角互补.已知:如图①,四边形ABCD 内接于⊙O . 求证:∠A +∠C =∠B +∠D =180°.(2)逆命题证明:若四边形的一组对角∠A +∠C =180°,则这个四边形的4个顶点共圆(图②) 可以用反证法证明如下:在图②中,经过点A ,B ,D 画⊙O .假设点C 落在⊙O 外,BC 交⊙O 于点E ,连接DE , ∵四边形ABED 内接于⊙O∴可得 =180°, ∵∠A +∠C =180°,∴∠BED = ,与∠BED >∠C 得出矛盾; 同理点C 也不会落在⊙O 内, ∴A ,B ,C ,D 共圆.(3)结论运用:如图∠BAC =120°,线段AB =83,点D ,E 分别在射线AC 和线段AB 上运动,以DE 为边在∠BAC 内部作等边△DEF ,则BF 的最小值为 .②DCBAO①FCAEBD③2023~2024学年度第一学期期中练习卷 九年级数学数学试卷参考答案及评分标准一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(每小题2分,共20分) 7.8 8. 1 9. <10.77 11.28° 12.5213.12π14.3000(1+x )2=366215.67.5°16.π三、解答题(本大题共11小题,共88分)17.(8分)(1)解:x 2+2x -3=0x 2+2x +1=3+1 ···················································································· 1分 (x +1)2=4 ····························································································· 2分 x +1=±2 ····························································································· 3分 ∴x 1=1, x 2=-3 ················································································ 4分 (2)解:(x -2)2-3(x -2)=0 ············································································ 5分(x -2) (x -2-3)=0 ··············································································· 6分 ∴x 1=2, x 2=5. ·················································································· 8分18.(8分)(1)∵x 2-4x -k -6=0有两个不相等的实数根 ∴(-4)2-4(-k -6) >0…………… …………… 2分 ∴k >-10………………………………………………4分(2)∵x 1,x 2是方程两个实数根∴x 1+x 2=4,x 1x 2=-k -6…………………………………………5分 ∵x 1 =3x 2∴4x 2=4∴x 2=1…………………………………………6分 ∴x 1 =3…………………………………7分 ∴x 1x 2=3=-k -6∴k =-9………………………………………8分题号 1 2 3 4 5 6 答案CAABCD19.(6分)证明:连接OA ,OB , ∵OA =OB,CD 平分AB∴∠AMO =∠BMO =90°,…………………2分 ∴CD ⊥AB ,…………………………3分 ∵CD 是直径,∴AC ⌒=BC ⌒,AD ⌒=BD ⌒. (6)20.(9分)(1)80,80 ··················································································· 2分 (2)方差分别是:s 2甲=(80-80)2+(90-80) 2+(80-80)2+(70-80)2+(80-80)25=40分2 ···································· 4分 s 2乙=(60-80)2+(70-80) 2+ (90-80)2+(80-80)2+(100-80)25=200分2 ································ 6分 由s 2甲<s 2乙可知,甲同学的成绩更加稳定. ·························································· 7分 (3)甲同学的成绩在70,80,90间上下波动,而乙的成绩从60分到100分,呈现上升趋势,越来越好,进步明显. ·················································································· 9分21.(6分)解 :设养鸡场的宽为x m ,则长为(35-2x )m ,由题意得: x (35-2x )=150…………………………………2分整理得:2x 2-35x +150=0…………………………………3分 解得:x 1=10,x 2=152.…………………………………4分当x 1=10时,35-2 x 1=15;当x 2=152时,35-2 x 2=20.……………………5分答: 养鸡场长为15 m ,宽为10 m 或长为20 m ,宽为152………………………6分 22.(本题8(1)(4分)(2)(lD(第20题)23.(本题8分)(1)∵AB=AC,∴∠B=∠C,又∵四边形AEDC为⊙O的内接四边形,∴∠AED+∠C=180°,∵∠BED+∠AED=180°,∴∠BED=∠C∴∠BED=∠B∴DB=DE.··························································································6分(2)38° ·······························································································8分24.(7分)解:设涨价x元,根据题意得:(50-30+x)(500-10x)=12000.…………………………3分解得:x1=10,x2=20. …………………………5分∵要尽量减少库存,∴x2=20(舍). …………………………6分答:涨价10元.…………………………7分25.(8分)证明:(1)连接OD.∴∠ADO=∠OAD,∵AB是⊙O的直径,∴∠BDA=90°,∴∠ABD+∠BAD=90°,∵∠CDA=∠CBD,∴∠CDO=∠CDA+∠ADO=90°,即CD⊥OD. ················································································ 3分分(43.∵BE2+BC2=EC∴x 2+122=(x+42.∴x=43.即BE的长为43.·········································································· 8分26.(10分)(1)①④…………………………………2分(2)证明:∵ax2+bx+c=0是“美好方程”∴a+b+c=0………………3分∴b=-a-c………………4分判别式b 2-4 ac=(-a-c)2-4 ac=c2-2 a c+a2=(c-a)2≥0………………5分∴“美好方程”ax2+bx+c=0总有两个实数根.………………6分(3)证明:方法一:∵美好方程(b-c)x2+(c-a)x+(a-b)=0有两个相等的实数根∴(c-a)2-4(b-c) (a-b) =0…………………………………7分∴c2-2 a c+a2-4 ab+4 b2+4 a c-4 b c=0∴c2+2 a c+a2-4 ab-4 b c+4 b2=0…………………………………8分∴(c+a)2-4(a+c) b+4 b2=0∴(c+a-2 b)2=0…………………………………9分∴c+a-2 b=0,即a+c=2 b.…………………………………10分方法二:将x=1代入美好方程(b-c)x2+(c-a)x+(a-b)=0左右两边,左边=右边从而得出x=1是方程的解。
2023-2024学年山东省济南市历下区九年级上学期数学期中试题及答案(1)
