人教版七年级数学下册寒假预习自查习题:5.3《平行线的性质》 含答案
2022-2023学年人教版七年级数学下册《5-3平行线的性质》解答题专题训练(附答案)
2022-2023学年人教版七年级数学下册《5.3平行线的性质》解答题专题训练(附答案)1.如图,直线AB∥CD,∠1=70°,∠D=110°,求∠B的度数.阅读下面的解答过程,并填空(理由或数学式).解:∵AB∥CD(已知),∴∠1=.又∵∠1=70°,∠D=110°(已知),∴∠1+∠D=180°(等式的性质).∴∠C+∠D=180°.∴∥.∴∠B=.∴∠B=70°.2.如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°()又,∵∠1=∠B(已知)∴(同位角相等,两直线平行)∴∠AFB=∠AOE()∴∠AFB=90°()又,∵∠AFC+∠AFB+∠2=180°(平角的定义)∴∠AFC+∠2=()°又∵∠A+∠2=90°(已知)∴∠A=∠AFC()∴AB∥CD.(内错角相等,两直线平行)3.如图,已知点D是△ABC中BC边上的一点,DE⊥AC于点E,∠AGF=∠ABC,∠1+∠2=180°.(1)求证:DE∥BF;(2)若AF=3,AB=4,求BF的长.4.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数,请将解题过程填写完整.解:∵EF∥AD(已知),∴∠2=(),又∵∠1=∠2(已知),∴∠1=∠3(),∴AB∥DG()∴∠BAC+=180°(),∵∠BAC=70°(已知),∴∠AGD=110°5.如图,点O在直线AB上,OC⊥OD,∠D与∠1互余.(1)求证:ED∥AB;(2)OF平分∠AOD交DE于点F,若∠OFD=65°,补全图形,并求∠1的度数.6.如图,BC∥DE,∠E+∠B=180°,则AB和EF的位置关系是什么?请说明理由.7.填空:(请补全下列证明过程及括号内的推理依据)已知:如图,∠1=∠2,∠C=∠D,求证:∠A=∠F.证明:∵∠1=∠2(已知),∠1=∠3(),∴∠2=∠3(等量代换).∴BD∥CE().∴∠D=∠().又∵∠C=∠D(已知),∴∠C=∠(等量代换).∴∥().∴∠A=∠F().8.如图,已知AD⊥BC,EF⊥BC,垂足分别为D、F,∠2+∠3=180°,试说明:∠GDC =∠B.请补充说明过程,并在括号内填上相应的理由.解:∵AD⊥BC,EF⊥BC(已知)∴∠ADB=∠EFB=90°(),∴EF∥AD(),∴+∠2=180°().又∵∠2+∠3=180°(已知),∴∠1=∠3(),∴AB∥(),∴∠GDC=∠B().9.如图,若∠DAE=∠E,∠B=∠D,那么AB∥DC吗?请在下面的解答过程中填空或在括号内填写理由.解:理由如下:∵∠DAE=∠E,()∴∥BE,()∴∠D=∠DCE.()又∵∠B=∠D,()∴∠B=.(等量代换)∴∥,(同位角相等,两直线平行)10.如图,∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)求证:AD∥BC;(2)求证:AB∥EF;(3)若AF平分∠BAD,求证:∠E+∠F=90°.11.已知:如图,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠1=∠AEG.(1)求证:AB∥CD;(2)若∠1=40°,求∠2的度数.12.已知AB∥CD,直线CG交AB,CD于A,C,AF为∠GAB的角平分线,CE为∠ACD 的角平分线,证明:AF∥CE.13.如图,AC与AB、CD相交于点A、C,AE平分∠CAB交CD于点E,∠ACD=40°,∠BAE=70°.试判断直线AB与CD的位置关系,并说明理由.14.如图,在△ABC中,点D,E分别在AB,AC上,点G,F在CB上,连接ED,EF,GD.∠1+∠2=180°,∠B=∠3.(1)求证:DE∥BC;(2)若∠C=76°,∠AED=2∠3,求∠CEF的度数.15.如图,已知∠1=∠BDC,∠2+∠3=180°.(1)AD与EC平行吗?试说明理由.(2)若DA平分∠BDC,DA⊥F A于点A,∠1=82°,试求∠F AB的度数.16.如图,直线AC分别与直线MN、直线GH相交于点A、C,AB平分∠NAC,CD平分∠ACG,且AB∥CD.求证:MN∥GH.17.如图,在三角形ABC中,点D,E分别在AB,BC上,且DE∥AC,∠1=∠2.(1)AF与BC平行吗?为什么?(2)若AC平分∠BAF,∠B=36°,求∠1的度数.18.如图,在△ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,EF与GD的延长线交于点H,∠CDG=∠B,∠1+∠FEA=180°.求证:(1)EH∥AD;(2)∠BAD=∠H.19.如图,已知AB∥CD∥EF.(1)∠x=60°,∠y=150°,求∠z的度数.(2)猜想∠x、∠y、∠z三者之间的关系并加说明.20.已知直线BC∥ED.(1)如图1,若点A在直线DE上,且∠B=44°,∠EAC=57°,求∠BAC的度数;(2)如图2,若点A是直线DE的上方一点,点G在BC的延长线上,求证:∠ACG=∠BAC+∠ABC;(3)如图3,FH平分∠AFE,CH平分∠ACG,且∠FHC比∠A的2倍少60°,直接写出∠A的度数.参考答案1.解:∵AB∥CD(已知),∴∠1=∠C.又∵∠1=70°,∠D=110°(已知),∴∠1+∠D=180°(等式的性质).∴∠C+∠D=180°(等量代换),∴AC∥BD,∴∠B=∠1,∴∠B=70°,故答案为:∠C,(等量代换),AC,BD,∠1.2.证明:∵AF⊥CE(已知),∴∠AOE=90°(垂直的定义).又∵∠1=∠B(已知),∴CE∥BF(同位角相等,两直线平行),∴∠AFB=∠AOE(两直线平行,同位角相等),∴∠AFB=90°(等量代换).又∵∠AFC+∠AFB+∠2=180°(平角的定义),∴∠AFC+∠2=90°.又∵∠A+∠2=90°(已知),∴∠A=∠AFC(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).故答案为:垂直的定义;CE∥BF;已知;两直线平行,同位角相等;等量代换;90;同角的余角相等.3.(1)证明:∵∠AGF=∠ABC,∴FG∥CB,∴∠1=∠3,又∵∠1+∠2=180°,∴∠2+∠3=180°,∴DE∥BF;(2)解:∵DE⊥AC,∴∠DEA=90°,∵DE∥BF,∴∠BF A=∠DEA=90°,∵AF=3,AB=4,∴BF===.4.解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°(已知),∴∠AGD=110°,故答案为:∠3;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;∠DGA;两直线平行,同旁内角互补.5.(1)证明:∵OC⊥OD,∴∠COD=90°,∴∠1+∠DOB=90°,∵∠D与∠1互余,∴∠D+∠1=90°,∴∠D=∠DOB,∴ED∥AB;(2)解:如图,∵ED∥AB,∠OFD=65°,∴∠AOF=∠OFD=65°,∵OF平分∠AOD,∴∠AOD=2∠AOF=130°,∵∠COD=90°,∠AOD=∠1+∠COD,∴∠1=40°.6.解:AB∥EF,理由如下:∵BC∥DE,∴∠E+∠BFE=180°,∵∠E+∠B=180°,∴∠B=∠BFE,∴AB∥EF.7.证明:∵∠1=∠2 (已知),∠1=∠3(对顶角相等),∴∠2=∠3(等量代换),∴BD∥CE(同位角相等,两直线平行),∴∠D=∠4 (两直线平行,同位角相等),又∵∠C=∠D(已知),∴∠C=∠4(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:对顶角相等;同位角相等,两直线平行;4;两直线平行,同位角相等;4;DF;AC;内错角相等,两直线平行;两直线平行,内错角相等.8.解:∵AD⊥BC,EF⊥BC(已知)∴∠ADB=∠EFB=90°(垂直的定义),∴EF∥AD(同位角相等两直线平行),∴∠1+∠2=180°(两直线平行同旁内角互补),又∵∠2+∠3=180°(已知),∴∠1=∠3 (同角的补角相等),∴AB∥DG(内错角相等两直线平行),∴∠GDC=∠B(两直线平行同位角相等).故答案为:垂直的定义,同位角相等两直线平行,∠1,两直线平行同旁内角互补,同角的补角相等,DG,内错角相等两直线平行,两直线平行同位角相等.9.解:∵∠DAE=∠E,(已知)∴AD∥BE,(内错角相等,两直线平行)∴∠D=∠DCE.(两直线平行,内错角相等)又∵∠B=∠D,(已知)∴∠B=DCE.(等量代换)∴AB∥DC,(同位角相等,两直线平行)故答案为:已知;AD,内错角相等,两直线平行;两直线平行,内错角相等;已知;∠DCE;AB,DC.10.证明:(1)∵∠ADE+∠BCF=180°,∠ADE+∠ADF=180°,∴∠ADF=∠BCF,∴AD∥BC;(2)∵BE平分∠ABC,∴∠ABC=2∠ABE,∵∠ABC=2∠E,∴∠ABE=∠E,∴AB∥EF;(3)∵AD∥BC,∴∠DAB+∠ABC=180°,∵BE平分∠ABC,AF平分∠BAD,∴∠ABE=ABC,∠BAF=∠BAD,∴∠ABE+∠BAF=90°,∴∠AOB=180°﹣90°=90°=∠EOF,∴∠E+∠F=180°﹣∠EOF=90°.11.(1)证明:∵∠1=∠AEG,∴AB∥CD;(2)解:∵EG平分∠AEF,∴∠AEF=2∠AEG,∵∠1=∠AEG,∠1=40°,∴∠AEF=2∠1=80°,∵AB CD,∴∠2=∠AEF=80°.12.证明:∵AB∥CD,∴∠GAB=∠ACD,∵AF为∠GAB的角平分线,CE为∠ACD的角平分线,∴,∴∠GAF=∠ACE,∴AF∥CE.13.解:AB∥CD,理由如下:∵AE平分∠CAB,∠BAE=70°,∴∠BAC=2∠BAE=2×70°=140°,∵∠ACD=40°,∴∠BAC+∠ACD=140°+40°=180°,∴AB∥CD.14.(1)证明:∵∠1+∠2=180°,∠2=∠4,∴∠1+∠4=180°,∴AB∥EF,∴∠B=∠EFC,∵∠B=∠3,∴∠3=∠EFC,∴DE∥BC;(2)解:∵DE∥BC,∠C=76°,∴∠C+∠DEC=180°,∠AED=∠C=76°,∵∠AED=2∠3,∴∠3=38°,∵∠DEC=180°﹣∠C=104°,∴∠CEF=180°﹣∠C﹣∠3=180°﹣76°﹣38°=66°.15.(1)解:AD与EC平行,理由如下:∵∠1=∠BDC,∴AB∥CD(同位角相等,两直线平行),∴∠2=∠ADC(两直线平行,内错角相等),∵∠2+∠3=180°,∴∠ADC+∠3=180°(等量代换),∴AD∥CE(同旁内角互补,两直线平行);(2)解:∵∠1=∠BDC,∠1=82°,∴∠BDC=82°,∵DA平分∠BDC,∴∠ADC=∠BDC=41°(角平分线定义),∴∠2=∠ADC=41°(已证),又∵DA⊥F A,∴∠F AD=90°(垂直定义),∴∠F AB=∠F AD﹣∠2=90°﹣41°=49°.16.证明:∵AB∥CD,∴∠BAC=∠ACD,∵AB平分∠NAC,CD平分∠ACG,∴∠CAN=2∠BAC,∠ACG=2∠ACD,∴∠CAN=∠ACG,∴MN∥GH.17.解:(1)AF∥BC,理由如下:∵DE∥AC,∴∠1=∠C,∵∠1=∠2,∴∠C=∠2,∴AF∥BC;(2)∵AF∥BC,∴∠B+∠BAF=180°,∵∠B=36°,∴∠BAF=144°,∵AC平分∠BAF,∴,∵∠1=∠2,∴∠1=72°.18.证明:(1)∵∠CDG=∠B,∴DG∥AB,∴∠1=∠BAD,∵∠1+∠FEA=180°,∴∠BAD+∠FEA=180°,∴EH∥AD;(2)由(1)得:∠1=∠BAD,EH∥AD,∴∠1=∠H,∴∠BAD=∠H.19.解:(1)∵CD∥EF,∠y=150°,∴∠CEF=180°﹣∠y=30°,∵AB∥EF,∴∠x=∠AEF=∠z+∠CEF,∵∠CEF=30°,∠x=60°,∴∠z+30°=60°,∴∠z=30°,∴∠z的度数为30°;(2)∠x+∠y﹣∠z=180°,理由如下:由(1)可知,∠CEF=180°﹣∠y,∠x=∠AEF=∠z+∠CEF,即∠CEF=∠x﹣∠z,∴180°﹣∠y=∠x﹣∠z,整理得:∠x+∠y﹣∠z=180°.20.解:(1)∵BC∥ED,∠B=44°,∴∠DAB=∠B=44°,∵∠BAC=180°﹣∠DAB﹣∠EAC∴∠BAC=180°﹣44°﹣57°=79°.(2)过点A作MN∥BG,∴∠ACG=∠MAC,∠ABC=∠MAB而∠MAC=∠MAB+∠BAC∴∠ACG=∠MAB+∠BAC=∠ABC+∠BAC.(3)如图,设AC与FH交于点P∵FH平分∠AFE,CH平分∠ACG∴∠AFH=∠EFH=∠AFE,∠ACH=∠HCG=∠ACG ∵BC∥ED∴∠AFE=∠B∴∠AFH=∠B∵∠A+∠B=∠ACG∴∠ACH=∠ACG=∠A+∠B在△APF和△CPH中∵∠APF=∠CPH∴∠A+∠B=∠A+∠B+∠FHC∴∠FHC=∠A∵∠FHC=2∠A﹣60°∴∠A=2∠A﹣60°∴∠A=40°.。
2022-2023学年人教版七年级数学下册《5-3平行线的性质》同步练习题(附答案)
2022-2023学年人教版七年级数学下册《5.3平行线的性质》同步练习题(附答案)一.选择题1.如图,AB∥EC,则下列结论正确的是()A.∠A=∠ECD B.∠A=∠ACE C.∠B=∠ACE D.∠B=∠ACB 2.如图,已知AB∥EF,DE∥BC,则与∠1相等的角有()A.1个B.2个C.3个D.4个3.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°4.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°5.如图,直线a∥b,直线c与a、b相交,∠1=55°,则∠2=()6.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°7.如图,直线a,b,a∥b,点C在直线b上,∠DCB=90°,若∠1=70°,则∠2的度数为()A.20°B.25°C.30°D.40°8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是66°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B是()A.87°B.93°C.39°D.109°9.一艘轮船从A港出发,沿着北偏东63°的方向航行,行驶至B处时发现前方有暗礁,所以转向北偏西27°方向航行,到达C后需要把航向恢复到出发时的航向,此时轮船航行的航向向顺时针方向转过的度数为()10.一把直尺与一块直角三角板按如图方式摆放,若∠1=47°,则∠2=()A.40°B.43°C.45°D.47°二.填空题(共6小题)11.如图,已知AB∥CD,CE平分∠ACD,交AB于点B,∠ABE=150°,则∠A为.12.如图,AB∥DE,FC⊥CD于点C,∠ABC=107°,∠CDE=130°,点G在BC的延长线上,则∠FCG的度数是.13.如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=.14.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°),按如图所示放置,若∠1=55°,则∠2的度数为.15.如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=.16.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是度.三.解答题(共6小题)17.如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.18.如图,MN∥BC,BD⊥DC,∠1=∠2=60°.(1)AB与DE平行吗?请说明理由;(2)若DC是∠NDE的平分线.①试说明∠ABC=∠C;②试说明BD是∠ABC的平分线.19.如图所示,已知AB∥CD,分别探讨下面四个图形中,∠APC,∠P AB与∠PCD的关系.20.如图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.21.如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.22.如图,已知AB∥ED,∠C=90°,∠ABC=∠DEF,∠D=130°,∠F=100°,求∠E的大小.参考答案一.选择题1.解:∵AB∥EC,∴∠A=∠ACE,∠B=∠ECD.故选:B.2.解:如图所示,与∠1相等的角有∠B、∠DEF、∠EFC共3个,故选:C.3.解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.4.解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选:B.5.解:∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,又∵∠2=∠3,∴∠2=55°,故选:A.6.解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得,∠DGH=∠DGE=74°,∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°,故选:D.7.解:∵∠1=70°,∠1与∠3是对顶角,∴∠3=∠1=70°.∵a∥b,点C在直线b上,∠DCB=90°,∴∠2+∠DCB+∠3=180°,∴∠2=180°﹣∠3﹣∠DCB=180°﹣70°﹣90°=20°.故选:A.8.