2023-2024学年山东省济南市历下区九年级上学期数学期中试题及答案考试时间120分钟 满分150分第I 卷(选择题共40分)一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 一个几何体如图水平放置,它的俯视图是( )A.B.C. D.【答案】A 【解析】【分析】本题考查俯视图,根据俯视图定义直接判断即可得到答案;【详解】解:由题意可得,的俯视图是A 选项图形,故选:A .2. 在Rt ABC △中,90C ∠=︒,如果4AC =,3BC =,那么A 的正切值为()A.34B.43C.35D.45【答案】A 【解析】【分析】根据三角函数定义即可得出结果.的【详解】解:∵4AC =,3BC =,∴3tan 4BC A AC ==,故选:A .【点睛】本题考查锐角三角函数的定义的应用,熟记三角函数的定义是解题的关键.3. 如图,两条直线被三条平行线所截,若:2:3AB BC =,4DE =,则EF 为( )A. 5B. 6C. 7D. 8【答案】B 【解析】【分析】本题考查了平行线分线段成比例定理,由两条直线被三条平行线所截,可得AB DEBC EF=,进行计算即可得出答案,熟练掌握三条平行线截两条直线,所得的对应线段成比例是解此题的关键.【详解】解: 两条直线被三条平行线所截,AB DEBC EF∴=,:2:3AB BC = ,4DE =,243EF∴=,6EF ∴=,故选:B .4. 如图,小明同学利用相似三角形测量旗杆的高度,若测得木杆AB 长2m ,它的影长BC 为1m ,旗杆DE 的影长EF 为6m ,则旗杆DE 的高度为( )A. 9mB. 10mC. 11mD. 12m【答案】D 【解析】【分析】本题考查了相似三角形在实际生活中的应用,根据“同一时刻物高与影长成正比”列式计算即可,熟知相似三角形的对应边成比例是解答此题的关键.【详解】解: 同一时刻物高与影长成正比,DE ABEF BC∴=, 木杆AB 长2m ,它的影长BC 为1m ,旗杆DE 的影长EF 为6m ,261DE ∴=,12m DE ∴=,故选:D .5. 已知点()12A y -,,()22B y ,,()34C y ,都在反比例函数8y x=的图象上,则123y y y ,,的大小关系为( )A. 123y y y << B. 132y y y << C. 321y y y << D.231y y y <<【答案】B 【解析】【分析】本题考查了反比例函数的图象与性质,先分别求出123y y y ,,的值,再进行比较即可,熟练掌握反比例函数的性质是解此题的关键.【详解】解: 点()12A y -,,()22B y ,,()34C y ,都在反比例函数8y x=的图象上,1842y ∴==--,2842y ==,3824y ==,424>>- ,132y y y ∴<<,故选:B .6.围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有2个黑色棋子和1个白色棋子,每个棋子除颜色外都相同.从中随机摸出一个棋子,记下颜色后放回,再从中随机摸出一个棋子,则两次摸到相同颜色的棋子的概率是( )A.49B. 12C.59D.23【答案】C 【解析】【分析】本题考查了列表法与树状图法求概率等知识点,先画树状图展示所有9种等可能的结果,再找出两次摸到相同颜色的棋子的结果数,然后根据概率公式计算,熟练掌握其画图或列表得出所有可能结果数是解决此题的关键.【详解】画树状图为:共有9种等可能的结果,其中两次摸到相同颜色的棋子的结果数为5种,∴两次摸到相同颜色的棋子的概率59=,故选:C .7. 一次函数y ax a =-+与反比例函数ay x=在同一平面直角坐标系中的图象可能是( )A. B.C. D.【答案】D 【解析】【分析】本题主要考查了反比例函数的图象和一次函数的图象,根据反比例函数图象所在象限可以判定a 的符号,根据a 的符号来确定直线所经过的象限,逐项判断即可,熟练掌握反比例函数与一次函数的图象是解此题的关键.【详解】解:A 、双曲线经过第一、三象限,则0a >,则一次函数y ax a =-+应该经过第一、二、四象限,故本选项不符合题意;B 、双曲线经过第一、三象限,则0a >,则一次函数y ax a =-+应该经过第一、二、四象限,故本选项不符合题意;C 、双曲线经过第二、四象限,则a<0,则一次函数y ax a =-+应该经过第一、三、四象限,故本选项不符合题意;D 、双曲线经过第二、四象限,则a<0,则一次函数y ax a =-+应该经过第一、三、四象限,故本选项符合题意;故选:D .8.如图,在边长都为1的方格纸上,小明同学绘制了艺术字体“A”,已知点O M ,,N 都在格点上,点P Q ,在格线上,则点P 与点Q 之间的距离为( )A. 5 C.92D.143【答案】D 【解析】【分析】本题考查了相似三角形的判定与性质,作AB PQ ⊥交PQ 于点B ,交MN 于A ,由图可得:3OA =,7OB =,2MN =,MN PQ ∥,则OMN OPQ ∽,从而得到OA MNOB PQ=,代入数值进行计算即可,熟练掌握相似三角形的判定与性质是解此题的关键.【详解】解:如图,作AB PQ ⊥交PQ 于点B ,交MN 于A ,,由图可得:3OA =,7OB =,2MN =,MN PQ ∥,OMN OPQ ∴ ∽,OA MN OB PQ ∴=,即327PQ=,143PQ ∴=,故选:D .9. 如图,在Rt ABC △中,90ACB ∠=︒,BC =,点D 为边AB 上一点,将BCD △沿CD 折叠,点B 恰好落在边AB 上的点E 处.若3AE =,则BD 为( )B. 1 D.43【答案】B 【解析】【分析】根据翻折的性质可得BD DE =,90∠=∠=︒CDE CDB ,设BD x =,则2BE x =,32AB x =+,利用锐角三角函数即可求解,此题考查了翻折的性质、锐角三角函数,熟练掌握以上知识是解题的关键.【详解】解:由翻折的性质可得BD DE =,90∠=∠=︒CDE CDB ,设BD x =,则2BE x =,32AB x =+,∴cos BD BCB BC AB==,=,解得1x =或52x =-(舍去),∴1BD =,故选:B10. 定义:在平面直角坐标系中,对于点()11P x y ,,当点()22Q x y ,满足()12122x x y y +=+时,称点()22Q x y ,是点()11P x y ,的“倍增点”.在平面直角坐标系中,若反比例函数4y x=图象上的点A 与点B 都是点()110P ,的“倍增点”,连接OA ,OB AB ,,则OAB 的面积为( )A. 3B. 4C. 5D. 6【答案】A 【解析】【分析】本题考查了反比例函数图象上点的坐标特征,三角形的面积,根据反比例函数4y x=图象上的点A 与点B 都是点()110P ,的“倍增点”,求出A 、B 的坐标,从而得到直线AB 的解析式,得到点C 的坐标,根据AOB AOC BOC S S S =+△△△进行计算即可得出答案,求出A 、B 的坐标是解此题的关键.【详解】解:如图,,反比例函数4y x=图象上的点A 与点B 都是点()110P ,的“倍增点”,()4210x x∴+=+,整理得:220x x +-=,解得:12x =-,21x =,当2x =-时,422y ==--,当1x =时,441y ==,()22A ∴--,,()14B ,,设直线AB 解析式为y kx b =+,将()22A --,,()14B ,代入解析式得:224k b k b -+=-⎧⎨+=⎩,解得:22k b =⎧⎨=⎩,∴直线AB 解析式为22y x =+,当0x =时,2y =,()02C ,∴,2OC ∴=,112221322AOB AOC BOC S S S ∴=+=⨯⨯+⨯⨯=△△△,故选:A .第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6个小题,每小题4分,共24分.)11. 已知点 M(1,2)在反比例函数kyx=的图象上,则 k=____.【答案】2【解析】【分析】把点M(1,2)代入反比例函数kyx=中求出k的值即可.【详解】解:把点M(1,2)代入得:k=xy=1×2=2,故答案为:2.【点睛】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.12. 已知23a cb d==,若b+d≠0,则a cb d++=_____.【答案】2 3【解析】【分析】分别设a=2m,c=2n,根据23a cb d==可用m、n表示出b、d,代入所给代数式即可得答案.【详解】设a=2m,c=2n,∵23a cb d==,∴b=3m,d=3n,∴a cb d++=2m2n3m3n++=23,故答案为:2 3【点睛】本题考查等比性质的应用,若a ckb d==,则a cb d++=k,熟练掌握等比性质是解题关键.13.为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞20条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞500条鱼.如果在这500条鱼中有5条鱼是有记号的,那么估计鱼塘中鱼的条数为______条.【答案】2000【解析】【分析】本题考查了统计中用样本估计总体的思想,根据样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【详解】解:估计鱼塘中鱼的条数为500÷5202000=(条),故答案为:2000.14.2023年第19届杭州亚运会的会徽“潮涌”将自然奇观与人文精神进行巧妙融合,其中浪潮设计借助了黄金分割比以给人协调的美感.如图,若点C 可看做是线段AB 的黄金分割点(AC CB <),10cm AB =,则BC =______cm .(结果保留根号)【答案】()5-##(5-+【解析】【分析】本题考查了黄金分割,解题关键是根据黄金分割的定义列式计算,即可解答.【详解】解: 点C 可看作是线段AB 的黄金分割点()AC CB <,10cm AB =,105)cm BC AB ∴===,故答案为:5).15.如图,反比例函数y =的图象经过菱形OABC 的顶点A ,点B 在y 轴上,过点B 作y 轴的垂线与反比例函数的图象相交于点D .若60BAO∠=︒,则点D 的坐标是______.的【答案】2⎛⎫⎪ ⎪⎝⎭【解析】【分析】本题考查了菱形的性质,反比例函数图象上点的坐标特征,根据题意得出AOB是等边三角形,从而表示点A 的坐标为12a ⎛⎫⎪ ⎪⎝⎭,,再根据反比例函数图象上点的坐标特征代入函数解析式进行计算即可求得菱形边长2a =,把2y =代入解析式即可求得点D 的横坐标.【详解】解:设菱形OABC 的边长为a ,60BAO ∠=︒ ,AOB ∴ 是等边三角形,∴点A 的坐标为12a ⎛⎫⎪ ⎪⎝⎭,,反比例函数y=的图象经过菱形OABC 的顶点A ,∴12a ⋅=2a ∴=(负数舍去),∴菱形OABC 的边长为2,D 点的纵坐标为2,把2y =代入y =得,2=,解得x =,∴点D 的坐标是2⎛⎫ ⎪ ⎪⎝⎭.故答案为:2⎛⎫⎪ ⎪⎝⎭.16.如图,在矩形ABCD 中,DE 平分ADC ∠,交BC 于点E ,EF AE ⊥,交CD 于点F ,以AE ,EF 为边,作矩形AEFG ,FG 与DA 相交于点H .若3CE =,4AH =,则AE =______.【答案】【解析】【分析】本题主要考查了正方形的判定与性质,相似三角形的判定与性质,全等三角形的判定与性质,解答本题的关键是得到GAH CEF ∽.首先证明()Rt Rt ASA ECF ABE ≌,推导出AE EF =,结合矩形AEFG ,推导出四边形AEFG 为正方形,然后利用GAH FEC ∠=∠,G C ∠=∠,推导出GAH CEF ∽,AG CEAH EF=,进而得到AG EF AH CE ⋅=⋅,代入数据得到24312AE =⨯=.【详解】解: 四边形ABCD 是矩形,AD BC ∴∥,CD AB =,90B C ∠=∠=︒,90AEB EAB ∴∠+∠=︒,EF AE ⊥ ,90AEF ∴∠=︒,90AEB CEF ∠+∠=︒,EAB CEF ∴∠=∠,DE 平分ADC ∠,1452CDE ADC ∴∠=∠=︒,在Rt CDE △中,CE CD AB ==,在Rt ECF 和Rt ABE △中,B C CE ABEAB CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()Rt Rt ASA ECF ABE ∴ ≌,AE EF ∴=,在矩形AEFG 中,AG EF AE ==,∴四边形AEFG 为正方形,90G ∴∠=︒,AG EF \∥,GAH FEC ∴∠=∠,又G C ∠=∠ ,GAH CEF ∴ ∽,∴AG CEAH EF=,AG EF AH CE ∴⋅=⋅,24312AE ∴=⨯=,AE ∴=故答案为:三、解答题(本大题共10个小题,共86分.请写出文字说明、证明过程或演算步骤.)17. 计算:(1)2sin 60tan 45︒+︒;(2)22cos 30sin 45︒-︒.【答案】(11+ (2)14【解析】【分析】本题考查特殊角三角函数值的混合运算,掌握特殊角的三角函数值是解题的关键.(1)将特殊角三角函数值代入计算即可;(2)将特殊角三角函数值代入计算即可.【小问1详解】解:2sin 60tan 45︒+︒21=1=+【小问2详解】解:22cos 30sin 45︒-︒22=-3142=-14=18. 如图,小树AB 在路灯O 的照射下形成投影BC .(1)此光源下形成投影属于______;(填“平行投影”或“中心投影”)(2)已知树高AB 为2m ,树影BC 为3m ,树与路灯的水平距离BP 为4.5m .求路灯的高度OP .【答案】(1)中心投影; (2)5m .【解析】【分析】本题考查了中心投影,掌握相似三角形的性质是解题的关键.(1)由中心投影的定义确定答案即可;(2)先判断相似三角形,再利用相似三角形的性质求解.【小问1详解】此光源属于点光源,的∴此光源下形成的投影属于中心投影,故答案为:中心投影;【小问2详解】AB CP ⊥ ,PO PC ⊥,OP AB ∴∥,ABC OPC ∴ ∽,∴AB BCOP PC=,即:233 4.5=+OP ,解得:()5m OP =,∴路灯的高度为5米.19. 如图,AB CD 、相交于点O ,已知6OA =,8OD =,4OB =,3OC =,求证:B D ∠=∠.【答案】证明详见解析【解析】【分析】本题考查了相似三角形的判定与性质,根据2OA OC=,2OD OB =,得出OA ODOC OB =,结合DOA BOC ∠=∠即可证明DOA BOC ∽,利用相似三角形的性质即可求证,熟练掌握相似三角形的判定与性质是解此题的关键.【详解】证明:∵在AOD △和BOC 中,6OA =,3OC =,8OD =,4OB =,2∴=OA OC,2ODOB =,OA OD OC OB∴=,∠=∠ DOA BOC ,∴△∽△DOA BOCB D ∴∠=∠.20.如图,在平面直角坐标系中,以原点O 为位似中心,五边形OABCD 的五个顶点坐标分别为()0,0O ,()1,3A -,()1,4B ,()4,2C ,()3,0D .(1)以原点O 为位似中心,在原点O 的同侧作五边形OABCD 的位似图形1111OA B C D ,使它与五边形OABCD 的相似比为21:.(2)写出1C 的坐标______.(3)已知五边形OABCD 的面积为13.5,则五边形1111OA B C D 的面积为______.【答案】(1)图见解析(2)()84,(3)54【解析】【分析】本题主要考查了画位似图形,位似图形的性质,求位似图形对应点坐标,熟知位似图形的性质是解题的关键;(1)根据位似比为21:,把A 、B 、C 、D 的横纵坐标都乘以2得到1111A B C D 、、、的坐标,再顺次连接1111O A B C D 、、、、即可;(2)根据(1)所求,写出1C 的坐标即可;(3)根据位似图形面积之比等于位似比的平方进行求解即可.【小问1详解】解:如图所示,五边形11111O A B C D 即为所求;【小问2详解】解:由题意得,点1C 的坐标为()84,,故答案为:()84,【小问3详解】解:∵五边形1111OA B C D 与五边形OABCD 关于原点位似,且位似比为21:,五边形OABCD 的面积为13.5,∴五边形1111OA B C D 的面积为13.5454⨯=,故答案为:54.21.九年级组织“11·9全国消防日”消防安全知识竞赛活动,其中本次竞赛成绩分为“优秀”“良好”“一般”“较差”四个等级,为了解全体九年级同学的消防安全知识水平,随机抽取了m 个同学的竞赛成绩进行统计整理,根据成绩绘制成如下两幅不完整的统计图:请结合以上信息完成下列问题:(1)m=______;(2)如果九年级共有600名学生参加本次活动,那么可估计竞赛成绩为“优秀”的学生有_ _____人;(3)此次活动中有五名同学获得满分,其中有三名女生和两名男生.现从这五名同学中随机挑选两名同学参加校外比赛,请用列表法或画树状图法求出选中的两名同学恰好是一男一女的概率.【答案】(1)120;(2)120;(3)3 5.【解析】【分析】本题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,样本估计总体.(1)用“较差”人数和其所占百分百即可求解;(2)根据竞赛成绩为“优秀”学生的占比乘以600即可求解;(3)列出表格得可能出现的所有情况,再由概率公式即可得出答案.解题的关键是从统计图表中获取信息.【小问1详解】解:由题意可知:1815%120m=÷=,故答案为:120;【小问2详解】竞赛成绩为“优秀”的学生有24600120120⨯=人,故答案为:120;【小问3详解】将三名女生,分别记作“女1,女2,女3”两名男生分别记作“男1,男2”,列表如下:女1女2女3男1男2女1(女1,女2)(女1,女3)(女1,男1)(女1,男2)女2(女2,女1)(女2,女3)(女2,男1)(女2,男2)女3(女3,女1)(女3,女2)(女3,男1)(女3,男2)男1(男1,女1)(男1,女2)(男1,女3)(男1,男2)男2(男2,女1)(男2,女2)(男2,女3)(男2,男1)总共有20种结果,每种结果出现的可能性相同,其中两名同学恰好是一男一女的有12种,∴P (两名同学恰好是一男一女)123205==22.为确保身体健康,自来水最好烧开(加热到100℃)后再饮用.某款家用饮水机,具有加热、保温等功能.现将20℃的自来水加入到饮水机中,先加热到100℃.此后停止加热,水温开始下降,达到设置的饮用温度后开始保温.比如事先设置饮用温度为50℃,则水温下降到50℃后不再改变,此时可以正常饮用.整个过程中,水温()y ℃与通电时间()min x 之间的函数关系如图所示.(1)水温从20℃加热到100℃,需要______min ;请直接写出加热过程中水温y 与通电时间x 之间的函数关系式:______;(2)观察判断:在水温下降过程中,y 与x 的函数关系是______函数,并尝试求该函数的解析式;(3)已知冲泡奶粉的最佳温度在40℃左右,某家庭为了给婴儿冲泡奶粉,将饮用温度设置为40℃.现将20℃的自来水加入到饮水机中,此后开始正常加热.则从加入自来水开始,需要等待多长时间才可以接水冲泡奶粉?【答案】(1)4;2020y x =+; (2)反,400y x=(3)14分钟.【解析】【分析】本题考查了待定系数法求一次函数解析式、反比例函数解析式,反比例函数的应用,理解题意,正确求出解析式是解此题的关键.(1)由图可得水温从20℃加热到100℃,需要4min ,设加热过程中水温y 与通电时间x之间函数关系式为:y kx b =+,将()020,,()4100,代入解析式得:410020k b b +=⎧⎨=⎩,求出k b 、的值即可;(2)观察判断:在水温下降过程中,y 与x 的函数关系是反函数,设在水温下降过程中,y 与x 的函数关系为1k y x=,将()580,代入解析式得:1805k =,求出1k 的值即可;(3)在400y x =中,当40y =时,40040x=,解得:10x =,再由题意列式计算即可.