解:如图:过B作直线b平行于拐弯之前的道路a,由平行线的传递性得a∥b∥c,∵a∥b,∴∠A=∠1=66°,∵b∥c,∴∠2=180°﹣∠C=180°﹣153°=27°,∴∠ABC=∠1+∠2=66°+27°=93°.故选:B.9.解:根据题意,得AE∥BF,AM∥CN;∠A=63°,∠FBC=27°.∵AE∥BF,∴∠1=∠A=63°.∵AM∥CN,∴∠DCN=∠DBM=∠1+∠FBC=63°+27°=90°.故选:C.10.解:方法1:如图,∵∠1=47°,∠4=45°,∴∠3=∠1+∠4=92°,∵矩形对边平行,∴∠5=∠3=92°,∵∠6=45°,∴∠2=180°﹣45°﹣92°=43°.方法2:如图,作矩形两边的平行线,∵矩形对边平行,∴∠3=∠1=47°,∵∠3+∠4=90°,∴∠4=90°﹣47°=43°∴∠2=∠4=43°.故选:B.二.填空题11.解:∠ABC=180°﹣∠ABE=180°﹣150°=30.∵AB∥CD,∴∠BCD=∠ABC=30°.∵CE平分∠ACD,∴∠ACD=2∠BCD=60°.∴∠A=180°﹣∠ACD=180°﹣60°=120°.故答案为:120°.12.解:过点C作CH∥AB∴∠GCH=∠ABC=107°∴∠HCD+∠CDE=180°∴∠HCD=180°﹣130°=50°∴∠GCD=∠GCH﹣∠HCD=107°﹣50°=57°∴∠FCG=90°﹣57°=33°.故答案为33°.13.解:∵直线a∥b,∠1=45°,∴∠3=45°,∴∠2=180°﹣45°=135°.故答案为:135°.14.解:∵∠1=55°,∠A=60°,∴∠3=∠4=65°,∵a∥b,∴∠4+∠2=180°,∴∠2=115°.故答案为:115°.15.解:∵∠1=130°,∴∠3=50°,又∵l1∥l2,∴∠BDC=50°,又∵∠ADB=30°,∴∠2=20°,故答案为:20°.16.解:如图2,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.故答案为90.三.解答题17.解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.18.解:(1)AB∥DE,理由如下:∵MN∥BC,(已知)∴∠ABC=∠1=60°.(两直线平行,内错角相等)又∵∠1=∠2,(已知)∴∠ABC=∠2.(等量代换)∴AB∥DE.(同位角相等,两直线平行);(2)①∵MN∥BC,∴∠NDE+∠2=180°,∴∠NDE=180°﹣∠2=180°﹣60°=120°.∵DC是∠NDE的平分线,∴∠EDC=∠NDC=∠NDE=60°.∵MN∥BC,∴∠C=∠NDC=60°.∴∠ABC=∠C.②∠ADC=180°﹣∠NDC=180°﹣60°=120°,∵BD⊥DC,∴∠BDC=90°.∴∠ADB=∠ADC﹣∠BDC=120°﹣90°=30°.∵MN∥BC,∴∠DBC=∠ADB=30°.∴∠ABD=∠DBC=∠ABC.∴BD是∠ABC的平分线.19.解:图1:∠APC=∠P AB+∠PCD.理由:过点P作PE∥AB,∵AB∥CD,∴AB∥PE∥CD(平行线的传递性),∴∠1=∠A,∠2=∠C,∴∠APC=∠1+∠2=∠P AB+∠PCD,即∠APC=∠P AB+∠PCD;图2:∠APC+∠P AB+∠PCD=360°.理由:过点P作PE∥AB.∵AB∥CD,∴AB∥PE∥CD(平行线的传递性),∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠1+∠2+∠C=360°,∴∠APC+∠P AB+∠PCD=360°;图3:∠APC=∠PCD﹣∠P AB.理由:延长DC交AP于点E.∵AB∥CD,∴∠1=∠P AB(两直线平行,同位角相等);又∵∠PCD=∠1+∠APC,∴∠APC=∠PCD﹣∠P AB;图4:∴∠P AB=∠APC+∠PCD.理由:∵AB∥CD,∴∠1=∠P AB(两直线平行,内错角相等);又∵∠1=∠APC+∠PCD,∴∠P AB=∠APC+∠PCD.20.解:∵AC丄AB,∴∠BAC=90°,∵∠1=60°,∴∠B=180°﹣∠1﹣∠BAC=30°,∵a∥b,∴∠2=∠B=30°.21.证明:∵∠BAP+∠APD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行).∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠FP A=∠EAP,∴AE∥PF(内错角相等,两直线平行).∴∠E=∠F(两直线平行,内错角相等).22.解:延长DC、AB交于G,∵ED∥AB,∠D=130°,∴∠G=50°,又∵∠BCD=90°,∠BCD=∠G+∠CBG,∴∠CBG=40°,∴∠ABC=140°,∴∠E=∠ABC=140°.。
七年级数学下册 5.3平行线的性质(八大题型)(解析版 )
七年级下册数学《第五章相交线与平行线》5.3平行线的性质平行线性质定理性质定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.几何语言表示:∵a∥b(已知),∴∠2=∠3(两直线平行,同位角相等).性质定理2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,同位角相等.几何语言表示:∵a∥b(已知),∴∠2=∠4.(两直线平行,内错角相等).性质定理3:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.几何语言表示:∵a∥b(已知),∴∠1+∠2=180°(同旁内角互补,两直线平行).平行线的判定与性质(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别:区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.概念:判断一件事情的语句,叫做命题.【注意】(1).只要对一件事情作出了判断,不管正确与否,都是命题.(2).如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.命题的组成每个命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.【注意】在改写成“如果……那么……”的形式时,需对命题的语序进行调整或增减词语,使句子完整通顺,但不改变原意.真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题;假命题:题设成立时,不能保证结论一定成立,这样的命题叫做假命题.【注意】判断一个命题是假命题,只要举出一个反例,它符合命题的题设,但不满足结论就可以了.定理:经过推理证实的真命题叫做定理,定理可以作为继续推理论证的依据.【拓展】数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.如直线公理:两点确定一条直线.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.()2=a(a≥0)(任何一个非负数都可以写成一个数的平方的形式).【注意】(1)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.(2).定理一定是真命题,但真命题不一定是定理.证明的一般步骤:①根据题意画出图形;②依据题设、结论,结合图形,写出已知、求证;③经过分析,找出由已知条件推出结论的方法,或依据结论探寻所需要的条件,再由题设进行挖掘,寻求证明的途径;④书写证明过程.是()A.40°B.50°C.60°D.70°【分析】由垂线可得∠ACB=90°,从而可求得∠B的度数,再结合平行线的性质即可求∠BCD的度数.【解答】解:∵BC⊥AE,∴∠ACB=90°,∵∠A=50°,∴∠B=180°﹣∠ACB﹣∠A=40°,∵CD∥AB,∴∠BCD=∠B=40°.故选:A.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.解题技巧提炼两直线平行时,应联想到平行线的三个性质,由两条直线平行的位置关系得到两个相关角的数量关系,由角的关系求相应角的度数.【变式1-1】(2023秋•简阳市期末)如图,a∥b,∠1=40°,∠2=∠3,则∠4=()A.70°B.110°C.140°D.150°【分析】先根据a∥b,∠1=40°得出∠2+∠3的度数,由平角的定义得出∠5的度数,再由∠2=∠3得出∠2的度数,再得出∠2+∠5的度数,进而可得出结论.【解答】解:∵a∥b,∠1=40°,∴∠2+∠3=180°﹣40°=140°,∴∠5=180°﹣140°=40°,∵∠2=∠3,∴∠2=70°,∴∠2+∠5=70°+40°=110°,∴∠4=∠2+∠5=110°.故选:B.【点评】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.【变式1-2】(2022春•五莲县期末)如图,已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,则∠BCD的度数为()A.10°B.15°C.20°D.35°【分析】由AB∥CF,∠ABC=70°,易求∠BCF,又DE∥CF,∠CDE=130°,那么易求∠DCF,于是∠BCD=∠BCF﹣∠DCF可求.【解答】解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.故选:C.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等;两直线平行,同旁内角互补.【变式1-3】(2021秋•霍州市期末)如图,如果AB∥EF、EF∥CD,若∠1=50°,则∠2+∠3的和是()A.200°B.210°C.220°D.230°【分析】由平行线的性质可用∠2、∠3分别表示出∠BOE和∠COF,再由平角的定义可得出答案.【解答】解:∵AB∥EF,∴∠2+∠BOE=180°,∴∠BOE=180°﹣∠2,同理可得∠COF=180°﹣∠3,∵O在EF上,∴∠BOE+∠1+∠COF=180°,∴180°﹣∠2+∠1+180°﹣∠3=180°,∴∠2+∠3=180°+∠1=180°+50°=230°,故选:D.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.【变式1-4】(2022秋•安岳县期末)已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为.【分析】①图1时,由两直线平行,同位角相等,等量代换和角的和差计算出∠2的度数为40°;②图2时,同两直线平行,内错角相等,两直线平行,同旁内角互补,等量代换和角的和差计算出∠2的度数为140°.【解答】解:①若∠1与∠2位置如图1所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2=∠3,∴∠1=∠2,又∵∠1=40°,∴∠2=40°;②若∠1与∠2位置如图2所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2+∠3=180°,∴∠2+∠1=180°,又∵∠1=40°∴∠2=180°﹣∠1=180°﹣40°=140°,综合所述:∠2的度数为40°或140°,故答案为:40°或140°.【点评】本题综合考查了平行线的性质,角的和差,等量代换,邻补角性质,对顶角性质等相关知识点,重点掌握平行线的性质,难点是两个角的两边分别平行是射线平行,分类画出符合题意的图形后计算.【变式1-5】(2022春•海淀区月考)如图,点C在∠MON的一边OM上,过点C的直线AB∥ON,CD 平分∠ACM.当∠DCM=60°时,求∠O的度数.【分析】根据角平分线的定义,即可得到∠ACM的度数,进而得出∠OCB的度数,再依据平行线的性质,即可得到∠O的度数.【解答】解:∵CD平分∠ACM,∴∠ACM=2∠DCM.∵∠DCM=60°,∴∠ACM=120°.∵直线AB与OM交于点C,∴∠OCB=∠ACM=120°(对顶角相等),∵AB∥ON,∴∠O+∠OCB=180°(两直线平行,同旁内角互补),∴∠O=60°.【点评】本题主要考查了角的计算,平行线的性质以及角平分线的定义.解题的关键是熟练掌握平行线的性质:两直线平行,同旁内角互补.【变式1-6】(2023秋•海门区期末)如图,直线CE,DF相交于点P,且CE∥OB,DF∥OA.(1)若∠AOB=45°,求∠PDB的度数;(2)若∠CPD=45°,求∠AOB的度数;(3)像(1)(2)中的∠AOB,∠CPD称四边形PCOD的一组“对角”,则该四边形的另一组对角相等吗?请说明理由.【分析】(1)根据两直线平行,同位角相等即可求得答案;(2)根据两直线平行,同位角相等及两直线平行,内错角相等即可求得答案;(3)根据两直线平行,同旁内角互补即可证得结论.【解答】解:(1)∵DF∥OA,∠AOB=45°,∴∠PDB=∠AOB=45°;(2)∵CE∥OB,∴∠CPD=∠PDB,∵DF∥OA,∴∠PDB=∠AOB,∴∠AOB=∠CPD,∵∠CPD=45°,∴∠AOB=45°;(3)相等,理由如下:∵CE∥OB,DF∥OA,∴∠OCP+∠AOB=180°,∠CPD+∠ODP=180°,∵∠AOB=∠CPD,∴∠OCP=∠ODP.【点评】本题考查平行线性质,熟练掌握并利用平行线的性质是解题的关键.【变式1-7】(2021春•黄冈期中)如图,DB∥FG∥EC,A是FG上的一点,∠ADB=60°,∠ACE=36°,AP平分∠CAD,求∠PAG的度数.【分析】根据平行线的性质,可以得到∠DAG和∠CAG度数,然后根据AP平分∠CAD,即可得到∠PAG 的度数.【解答】解:∵DB∥FG∥EC,∴∠BDA=∠DAG,∠ACE=∠CAG,∵∠ADB=60°,∠ACE=36°,∴∠DAG=60°,∠CAG=36°,∴∠DAC=96°,∵AP平分∠CAD,∴∠CAP=48°,∴∠PAG=12°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-8】(2023秋•原阳县校级期末)如图,已知AB∥CD,BE平分∠ABC.BE垂直于CE,求证:CE平分∠BCD.【分析】过E作EF∥AB交BC于点F,根据平行线的性质可求得∠ABC+∠BCD=180°,再结合垂线的定义可得∠ABE+∠DCE=90°,∠EBC+∠ECB=90°,再利用角平分线的定义可证明结论.【解答】证明:过E作EF∥AB交BC于点F,∴∠ABE=∠FEB,∵AB∥CD,∴EF∥CD,∠ABC+∠BCD=180°,∴∠DCE=∠FEC,∵BE⊥CE,∴∠BEF+∠CEF=∠ABE+∠DCE=90°,∴∠EBC+∠ECB=90°,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DCE=∠BCE,∴CE平分∠BCD.【点评】本题主要考查平行线的性质,角平分线的定义,垂线的定义,证明∠ABE+∠DCE=90°,∠EBC+∠ECB=90°是解题的关键.【例题2】已知,如图所示,四边形ABCD中,∠B=90°,DE平分∠ADC,CE平分∠DCB,∠1+∠2=90°,试说明DA⊥AB.【分析】由角平分线的定义和条件可得∠ADC+∠BCD=180°,可证明DA∥BC,再由平行线的性质可得到∠A=90°,可证明DA⊥AB.【解答】证明:∵DE平分∠ADC,CE平分∠DCB,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=180°,∴AD∥BC,∴∠A+∠B=180°,∴∠A=180°﹣∠B=90°,∴DA⊥AB.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.解题技巧提炼准确识别图形,理清图中各角度之间的关系是解题的关键,再综合角平分线的定义、对顶角的性质及邻补角的定义求解.【变式2-1】(2022春•龙岗区期末)已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.【分析】先根据垂直的定义得出∠BHF=90°,再由∠1=∠ACB得出DE∥BC,故可得出∠2=∠BCD,根据∠2=∠3得出∠3=∠BCD,所以CD∥FH,由平行线的性质即可得出结论.【解答】证明:FH⊥AB(已知),∴∠BHF=90°.∵∠1=∠ACB(已知),∴DE∥BC(同位角相等,两直线平行),∴∠2=∠BCD.(两直线平行,内错角相等).∵∠2=∠3(已知),∴∠3=∠BCD(等量代换),∴CD∥FH(同位角相等,两直线平行),∴∠BDC=∠BHF=90°,(两直线平行,同位角相等)∴CD⊥AB.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.【变式2-2】如图,已知DA⊥AB,DE平分∠ADC,CE平分∠DCB,且∠1+∠2=90°,试说明BC⊥AB.【分析】过E作EF∥AD,交CD于F,求出∠FEC=∠2=∠BCE,根据平行线的判定推出BC∥EF,即可得出答案.【解答】解:过E作EF∥AD,交CD于F,则∠ADE=∠DEF,∵DE平分∠ADC,∴∠1=∠ADE,∴∠1=∠DEF,∵∠1+∠2=90°,∴∠DEC=90°,∴∠DEF+∠FEC=90°,∴∠2=∠FEC,∵CE平分∠DCB,∴∠2=∠BCE,∴∠FEC=∠BCE,∴BC∥EF,∴BC∥AD,∵DA⊥AB,∴BC⊥AB.【点评】本题考查了平行线的性质和判定,三角形内角和定理,角平分线定义的应用,能正确作出辅助线,并综合运用定理进行推理是解此题的关键.【变式2-3】(2022春•海淀区校级月考)如图,AD∥BE,∠B=∠D,∠BAD的平分线交BC的延长线于点E,CF平分∠DCE.求证:CF⊥AE.