【小问1详解】解:由图可得:水温从20℃加热到100℃,需要4min ,设加热过程中水温y 与通电时间x 之间的函数关系式为:y kx b =+,将()020,,()4100,代入解析式得:410020k b b +=⎧⎨=⎩,解得:2020k b =⎧⎨=⎩,∴加热过程中水温y 与通电时间x 之间的函数关系式为:2020y x =+,故答案为:4,2020y x =+;【小问2详解】解:观察判断:在水温下降过程中,y 与x 的函数关系是反函数,设在水温下降过程中,y 与x 的函数关系为1k y x=,将()580,代入解析式得:1805k =,解得:1400k =,∴在水温下降过程中,y 与x 的函数关系为:400y x=,故答案为:反;的【小问3详解】解:由题意得:在400y x =中,当40y =时,40040x=,解得:10x =,∴从加入自来水开始,需要等待的时间为:41014min +=,∴则从加入自来水开始,需要等待14分钟时间才可以接水冲泡奶粉.23.在“济南天下第一泉”风景区随处可以看到历代名人雅士留下的匾额和楹联,它们丰富了园林的人文内涵.如图1,趵突泉公园南门上悬挂着的匾额,图2中的线段AB 就是这块匾额的截面示意图.已知0.8AB =米,37DAB ∠=︒.从水平地面点C 处看点B ,仰角45MCD ∠=︒,且视线经过射线MA 上的点D ,从点E 处看点A ,53∠=︒AEM ,且2.07=CE 米.(参考数据:343sin 37,cos37,tan 37554︒≈︒≈︒≈)AI(1)求点B 到AD 水平距离;(2)求线段DA 的长;(3)求匾额上点A 到地面的距离AM 的长.【答案】(1)0.48米; (2)1.12米; (3)3.8米.【解析】【分析】本题考查了解直角三角形的应用,等腰三角形的判定和性质,.(1)过点B 作BH MD ⊥,垂足为H ,由0.8AB =米,37DAB ∠=︒,结合sin BH AB BAD =⋅∠即可求解;(2)在Rt BAH 中,可得cos370.64AH AB =⨯︒=米,由45CDM ∠=︒,可得的45DBH CDM ∠=∠=︒,易知0.48DH BH ==米,结合DA DH HA =+即可求解;(3)在Rt AME △中,可得3tan 374ME AM AM =⨯︒=,在Rt DMC 中,45CDM ∠=︒,可得45CDM DCM ∠=∠=︒,易知DM MC =,结合DA AM ME EC +=+即可求解.掌握作出适当的辅助线构建直角三角形是解题的关键.【小问1详解】解:过点B 作BH MD ⊥,垂足为H ,如图所示:在Rt BAH 中,0.8AB =米,37DAB ∠=︒,3sin 0.80.485BH AB BAD =⋅∠=⨯=米,答:点B 到AD 的水平距离是0.48米;【小问2详解】在Rt BAH 中,0.8AB =米,37DAB ∠=︒,4cos370.80.645AH AB ∴=⨯︒=⨯=米.90M ∠=︒ ,45MCD ∠=︒,45CDM ∴∠=︒,45∴∠=∠=︒DBH CDM ,0.48DH BH ∴==米,0.480.64 1.12DA DH HA ∴=+=+=米,答:DA 的长为1.12米.【小问3详解】在Rt AME △中,53∠=︒AEM ,则37EAM ∠=︒,3tan 374∴=⨯︒=ME AM AM .在Rt DMC 中,45CDM DCM ∠=∠=︒,∴DM MC =.∴+=+DA AM ME EC ,31.122.074∴+=+AM AM ,解得 3.8AM =米,答:匾额上点A 到地面的距离约为3.8米.24. 如图,正比例函数y kx =的图象与反比例函数my x=的图象交于A B ,两点,其中()43A -,.(1)求k m ,的值;(2)根据函数图象,直接写出不等式0-≤mkx x的解集;(3)若点C 在y 轴上,且ABC 的面积为16,求点C 的坐标.【答案】(1)34k =-,12=-m ; (2)40x -≤<或4x ≥;(3)()04C ,或()04-,.【解析】【分析】本题考查了反比例函数与一次函数的交点问题,熟练掌握面积的计算方法是解答本题的关键.(1)根据点A 的坐标求k m ,的值即可;(2)根据函数图象可直接写出不等式0-≤mkx x的解集;(3)设OC a =,利用=+△△△ABC OCA OCB S S S ,求出a 的值即可得到答案.【小问1详解】解:将()43A -,代入y kx =,得34k =-,解得34k =-,将()43A -,代入my x =,得43m -=,解得12=-m ,34k ∴=-,12=-m ;【小问2详解】解:由反比例函数图象的对称性可得点B 的坐标为()43,-,由图象可得:不等式0-≤mkx x的解集为40x -≤<或4x ≥;【小问3详解】解:由反比例函数图像的中心对称性知点()43B -,,设OC a =,则=+△△△ABC OCA OCB S S S 1122||=+⋅A B OC x OC x 11441622=⨯+⨯=a a ,解得4a =,()04C ∴,或()04-,.25. 【问题情境】如图1,小明把三角板EFG (30GFE ∠=︒)放置到矩形ABCD 中,使得顶点E 、F 、G 分别落在AD 、CD 、AB 上,你发现线段ED 与AG 有什么数量关系?直接写出结论:______(不用证明).【变式探究】如图2,小明把三角板EFG (30GFE ∠=︒)放置到矩形ABCD 中,使得顶点E 、F 、G 分别在AD BC AB 、、边上,若4GA =,6AE =,求BG 的长.【拓展应用】如图3,小明把三角形EFG 放置到平行四边形ABCD 中,使得顶点E 、F 、G 分别落在AD BC AB 、、边上,若45=AB AD ,310=AE AD ,∠=∠FEG BAD ,求出EG EF的值.【答案】(1)=ED AG 2)4BG =;(3)38EG EF =【解析】【分析】问题情境:先根据特殊角三角函数得出tan 30GE EF =︒=,再证明AGE DEF ∽,根据相似三角形对应边成比例可得AG GE DE EF ==变式探究:过点F 作FH AD ⊥,同(1)可证FEH EGA △∽△,根据相似三角形对应边成比例可得FH EFAE GE==,求出FH ,再证四边形ABFH 是矩形,即可求解;拓展应用:过点F 作∠=∠CFM BAD 交AD 的延长线于点M ,交CD 于点K .则CFM BAD GEF ∠=∠=∠,再结合平行四边形的性质、平行线的性质,证明FM DC=,再证ABE MEF △∽△,推出EG AE EF FM =,再证45FM DC AB AD ===,310AE AD =,代入可得EGEF 的值.【详解】解:问题情境:三角板EFG 中,30GFE∠=︒,∴tan 30GE EF=︒=. 四边形ABCD 是矩形,∴90A D ∠=∠=︒,∴90AEG AGE ∠+∠=︒,由题意知90GEF ∠=︒,∴90AEG DEF ∠+∠=︒,∴AGE DEF ∠=∠,又 A D ∠=∠,∴AGE DEF ∽,∴AG GE DE EF==∴=EDAG故答案为:=EDAG变式探究:如图,过点F 作FH AD ⊥,垂足为H ,FH AD ⊥ ,90∴∠=∠=︒FHE A ,90EFH FEH ∠∠+=︒ ,90GEA FEH ∠+∠=︒,∴∠=∠EFH GEA∴△∽△FEH EGA ,∴==FH EFAE GE,6AE = ,∴=FH ,90A B EHF ∠=∠=∠=︒,∴四边形ABFH 是矩形,∴==AB FH ,4BG AB AG ∴=-=-.拓展应用:如图,过点F 作∠=∠CFM BAD 交AD 的延长线于点M ,交CD 于点K .∠=∠ GEF BAD ,∴∠=∠=∠CFM BAD GEF ,∵四边形ABCD 是平行四边形,AD CB ∴∥,BAD C ∠=∠,∴∠=∠CFM FMD ,∠=∠C CDM ,CFM C CDM FMD ∴∠=∠=∠=∠,∴FK CK =,DK MK =,∴=FM DC ,∠=∠=∠ A GEF FMA ,∴∠+∠=∠+∠A AGE GEF FEM 即∠=∠AGE MEF ,ABE MEF ∴△∽△,EG AEEF FM∴=,43,510AB AE AD AD ==,45FM DC AB AD ∴===,310AE AD =,3310485ADEG AE EF FM AD ∴===.【点睛】本题考查解直角三角形,相似三角形的判定和性质,平行四边形的性质,矩形的判定和性质等,通过添加辅助线构造相似三角形是解题的关键.26. 小静发现希腊数学家曾利用反比例函数图象将一个角三等分,具体方法如下:第一步:建立平面直角坐标系,将已知锐角AOB 的顶点与原点O 重合,角的一边OB 与x 轴正方向重合.在平面直角坐标系里,绘制函数1y x=的图象,图象与已知角的另一边OA 交于点P .第二步:以P 为圆心、以2OP 为半径作弧,交函数1y x=的图象于点R .第三步:分别过点P 和R 作x 轴和y 轴的平行线,两线相交于点M ,连接OM ,得到MOB ∠(如图1).这时13MOB AOB ∠=∠.为什么13MOB AOB ∠=∠小静想要证明这个结论却没有思路,便询问老师.老师进行了指导:分别过点P 和R 作y 轴和x 轴的平行线,两线交于点Q (如图2),解答这道题的关键就是证明O Q M ,,三点共线,在平面直角坐标系中,证明三点共线最直接的做法是先用两点确定一条直线的表达式,再证明第三点在这条直线上.老师指导后,小静若有所思.请你和小静一起,完成下列问题.(1)已知()10C -,,()02D ,,()14E ,,请说明C D E 、、三点共线;(2)在“三等分角”的作图中(如图2),请证明O Q M ,,三点共线;(3)在(2)的基础上,请证明13MOB AOB ∠=∠.【答案】(1)详见解析; (2)详见解析; (3)详见解析.【解析】【分析】(1)利用待定系数法求出直线CE 解析,把点D 的坐标代入解析式判断即可;(2)设1P a a ⎛⎫ ⎪⎝⎭,,1R b b ⎛⎫ ⎪⎝⎭,,则11M b Q a a b ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,待定系数法求出OM 的解析式,把点Q 的坐标代入解析式判断即可;(3)设PR 交QM 于点D ,由题意得四边形PORM 为矩形,从而得到DOR DRQ ∠=∠,由外角定理,2PDO DOR ∠=∠,再结合矩形的性质可得2POM PDO MOB ∠=∠=∠,即可得证.【小问1详解】解:设直线CE 解析式为y kx b =+,将()10C -,,()14E ,代入得,04k bk b =-+⎧⎨=+⎩,解得22k b =⎧⎨=⎩,22y x ∴=+,将0x =代入得,2y =,∴D 在直线CE 上,∴C D E 、、三点共线;【小问2详解】解:PM x ∥轴,MR y ∥轴,设1P a a ⎛⎫ ⎪⎝⎭,,1R b b ⎛⎫ ⎪⎝⎭,,11M b Q a a b ⎛⎫⎛⎫∴ ⎪ ⎪⎝⎭⎝⎭,,,,设OM 的解析式为y kx =,1bk a∴=,1k ab∴=,∴直线OM 的解析式为:1y x ab=,当x a =时,1y b=,1Q a b ⎛⎫ ⎪⎝⎭,,∴点Q 在直线OM 上;【小问3详解】解:设PR 交QM 于点D ,,∵过P R ,作x y ,轴的平行线,∴四边形PORM 为矩形,DQ DR∴=DOR DRQ ∴∠=∠,∴由外角定理,2PDO DOR ∠=∠,OR OB ∥,DQR MOB ∴∠=∠,2PDO MOB ∴∠=∠,又四边形PORM 为矩形,2PR PD ∴=,2PR PO = ,PD PO ∴=,2POM PDO MOB ∴∠=∠=∠,13MOB AOB ∴∠=∠.【点睛】本题考查了待定系数法求函数解析式、反比例函数图象上点的坐标特征、矩形的性质、等腰三角形的性质,掌握待定系数法求函数解析式是解此题的关键.2023-2024学年山东省济南市历下区九年级上学期数学期中试题及答案考试时间120分钟 满分150分第I 卷(选择题共40分)一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 一个几何体如图水平放置,它的俯视图是( )A.B.C. D.【答案】A 【解析】【分析】本题考查俯视图,根据俯视图定义直接判断即可得到答案;【详解】解:由题意可得,的俯视图是A 选项图形,故选:A .2. 在Rt ABC △中,90C ∠=︒,如果4AC =,3BC =,那么A 的正切值为()A.34B.43C.35D.45【答案】A 【解析】【分析】根据三角函数定义即可得出结果.的【详解】解:∵4AC =,3BC =,∴3tan 4BC A AC ==,故选:A .【点睛】本题考查锐角三角函数的定义的应用,熟记三角函数的定义是解题的关键.3. 如图,两条直线被三条平行线所截,若:2:3AB BC =,4DE =,则EF 为( )A. 5B. 6C. 7D. 8【答案】B 【解析】【分析】本题考查了平行线分线段成比例定理,由两条直线被三条平行线所截,可得AB DEBC EF=,进行计算即可得出答案,熟练掌握三条平行线截两条直线,所得的对应线段成比例是解此题的关键.【详解】解: 两条直线被三条平行线所截,AB DEBC EF∴=,:2:3AB BC = ,4DE =,243EF∴=,6EF ∴=,故选:B .4. 如图,小明同学利用相似三角形测量旗杆的高度,若测得木杆AB 长2m ,它的影长BC 为1m ,旗杆DE 的影长EF 为6m ,则旗杆DE 的高度为( )A. 9mB. 10mC. 11mD. 12m【答案】D 【解析】【分析】本题考查了相似三角形在实际生活中的应用,根据“同一时刻物高与影长成正比”列式计算即可,熟知相似三角形的对应边成比例是解答此题的关键.【详解】解: 同一时刻物高与影长成正比,DE ABEF BC∴=, 木杆AB 长2m ,它的影长BC 为1m ,旗杆DE 的影长EF 为6m ,261DE ∴=,12m DE ∴=,故选:D .5. 已知点()12A y -,,()22B y ,,()34C y ,都在反比例函数8y x=的图象上,则123y y y ,,的大小关系为( )A. 123y y y << B. 132y y y << C. 321y y y << D.231y y y <<【答案】B 【解析】【分析】本题考查了反比例函数的图象与性质,先分别求出123y y y ,,的值,再进行比较即可,熟练掌握反比例函数的性质是解此题的关键.【详解】解: 点()12A y -,,()22B y ,,()34C y ,都在反比例函数8y x=的图象上,1842y ∴==--,2842y ==,3824y ==,424>>- ,132y y y ∴<<,故选:B .6.围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有2个黑色棋子和1个白色棋子,每个棋子除颜色外都相同.从中随机摸出一个棋子,记下颜色后放回,再从中随机摸出一个棋子,则两次摸到相同颜色的棋子的概率是( )A.49B. 12C.59D.23【答案】C 【解析】【分析】本题考查了列表法与树状图法求概率等知识点,先画树状图展示所有9种等可能的结果,再找出两次摸到相同颜色的棋子的结果数,然后根据概率公式计算,熟练掌握其画图或列表得出所有可能结果数是解决此题的关键.【详解】画树状图为:共有9种等可能的结果,其中两次摸到相同颜色的棋子的结果数为5种,∴两次摸到相同颜色的棋子的概率59=,故选:C .7. 一次函数y ax a =-+与反比例函数ay x=在同一平面直角坐标系中的图象可能是( )A. B.C. D.【答案】D 【解析】【分析】本题主要考查了反比例函数的图象和一次函数的图象,根据反比例函数图象所在象限可以判定a 的符号,根据a 的符号来确定直线所经过的象限,逐项判断即可,熟练掌握反比例函数与一次函数的图象是解此题的关键.【详解】解:A 、双曲线经过第一、三象限,则0a >,则一次函数y ax a =-+应该经过第一、二、四象限,故本选项不符合题意;B 、双曲线经过第一、三象限,则0a >,则一次函数y ax a =-+应该经过第一、二、四象限,故本选项不符合题意;C 、双曲线经过第二、四象限,则a<0,则一次函数y ax a =-+应该经过第一、三、四象限,故本选项不符合题意;D 、双曲线经过第二、四象限,则a<0,则一次函数y ax a =-+应该经过第一、三、四象限,故本选项符合题意;故选:D .8.如图,在边长都为1的方格纸上,小明同学绘制了艺术字体“A”,已知点O M ,,N 都在格点上,点P Q ,在格线上,则点P 与点Q 之间的距离为( )A. 5 C.92D.143【答案】D 【解析】【分析】本题考查了相似三角形的判定与性质,作AB PQ ⊥交PQ 于点B ,交MN 于A ,由图可得:3OA =,7OB =,2MN =,MN PQ ∥,则OMN OPQ ∽,从而得。
2024-2025学年广东省深圳市九年级上学期期中数学试题及答案
2024-2025学年深圳市九年级上册期中考试模拟试卷数学试卷注意事项:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.本卷考试时间90分钟,满分100分.考试范围:九年级上册3.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔将答写在答题卡指定区域内.作答综合题时,把所选题号的信息点框涂黑,并作答.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题)一、单选题(24分)1. 方程x 2=2x 的根是( ) A 0B. 2C. 0 或 2D. 无解2. 一元二次方程2230x x +−=两根分别为12x x 、,则12x x ⋅的值为( ) A. 2B. 2−C. 3−D. 33. 关于x 的一元二次方程()21230k x x −+=有两个不同的实根,则k 的取值范围是( ) A. 43k <B. 43k <且1k ≠ C. 403k <<D. 1k ≠4. 若关于x 的一元二次方程方程kx 2﹣2x ﹣1=0有实数根,k 的取值范围是( ) A. k >﹣1B. k ≥﹣1且k ≠0C. k <﹣1D. k <1且k ≠05. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长我们称为该图形的宽,矩形铅垂方向的边长我们称为该图形的高.如图2,已知菱形ABCD 的边长为1,菱形的边AB 水平放置,如果该菱形的高是宽的23,那么菱形的宽是( ).的A.1813B.139C.32D. 26. 设a 、b 是两个整数,若定义一种运算“ ”,2a b a ab =+ ,则方程()212x x −=的实数根是( ) A. 12x =−,23x =B. 1 2x =,23x =−C. 11x =−,26x =D. 1 1x =,26x =−7. 已知3是关于x 的方程220x ax a −+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A 9B. 12C. 12或15D. 158.我们把宽与长的比值等于黄金比例12−的矩形称为黄金矩形.如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AEAD等于( )AB.C.D.第Ⅱ卷(非选择题)二、填空题(12分)9. 现有4种没有标签的无色溶液(蒸馏水、烧碱、稀盐酸、纯碱),任取其中两种滴加无色酚酞溶液(友情提示:酚酞遇蒸馏水、稀盐酸不变色,酚酞遇烧碱、纯碱变红色)颜色恰好都发生变化的概率是________.10. 