【分析】由AD∥BE,∠B=∠D,可推出∠B+∠BAD=180°,∠B=∠DCE,AB∥CD,再由角平分线定义可得:∠BAE=12∠BAD,∠FCG=12∠DCE,进而得出:∠CGF=12∠BAD,∠FCG=12∠B,可推出:∠CGF+∠FCG=12(∠BAD+∠B)=12×180°=90°,根据三角形内角和为180°,可得∠CFG=90°,由垂直定义可证得结论.【解答】证明:∵AD∥BE,∴∠DCE=∠D,∠B+∠BAD=180°,∵∠B=∠D,∴∠B=∠DCE,∴AB∥CD,∴∠CGF=∠BAE,∵AE平分∠BAD,∴∠BAE=12∠BAD,∴∠CGF=12∠BAD,∵CF平分∠DCE,∴∠FCG=12∠DCE,∴∠FCG=12∠B,∴∠CGF+∠FCG=12(∠BAD+∠B)=12×180°=90°,∴∠CFG=180°﹣(∠CGF+∠FCG)=180°﹣90°=90°,∴CF⊥AE.【点评】本题考查了平行线的性质和判定,角平分线定义,垂直定义,三角形内角和定理等知识,解题的关键是掌握平行线判定定理和性质定理.【例题3】(2023秋•深圳期末)太阳灶、卫星信号接收锅、探照灯及其他很多灯具都与抛物线有关.如图,从点O照射到抛物线上的光线OB,OC反射后沿着与PO平行的方向射出,已知图中∠ABO=44°,∠BOC=133°,则∠OCD的度数为()A.88°B.89°C.90°D.91°【分析】依题意得AB∥OP∥CD,进而根据平行线的性质得∠BOP=∠ABO=44°,∠OCD=∠POC,从而可求出∠POC=∠BOC﹣∠BOP=89°,进而可得∠OCD的度数.【解答】解:∵AB∥OP∥CD,∠ABO=44°,∴∠BOP=∠ABO=44°,∠OCD=∠POC,∵∠BOC=133°,∴∠POC=∠BOC﹣∠BOP=133°﹣44°=89°,∴∠OCD=∠POC=89°.故选:B.【点评】此题主要考查了平行线的性质,准确识图,熟练掌握平行线的性质是解决问题的关键.解题技巧提炼给出一个实际问题,联系平行线的性质解答实际问题,有时需要通过作辅助线构造平行线,同时还会综合运用平行线的判定和性质.【变式3-1】如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B 两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是千米.【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【解答】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°﹣∠ABG﹣∠EBC=180°﹣48°﹣42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故答案为:8.【点评】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.【变式3-2】(2022春•沧县期中)某学员在驾校练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向左拐45°,第二次向左拐45°C.第一次向左拐60°,第二次向右拐120°D.第一次向左拐53°,第二次向左拐127°【分析】根据平行线的性质分别判断得出即可.【解答】解:∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同旁内角,且互补,故选:D.【点评】此题主要考查了平行线的性质,利用两直线平行,同旁内角互补得出是解题关键.【变式3-3】如图是潜望镜工作原理示意图,阴影部分是平行放置在潜望镜里的两面镜子.已知光线经过镜子反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线l为什么和离开潜望镜的光线m是平行的?【分析】根据平行线的性质结合条件可得∠1=∠2=∠3=∠4,可证得∠5=∠6,可证明l∥m,据此填空即可.【解答】解:∵AB∥CD(已知),∴∠2=∠3(两直线平行,内错角相等),∵∠1=∠2,∠3=∠4(已知),∴∠1=∠2=∠3=∠4(等量代换),∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(平角定义),即:∠5=∠6(等量代换),∴l∥m.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.【变式3-4】(2023秋•市南区期末)如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,当前支架OE与后支架OF正好垂直,∠ODC=32°时,人躺着最舒服,则此时扶手AB与靠背DM的夹角∠ANM=.【分析】由AB∥CD可求得∠BOD的度数,再根据OE∥DM即可求出∠ANM的度数.【解答】解:∵AB∥CD,∠ODC=32°,∴∠BOD=∠ODC=32°.∵OE⊥OF,∴∠EOF=90°,∴∠EOB=90°+32°=122°.∵OE∥DM,∠ANM=∠EOB=122°.故答案为:122°.【点评】本题考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解答本题的关键.【变式3-5】(2023秋•东莞市校级期末)如图为某椅子的侧面图,∠DEF=120°.DE与地面平行,∠ABD=50°,则∠ACB=.【分析】根据平行得到∠ABD=∠EDC=50°,再利用外角的性质和对顶角相等,进行求解即可.【解答】解:由题意得:DE∥AB,∴∠ABD=∠EDC=50°,∵∠DEF=∠EDC+∠DCE=120°,∴∠DCE=70°,∴∠ACB=∠DCE=70°,故答案为:70°.【点评】本题考查平行线的性质,三角形外角的性质,对顶角.熟练掌握相关性质,是解题的关键.【变式3-6】(2022•小店区校级开学)如图1是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2是乎动变速箱托架工作时某一时刻的示意图,已知AB∥CD,CG∥EF,∠BAG=150°,∠AGC=80°,则∠DEF的度数为()A.110°B.120°C.130°D.140°【分析】过点F作FM∥CD,因为AB∥CD,所以AB∥CD∥FM,再根据平行线的性质可以求出∠MFA,∠EFA,进而可求出∠EFM,再根据平行线的性质即可求得∠DEF.【解答】解:如图,过点F作FM∥CD,∵AB∥CD,∴AB∥CD∥FM,∴∠DEF+∠EFM=180°,∠MFA+∠BAG=180°,∴∠MFA=180°﹣∠BAG=180°﹣150°=30°.∵CG∥EF,∴∠EFA=∠AGC=80°.∴∠EFM=∠EFA﹣∠MFA=80°﹣30°=50°.∴∠DEF=180°﹣∠EFM=180°﹣50°=130°.故选:C.【点评】本题考查平行线的性质,解题关键是结合图形利用平行线的性质进行角的转化和计算.【变式3-7】(2023春•岱岳区期末)如图,EF,MN分别表示两面互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,此时∠1=∠2;光线BC经镜面EF反射后的反射光线为CD,此时∠3=∠4,试判断AB与CD的位置关系,并说明理由.【分析】先根据MN∥EF得出∠2=∠3,再由∠1=∠2,∠3=∠4可得出∠1=∠2=∠3=∠4,故可得出∠1+∠2=∠3+∠4,再由∠ABC=180°﹣(∠1+∠2),∠BCD=180°﹣(∠3+∠4),故可得出∠ABC=∠BCD,据此得出结论.【解答】解:AB∥CD.理由:∵MN∥EF,∴∠2=∠3,∵∠1=∠2,∠3=∠4,∴∠1=∠2=∠3=∠4,∴∠1+∠2=∠3+∠4,∵∠ABC=180°﹣(∠1+∠2),∠BCD=180°﹣(∠3+∠4),∴∠ABC=∠BCD,∴AB∥CD.【点评】本题考查的是平行线的判定与性质,熟知两直线平行,内错角相等是解题的关键.【例题4】(2022春•秦淮区校级月考)已知直线a∥b,将一块含30°角的直角三角板(∠BAC=30°,∠ACB =90°)按如图所示的方式放置,并且顶点A,C分别落在直线a,b上,若∠1=22°.则∠2的度数是()A.38°B.45°C.52°D.58°【分析】根据已知易得∠DAC=52°,然后利用平行线的性质即可解答.【解答】解:如图:∵∠1=22°,∠BAC=30°,∴∠DAC=∠1+∠BAC=52°,∵直线a∥b,∴∠2=∠DAC=52°,故选:C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.【变式4-1】(2022秋•琼海期中)如图,将三角板的直角顶点按如图所示摆放在直尺的一边上,则下列结论不一定正确的是()A.∠1=∠2B.∠2+∠3=90°C.∠3+∠4=180°D.∠1+∠2=90°【分析】根据平行线的性质定理求解.【解答】解:∵两直线平行,同位角相等,∴∠1=∠2,故选项A不符合题意;∠1+∠2不一定等于90°,故D符合题意;由题意可得:90°+∠2+∠3=180°,∴∠2+∠3=90°,故选项B不符合题意;∵两直线平行,同旁内角互补,∴∠3+∠4=180°,故选项C不符合题意;故选:D.【点评】本题主要考查平行线的性质,解题关键是熟练掌握平行线的性质定理.【变式4-2】(2023秋•榆树市校级期末)把一副三角板按如图所示摆放,使FD∥BC,点E落在CB的延长线上,则∠BDE的大小为度.【分析】由题意可得∠EDF=45°,∠ABC=60°,由平行线的性质可得∠BDF=∠ABC=60°,从而可求∠BDE的度数.【解答】解:由题意得:∠EDF=45°,∠ABC=60°,∵FD∥BC,∴∠BDF=∠ABC=60°,∴∠BDE=∠BDF﹣∠EDF=15°.故答案为:15.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.【变式4-3】(2023秋•新野县期末)如图,直线m∥n,且分别与直线l交于A,B两点,把一块含60°角的三角尺按如图所示的位置摆放,若∠2=98°,则∠1=.【分析】先根据平角的定义求出∠4的度数,再根据角平分线的性质即可得出答案.【解答】解:由已知可得,∠3=30°,∵∠2=98°,∴∠4=180°﹣∠2﹣∠3=52°,∵m∥n,∴∠1=∠4=52°.故答案为:52°.【点评】本题主要考查了平行线的性质,解题的关键是牢记平行线的性质.【变式4-4】(2022•大渡口区校级模拟)将一副直角三角板按如图所示的方式叠放在一起,若AC∥DE.则∠BAE的度数为()A.85°B.75°C.65°D.55°【分析】由题意得∠E=60°,∠DAE=∠B=90°,∠BAC=45°,由平行线的性质可求得∠CAE=120°,从而可求得∠CAD=30°,则∠BAD=15°,即可求∠BAE的度数.【解答】解:由题意得:∠E=60°,∠DAE=∠B=90°,∠BAC=45°,∵AC∥DE,∴∠E+∠CAE=180°,∴∠CAE=180°﹣∠E=120°,∴∠CAD=∠CAE﹣∠DAE=30°,∴∠BAD=∠BAC﹣∠CAD=15°,∴∠BAE=∠DAE﹣∠BAD=75°.故选:B.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质并灵活运用.【变式4-5】(2022秋•绿园区校级期末)如图,AB∥CD,一副三角尺按如图所示放置,∠AEG=20°,则∠HFD的度数为()A.40°B.35°C.30°D.25°【分析】将∠AEG,∠GEF的度数,代入∠AEF=∠AEG+∠GEF中,可求出∠AEF的度数,由AB∥CD,利用“两直线平行,内错角相等”,可求出∠DFE的度数,再结合∠HFD=∠DFE﹣∠EFH,即可求出∠HFD 的度数.【解答】解:∵∠AEG=20°,∠GEF=45°,∴∠AEF=∠AEG+∠GEF=20°+45°=65°.∵AB∥CD,∴∠DFE=∠AEF=65°,∴∠HFD=∠DFE﹣∠EFH=65°﹣30°=35°.故选:B.【点评】本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.【变式4-6】(2023秋•盐城期末)将一副三角板按如图所示的方式摆放,其中∠ACB=∠ECD=90°,∠A=45°,∠D=60°.若AB∥DE,则∠ACD的度数为.【分析】过点C作CF∥AB,则有AB∥CF∥DE,从而可得∠ACF=∠A=45°,∠DEF=∠D=60°,即可求∠ACD的度数.【解答】解:过点C作CF∥AB,如图,∵AB∥DE,∴AB∥CF∥DE,∴∠ACF=∠A=45°,∠DEF=∠D=60°,∴∠ACD=∠ACF+∠DCF=105°.故答案为:105°.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.【例题5】如图所示,把一张长方形纸条ABCD沿EF折叠,若∠1=58°,则∠AEG的度数()A.58°B.64°C.72°D.60°【分析】由平行线的性质得∠DEF=∠1=58°,由折叠的性质得∠GEF=∠DEF=58°,再由平角定义求出∠AEG即可.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠1=58°,由折叠的性质得:∠GEF=∠DEF=58°,∴∠AEG=180°﹣58°﹣58°=64°;故选:B.【点评】本题考查了平行线的性质、翻折变换的性质、长方形的性质以及平角定义;熟练掌握平行线的性质和翻折变换的性质是解题的关键.【变式5-1】(2022秋•陈仓区期末)如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是()A.77°B.64°C.26°D.87°【分析】依据平行线的性质,即可得到∠AEG的度数,再根据折叠的性质,即可得出∠α的度数.【解答】解:∵矩形纸条ABCD中,AD∥BC,∴∠AEG=∠BGD'=26°,∴∠DEG=180°﹣26°=154°,由折叠可得,∠α=12∠DEG=12×154°=77°,故选:A.【点评】本题主要考查了平行线的性质,折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【变式5-2】(2023•台州)用一张等宽的纸条折成如图所示的图案,若∠1=20°,则∠2的度数为.【分析】利用平行线的性质和各角之间的关系即可求解.【解答】解:如图,标注三角形的三个顶点A、B、C.∠2=∠BAC=180°﹣∠ABC﹣∠ACB.∵图案是由一张等宽的纸条折成的,∴AB=AC,∴∠ABC=∠ACB.又∵纸条的长边平行,∴∠ABC=∠1=20°,∴∠2=∠BAC=180°﹣2∠ABC=180°﹣2∠1=180°﹣2×20°=140°.故答案为:140°.【点评】本题比较简单,主要考查了平行线的性质的运用.【变式5-3】(2022秋•昭阳区期中)如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE;若∠B=50°,则∠BDF的度数为()A.40°B.50°C.80°D.100°【分析】首先利用平行线的性质得出∠ADE=50°,再利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF,从而求出∠BDF的度数.【解答】解:∵BC∥DE,若∠B=50°,∴∠ADE=50°,又∵△ABC沿线段DE折叠,使点A落在点F处,∴∠ADE=∠EDF=50°,∴∠BDF=180°﹣50°﹣50°=80°,故选:C.【点评】此题主要考查了折叠问题与平行线的性质,利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF是解决问题的关键.【变式5-4】(2023秋•阳城县期末)将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=.【分析】证明∠2=∠4,再利用三角形的外角的性质解决问题.【解答】解:如图,∵a∥b,∴∠2=∠5,由翻折变换的性质可知∠4=∠5,∴∠4=∠2,∵∠1=∠2+∠4=110°,∴∠2=∠4=55°,故答案为:55°.【点评】本题考查平行线的性质,翻折变换等知识,解题的关键是理解翻折变换的性质,属于中考常考题型.【变式5-5】(2022•沭阳县模拟)已知长方形纸条ABCD,点E,G在AD边上,点F,H在BC边上.将纸条分别沿着EF,GH折叠,如图,当DC恰好落在EA'上时,∠1与∠2的数量关系是()A.∠1+∠2=135°B.∠2﹣∠1=15°C.∠1+∠2=90°D.2∠2﹣∠1=90°【分析】根据折叠的性质和平角的定义解答即可.【解答】解:∵DC恰好落在EA'上,∴∠ED′G=90°,∴∠D′EG+∠D′GE=90°,∴∠A′EA+∠D′GD=360°﹣90°=270°,由折叠得,∠1=12∠A′EA,∠2=12∠D′GD,∴∠1+∠2=135°,故选:A.【点评】本题考查折叠的性质和角平分线的定义,由折叠的性质得到∠1=12∠A′EA,∠2=12∠D′GD是解题关键.【变式5-6】如图,长方形ABCD中,沿折痕CE翻折△CDE得△CD′E,已知∠ECD′被BC分成的两个角相差18°,则图中∠1的度数为()A.72°或48°B.72°或36°C.36°或54°D.72°或54°【分析】设∠FCD'=α,则∠BCE=α+18°或α﹣18°,分两种情况进行讨论:①当∠BCE=α+18°时,∠ECD'=2α+18°=∠DCE,②当∠BCE=α﹣18°时,∠ECD'=2α﹣18°=∠DCE,分别根据∠BCD=90°列式计算即可.【解答】解:如图,设∠FCD'=α,则∠BCE=α+18°或α﹣18°,①当∠BCE=α+18°时,∠ECD'=2α+18°=∠DCE,∵∠BCD=90°,∴α+18°+2α+18°=90°,解得α=18°,∴∠CFD'=90°﹣18°=72°=∠1;②当∠BCE=α﹣18°时,∠ECD'=2α﹣18°=∠DCE,∵∠BCD=90°,∴α﹣18°+2α﹣18°=90°,解得α=42°,∴∠CFD'=90°﹣42°=48°=∠1;综上所述,图中∠1的度数为72°或48°,故选:A.