一元二次方程()()2311x x +−=解为 __. 11. 已知a b ≠,且满足22510a a −+=,22510b b −+=,那么b aa b+的值为______. 12. 如图,矩形ABCD 中,15AD =,12AB =,E 是AAAA 上一点,且8AE =,F 是BC 上一动点,若将EBF △沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距离为______...的三、解答题(62分)13. 某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,求该厂家一月份到三月份的口罩产量的月平均增长率.14. “当你背单词时,阿拉斯加的鳕鱼正跃出水面;当你算数学时,南太平洋的海鸥正掠过海岸;当你晚自习时,地球的极圈正五彩斑斓;但少年,梦要你亲自实现,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现.”这是直播带货新平台“东方甄选”带货王董宇辉在推销鳕鱼时的台词.所推销鳕鱼的成本为每袋50元,当售价为每袋90元时,每分钟可销售100袋. 为了吸引更多顾客,“东方甄选”采取降价措施.据市场调查反映:销售单价每降1元,则每分钟可多销售10袋. (1)每袋鳕鱼的售价为多少元时,每分钟的销量为150袋?(2)“东方甄选”不忘公益初心,热心教育事业,其决定从每分钟利润中捐出500元帮助留守儿童,为了保证捐款后每分钟利润达到5500元,且要最大限度让利消费者,求此时鳕鱼的销售单价为多少元? 15. 某公司去年10月份的营业额为2500万元,按计划12月的营业额要达到3600万元,那么该公司11月、12月两个月营业额的月均增长率是多少?(请列方程解答)16. 如图,Rt ABC 中,90ACB ∠=°,点D ,E 分别是AB ,AC 的中点,点F 在BC 的延长线上,且CEF A ∠=∠.(1)求证:DE CF =;(2)若1BC =,3AB =,求四边形DCFE 的周长.17. 如图,ABCD 中,对角线AC 与BD 相交于点,E 点G 为AD 的中点,连接,CG CG 的延长线交BA 的延长线于点,F 连接FD .(1)求证:AGF DGC ≌;(2)若,120,AG AB BAD =∠=°判断四边形ACDF 的形状,并证明你的结论.2024-2025学年深圳市九年级上册期中考试模拟试卷数学试卷注意事项:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.本卷考试时间90分钟,满分100分.考试范围:九年级上册3.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔将答写在答题卡指定区域内.作答综合题时,把所选题号的信息点框涂黑,并作答.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题)一、单选题(24分)1. 方程x 2=2x 的根是( ) A. 0 B. 2C. 0 或 2D. 无解【答案】C 【解析】【详解】解:移项可得:22x 0x −=, 因式分解可得:x (x -2)=0, 解得:x=0或x=2, 故选C .2. 一元二次方程2230x x +−=的两根分别为12x x 、,则12x x ⋅的值为( ) A. 2 B. 2−C. 3−D. 3【答案】C 【解析】【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:∵该一元二次方程为2230x x +−=,∴12331cx x a −⋅===−. 故选C .【点睛】本题考查一元二次方程根与系数的关系.熟记一元二次方程20(a 0)++=≠ax bx c 根与系数的关系:12b x x a +=−和12c x x a⋅=是解题关键. 3. 关于x 的一元二次方程()21230k x x −−+=有两个不同的实根,则k 的取值范围是( ) A. 43k <B. 43k <且1k ≠ C. 403k <<D. 1k ≠【答案】B 【解析】【分析】本题考查了根的判别式:一元二次方程200ax bx c a ++=≠()的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根.根据题意可得()1044310k k −≠ =−×−>再解不等式组,从而可得答案;【详解】解: 关于x 的一元二次方程()21230k x x −−+=有两个不相等的实数根, ()1044310k k −≠ ∴ =−×解得:43k <且1k ≠ , 故选:B .4. 若关于x 的一元二次方程方程kx 2﹣2x ﹣1=0有实数根,k 的取值范围是( ) A. k >﹣1 B. k ≥﹣1且k ≠0C. k <﹣1D. k <1且k ≠0【答案】B 【解析】【分析】根据一元二次方程根有实数根,可得ΔΔ≥0,代入系数解不等式,需要注意k ≠0. 【详解】∵一元二次方程有实数根 ∴()()2=2410k ∆−−⋅−≥ ,解得1k ≥−,又∵一元二次方程二次项系数不为0,∴0k ≠, ∴k 的取值范围是1k ≥−且0k ≠. 故选B.【点睛】本题考查一元二次方程的定义和根的判别式,当0∆>时,方程有两个不相等的实数根,当=0∆时,方程有两个相等的实数根,当∆<0时,方程无实数根,熟记概念是解题的关键.5. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长我们称为该图形的宽,矩形铅垂方向的边长我们称为该图形的高.如图2,已知菱形ABCD 的边长为1,菱形的边AB 水平放置,如果该菱形的高是宽的23,那么菱形的宽是( )A.1813B.139C.32D. 2【答案】A 【解析】【分析】先根据要求画图,设AF =x ,则CF =23x ,根据勾股定理列方程可得结论. 【详解】解:在菱形上建立如图所示的矩形EAFC , 设AF =x ,则CF =23x , 在Rt △CBF 中,CB =1,BF =x -1, 由勾股定理得:BC 2=BF 2+CF 2, 12=(x −1)2+(23x )2, 解得:x =1813或0(舍), 则该菱形的宽是1813,故选A .【点睛】本题考查了新定义、矩形和菱形的性质、勾股定理,理解新定义中矩形的宽和高是关键.6. 设a 、b 是两个整数,若定义一种运算“ ”,2a b a ab =+ ,则方程()212x x −=的实数根是( ) A. 12x =−,23x =B. 1 2x =,23x =−C. 11x =−,26x =D. 1 1x =,26x =−【答案】A 【解析】【分析】根据题目中的新定义的运算规则,将所求方程化为一元二次方程方程,解方程即可解答. 【详解】解:∵2a b a ab =+ , ∴x △(x-2)=x 2 +x (x-2)=12, 整理得:2x 2-2x-12=0, 解得:x 1=-2,x 2=3. 故选A.【点睛】本题考查了新定义运算及一元二次方程的解法,根据新定义的运算规则将所求方程化为一元二次方程方程是解决本题的关键.7. 已知3是关于x 的方程220x ax a −+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A 9 B. 12C. 12或15D. 15【答案】D 【解析】【分析】把x =3代入已知方程求得a 的值,然后求出该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可. 【详解】解:把x =3代入方程得:220x ax a −+=, 解得a =9,则原方程为29180x x −+=,解得:123,6x x ==, 因为这个方程的两个根恰好是等腰△ABC 的两条边长, ①当△ABC 的腰为3,底边为6时,不符合三角形三边关系②当△ABC 的腰为6,底边为3时,符合三角形三边关系,△ABC 的周长为6+6+3=15, 综上所述,△ABC 的周长为15. 故选:D .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了解一元二次方程、等腰三角形的性质以及三角形三边关系..8. .如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AEAD等于( )A.B.C.D.【答案】B 【解析】【分析】利用黄金矩形的定理求出ADAB= ,再利用矩形的性质得1AE AB BE AB AD AB ADAD AD AD −−===−,代入求值即可解题. 【详解】解:∵矩形ABCD 中,AD=BC,根据黄金矩形的定义可知AD AB , ∵BE BC =,∴11AE AB BE AB AD ABAD AD AD AD −−−=−==== 故选B【点睛】本题考查了黄金矩形这一新定义,属于黄金分割概念的拓展,中等难度,读懂黄金矩形的定义,表示出边长比是解题关键.第Ⅱ卷(非选择题)二、填空题(12分)9. 现有4种没有标签的无色溶液(蒸馏水、烧碱、稀盐酸、纯碱),任取其中两种滴加无色酚酞溶液(友情提示:酚酞遇蒸馏水、稀盐酸不变色,酚酞遇烧碱、纯碱变红色)颜色恰好都发生变化的概率是________. 【答案】16【解析】【分析】蒸馏水、烧碱、稀盐酸、纯碱分别记为A B C D 、、、,画出树状图,找出颜色恰好都发生变化的等可能情况和所有等可能情况,根据概率公式进行求解即可.【详解】解:蒸馏水、烧碱、稀盐酸、纯碱分别记为A B C D 、、、,画树状图如下:∵颜色恰好都发生变化的是取到B D 、的情况有两种,共有12种等可能情况, ∴颜色恰好都发生变化的概率是21126=, 故答案为:16【点睛】此题考查了树状图或列表法求概率,找出所有等可能情况数是解题的关键.10. 一元二次方程()()2311x x +−=的解为 __.【答案】1x =,2x =【解析】【分析】先化为一般形式,再用一元二次方程求根公式即可得到答案.【详解】解:()()2311x x +−=, 化为一般形式得:2240x x +−=, ()2142433=−××−=△,∴x =∴1x =2x =故答案为:1x =2x = 【点睛】本题考查解一元二次方程,解题的关键是掌握一元二次方程的求根公式. 11. 已知a b ≠,且满足22510a a −+=,22510b b −+=,那么b aa b+的值为______. 【答案】212【解析】【分析】本题考查了根与系数的关系,牢记“两根之和等于ba −、两根之积等于c a”是解题的关键.由a 、b 满足的条件可得出a 、b 为方程22510x x −+=的两个实数根,根据根与系数的关系可得出52a b +=、12ab =,将其代入()22a b ab b a a b ab+−+=中可求出结论. 【详解】解: a b ≠,且满足22510a a −+=,22510b b −+=,∴a 、b 为方程22510x x −+=的两个实数根,52a b ∴+=,12ab =,()222212221212252a b ab b a a b ab ab a b−× +−+ =∴+=== 故答案为:212. 12. 如图,矩形ABCD 中,15AD =,12AB =,E 是AAAA 上一点,且8AE =,F 是BC 上一动点,若将EBF △沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距离为______.【答案】13 【解析】【分析】连接PD ,DE,易得17DE,4EB AB AE =−=,由翻折可得4PE EB ==,由EP DP DE +≥可知,当E ,P ,D 三点共线时,DP 最小,进而可得出答案.【详解】解:连接PD ,DE ,四边形ABCD 为矩形, 90A ∴∠=°,15AD = ,8AE=,17DE ∴=,12AB = ,4EB AB AE ∴=−=,由翻折可得PE EB =,4PE ∴=,EP DP DE +≥ ,∴当E ,P ,D 三点共线时,DP 最小,17413DP DE EP ∴=−=−=最小值.故答案:13.【点睛】本题考查翻折变换(折叠问题)、矩形的性质,熟练掌握翻折的性质是解答本题的关键.三、解答题(62分)13. 某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,求该厂家一月份到三月份的口罩产量的月平均增长率.【答案】该厂家一月份到三月份的口罩产量的月平均增长率为30%.【解析】【分析】设该厂家一月份到三月份的口罩产量的月平均增长率为x ,根据一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,列出方程,解方程即可得到答案.【详解】解:设该厂家一月份到三月份的口罩产量的月平均增长率为x ,由题意得,()230150.7x +=解得10.3x =,1 2.3x =−(不合题意,舍去)∴该厂家一月份到三月份口罩产量的月平均增长率为30%.【点睛】此题考查了一元二次方程的应用,读懂题意,准确列出方程是解题的关键.14. “当你背单词时,阿拉斯加的鳕鱼正跃出水面;当你算数学时,南太平洋的海鸥正掠过海岸;当你晚自习时,地球的极圈正五彩斑斓;但少年,梦要你亲自实现,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现.”这是直播带货新平台“东方甄选”带货王董宇辉在推销鳕鱼时的台词.所推销鳕鱼的成本为每袋50元,当售价为每袋90元时,每分钟可销售100袋. 为了吸引更多顾客,“东方甄选”采取降价措施.据市场调查反映:销售单价每降1元,则每分钟可多销售10袋.(1)每袋鳕鱼的售价为多少元时,每分钟的销量为150袋?(2)“东方甄选”不忘公益初心,热心教育事业,其决定从每分钟利润中捐出500元帮助留守儿童,为为的了保证捐款后每分钟利润达到5500元,且要最大限度让利消费者,求此时鳕鱼销售单价为多少元?【答案】(1)每袋鳕鱼的售价为85元时,每分钟的销量为150袋.(2)鳕鱼的销售单价为70元.【解析】【分析】本题考查一元一次方程和一元二次方程的应用,解题的关键是根据题意,找到等量关系,列出方程,进行解答.(1)设每袋鳕鱼的售价为x 元,根据题意,则()1090100150x −+=,解出x ,即可; (2)设此时鳕鱼的销售单价为y 元,根据题意,则方程为()()5010901005005500y y −×−+−=,解出方程,即可.【小问1详解】解:设每袋鳕鱼的售价为x 元,每分钟的销售量为150袋,∴()1090100150x −+=, 解得:85x =,答:每袋鳕鱼的售价为85元时,每分钟的销售量为150袋.【小问2详解】解:设此时鳕鱼的销售单价为y 元,∴()()5010901005005500y y −×−+=, 解得:170y =,280y =,∵要最大限度让利消费者,∴70y =,答:此时鳕鱼的销售单价为70元.15. 某公司去年10月份的营业额为2500万元,按计划12月的营业额要达到3600万元,那么该公司11月、12月两个月营业额的月均增长率是多少?(请列方程解答)【答案】20%【解析】【分析】本题考查了一元二次方程应用中的增长率问题,找准等量关系,正确列出一元二次方程是解题的关键;根据该公司10月份和12月份的营业额,即可得到关于x 的一元二次方程,解方程取其正值即可.【详解】解:设该公司11月、12月两个月营业额的月均增长率是x ,根据题意得:的的()2250013600x += 解得:10.220%x ==,2 2.2x =−(不合题意,舍去),答:该公司11月、12月两个月营业额的月均增长率是20%.16. 如图,Rt ABC 中,90ACB ∠=°,点D ,E 分别是AB ,AC 的中点,点F 在BC 的延长线上,且CEF A ∠=∠.(1)求证:DE CF =;(2)若1BC =,3AB =,求四边形DCFE 的周长.【答案】(1)见解析 (2)4【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CD AD BD ==,进而证明四边形DCEF 是平行四边形,根据平行四边形的性质即可得证;(2)根据直角三角形斜边上的中线等于斜边的一半求得CD ,根据中位线的性质求得DE ,根据平行四边形的性质即可求解.【小问1详解】证明:90ACB ∠=° ,点D 是AB 中点,CD AD BD ∴==,DAC DCA ∴∠=∠,CEF A ∠=∠ ,CEF DCE ∴∠=∠,CD EF ∴∥,点E 是AC 中点,DE CF ∴∥,∴四边形DCEF 是平行四边形,DE CF ∴=;【小问2详解】解:1BC = ,3AB =,AD BD = ,AE CE =,1122DE BC CF ∴===, 3AB = ,四边形DCEF 是平行四边形,1322CD EF AB ∴===, ∴四边形DCFE 的周长为132422 +×=. 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线的性质,平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.17. 如图,ABCD 中,对角线AC 与BD 相交于点,E 点G 为AD 的中点,连接,CG CG 的延长线交BA 的延长线于点,F 连接FD .(1)求证:AGF DGC ≌;(2)若,120,AG AB BAD =∠=°判断四边形ACDF 的形状,并证明你的结论. 【答案】(1)见解析;(2)四边形ACDF 是矩形,理由见解析.【解析】【分析】(1)先根据平行四边形的性质和平行线的性质得出FAG GDC ∠=∠,然后利用ASA 即可证明;(2)首先根据全等三角形的性质得出AF CD =,进而可证四边形ACDF 是平行四边形,然后利用平行四边形的性质和角度之间的关系得出AFG 是等边三角形,则有AG GF =,进而得出AD FC =,最后利用对角线相等的平行四边形是矩形即可证明.【详解】()1证明: 四边形ABCD 是平行四边形,//AB CD ∴,FAG GDC ∴∠=∠.点G 是AD 的中点,GA GD ∴=.又AGF DGC ∠=∠ ,()AGF DGC ASA ∴≅ ;()2解:四边形ACDF 是矩形.理由:AGF DGC ≌,AF CD ∴=,FG CG =.又//AB CD ,∴四边形ACDF 是平行四边形.四边形ABCD 是平行四边形,AB CD ∴=,AB AF ∴=.又AG AB = ,AG AF ∴=.120BAD ∠=° ,60FAG ∴∠=°,AFG ∴ 是等边三角形,AG GF ∴=.2,2AD AG FC FG == ,AD FC ∴=,∴四边形ACDF 是矩形.【点睛】本题主要考查平行四边形的判定及性质,矩形的判定,全等三角形的判定及性质,等边三角形的判定及性质,掌握矩形的判定,全等三角形的判定及性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007学年第一学期九年级数学期中学业测试卷(考试时间:90分钟 满分120分)一、仔细选一选(本题共10小题,每小题3分,共30分)请选出你认为正确的一个选项填入答题卷相应的空格内。