【点评】本题主要考查了折叠问题,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【例题6】(2023秋•仁寿县期末)如图,在△ABC中,AD⊥BC,EF∥BC,EC⊥CF,∠EFC=∠ACF,则下列结论:①AD⊥EF;②CE平分∠ACB;③∠FEC=∠ACE;④AB∥CF.其中正确的结论个数是()A.1个B.2个C.3个D.4个【分析】根据平行线的性质得到AD⊥EF,故①符合题意;∠CEF=∠BCE,根据余角的性质得到∠CEF =∠ACE,故③符合题意;根据角平分线的定义得到CE平分∠ACB,故②符合题意;根据已知条件无法证明AB∥CF,故④不符合题意.【解答】解:∵AD⊥BC,EF∥BC,∴AD⊥EF,故①符合题意;∵EF∥BC,∴∠CEF=∠BCE,∵EC⊥CF,∴∠ECF=90°,∴∠CEF+∠F=∠ACE+∠ACF=90°,∵∠EFC=∠ACF,∴∠CEF=∠ACE,故③符合题意;∴∠ACE=∠BCE,∴CE平分∠ACB,故②符合题意;∵EC⊥CF,要使AB∥CF,则CE⊥AB,∵CE平分∠ACB,但AC不一定与BC相等,∴无法证明AB∥CF,故④不符合题意,故选:C.【点评】本题考查了平行线的判定与性质,根据题目的已知条件并结合图形进行分析是解题的关键.【变式6-1】(2023秋•浚县期末)如图a∥b,c与a相交,d与b相交,下列说法:①若∠1=∠2,则∠3=∠4;②若∠1+∠4=180°,则c∥d;③∠4﹣∠2=∠3﹣∠1;④∠1+∠2+∠3+∠4=360°,正确的有()A.①③④B.①②③C.①②④D.②③【分析】根据平行线的性质和判定逐一进行判断求解即可.【解答】解:①若∠1=∠2,则a∥e∥b,则∠3=∠4,故此说法正确;②若∠1+∠4=180°,由a∥b得到,∠5+∠4=180°,则∠1=∠5,则c∥d;故此说法正确;③由a∥b得到,∠5+∠4=180°,由∠2+∠3+∠5+180°﹣∠1=360°得,∠2+∠3+180°﹣∠4+180°﹣∠1=360°,则∠4﹣∠2=∠3﹣∠1,故此说法正确;④由③得,只有∠1+∠4=∠2+∠3=180°时,∠1+∠2+∠3+∠4=360°.故此说法错误.故选:B.【点评】此题考查了平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.【变式6-2】(2022秋•南岗区校级期中)如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3C.∠1+∠3=180°+∠2D.∠2+∠3=180°+∠1【分析】根据两直线平行,同旁内角互补可得∠2+∠BDC=180°,再根据两直线平行,内错角相等可得∠3=∠CDE,而∠CDE=∠1+∠BDC,整理可得∠2+∠3﹣∠1=180°.【解答】解:∵AB∥CD∥EF,∴∠2+∠BDC=180°,∠3=∠CDE,又∠BDC=∠CDE﹣∠1,∴∠2+∠3﹣∠1=180°.故选:D.【点评】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.【变式6-3】(2023春•镇江期中)如图,AB∥CF,∠ACF=80°,∠CAD=20°,∠ADE=120°.(1)直线DE与AB有怎样的位置关系?说明理由;(2)若∠CED=71°,求∠ACB的度数.【分析】(1)根据平行线的性质,得出∠BAC=∠ACF=80°,根据∠CAD=20°,求出∠BAD=60°,根据∠BAD+∠ADE=180°,即可得出结论;(2)根据平行线的性质得出∠B=∠CED=71°,根据三角形内角和定理求出∠ACB=29°.【解答】解:(1)DE∥AB;理由如下:∵AB∥CF,∠ACF=80°,∴∠BAC=∠ACF=80°,∵∠CAD=20°,∴∠BAD=∠BAC﹣∠DAC=60°,∵∠ADE=120°,∴∠BAD+∠ADE=60°+120°=180°,∴DE∥AB.(2)DE∥AB,∠CED=71°,∴∠B=∠CED=71°,∵∠BAC=80°,∴∠ACB=180°﹣∠B﹣∠BAC=180°﹣71°﹣80°=29°.【点评】本题主要考查了平行线的判定和性质,三角形内角和定理的应用,解题的关键是熟练掌握平行线的判定.【变式6-4】(2022春•舞阳县期末)如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB并交BD于H,且∠EHD+∠HBF=180°.(1)若∠F=30°,求∠ACB的度数;(2)若∠F=∠G,求证:DG∥BF.【分析】(1)由对顶角相等、同旁内角互补,两直线平行判定BF∥EC,则同位角∠ACE=∠F,再根据角平分线的性质即可求解;(2)结合已知条件,角平分线的定义,利用等量代换推知同位角∠BCE=∠G,则易证DG∥BF.【解答】(1)解:∵∠EHD+∠HBF=180°,∠EHD=∠BHC,∴∠BHC+∠HBF=180°,∴BF∥EC,∴∠ACE=∠F=30°,又∵CE平分∠ACB,∴∠ACB=2∠ACE=60°.故∠ACB的度数为60°;(2)证明:∵CE平分∠ACB,∴∠BCE=∠ACE,∵∠ACE=∠F,∠F=∠G,∴∠BCE=∠G,∴DG∥EC,又∵BF∥EC,∴DG∥BF.【点评】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.【变式6-5】(2022春•温江区校级期中)如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠D+∠AED=180°,∠C=∠EFG.。
人教版七年级数学下册5.3 平行线的性质 同步练习及答案
5.3 平行线的性质同步练习一、选择题1、下列命题中,是真命题的是( )A.在同一平面内,垂直于同一条直线的两条直线平行 B.三角形的一个外角大于它的任何一个内角C. 两条直线被第三条直线所截,同旁内角互补 D.过一点有且只有一条直线与已知直线平行2、如图,已知∠1=∠B,∠2=∠C,则下列结论不成立的是()第2题图第3题图第4题图第6题图A. ∠B=∠CB. AD∥BCC. ∠2+∠B=180°D. AB∥CD3、如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A. 70°B. 100°C. 110°D. 120°4、如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30° B.40° C.50° D.60°5、如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20° B.30° C.40° D.70°6、如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35°B. 45°C. 50°D. 55°7、如图AB∥CD,∠ABE=120°,∠ECD=25°,则∠E=()第9题图第10题图第11题图第12题图A.75°B.80°C.85°D.95°8、如图,AB∥CD,则∠A、∠C、∠E、∠F满足的数量关系是()A.∠A=∠C+∠E+∠F B.∠A+∠E﹣∠C﹣∠F=180°C.∠A﹣∠E+∠C+∠F=90°D.∠A+∠E+∠C+∠F=360°9、如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50° B.70° C.80° D.110°10、在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若∠1=55°,则∠2的度数是()A.50° B.45° C.40° D.35°11、把一块直尺与一块含30°的直角三角板如图放置,若∠1=34°,则∠2的度数为()第13题图第14题图第15题图 16题图 17题图A.114° B.124° C.116° D.126°二、填空题12、如图所示,请写出能判定CE∥AB的一个条件.13、把一张长方形纸条沿E,折叠,使,如图所示,则的度数为.14、如下图,在△ABC中,DE∥BC,EF∥AB,则与∠B相等的角有个。
人教版七年级下《5.3平行线的性质》课后练习含答案(2份)5.3.1 平行线的性质课后练习
5.3.1 平行线的性质班级:___________ 姓名:___________ 得分:___________一、填空题(每小题6分,共30分)1.如图,已知a∥b,∠1=55°,则∠2的度数是( )A.35°B.45°C.55°D.125°第1题图第2题图第3题图2.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.2021D.25°3.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数是( )A.70°B.65°C.60°D.50°4.如图,若AB//CD,∠BEF=70°,则∠ABE+∠EFC+∠FCD的度数是( )A.215°B.250°C.32021D.无法知道第4题图第5题图5.如图,AF∥CD,BC平分∠ACD,BD平分∠EBF,且BC⊥BD下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠D=90°;④∠DBF=2∠ABC.其中正确的个数为( )A.1个B.2个C.3个D.4个二、填空题(每小题6分,共30分)6.如图,已知∠1=∠2,∠3=73°,则∠4的度数为.CBA D第6题图第7题图第8题图7.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=.8.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=_______9.如图,BC⊥AE,垂足为C,过C作CD∥AB.若∠ECD=48°,则∠B=.第9题图第10题图10.如图,直线a∥b,AB⊥BC,如果∠1=60°,那么∠2=.三、解答题(每小题2021共40分)11.如图,AB∥CD,直线EF交AB、CD于点G、H.如果GM平分∠BGF,HN平分∠CHE,那么,GM与HN平行吗?为什么?12.如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.3.B【解析】∵AB∥CD,∴∠1+∠BEF=180°,∵∠1=50°,∴∠BEF=130°,∵EG平分∠BEF,∴∠BEG=∠BEF=65°,∴∠2=∠BEG=65°.故选:B.4.B【解析】分别过点E、F作EG∥AB,HF∥CD,再根据平行线的性质即可得出结论.解:分别过点E、F作EG∥AB,HF∥CD,则AB∥EG∥HF∥CD,∵AB∥EG,∴∠ABE=∠BEG,又∵EG∥HF,∴∠EFH=∠GEF,∴∠ABE+∠EFH=∠BEG+∠GEF=∠BEF=70°,∵∠HFC+∠FCD=180°,∠EFH+∠HFC=∠EFC,∴∠ABE+∠EFC+∠FCD=180°+70°=250°.故选B.5.C【解析】根据平行线的性质、角平分线的定义、余角的定义作答.解:①∵BC⊥BD,∴∠DBE+∠CBE=90°,∠ABC+∠DBF=90°,又∵BD平分∠EBF,∴∠DBE=∠DBF,∴∠ABC=∠CBE,即BC平分∠ABE,正确;②由AB∥CE,BC平分∠ABE、∠ACE易证∠ACB=∠CBE,∴AC∥BE正确;③∵BC⊥AD,∴∠BCD+∠D=90°正确;④无法证明∠DBF=60°,故错误.故选C.6.107°【解析】根据已知一对同位角相等,利用同位角相等两直线平行得到a与b平行,利用两直线平行同旁内角互补得到一对角互补,再利用对顶角相等即可确定出∠4的度数.解:∵∠1=∠2,∴a∥b,∴∠5+∠3=180°,∵∠4=∠5,∠3=73°,∴∠4+∠3=180°,则∠4=107°.故答案为:107°7.70°【解析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.解:∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为:70°.8.400【解析】由AD∥BC,∠D=100°,根据两直线平行,同旁内角互补,可以得到∠DCB=80°,再由CA平分∠BCD,得到∠BCA=40°,从而由两直线平行,内错角相等,可得∠DAC=40°.9.42°【解析】先根据两直线平行,同位角相等求出∠A,再根据直角三角形两锐角互余即可求出.解:∵CD∥AB,∠ECD=48°,∴∠A=∠ECD=48°,∵BC⊥AE,∴∠B=90°-∠A=42°.10.30°【解析】∵AB⊥BC,∴∠1+∠3=∠ABC=90°,∴∠3=∠ABC-∠1=90°-60°=30°,∵a//b,∴∠2=∠3=30°.11.GM∥HN【解析】首先根据平行线的性质可得∠BGF=∠CHE,再根据角平分线的性质可以证明∠NHG=∠MGH,然后根据内错角相等,两直线平行得证结果.答:GM∥HN理由如下:∵AB∥CD∴∠BGF=∠GHC又∵GM平分∠BGF∴∠HGM=12∠BGF又∵HN平分∠CHG。
七年级数学下册53平行线的性质教材习题解析素材(新版)新人教版.docx
平行线的性质教材习题解析习题5・3(P22)1.解析:本题考查平行线的性质2.解答木题的关键是,要理解“两次转弯后,和原来的方向相同“的意义,即两次转弯前后的公路所在的直线平行,根据“两直线平行,内错角相等”得,第二次的拐角ZB应等于135*.2.解析:本题考查平行线的性质3.已知AD〃BC,厶・fiT,根据“两直线平行,同旁内角互补”可得,^B-I8(r-Z4-12T;不用度量方法,仅根据平行线的性质,不能求得ZD的度数.因为ZD 与ZA是同旁内角,而直线AB与CD是否平行不得而知,因此不能用平行线的性质來求解.3.解析:本题考查了平行线的三个性质.解题时要弄清楚直线和角的位置关系.(1)由4・1师,根据平行线的性质2 “两直线平行,内错角相等”得,乂2・11叭(2)由zi・mr,根据平行线的性质1 “两直线平行,同位角相等”得,(3)由,根据平行线的性质3“两直线平行,同旁内角互补”得,z<-i8(r-ii(r-7r■4.解析:本题考查平行线的性质2,性质3及性质1(或邻补角定义).由性质2可求得Z2,由性质3可求得Z3,由性质1(或邻补角定义)可求得Z4.因为。
〃内,根据“两直线平行,内错角相等”,可得因为根据“两直线平行,同旁内角互补”,可得Z3=i8(r-Z5=iior;因为Z4与Z5互为邻补角,所以&・wr-z5・iir (或根据“两直线平行,同位角相等”,可得Z4-Z3-UF).5.解析:本题考查平行线的性质3的应用.木题求解时,可以把公路两侧的管道看成平行线,对接的管道看作截线,应用“两直线平行,同旁内角互补”可得,另一侧应以iar-iar=«r 的角铺设.6.解析:本题考查平行线的性质和判定的综合应用,以及分析推理能力.解题时,应对照图形区分每一步推理是使用平行线的判定,还是使用平行线的性质,然后再填写理由.答案依次是:内错角相等,两直线平行;两直线平行,内错角相等.7.解析:本题考查平行线的性质2和性质3•第(1)题关键是寻找其中的同位角或内错角.注意到AB〃CD, AC是截线,因此只有Z1和Z4是内错角,它们相等;其他角中没有同位角,不存在相等的关系;第(2)题屮ZACE被CD分为ZACD和ZECD两个角,运用平行线的性质3,由AB〃CD 得到ZBAC+ZACD--W,由CD〃EF 得到ZECD+ZCEF-IW ,所以ZBAC+ ZACE+ ZCEF= ZBAC+ ZACD+ ZECD+ ZCEF-3HT ,本题答案应为(1) C;(2) C.8.解析:本题考查平行线的性质1和性质3的实际运用.解答本题的关键是已知光线平行,同吋水面与水底面也是平行的,然后根据平行线的性质可以求出各角.由“两直线平行,同位角相等”得,Z4-Z2-m.由“两直线平行,同旁内角互补”得,心・1抄-/4・瑚,Z7-18T -Zl-137 , ZB-I80T -0・BT9.解析:本题考查文字语言与符号语言的互相转化,及平行线的判定与性质.用式子表示一些三段论推理的句子,一方面可以培养学生儿何不同语言相互转化的能力,另一方面, 通过用符号表示一些简单的推理过程,为后面学习证明做准备.(1) VZ1=Z2(已知),・・・AB〃EF(内错角相等,两直线平行);(2)・・・DE〃BC(已知),AZ1=ZB, Z3=ZC(两直线平行,同位角相等).10.解析:本题考查平行线、垂线在生活中的运用,涉及如何画平行线、垂线的问题.答案略.11.解析:本题考查相交线、垂线、平行线在生活中的应用.画好一个篮球场地,需要用到许多垂线、平行线的知识,通过解决这样一个问题,让学生感受到平行线知识在实际生活中的应用.第(1)题答案不唯一,比如操场上的单杠与立柱垂直,双杠中的两根杠子平行等等;第(2)题在纸上画篮球场地,可以用直角三角板或平行线的性质来保证垂直.画平行线可以用推三角尺的方法或用平行线的判定方法来操作.画图略.12.解析:本题考查真、假命题的概念和判断,以及如何说明一个命题是假命题,体会反例的作用.(1)假命题,比如:冊和70•都是锐角,但它们的和1处不是锐角;(2)真命题;(3)假命题,只要作出一对不互补的同旁内角即可,例如一个三角形中,任意两个内角都可以看作是同旁内角,但它们不互补.13.解析:本题考查分析推理能力和对证明过程的理解,主要是填写证明过程川的关键步骤和理由,涉及平行线的性质、角平分线的定义、等量代换等知识.答案依次是:(1)ZC;两直线平行,内错角相等;两直线平行,同旁内角互补.(2)2 ;角平分线的定义;等量代换(或等式的性质).14.解析:本题考查平行线的性质、平角的定义等.本题是证明三角形内角和定理的另一种方法.(1)ZDAB二44°,因为DE〃BC,根据“两直线平行,内错角相等”可得,ZDAB=ZB=44°;(2)ZEAC=57°,因为DE〃BC,根据“两直线平行,内错角相等”可得,ZEAC=ZC=57°;(3)ZBAC=79°,因为ZDAE 是平角,所以ZBAC=180° -ZDAB-ZEAC=180° -44° -57° =79°・由以上结论可得:ZB+ZC+ZBAC二180°,这实际上说明了三角形三个内角和为180° .15.解析:本题考查平角的定义、平行线的性质和判定的综合应用等•解答时关键要认识到两面镜子是平行的,从而Z2与Z3是一对内错角,所以它们相等.本题要求说明两条光线平行,需要分析这两条光线是被哪一条直线所截,形成了哪些角?这些角有什么数量关系,进而发现形成的Z5与Z6是一对内错角,只要Z5与Z6相等,就能说明这两条光线平行.因为两而镜子是平行放置的,根据“两直线平行,内错角相等”可得,由平角等于1ST 可得,Z5-IW-Z1-Z2 , ZB-l8(r-z3-Z4 .因为Z1-Z2,厶所以又由“内错角相等,两直线平行”可以判断,进入潜望镜的光线与离开潜望镜的光线是平行的.。