1、若将函数y=2x 2的图象向右平移1个单位,再向上平移5个单位,可得到的抛物线解析式是( )(A)y=2(x-1)2-5 (B)y=2(x-1)2+5 (C)y=2(x+1)2-5 (D)y=2(x+1)2+52、已知圆心角∠BOC=100°,则圆周角∠BAC 的大小是( ) (A)50° (B)100° (C)130° (D)200°(第2题 3、边长为3cm 、4cm 、5cm 的三角形的外接圆半径等于( )cm(A )1.5 (B )2 (C )2.5 (D )2.4 4、下列各点中,在函数y=x2-上的是( )(A )(1,2) (B ) (0,-2) (C )(2,2-) (D )( -4, - 21) 5、已知扇形OBC 、OAD 的半径之间的关系是OB =21OA ,则BC ︵的长是AD ︵长的( ) (A )21倍 (B )2倍 (C )41倍 (D )4倍 第5题6、下列命题是真命题的有( )个。
①过弦的中点的直线必过圆心;②相等的圆心角所对的弧相等;③弦的垂线平分弦所对的弧;④若圆的一弦长等于圆半径,则其所对的圆周角是30°;⑤三点可以确定一个圆; (A) 1个 (B )2个 (C )0个 (D )3个 7、已知函数2y ax ax =+与函数(0)ay a x=<,则它们在同一坐标系中的大致图象是 ()第7题A BC DOC8、人民广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管最大高度为3米,此时喷水水平距离为12米,在如图所示的坐标系中,这支喷泉的函数关系式是( )A.2132y x ⎛⎫=--+ ⎪⎝⎭B.21312y x ⎛⎫=-+ ⎪⎝⎭C.21832y x ⎛⎫=--+ ⎪⎝⎭D.21832y x ⎛⎫=-++ ⎪⎝⎭9、如图,P (x,y )是以坐标原点为圆心、5为半径的圆周上的点,若x,y 都是整数,则这样的点P 共有( )个(A ) 8 (B ) 10 (C ) 12 (D )16第9题10、如图,在Rt △ABC 中∠ACB =90º,AC =6,AB =10,CD是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( ) (A )点P 在⊙O 内 (B )点P 在⊙O 上 (C )点P 在⊙O 外 (D )无法确定第10题二、认真填一填(本题共6小题,每小题4分,共24分)要注意认真看清题目的条件和要求,把答案完整地填入相应的横线上。
11、已知电灯电路两端的电压U 是220伏,设电灯内钨丝的电阻为R 欧,通过的电流强度为I 安,则I 关于R 的函数解析式为 ,自变量R 的取值范围是 。
12、函数y=-x 2+2x+3化成y=a(x+m)2+k 的形式是 。
13、“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题: “今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如图,CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE=1,AB=10,求CD 的长”。
根据题意可得CD 的长为 。
14、用半径为12厘米,圆心角为150度的扇形做一个圆锥模型的侧面,则此圆锥的底面半径是 。
15、设关于x 一次函数y=a 1x+b 1与y=a 2x+b 2,称函数y=m(a 1x+b 1)+n(a 2x+b 2)(其中m+n=1)为这两个函数的生成函数。
则当x=1时,函数y=x+2与y=3x 的生成函数的值为 。
第8题16、△ABC 的三个顶点在半径为2的圆上,BC=23,则∠A 的度数是 。
三、全面答一答(本题有8小题,共66分)尽可能完整地写出解答过程,有困难的题写出一部分解答也可以,解答过程写在答题卷相应的题号后。
17、(本小题满分6分)已知反比例函数xky =的图象与一次函数m x y +=3的图象相交于点(1,5)。
(1)求这两个函数的解析式;(2)求这两个函数图象的另一个交点的坐标。
18、(本小题满分6分)已知∠ABC ,用直尺和圆规作⊙O ,使其经过A 、B 两点,且点O到∠BAC 两边的距离相等。
(写出作法,并保留作图痕迹)第18题19、(本小题满分6分)已知二次函数经过(0,6),(-1,-8),(1,0)三点,求此二次函数的解析式并求当x 取何值时,y 随着x 的增大而增大? 20、(本小题满分8分)NBA 的一场篮球比赛中,一队员正在投篮,设篮球的运动的路线为抛物线(如图),其解析式为y=-51x 2+x+49。
(1)这次投篮中球在空中飞行的水平距离是多少米时高度达到最大,最大高度是多少米?(2)若投篮时出手地点与篮圈中心的水平距离为4米,篮圈距地面3.05米,问此球能否准确投中?(不考虑其它因素)第20题21、(本小题满分6分)已知:如图,等边△ABC 的三个顶点在圆上,D 是弧BC 上任意一点,在AD 上截取AE=BD ,连结CE 。
求证:(1)△ACE ≌△BCD ;(2)AD=BD+CD第21题22、(本小题满分8分)用长为8米的铝合金制成如图窗框,问窗框的宽和高各是多少米时,窗户的透光面积最大?最大面积是多少?第22题23、(本小题满分12分)如图,在平面直角坐标系中,以点M (0,2)为圆心,以4为半径作⊙M 交x 轴于A 、B 两点,交y 轴与C 、D 两点,连结AM 并延长交⊙M 于点P ,连结PC 交x 轴于E 。
(1)求直线CP 的解析式;(2)求弓形ACB 和△ACP 的面积。
第23题24、(本小题满分12分)如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交 抛物线与E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F , 使A 、C 、F 、G 这样的四个点为顶点的四边形是 平行四边形?如果存在,直接写出所有满足条件的F 点坐标;如果不存在,请说明理由.第24题2007学年第一学期九年级数学期中学业测试卷(考试时间:90分钟满分120分)一、仔细选一选(本题共10小题,每小题3分,共30分)请选出你认为正确的一个选项填入答题卷相应的空格内。
题号 1 2 3 4 5 6 7 8 9 10 答案二、认真填一填(本题共6小题,每小题4分,共24分)要注意认真看清题目的条件和要求,把答案完整地填入相应的横线上。
11、、;12、;13、;14、;15、;16、。
三、全面答一答(本题有8小题,共66分)尽可能完整地写出解答过程,有困难的题写出一部分解答也可以,解答过程写在答题卷相应的题号后。
17、(本小题满分6分)18、(本小题满分6分) B.AC19、(本小题满分6分)20、(本小题满分6分)21、(本小题满分8分)22、(本小题满分8分)23、(本小题满分12分)24、(本小题满分12分)2007学年第一学期九年级数学期中学业测试卷(考试时间:90分钟 满分120分)一、仔细选一选(本题共10小题,每小题3分,共30分)请选出你认为正确的一个选项填入答题卷相应的空格内。
题号 1 2 3 4 5 6 7 8 9 10 答案BACCACBCCA二、认真填一填(本题共6小题,每小题4分,共24分)要注意认真看清题目的条件和要求,把答案完整地填入相应的横线上。
11、RI 220=、 R ﹥0 ;12、 y=-(x-1)2+4 ; 13、 26 ;14、 5cm ; 15、 3 ; 16、 60°或120° 。
三、全面答一答(本题有8小题,共66分)尽可能完整地写出解答过程,有困难的题写出一部分解答也可以,解答过程写在答题卷相应的题号后。
17、(本小题满分6分)解:(1)∵ 点A (1,5)在反比例函数xky =的图象上 有15k =,即5=k ∴ 反比例函数的解析式为xy 5=(2分)又∵ 点A (1,5)在一次函数m x y +=3的图象上 有m +=35 ∴ 2=m∴ 一次函数的解析式为23+=x y (2分) (2)由题意可得⎪⎩⎪⎨⎧+==235x y x y 解得⎩⎨⎧==5111y x 或⎪⎩⎪⎨⎧-=-=33522y x ∴ 这两个函数图象的另一个交点的坐标为)3,35(--(2分) 18、(本小题满分6分)解:作法:(1)作线段AB 的中垂线l 1;(2)作∠ABC 的角平分线l 2,交于点O ; (3)以O 为圆心,OA 为半径作⊙O 。
∴如图 ⊙O 是所求的图形。
(图形基本准确得3分,作法2分,结论1分)姓名 班级 试场号 座位号19、(本小题满分6分)解、设二次函数的解析式为y=ax 2+bx+c 把(0,6)(-1,-8)(1,0)分别代人得 C=6a-b+c=-8 (2分) a+b+c=0解得 a=-10b=4 (2分) c=6∴所求的解析式为y= -10x 2+4x+6 (1分) 当x ≦51时,y 随着x 的增大而增大. (1分) 20、(本小题满分6分) 解:(1)配方得y= -51(x-51)2+27 ∴这次投篮,球在空中飞行的水平距离为2.5米时,达到最大高度为3.5米。
(4分) (2)把x=4代入解析式得y=3.05 (1分)答:此球能准确投中。
(1分) 21、(本小题满分8分) 证明:(1)∵⊿ABC 是等边三角形∴AC=BC∵∠DBC=∠DAC ,AE=BD∴⊿ACE ≌⊿BCD (3分) (2)∵⊿ACE ≌⊿BCD∴ EC=CD ,AE=BD ,∠DCB=∠ACE (1分) ∵∠ACB=60° ∴∠ECD=60°∴⊿DCE 是等边三角形 (2分) ∴DC=DE∴AD=AE+DE=BD+CD (2分)22、(本小题满分8分)解:设窗框的宽为x 米,面积为y 平方米 则由题意得窗框的高为238x- 米 (1分) ∴y=x ×238x -=-23x 2+4x (2分) =-23 (x-34)2+38(2分)∵x=34在x 的允许值范围内 ∴当x=34时,y 最大值为38 (2分)答:当窗框的宽为34米,高2米时,窗户的透光面积最大,最大面积是38平方米。