人教版七年级数学下册第五章平行线的性质习试(含答案) (47)
人教版七年级数学下册第五章平行线的性质复习试题(含答案)如图,已知A C ∠=∠,E F ∠=∠,试说明://AD BC ,【答案】见解析【解析】【分析】由∠E =∠F ,根据内错角相等,两直线平行得AE ∥CF ,根据平行线的性质得∠A =∠ADF ,利用等量代换得到∠ADF =∠C ,然后根据同位角相等,两直线平行可判定AD ∥BC .【详解】证明:∵E F ∠=∠,∵//AE CF ,∵A ADF ∠=∠,∵A C ∠=∠,∵ADF C =∠∠,∵//AD BC ,【点睛】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等.62.如图,在四边形ABCD中,∠A+∠ABC=180°,BD⊥CD于点D,EF⊥CD于点F,则∠1=∠2吗?请说明理由?【答案】∠1=∠2,理由见解析【解析】【分析】由∠A+∠ABC=180°,可以判断AD∥BC,进而得到∠1=∠DBC,由BD⊥CD,EF⊥CD,可得BD∥EF,进而得到∠DBC=∠2,于是得出结论.【详解】解:∠1=∠2,理由:∵∠A+∠ABC=180°,∴AD∥BC,∴∠1=∠DBC,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠DBC=∠2,∴∠1=∠2.【点睛】本题考查平行线的性质和判定,掌握平行线的性质和判定是正确得出结论的前提.∠=∠,1∠与2∠互补.63.如图所示,AD与BE相交于点F,A C(1)试说明//AB CE ;(2)若295∠=︒,59C ∠=︒,求E ∠的度数.【答案】(1)见解析;(2)∠E =26°【解析】【分析】(1)先由∠1=∠BFD 得出∠BFD +∠2=180°,故可得出AD ∥BC ,故可得出∠ADE =∠C ,据此可得出∠A =∠ADE ,进而得出结论;(2)直接根据三角形内角和的性质即可得出结论.【详解】(1)∵∠1=∠BFD ,∠1+∠2=180°,∴∠BFD +∠2=180°,∴AD ∥BC ,∴∠ADE =∠C ,∴∠A =∠ADE ,∴AB ∥CE ;(2)∵∠2=95°,∠C =59°,∠E +∠2+∠C =180°∴∠E =180°−95°−59°=26°.【点睛】本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.64.如图,已知EF ∥AB ,1B ∠=∠,求证:EDC DCB ∠=∠.【答案】见解析【解析】【分析】证明∠EDC=∠DCB ,只需具备DE ∥BC 即可,可以考虑证得∠ADE=∠B ,而∠1与这两个角都相等.【详解】证明:∵EF ∥AB ,∴∠1=∠ADE ,∵∠1=∠B ,∴∠ADE=∠B ,∴DE ∥BC ,∴∠EDC=∠DCB .【点睛】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.65. 如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC=3∠BCF ,∠ACF=20°.(1)求∠FEC的度数;(2)若∠BAC=3∠B,求证:AB⊥AC;(3)当∠DAB=______度时,∠BAC=∠AEC.(请直接填出结果,不用证明)【答案】(1)20°;(2)详见解析;(3)50【解析】【分析】(1)先根据CE平分∠BCF,设∠BCE=∠ECF=12∠BCF=x.由∠DAC=3∠BCF可得出∠DAC=6x.根据AD∥EF,AD∥BC,得出EF∥BC,由平行线的性质即可得出x的值,进而得出结论;(2)根据AD∥BC可知∠DAB=∠B,再由∠BAC=3∠B得出∠DAC=4∠B=120°,故∠B=30°,∠BAC=90°,由此可得出结论;(3)根据(1)可得出∠BCF的度数,设∠BAD=∠B=α,由∠BAC=∠AEC 即可得出结论.【详解】解:(1)∵CE平分∠BCF,∴设∠BCE=∠ECF=12∠BCF=x.∵∠DAC=3∠BCF,∴∠DAC=6x.∵AD∥BC,∴∠DAC+∠ACB=180°,∴6x+2x+20°=180°,∴x=20°,即∠BCE=20°,∵EF∥AD,AD∥BC,∴EF∥BC,∴∠BCE=∠FEC=20°;(2)证明:∵AD∥BC,∴∠DAB=∠B,又∵∠BAC=3∠B,∴∠DAC=4∠B,由(1)可得∠BCA=20°×3=60°,∴∠DAC=4∠B=120°,∴∠B=30°,∴∠BAC=30°×3=90°,∴AB⊥AC;(3)由(1)知∠BCE=20°,∴∠BCF=40°.∴∠DAC=3×40°=120°,∵AD∥BC,∴可设∠BAD=∠B=α,∴∠AEC=∠B+∠BCE=α+20°,∠BAC=∠DAC-∠DAB=120°-α,∴当∠BAC=∠AEC时,α+20°=120°-α,解得α=50°,∴∠DAB=50°.故答案为:50.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补,难度一般.66.如图,已知AB∥CD,C在D的右侧,BM平分∠ABC,DN平分∠ADC,BM,DN所在直线交于点E,∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.n°+35°;(3)见解析.【答案】(1) 35°;(2)12【解析】【分析】(1)根据角平分线的定义即可求∠EDC的度数;(2)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(3)∠BED的度数改变.分三种情况讨论,分别过点E作EF∥AB,先由角平分线的定义可得:∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=35°,然后根据平行线的性质即可得到∠BED的度数.【详解】解:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=12ADC=12×70°=35°;(2)过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=35°,∴∠BED=∠BEF+∠DEF=12n°+35°;(3)分三种情况:①如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=2∠ABC=2n°,∠CDG=2∠ADC=35°,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABE=12n°,∠CDG=∠DEF=35°,∴∠BED=∠BEF−∠DEF=12n°−35°.②如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=35°,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°−∠ABE=180°−12n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°−12n°+35°=215°−12n°.③如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=2∠ABC=2n°,∠CDE=2∠ADC=35°,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABG=12n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF−∠DEF=12n°−35°.综上所述答案为:∠BED角度改变,其度数为12n°−35°或215°−12n°.【点睛】此题考查了平行线的判定与性质,解题的关键是:正确添加辅助线,利用平行线的性质进行推算.三、填空题67.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.【答案】70°.【解析】【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB ∥CD ,∴∠BAE =∠DCE =140°, 由折叠可得:12DCF DCE ∠=∠,∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.68.如图,将一个宽度相等的纸条按图所示折叠一下,如果∠1=145°,那么∠2=_____.【答案】107.5°【解析】【分析】根据折叠的性质得到∠3=∠4,由a ∥b ,根据平行线的性质得到∠1=∠3+∠4,∠2+∠3=180°,可计算出∠3=72.5°,则∠2=180°-72.5°=107.5°.【详解】由折叠可得∠3=∠4,∵a∥b,∴∠1=∠3+∠4,∠2+∠3=180°,∴2∠3=145°,∴∠3=72.5°,∴∠2=180°﹣72.5°=107.5°.故答案为:107.5°.【点睛】本题主要考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补,比较简单.,∠1=∠2,则∠DFE的度数是_______.69.如图已知CD AD【答案】90°【解析】【分析】根据同位角相等两直线平行判定EF∥CD,再根据平行线的性质及垂直的定义得出∥DFE的度数.【详解】解:∥∥1=∥2,∥EF∥CD,∥∥DFE+∥D=180°,又∥CD∥AD,∥∥D=90°,∥∥DFE=180°-90°=90°.故答案为90°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.70.如图,AB∥CD,AD⊥BD,∠A=60°,则∠BDC的度数为__.【答案】30°.【解析】【分析】先根据AB∥CD,∠A=60°,求出∠ADC的度数,再由AD⊥BD得出∠ADB=90°,进而可得出结论.【详解】解:∵AB∥CD,∠A=60°,∴∠BDC=180°﹣60°=120°,∵AD⊥BD,∴∠ADB=90°,∴∠BDC=∠ADC﹣∠ADB=120°﹣90°=30°.故答案为:30°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.。
七年级下 5.3 平行线的性质练习答案
5.3 平行线的性质答案(检测时间50分钟 满分100分)班级_________________ 姓名_____________ 得分_____一、选择题(每小题3分,共21分)1、如图1所示,AB ∥CD ,则与∠1相等的角(∠1除外)共有( C )A 、5个B 、4个C 、3个D 、2个解:由对顶角相等可得∠AGF=∠1;∵AB ∥CD ,∴∠1=∠GHD ;由对顶角相等可得∠GHD=∠CHF ,∴∠1=∠CHF2、如图2所示,已知DE ∥BC ,CD 是∠ACB 的平分线,∠B=72°,∠ACB=40°,那么∠BDC 等于( C ) A 、78° B 、90° C 、88° D 、92° 解:∵CD 是∠ACB 的平分线, ∠ACB=40°, ∴∠DCB=20°。
∵DE ∥BC , ∴∠EDC=∠DCB=20°, ∠EDB+∠B=180°。
∵∠B=72°, ∴∠EDB =108°, ∴∠BDC=∠EDB -∠EDC =108°-20°=88°3、下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内错角相等,两直线平行;④垂直于同一直线的两直线平行.其中是平行线的性质的是( A ) A 、① B 、②和③ C 、④ D 、①和④ 4、若两条平行线被第三条直线所截,则一组同位角的平分线互相( B ) A 、垂直 B 、平行 C 、重合 D 、相交 解:如图,已知AB//CD ,GI 、HJ 分别平分∠EGB 、∠EHD ,求证:GI//HJ证明:∵AB//CD ,∴∠EGB=∠EHD ,∵GI 、HJ 分别平分∠EGB 、∠EHD ,∴∠EGI=21∠EGB ,∠EGJ=21∠EGD , ∴∠EGI=∠EHJ ,∴GI//HJ5、如图3所示,CD ∥AB ,OE 平分∠AOD ,OF ⊥OE ,∠D=50°,则∠BOF 为( C ) A 、35° B 、30° C 、25° D 、20° 解:如图,已知AB//CD ,GI 、HJ 分别平分 ∠EGB 、∠EHD ,求证:GI//HJ 证明:∵CD // AB , ∴∠D=∠DOB , ∵∠D=50°, ∴∠DOB=50°, ∴∠AOD=130°,∵OE 平分∠AOD , ∴∠EOD=65°,∵OF ⊥OE , ∴∠EOF=90°, ∴∠DOF=25°,C1 FA B DE GH 图1AD BCE图2 O F E D CBA图3A B CDE FG HI J∴∠FOB=25°,6、如图4所示,AB ∥CD ,则∠A+∠E+∠F+∠C 等于( C )A 、180°B 、360°C 、540°D 、720°解:作EG//AB ,FH//AB∴∠A+∠AEG=180°①EG//FH∴∠GEF+∠EFH=180°② ∵AB ∥CD ∴FH//CD ∴∠FHC+∠C=180°③ 由①+②+③得 ∠A+∠AEG+∠GEF+∠EFH+∠FHC+∠C =∠A+∠E+∠F+∠C=540°7、如图5所示,AB ∥EF ∥CD ,EG ∥BD ,则图中与∠1相等的角(∠1除外)共有( B )•A 、6个B 、5个C 、4个D 、3个 二、填空题(每小题3分,共9分)1、如图6所示,如果DE ∥AB ,那么∠A+AED ∠=180°,或∠B+BDE ∠=180°,根据是两直线平行,同旁内角互补;如果∠CED=∠FDE ,那么DE ∥AB ,根据是两直线平行,内错角相等.2、如图7所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条路平行,若第一次拐角是150°,则第二次拐角为︒150.3、如图8所示,AB ∥CD ,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=︒60,∠ACD=︒40. 解:∵AB ∥CD , ∴︒=∠+∠180BAD D ∵︒=∠80D ∴︒=∠100BAD ∵2:3:=∠∠BAC CAD ∴︒=∠60CAD ︒=∠40BAC ∵AB ∥CD ,∴︒=∠=∠40BAC ACD三、训练平台(每小题8分,共32分) 1、如图9所示,AD ∥BC ,∠1=78°,∠2=40°,求∠ADC 的度数. 解:∵AD ∥BC , ∴2∠=∠ADB∵︒=∠781,︒=∠402∴1∠+∠=∠ADB ADC12∠+∠=︒=178GFED C BA1 图5 FECBA 图6FE DC BA 图4G H 图7DCBA图8D C B A 1 2 图92、如图10所示,AB ∥CD ,AD ∥BC ,∠A 的2倍与∠C 的3倍互补,求∠A 和∠D 的度数.•解:∵AB ∥CD , ∴︒=∠+∠180D A ∵AD ∥BC , ∴︒=∠+∠180D C ∴C A ∠=∠ ∵∠A 的2倍与∠C 的3倍互补, ∴︒=∠+∠18032C A 即︒=∠+∠18032A A ∴︒=∠36A∴︒=∠144D3、如图11所示,已知AB ∥CD ,∠ABE=130°,∠CDE=152°,求∠BED 的度数. 解:作EF//AB∴︒=∠+∠180BEF ABE ①∵AB ∥CD ∴EF ∥CD∴︒=∠+∠180CDE FED ②由①+②得CDE FED BEF ABE ∠+∠+∠+∠︒=∠+∠+∠=360CDE BED ABE ∵︒=∠130ABE ,︒=∠152CDE ∴︒=∠78BED4、如图12所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数. 解:∵︒=∠721,︒=∠722∴b a // ∴︒=∠+∠18043 ∵︒=∠603, ∴︒=∠1204四、提高训练(每小题9分,共18分)1、如图13所示,已知直线MN 的同侧有三个点A 、B 、C ,且AB ∥MN ,BC ∥MN ,试说明A 、B 、C 三点在同一直线上.解:如图所示,过B 点任作直线PQ 交MN 于Q ,∵AB ∥MN ,∴∠PBA=∠MQP ,又∵BC ∥MN ,∴∠PBC=∠PQN ,又∵∠PQM+∠PQN=180°, ∴∠ABC=180°,∴A 、B 、C 三点在同一直线上.2、如图14所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数. 解:∵ABCD 是长方形,∴AD//BC , ∴EFG DEF ∠=∠, ∵︒=∠50EFG ,∴︒=∠50DEF ,∵四边形EMNF 是四边形EDCF沿EF 折叠而成∴MEF DEF ∠=∠,∴︒=∠100DEGD CB A 图10 E DC BA 图11F b a 3 4 12 图12 N图13N MG F E D CB A 图14五、探索发现(共12分)如图15所示,已知AB ∥CD ,分别探索下列四个图形中∠P 与∠A 、∠C 的关系,请你从所得的四个关系中任选一个加以说明.解:对图(1),作PF//AB ,则︒=∠+∠180APF A ① ∵AB//CD ∴PF//CD∴︒=∠+∠180C FPC ② 由①+②得C FPC APF A ∠+∠+∠+∠︒=∠+∠+∠=360C P A 即C A P ∠-∠-︒=∠360对图(2),作PF//AB , 则APF A ∠=∠ ① ∵AB//CD ∴PF//CD∴C FPC ∠=∠ ② 由①+②得P FPC APF C A ∠=∠+∠=∠+∠ 即C A P ∠+∠=∠对图(3),作PF//AB , 则︒=∠+∠180PFA A ①∵AB//CD ∴PF//CD∴︒=∠+∠180C FPC ② 由①-②得)(C FPC PFA A ∠+∠-∠+∠ C FPC PFA A ∠-∠-∠+∠= ︒=∠-∠+∠=0C P A 即A C P ∠-∠=∠对图(4),作PF//CD , 则︒=∠+∠180FPC C ① ∵AB//CD ∴PF//AB∴︒=∠+∠180A FPA ② 由①-②得)(A FPA FPC C ∠+∠-∠+∠A FPA FPC C ∠-∠-∠+∠= ︒=∠-∠+∠=0A P C 即C A P ∠-∠=∠六、中考题与竞赛题(每小题4分,共8分) 1、如图16所示,已知AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG•平分∠BEF ,若∠1=72°,则∠2=︒54.2、如图17所示,已知直线AB 、CD 被直线EF 所截,若∠1=∠2,则∠AEF+∠CFE=︒180.图15PDC BA (1)F PDCB A (2)F P DCBA (3)F PD CBA (4)FGF EDCBA1 2 图16F E DCBA12 图17。
七年级数学下册《平行线的性质》练习题及答案解析
七年级数学下册《平行线的性质》练习题及答案解析一、选择题(共20小题)1. 如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有( )A. 1个B. 2个C. 3个D. 4个2. 如图,AB∥CD,∠B=75∘,∠E=27∘,则∠D的度数为( )A. 45∘B. 48∘C. 50∘D. 58∘3. 如图,直线DE经过点A,DE∥BC,∠B=60∘,下列结论一定成立的是( )A. ∠C=60∘B. ∠DAB=60∘C. ∠EAC=60∘D. ∠BAC=60∘4. 如图,已知AD∥BC,下列结论不一定正确的是( )A. ∠A+∠ABC=180∘B. ∠1=∠2C. ∠A=∠3D. ∠C=∠35. 如图,直线a∥b,直线c分别与a,b相交,∠1=50∘,则∠2的度数为( )A. 130∘B. 150∘C. 50∘D. 100∘6. 如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是( )A. 相等B. 互余或互补C. 互补D. 相等或互补7. 如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60∘,则下列结论错误的是( )A. ∠2=60∘B. ∠3=60∘C. ∠4=120∘D. ∠5=40∘8. 如图,直线a,b被直线c所截,a∥b,∠1=50∘,则∠2的度数为( )A. 40∘B. 50∘C. 130∘D. 150∘9. 如图,已知AB∥CD,∠1=100∘,∠2=145∘,那么∠F=( )A. 55∘B. 65∘C. 75∘D. 85∘10. 将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30∘,则∠2的度数为( )A. 10∘B. 15∘C. 20∘D. 30∘11. 如图,将三角板的直角顶点放在直尺的一边上,如果∠1=25∘,那么∠2的度数为( )A. 25∘B. 30∘C. 45∘D. 65∘12. 如图,两直线a,b被直线c所截,已知a∥b,∠1=65∘,则∠2的度数为( )A. 65∘B. 105∘C. 115∘D. 125∘13. 如图,直线AD∥BC,若∠1=74∘,∠BAC=56∘,则∠2的度数为( )A. 70∘B. 60∘C. 50∘D. 40∘14. 如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知∠1=55∘,则∠2的度数为( )A. 45∘B. 125∘C. 55∘D. 35∘15. 如图,已知AB∥CD,∠1=100∘,∠2=145∘,那么∠F=( )A. 55∘B. 65∘C. 75∘D. 85∘16. 如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40∘,则∠BAE的度数是( )A. 40∘B. 70∘C. 80∘D. 140∘17. 如图,直线a∥b,直线c分别与直线a,b相交于点A,B,且AC垂直直线c于点A,若∠1=40∘,则∠2的度数为( )A. 140∘B. 90∘C. 50∘D. 40∘18. 一个多边形的内角和比它的外角和的3倍少180∘,这个多边形的边数是( )A. 5B. 6C. 7D. 819. 经过点P(−4,3)垂直于x轴的直线可以表示为( )A. 直线x=3B. 直线y=−4C. 直线x=−4D. 直线y=320. 如图,AB∥EF,CD⊥EF于点D,若∠ABC=40∘,则∠BCD的度数是( )A. 140∘B. 130∘C. 120∘D. 110∘二、填空题(共8小题)21. 如图,已知直线AB∥CD,∠1=50∘,则∠2=.22. 如图所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、后的两条路平行,若第—次拐角是150∘,则第二次拐角大小为度.23. 如图,l1∥l2,∠1=120∘,∠2=100∘,则∠3=.24. 将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=.25. 如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a∘.则下列结论:(180−a)∘;①∠BOE=12②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论(填编号).26. 小明到工厂进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,工人师傅告诉他:AB∥CD,∠A=40∘,∠1=70∘,小明马上运用已学的数学知识得出了∠C 的度数,聪明的你一定知道∠C=.27. 如图,AD∥CE,∠ABC=100∘,则∠2−∠1的度数是.28. 如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45∘角的直角三角尺按如图所示的方式摆放,若∠EMB=75∘,则∠PNM等于度.三、解答题(共6小题)29. 如图,已知:点P在直线CD上,∠BAP+∠APD=180∘,∠1=∠2.求证:∠E=∠F.30. 已知AB∥CD,E为AB,CD同侧上一点.(1)如图1,过点E作EF∥AB.求证:∠CEA=∠EAB−∠ECD.(2)如图2,E,B,D三点在一条直线上,EA平分∠CED,若∠C=50∘,∠EAB=80∘,求∠CED的度数;(3)如图3,CH,AH交于点H,∠BAH=2∠EAH,∠DCH=40∘,∠DCE=60∘,求∠H的值.∠E31. 如图,∠AOB=120∘,射线OC在∠AOB内,且∠AOC=30∘,OD平分∠BOC,OE平分∠AOD.(1)依题意补全图形;(2)求∠EOC的度数.32. 复杂的数学问题我们常会把它分解为基本问题来研究,化繁为简,化整为零,这是一种常见的数学解题思想.(1)如图①,直线l1,l2被直线l3所截,在这个基本图形中,形成了对同旁内角;(2)如图②,平面内三条直线l1,l2,l3两两相交,交点分别为A,B,C,图中一共有对同旁内角;(3)平面内四条直线两两相交,最多可以形成对同旁内角;(4)平面内n条直线两两相交,最多可以形成对同旁内角.33. 如图,直线AB,CD被m,n所截,已知:∠1=110∘,∠2=70∘.(1)试判断AB,CD的位置关系,并说明理由.(2)已知AD平分∠BAC,若∠3=120∘,求∠BAD的度数.34. 如图,直线AB∥CD,DE∥BC.(1)判断∠B与∠D的数量关系,并说明理由.(2)设∠B=(2x+15)∘,∠D=(65−3x)∘,求∠1的度数.参考答案与解析1. D2. B【解析】∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B−∠E=75∘−27∘=48∘.3. B4. D5. A6. D7. D8. B 【解析】∵a∥b,∴∠2=∠1=50∘.9. B【解析】如图:∵AB∥CD,∠1=100∘,∠2=145∘,∴∠3=∠1=100∘,∠4=180∘−∠2=35∘,∵∠F+∠4=∠3,∴∠F=∠3−∠4=100∘−35∘=65∘.故选:B.10. B【解析】因为AB∥CD,所以∠1=∠ADC=30∘,又因为等腰直角三角形ADE中,∠ADE=45∘,所以∠1=45∘−30∘=15∘.11. D12. C 【解析】∵a∥b,∴∠1=∠3,∵∠1=65∘,∴∠3=65∘,∵∠2+∠3=180∘,∴∠2=115∘.13. C14. D15. B【解析】如图:∵AB∥CD,∠1=100∘,∠2=145∘,∴∠3=∠1=100∘,∠4=180∘−∠2=35∘.∵∠F+∠4=∠3,∴∠F=∠3−∠4=100∘−35∘=65∘.16. B【解析】因为AB∥CD,所以∠ACD+∠BAC=180∘,因为∠ACD=40∘,所以∠BAC=180∘−40∘=140∘,因为AE平分∠CAB,×140∘=70∘.所以∠BAE=∠BAC=1217. C【解析】如图所示:∵直线a∥b,∠1=40∘,∴∠3=∠1=40∘.∵AC⊥AB,∴∠BAC=90∘,∴∠2=90∘−∠1=90∘−40∘=50∘.故选C.18. C【解析】设这个多边形的边数为n,则(n−2)⋅180∘=360∘×3−180∘,解得n=7.19. C【解析】经过点P(−4,3)且垂直于x轴的直线可以表示为直线x=−4.故选:C.20. B【解析】如图,过点C作CG∥AB,由题意可得AB∥EF∥CG,故∠B=∠BCG,∠GCD+∠CDF=180∘.∵CD⊥EF,∴∠CDF=90∘.∴∠GCD=90∘.则∠BCD=40∘+90∘=130∘.21. 50∘22. 15023. 40∘24. 90∘25. ①②③【解析】①∵AB∥CD,∴∠BOD=∠ABO=a∘,∴∠COB=180∘−a∘=(180−a)∘,又∵OE平分∠BOC,∴∠BOE=12∠COB=12(180−a)∘.故①正确;②∵OF⊥OE,∴∠EOF=90∘,∴∠BOF=90∘−12(180−a)∘=12a∘,∴∠BOF=12∠BOD,∴OF平分∠BOD,∴②正确;③∵OP⊥CD,∴∠COP=90∘,∴∠POE=90∘−∠EOC=12a∘,∴∠POE=∠BOF;∴③正确;∴∠POB=90∘−a∘,而∠DOF=12a∘,∴④错误.26. 30∘27. 80∘【解析】作BF∥AD,∵AD∥CE,∴AD∥BF∥EC,∴∠1=∠3,∠4+∠2=180∘,∵∠ABC=100∘,∴∠3+∠4=100∘,∴∠1+∠4=100∘,∴∠2−∠1=80∘.28. 30【解析】因为AB∥CD,所以∠DNM=∠BME=75∘.因为∠PND=45∘,所以∠PNM=∠DNM−∠DNP=30∘.29. ∵∠BAP+∠APD=180∘,∴AB∥CD,∴∠BAP=∠APC.又∵∠1=∠2,∴∠BAP−∠1=∠APC−∠2,即∠EAP=∠APF,∴AE∥FP,∴∠E=∠F.30. (1)∵AB∥CD,EF∥AB,∴CD∥EF∥AB,∴∠FEA=∠EAB,∠FEC=∠ECD,∴∠CEA=∠FEA−∠FEC=∠EAB−∠ECD;(2)由(1)知∠CEA=∠EAB−∠ECD=30∘,∵EA平分∠CED,∴∠CED=2∠CEA=60∘;(3)设∠EAH=x,∠BAH=2x,由(1)可知∠E=∠EAB−∠ECD=3x−60∘,∠H=∠HAB−∠HCD=2x−40∘,∴∠H∠E =2x−40∘3x−60∘=23.31. (1)补全图形如图所示:(2)∵∠AOB=120∘,∠AOC=30∘,∴∠COB=∠AOB−∠AOC=90∘.∵OD平分∠BOC,∴∠DOC=12∠BOC=45∘.∴∠DOA=∠AOC+∠DOC=75∘.∵OE平分∠AOD,∴∠DOE=12∠AOD=37.5∘.∴∠EOC=∠DOC−∠DOE=45∘−37.5∘=7.5∘.32. (1)2(2)6(3)24(4)n(n−1)(n−2)33. (1)AB∥CD.理由如下:∵∠1=110∘,∵∠2=70∘,∴∠2=∠4,∴AB∥CD.(2)∵∠3=120∘,∴∠5=60∘,∴AB∥CD,∴∠BAC=∠5=60∘,∵AD平分∠BAC,∠BAC=30∘.∴∠BAD=1234. (1)∠B=∠D.∵AB∥CD,∴∠B=∠1 .∵DE∥BC,∴∠1=∠D .∴∠B=∠D .(2)由2x+15=65−3x,解得x=10,所以∠B=35∘ .。
七年级数学下册53平行性的性质测试题新版新人教版含答案
5.3 平行线的性质1.如图,AB∥CD,∠CDE=140°,则∠A的度数为( )A.140°B.60°C.50°D.40°2.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为( )A.40°B.35°C.50°D.45°3.如图,直线a∥b,直线c分别与a,b相交,若∠1=70°,则∠2=度.4.如图,AB∥CD,直线EF分别与AB,CD交于点G,H,∠1=50°,求∠2和∠CHG的度数.5.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是( )A.30°B.45°C.60°D.75°6.探照灯、锅盖天线、汽车灯等都利用了抛物线的一个原理:由它的焦点处发出的光线被反射后将会被平行射出.如图,由焦点O处发出的光线OB,OC经反射后沿与POQ平行的方向射出,已知∠ABO=42°,∠DCO=53°,则∠BOC=__________.7.某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A=115°,∠D=100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.8.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是( )A.50°B.45°C.35°D.30°9.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=( )A.60°B.120°C.150°D.180°10.将一直角三角板与两边平行的纸条如图所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.其中正确的个数是( )A.1个B.2个C.3个D.4个11.如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD=__________.12.如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A=__________.13.如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.14.如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.15.如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.16.如图,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在AB上.(1)试找出∠1,∠2,∠3之间的关系并说出理由;(2)如果点P在A,B两点之间运动,问∠1,∠2,∠3之间的关系是否发生变化?(3)如果点P在A,B两点外侧运动,试探究∠1,∠2,∠3之间的关系(点P和A,B不重合).答案1.D2.A3.1104.∵AB∥CD,∴∠DHE=∠1=50°.∵∠2=∠DHE,∴∠2=∠1=50°.∵∠2+∠CHG=180°,∴∠CHG=180°-∠2=130°.5.B6.95°7.∵AD∥BC,∠A=115°,∠D=100°,∴∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°.8.D 9.A 10.D 11.60°12.54°13.∵EF∥BC,∴∠BAF=180°-∠B=100°.∵AC平分∠BAF,∴∠CAF=12∠BAF=50°.∵EF∥BC,∴∠C=∠CAF=50°.14.∵AB∥CD,∴∠BCE+∠B=180°.∵∠B=40°,∴∠BCE=180°-40°=140°.∵CN是∠BCE的平分线,∴∠BCN=12∠BCE=12×140°=70°.∵CM⊥CN,∴∠BCM=90°-70°=20°.15.∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°.又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°.∴∠DCF=50°.∴∠BCD=∠BCF-∠DCF=70°-50°=20°.16.(1)∠1+∠2=∠3.理由:过点P作l1的平行线PQ.∵l1∥l2,∴l1∥l2∥PQ.∴∠1=∠4,∠2=∠5.∵∠4+∠5=∠3,∴∠1+∠2=∠3.(2)∠1+∠2=∠3不变.(3)∠1-∠2=∠3或∠2-∠1=∠3.理由:①当点P在下侧时,如图,过点P作l1的平行线PQ.∵l1∥l2,∴l1∥l2∥PQ.∴∠2=∠4,∠1=∠3+∠4.∴∠1-∠2=∠3.②当点P在上侧时,同理可得∠2-∠1=∠3.。
人教版七年级下册数学第五章平行线的性质与判定的证明-练习题及答
∵∠B-∠D=24°,
∴∠B=60°,
即∠BEF=60°.
∵EG平分∠BEF,
∴∠GEF= ∠BEF=30°.
3.已知:如图2-10,AB∥EF,BC∥ED,AB,DE交于点G.
求证:∠B=∠E.
解析:标注AB∥EF,BC∥ED
答案:证明:∵AB∥EF,
∴∠E=∠AGD.
∵BC∥ED,
平行线的性质与判定的证明
练习题
温故而知新可以为师以:
重点1.平行线的性质
(1)两直线平行,同位角相等;
(2)两直线平行,内错角相等;
(3)两直线平行,同旁内角互补.
2.平行线的判定
(1)同位角相等,两直线平行;
(2)内错角相等,两直线平行;
(3)同旁内角互补,两直线平行互补.
例1已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数;
由平行线性质找到角的关系.(标注∠1=∠ABC,∠2=∠CDE)
答案:证明:如图,过点C作CF∥AB,
∵直线AB∥ED,
∴AB∥CF∥DE,
∴∠1=∠ABC,∠2=∠CDE.
∵∠BCD=∠1+∠2,
∴∠ABC+∠CDE=∠BCD;
(2)解析:动画过点C作CF∥AB,由平行线性质找到角的关系.
(标注∠ABC+∠1=180°,∠2+∠CDE=180°)
答案:∠ABC+∠BCD+∠CDE=360°.
证明:如图,过点C作CF∥AB,
∵直线AB∥ED,
∴AB∥CF∥DE,
2020--2021学年人教版七年下册数学 第五章 5.3 第1课时 平行线的性质(1) 附答案
人教版七下数学第五章 5.3 第1课时平行线的性质(1)一、选择题1.如图,直线a,b被直线c所截,a∥b,∠1=40∘,则∠2的度数是( )A.40∘B.50∘C.60∘D.70∘2.如图,直线a,b被直线c所截,a∥b,∠1=140∘,则∠2的度数是( )A.20∘B.30∘C.40∘D.50∘3.如图,将直尺与三角尺叠放在一起,如果∠1=28∘,则∠2的度数为( )A.28∘B.56∘C.62∘D.72∘4.如图,AB∥CD,∠FGB=153∘,FG平分∠EFD,则∠AEF的度数是( )A.26∘B.52∘C.54∘D.77∘二、填空题5.在同一平面内,如果一个角的两边分别平行于另一个角的两边,那么这两个角的关系是.6.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140∘,那么,∠C应是∘.7.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=70∘,则∠2的度数是.8.如图,已知AD∥BC,∠B=35∘,DB平分∠ADE,则∠DEB=度.9.如图,AB∥CD,AB⊥AE,∠CAE=40∘,则∠ACD的度数为.10.如图,已知点D为∠EAB内一点,CD∥AB,DF∥AE,DH⊥AB交AB于点H,若∠A=50∘,则∠FDH的度数为.11.如图,AB∥EF∥CD,∠ABC=46∘,∠CEF=154∘,则∠BCE的度数为.三、解答题12.光线在不同介质中的传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB与水杯下沿CD平行,光线EF从水中射向空气时发生折射,光线变成FH,点G在射线EF 上,已知∠HFB=20∘,∠FED=45∘,求∠HFE的度数.13.如图,∠1+∠2=180∘,∠3=∠B,请问AB与DE是否平行?试说明理由.14.如图,E为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,试说明:AC∥DF.15.解答题.(1) 如图1,AD∥BC,OF∥BC.求证:∠AOB=∠A+∠B.(2) 如图2,AD∥BC,AC与BD交于点O,∠DOC=70∘,∠DAO=∠ADB+20∘,求∠DBC的度数.答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】C4. 【答案】C【知识点】同旁内角互补、内错角相等二、填空题5. 【答案】相等或互补6. 【答案】1407. 【答案】40°8. 【答案】1109. 【答案】130°10. 【答案】140∘【知识点】同旁内角互补11. 【答案】20°三、解答题12. 【答案】∵AB∥CD,∴∠BFE+∠FED=180∘,∵∠FED=45∘,∴∠BFE=135∘,∵∠HFB=20∘,∴∠HFE=∠BFE+∠HFB=135∘+20∘=155∘.【知识点】同旁内角互补13. 【答案】AB∥DE.理由:∵∠1+∠ADC=180∘,又∵∠1+∠2=180∘,∴∠ADC=∠2,∴EF∥DC,∴∠3=∠EDC,又∵∠3=∠B,∴∠EDC=∠B,∴AB∥DE.【知识点】同位角14. 【答案】∵∠1=∠2,∠4=∠2,∴∠4=∠1,∴DB∥CE,∴∠C=∠ABD,∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF.【知识点】内错角、同位角相等15. 【答案】(1) ∵AD∥BC,OF∥BC,∴AD∥OF,∠FOB=∠B,∴∠A=∠AOF,∵∠AOB=∠AOF+∠FOB,∴∠AOB=∠A+∠B.(2) 设∠ADB=x,则∠DAO=∠ADB+20∘=x+20∘,∵AD∥BC,∴∠DBC=∠ADB=x.由(1)知∠AOB=∠DAO+∠DBC=x+20∘+x=2x+20∘,∵∠AOB=∠DOC=70∘,∴2x+20∘=70∘,∴x=25∘,∠DBC=x=25∘.【知识点】内错角相等、平行公理的推论。
七年级数学下册第五章相交线与平行线5.3平行线的性质5.3.1平行线的性质习题含解析新版新人教版20200528347
5.3.1 平行线的性质1. (3分)(2019·河南省3/23)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°2. (3分)(2018·赤峰8/26)已知AB∥CD,直线EF分别交AB、CD于点G、H,∠EGB=25°,将一个60°角的直角三角尺如图放置(60°角的顶点与H重合),则∠PHG等于()A.30°B.35°C.40°D.45°3. (3分)(2018·兴安盟呼伦贝尔5/26)如图,//∠∠=︒,则FAAB CD,70∠=︒,40C的度数为()A.30︒B.35︒C.40︒D.45︒4. (3分)(2018·通辽12/26)如图,∠AOB的一边OA为平面镜,∠AOB=37°45′,在OB边上有一点E,从点E射出一束光线经平面镜反射后,反射光线DC恰好与OB平行,则∠DEB的度数是.5. (3分)(2015•盐城6/28)一块等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠2的度数为()A.85° B.75° C.60° D.45°6. (3分)(2015•赤峰4/26)如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于()A.10° B.20° C.30° D.50°7. (3分)(2015•鄂尔多斯4/24)如图,直线l1∥l2,∠1=50°,∠2=23°20′,则∠3的度数为()第4题图A.26°40′ B.27°20′ C.27°40′ D.73°20′8. (3分)(2015•随州2/25)如图,AB∥CD,∠A=50°,则∠1的大小是()A.50°B.120°C.130°D.150°9. (3分)(2015•沈阳4/25)如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是()A.100° B.90° C.80° D.70°10. (3分)(2015•呼和浩特3/25)如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A. 70°B. 100°C. 110°D. 120°11. (3分)(2015•通辽8/26)如图,已知AB∥CD,若∠A=25°,∠E=40°,则∠C等于()A.40° B.65° C.115° D.25°12. (3分)(2015•陕西4/26)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()A.43°30′ B.53°30′ C.133°30′ D.153°30′(2014•南宁14/26)如图,已知直线a∥b,∠1=120°,则∠2的度数是°.13. (3分)14. (3分)(2014•贵港14/26)如图所示,AB∥CD,∠D=27°,∠E=36°,则∠ABE的度数是.15. (3分)(2015•云南11/23)如图,直线l 1∥l 2,并且被直线l 3、l 4所截,则∠α=.16. (3分)(2014•仙桃3/25)如图,已知a ∥b ,小华把三角板的直角顶点放在直线b 上.若∠1=40°,则∠2的度数为( )A .100°B .110°C .120°D .130°解析●(3分)(2019·河南省3/23)如图,AB ∥CD ,∠B =75°,∠E =27°,则∠D 的度数为( )A .45°B .48°C .50°D .58°【考点】平行线的性质.【分析】根据平行线的性质解答即可.【解答】解:∵AB ∥CD ,l 1l 2l 3l 4 56°120° α∴∠B =∠1,∵∠1=∠D +∠E ,∴∠D =∠B ﹣∠E =75°﹣27°=48°,故选:B .【点评】此题考查平行线的性质,关键是根据平行线的性质解答.●(3分)(2018·赤峰8/26)已知AB ∥CD ,直线EF 分别交AB 、CD 于点G 、H ,∠EGB =25°,将一个60°角的直角三角尺如图放置(60°角的顶点与H 重合),则∠PHG 等于( )A .30°B .35°C .40°D .45°【考点】平行线的性质.【分析】依据AB ∥CD ,可得∠EHD =∠EGB =25°,再根据∠PHD =60°,即可得到∠PHG =60°﹣25°=35°.【解答】解:∵AB ∥CD ,∴∠EHD =∠EGB =25°,又∵∠PHD =60°,∴∠PHG =60°﹣25°=35°,故选:B .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. ●(3分)(2018·兴安盟呼伦贝尔5/26)如图,//AB CD ,70C ∠=︒,40A ∠=︒,则F ∠的度数为( )A .30︒B .35︒C .40︒D .45︒【考点】平行线的性质【分析】先根据平行线的性质求出BEF ∠的度数,再由三角形外角的性质即可得出结论.【解答】解://AB CD Q ,70C ∠=︒,70BEF C ∴∠=∠=︒.40A ∠=︒Q ,704030F ∴∠=︒-︒=︒. 故选:A .【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.●(3分)(2018·通辽12/26)如图,∠AOB 的一边OA 为平面镜,∠AOB =37°45′,在OB 边上有一点E ,从点E 射出一束光线经平面镜反射后,反射光线DC 恰好与OB 平行,则∠DEB 的度数是 75°30′(或75.5°) .【考点】度分秒的换算;平行线的性质.【分析】首先证明∠EDO =∠AOB =37°45′,根据∠DEB =∠AOB +∠EDO 计算即可解决问题;【解答】解:∵CD ∥OB ,∴∠ADC =∠AOB ,∵∠EDO =∠CDA ,∴∠EDO =∠AOB =37°45′,∴∠DEB =∠AOB +∠EDO =2×37°45′=75°30′(或75.5°),故答案为75°30′(或75.5°).【点评】本题考查平行线的性质、度分秒的换算等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.●(3分)(2015•盐城6/28)一块等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠2的度数为()A.85° B.75° C.60° D.45°考点:平行线的性质.分析:首先根据∠1=60°,判断出∠3=∠1=60°,进而求出∠4的度数;然后对顶角相等,求出∠5的度数,再根据∠2=∠5+∠6,求出∠2的度数为多少即可.解答:解:如图1,,∵∠1=60°,∴∠3=∠1=60°,∴∠4=90°﹣60°=30°,∵∠5=∠4,∴∠5=30°,∴∠2=∠5+∠6=30°+45°=75°.故选:B.点评:此题主要考查了平行线的性质,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.●(3分)(2015•赤峰4/26)如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于()A.10° B.20° C.30° D.50°考点:平行线的性质.分析:先根据平行线的性质求出∠CKG的度数,再由三角形外角的性质得出∠KMG的度数,根据对顶角相等即可得出结论.解答:解:∵直线AB∥CD,∠AHG=50°,∴∠AKG=∠XKG=50°.∵∠CKG是△KMG的外角,∴∠KMG=∠CKG﹣∠G=50°﹣30°=20°.∵∠KMG与∠FMD是对顶角,∴∠FMD=∠KMG=20°.故选B.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.●(3分)(2015•鄂尔多斯4/24)如图,直线l1∥l2,∠1=50°,∠2=23°20′,则∠3的度数为()第4题图A.26°40′ B.27°20′ C.27°40′ D.73°20′答案:A●(3分)(2015•随州2/25)如图,AB∥CD,∠A=50°,则∠1的大小是()A.50°B.120°C.130°D.150°考点:平行线的性质..分析:由平行线的性质可得出∠2,根据对顶角相得出∠1.解答:解:如图:∵AB∥CD,∴∠A+∠2=180°,∴∠2=130°,∴∠1=∠2=130°.故选C.点评:本题考查了平行线的性质,关键是根据两直线平行同旁内角互补和对顶角相等分析.●(3分)(2015•沈阳4/25)如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是()A.100° B.90° C.80° D.70°【考点】平行线的性质;三角形内角和定理.【分析】先根据平行线的性质求出∠C的度数,再根据三角形内角和定理求出∠A的度数即可.【解答】解:∵DE∥BC,∠AED=40°,∴∠C=∠AED=60°,∵∠B=40°,∴∠A=180°﹣∠C ﹣∠B=180°﹣40°﹣60°=80°.【点评】本题考查的是平行线的性质及三角形内角和定理,先根据平行线的性质求出∠C 的度数是解答此题的关键.●(3分)(2015•云南11/23)如图,直线l 1∥l 2,并且被直线l 3、l 4所截,则∠α= .解法一:∵ 直线l 1∥l 2,并且被直线l 3、l 4所截,∴ ∠α+56°=120°,∠α=120°-56°=64°.故答案:64°.解法二:如图,∵ ∠1+56°=120°,∴∠1=120°-56°=64°, ∵直线l 1∥l 2,∴ ∠α=∠1==64°.故答案:64°.考点:平行线的性质.解题分析:本题关键是准确找出“两直线平行,内错角相等”,即∠α+56°=120°;或是根据三角形外角的性质,求出∠1的度数,再由直线l 1∥l 2,可得∠α=∠1即可. 答题分析:考生答错原因:(1)不会运用平行线的性质定理;(2)三角形外角的概念不清楚;(3)角度的计算出现错误,如640,74°等;(4)结果中遗漏角的单位符号.●(3分)(2015•呼和浩特3/25)如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( )A. 70°B. 100°C. 110°D. 120°考点:平行线的性质;对顶角、邻补角..专题:计算题.分析:先求出∠1的对顶角,再根据两直线平行,同旁内角互补即可求出.解答:解:如图,∵∠1=70°,l 1l 2l 3l 4 56°120° α∴∠2=∠1=70°,∵CD∥BE,∴∠B=180°﹣∠1=180°﹣70°=110°.故选:C.点评:本题利用对顶角相等和平行线的性质,需要熟练掌握.●(3分)(2015•通辽8/26)如图,已知AB∥CD,若∠A=25°,∠E=40°,则∠C等于()A.40° B.65° C.115° D.25°【答案】B【解析】试题分析:本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.∵∠EFB是△AEF的一个外角,∴∠EFB=∠A+∠E=25°+40°=65°,∵AB∥CD,∴∠C=∠EFB=65°,【考点】平行线的性质●(3分)(2015•陕西4/26)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()A.43°30′ B.53°30′ C.133°30′ D.153°30′考点:平行线的性质..分析:先根据平行线的性质求出∠EFD的度数,再根据补角的定义即可得出结论.解答:解:∵AB∥CD,∠1=46°30′,∴∠EFD=∠1=46°30′,∴∠2=180°﹣46°30′=133°30′.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两线平行,同位角相等.●(3分)(2014•南宁14/26)如图,已知直线a∥b,∠1=120°,则∠2的度数是°.考点:平行线的性质.分析:求出∠3的度数,根据平行线的性质得出∠2=∠3,代入求出即可.解答:解:∵∠1=120°,∴∠3=180°﹣120°=60°,∵a∥b,∴∠2=∠3=60°,故答案为:60.点评:本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.●(3分)(2014•贵港14/26)如图所示,AB∥CD,∠D=27°,∠E=36°,则∠ABE的度数是.【分析】先根据三角形外角性质得∠BFD=∠E+∠D=63°,然后根据平行线的性质得到∠ABE=∠BFD=63°.【解答】解:如图,∵∠BFD=∠E+∠D,而∠D=27°,∠E=36°,∴∠BFD=36°+27°=63°,∵AB∥CD,∴∠ABE=∠BFD=63°.故答案为:63°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.●(3分)(2014•仙桃3/25)如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°【分析】先根据互余计算出∠3=90°﹣40°=50°,再根据平行线的性质由a∥b得到∠2=180°﹣∠3=130°.【解答】解:∵∠1+∠3=90°,∴∠3=90°﹣40°=50°,∵a∥b,∴∠2+∠3=180°.∴∠2=180°﹣50°=130°.故选:D.【点评】本题考查了平行线的性质:两直线平行,同旁内角互补.。
2021-2022学年人教版七年级数学下册《5-3平行线的性质》寒假预习同步练习(附答案)
2021-2022学年人教版七年级数学下册《5-3平行线的性质》寒假预习同步练习(附答案)1.如图,已知AB∥DC,AD∥BC,∠B=80°,∠EDA=40°,则∠CDO=()A.80°B.70°C.60°D.40°2.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°3.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是()A.α+β=180°B.α+β=90°C.β=3αD.α﹣β=90°4.一个人驱车前进时,两次拐弯后,按原来的相反方向前进,这两次拐弯的角度可能是()A.向右拐85°,再向右拐95°B.向右拐85°,再向左拐85°C.向右拐85°,再向右拐85°D.向右拐85°,再向左拐95°5.如图,已知AB∥DE,∠B=20°,∠D=130°,那么∠BCD等于()A.60°B.70°C.80°D.90°6.已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和b 之间的距离是()A.2cm B.6cm C.8cm D.2cm或8cm 7.下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个8.甲,乙,丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲,乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲B.乙C.丙D.不能确定9.用:0,1,2,3,4,5,6,7,8这9个数字组成若干个一位数或两位数(每个数字都只使用一次),然后把所得的数相加,它们的和不可能是()A.36B.117C.115D.15310.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于度.11.已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为.12.用推理的方法判断为正确的命题叫做.13.如图,∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)AD与BC平行吗?请说明理由;(2)AB与EF的位置关系如何?为什么?(3)若AF平分∠BAD,试说明:①∠BAD=2∠F;②∠E+∠F=90°注:本题第(1)、(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程.解:(1)AD∥BC.理由如下:∵∠ADE+∠ADF=180°,(平角的定义)∠ADE+∠BCF=180°,(已知)∴∠ADF=∠,()∴AD∥BC(2)AB与EF的位置关系是:.∵BE平分∠ABC,(已知)∴∠ABE=∠ABC.(角平分线的定义)又∵∠ABC=2∠E,(已知),即∠E=∠ABC,∴∠E=∠.()∴∥.()14.已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧,BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系.15.如图,已知∠1=∠ACB,∠2=∠3,试说明∠BDC+∠DGF=180°.请将下面的解答过程补充完整.解:∵∠1=∠ACB(已知)∴DE∥()∴∠2=∠DCF()∵∠2=∠3()∴∠3=∠DCF()∴CD∥()∴∠BDC+∠DGF=180°()16.已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE 时,求∠BAD的度数.17.如图,①如果∠1=∠2,那么根据内错角相等,两直线平行可得∥;②如果∠DAB+∠ABC=180°,那么根据,可得∥;③当AB∥CD时,根据,得∠C+∠ABC=180°;④当∥时,根据,得∠C=∠3.18.已知:如图∠1=∠2,∠C=∠D,请证明:∠A=∠F.19.如图,已知:E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,∠A=∠D,∠1=∠2,求证:∠B=∠C.20.将证明过程补充完整.如图,DE∥AB,FG⊥AC,∠1=∠3,求证:BD⊥AC.证明:∵DE∥AB(已知)∴∠1=()∵∠1=∠3(已知)∴∠3=(等量代换)∴FG∥BD()∴∠ADB=∠AFG()∵FG⊥AC(已知)∴∠AFG=90°(垂直的定义)∴∠ADB=90°()∴BD⊥AC()参考答案1.解:∵AB∥DC,∴∠DCO=∠B=80°,∵AD∥BC,∴∠ADC=∠DCO=80°,又∠EDA=40°,∴∠CDO=180°﹣∠EDA﹣∠ADC=60°故选:C.2.解:如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选:B.3.解:过C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠1=∠β,∠α=180°﹣∠2,∴∠α﹣∠β=180°﹣∠2﹣∠1=180°﹣∠BCD=90°,故选:D.4.解:因为两次拐弯后,按原来的相反方向前进,所以两次拐弯的方向相同,形成的角是同旁内角,且互补,故选:A.5.解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF;∴∠B=∠BCF,∠FCD+∠D=180°,∴∠BCD=180°﹣∠D+∠B=180°﹣130°+20°=70°.故选:B.6.解:如图1,直线a和b之间的距离为:5﹣3=2(cm);如图2,直线a和b之间的距离为:5+3=8(cm).故选:D.7.解:①错误,﹣1的平方是1;②正确;③错误,方程右应还为1.2;④错误,只有每任意三点不在同一直线上的四个点才能画6条直线,若四点在同一直线上,则只有画一条直线了.故选:A.8.解:由题意,知:三场比赛的对阵情况为:第一场:甲VS乙,丙当裁判;第二场:乙VS丙,甲当裁判;第三场:甲VS乙,丙当裁判;第四场:甲VS丙,乙当裁判;第五场:乙VS甲,丙当裁判;或第一场:甲VS乙,丙当裁判;第二场:甲VS丙,乙当裁判;第三场:甲VS乙,丙当裁判;第四场:乙VS丙,甲当裁判;第五场:乙VS甲,丙当裁判;由于输球的人下局当裁判,因此第二场输的人是丙.故选:C.9.解:0+1+2+3+4+5+6+7+8=36,2+3+4+5+6+17+80=117,0+1+2+3+4+56+87=153,故不能组成115.故选:C.10.解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n.11.解:当M在b下方时,距离为5﹣3=2cm;当M在a、b之间时,距离为5+3=8cm.故答案为:2cm或8cm12.解:定理是用推理的方法判断为正确的命题,故用推理的方法判断为正确的命题叫做定理.13.(1)解:结论:AD∥BC.理由如下:∵∠ADE+∠ADF=180°,(平角的定义)∠ADE+∠BCF=180°,(已知)∴∠ADF=∠BCF,(同角的补角相等)∴AD∥BC(2)解:结论:AB与EF的位置关系是:AB∥EF,∵BE平分∠ABC,(已知)∴∠ABE=∠ABC.(角平分线的定义)又∵∠ABC=2∠E,(已知),即∠E=∠ABC,∴∠E=∠ABE.(等量代换)∴AB∥EF.(内错角相等,两直线平行)故答案为BCF,同角的补角相等,AB∥EF,ABE,等量代换,AB,EF,内错角相等,两直线平行.(3)证明:①∵AB∥EF,∴∠BAF=∠F,∵∠BAD=2∠BAF,∴∠BAD=2∠F.②∵AD∥BC,∴∠DAB+∠CBA=180°,∵∠OAB=DAB,∠OBA=∠CBA,∴∠OAB+∠OBA=90°,∴∠EOF=∠AOB=90°,∴∠E+∠F=90°.14.解:(1)∠ABE+∠CDE=∠BED.理由:如图1,作EF∥AB,∵直线AB∥CD,∴EF∥CD,∴∠ABE=∠1,∠CDE=∠2,∴∠ABE+∠CDE=∠1+∠2=∠BED,即∠ABE+∠CDE=∠BED.故答案为:∠ABE+∠CDE=∠BED.(2)∠BFD=∠BED.理由:如图2,∵BF,DF分别平分∠ABE,∠CDE,∴∠ABF=∠ABE,∠CDF=∠CDE,∴∠ABF+∠CDF=∠ABE+∠CDE=(∠ABE+∠CDE),由(1),可得∠BFD=∠ABF+∠CDF=(∠ABE+∠CDE)∠BED=∠ABE+∠CDE,∴∠BFD=∠BED.(3)2∠BFD+∠BED=360°.理由:如图3,过点E作EG∥CD,,∵AB∥CD,EG∥CD,∴AB∥CD∥EG,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠CDE+∠BED=360°,由(1)知,∠BFD=∠ABF+∠CDF,又∵BF,DF分别平分∠ABE,∠CDE,∴∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=(∠ABE+∠CDE),∴2∠BFD+∠BED=360°.故答案为:2∠BFD+∠BED=360°.15.解:∵∠1=∠ACB(已知)∴DE∥BC(同位角相等两直线平行)∴∠2=∠DCF(两直线平行内错角相等)∵∠2=∠3(已知)∴∠3=∠DCF(等量代换)∴CD∥FG(同位角相等两直线平行)∴∠BDC+∠DGF=180°(两直线平行同旁内角互补)故答案为BC,同位角相等两直线平行,两直线平行内错角相等,已知,等量代换,同位角相等两直线平行,两直线平行同旁内角互补;16.解:(1)如图1,∵AC∥BD,∴∠DAE=∠D,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)∠EAD+2∠C=90°.证明:如图2,设CE与BD交点为G,∵∠CGB是△ADG是外角,∴∠CGB=∠D+∠DAE,∵BD⊥BC,∴∠CBD=90°,∴△BCG中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵∠D=∠C,∴2∠C+∠DAE=90°;(3)如图3,设∠DAE=α,则∠DFE=8α,∵∠DFE+∠AFD=180°,∴∠AFD=180°﹣8α,∵DF∥BC,∴∠C=∠AFD=180°﹣8α,又∵2∠C+∠DAE=90°,∴2(180°﹣8α)+α=90°,∴α=18°,∴∠C=180°﹣8α=36°=∠ADB,又∵∠C=∠BDA,∠BAC=∠BAD,∴∠ABC=∠ABD=∠CBD=45°,∴△ABD中,∠BAD=180°﹣45°﹣36°=99°.17.解:①如果∠1=∠2,那么根据内错角相等,两直线平行可得AB∥CD;②如果∠DAB+∠ABC=180°,那么根据同旁内角互补,两直线平行,可得AB∥BC;③当AB∥CD时,根据两直线平行,同旁内角互补,得∠C+∠ABC=180°;④当AE∥BC时,根据两直线平行,内错角相等,得∠C=∠3.18.证明:∵∠1=∠2(已知),又∵∠1=∠DGH(对顶角相等),∴∠2=∠DGH(等量代换).∴DB∥EC(同位角相等,两直线平行).∴∠ABD=∠C(两直线平行,同位角相等)∵∠C=∠D(已知)∴∠ABD=∠D(等量代换)∴AC∥DF(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等).19.证明:∵∠1=∠2(已知),∠1=∠AHB(对顶角相等),∴∠2=∠AHB(等量代换).∴AF∥ED(同位角相等,两直线平行).∴∠D=∠AFC(两直线平行,同位角相等).又∵∠A=∠D(已知),∴∠A=∠AFC(等量代换).∴AB∥CD(内错角相等,两直线平行).∴∠B=∠C(两直线平行,内错角相等).20.证明:∵DE∥AB(已知),∴∠1=∠2(两直线平行内错角相等),∵∠1=∠3(已知),∴∠3=∠2(等量代换),∴FG∥BD(同位角相等两直线平行),∴∠ADB=∠AFG(两直线平行同位角相等),∵FG⊥AC(已知),∴∠AFG=90°(垂直的定义),∴∠ADB=90°(等量代换),∴BD⊥AC(垂直的定义),故答案为:∠2、两直线平行内错角相等、∠2、同位角相等两直线平行、两直线平行同位角相等、等量代换、垂直的定义.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版2021年寒假七年级数学下册预习自查:5.3《平行线的性质》用时__________评价__________一.选择题1.下列语句中,为真命题的是()A.过一点有且只有一条直线与已知直线平行B.有理数与数轴上的点一一对应C.互为邻补角的角的平分线所在的两条直线互相垂直D.垂直于同一条直线的两条直线平行2.有下列命题,其中假命题有()①对顶角相等:②垂直于同一条直线的两直线平行;③平行于同一条直线的两直线平行;④内错角相等.A.①②B.①③C.②④D.③④3.若两条直线被第三条直线所截,有一对同位角相等,则其中一对同旁内角的角平分线()A.互相垂直B.互相平行C.相交或平行D.不相等4.以下判定中,正确的个数有()(1)若a∥b,b∥c,则a∥c (2)若a⊥b,b⊥c,则a⊥c(3)若同旁内角相等,则两直线平行(4)若同位角相等,则两直线平行.A.1个B.2个C.3个D.4个5.如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数是()A.40°B.50°C.60°D.70°6.如图所示,已知a∥b,将含30°角的三角板如图所示放置,∠1=115°,则∠2的度数为()A.25°B.45°C.55°D.65°7.如图,AB∥CD,EF⊥BD垂足为F,∠1=40°,则∠2的度数为()A.30°B.40°C.50°D.60°二.填空题8.命题“对顶角相等”的题设是,结论是这两个角相等.9.如图,a∥b,若∠1=50°,则∠2=.10.如图,已知AB∥CD,∠1=110°,则∠A的度数为.11.给出下列命题:①若a2=b2,则a=b.②内错角相等,两直线平行.③若a,b是有理数,则|a+b|=|a|+|b|.④如果∠A=∠B,那么∠A与∠B是对顶角.⑤如果a<b,b<c,那么a<c.其中真命题有.12.如图,a∥b,∠2=95°,∠3=150°,则∠1的度数是.13.在同一平面内,∠A与∠B的两边分别平行,若∠A=50°,则∠B的度数为°.14.如图,∠B=∠C,∠A=∠D,有下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC =∠BND.其中正确的有.(只填序号)三.解答题15.如图所示,AB∥CD,AC∥BD.分别找出与∠1相等或互补的角.16.请结合图形完成下列推理过程:(1)∵∠2+∠4=180°,∴DE∥AC().(2)∵∠1=∠C,∴DE∥().(3)∵AB∥DF,∴∠2=∠().(4)∵∥,∴∠B=∠3 ().17.已知:如图,DB⊥AF于点G,EC⊥AF于点H,∠C=∠D.求证:∠A=∠F.证明:∵DB⊥AF于点G,EC⊥AF于点H(已知),∴∠DGH=∠EHF=90°().∴DB∥EC().∴∠C=().∵∠C=∠D(已知),∴∠D=().∴DF∥AC().∴∠A=∠F().18.如图,∠ACD是∠ACB的邻补角,请你从下面的三个条件中,选出两个作为已知条件,另一个作为结论,得出一个真命题.①CE∥AB;②∠A=∠B;③CE平分∠ACD.(1)由上述条件可得哪几个真命题?请按“⊗⊗⇒⊗”的形式一一书写出来;(2)请根据(1)中的真命题,选择一个进行证明.19.如图,将一张上、下两边平行(即AB∥CD)的纸带沿直线MN折叠,EF为折痕.(1)试说明∠1=∠2;(2)已知∠2=40°,求∠BEF的度数.20.(1)如图甲,AB∥CD,∠BEC与∠1+∠3的关系是什么?并写出推理过程;(2)如图乙,AB∥CD,直接写出∠2+∠4与∠1+∠3+∠5的数量关系;(3)如图丙,AB∥CD,直接写出∠2+∠4+∠6与∠1+∠3+∠5+∠7的数量关系.参考答案一.选择题1.【解答】解:A、过直线外一点有且只有一条直线与已知直线平行,故原命题错误,是假命题,不符合题意;B、实数与数轴上的点一一对应,故原命题错误,是假命题,不符合题意;C、互为邻补角的角的平分线所在的两条直线互相垂直,正确,是真命题,符合题意;D、平面内垂直于同一直线的两条直线平行,故原命题错误,是假命题,不符合题意;故选:C.2.【解答】解:①对顶角相等,是真命题,不合题意:②垂直于同一条直线的两直线平行,缺少在同一平面内,故原命题是假命题,符合题意;③平行于同一条直线的两直线平行,故原命题是真命题,不符合题意;④内错角相等,缺少两直线平行,故原命题是假命题,符合题意.故选:C.3.【解答】解:如图,∵∠APE=∠CQE,∴AB∥CD,∴∠BPQ+∠DQP=180°,∵PM平分∠BPQ,QN平分∠DQP,∴∠BPQ=2∠MPQ,∠DQP=2∠NQP,∴∠MPQ+∠NQP=90°,∴∠POQ=90°,即PM⊥QN,故选:A.4.【解答】解:(1)若a∥b,b∥c,则根据平行公理可得a∥c,故正确;(2)若a⊥b,b⊥c,则a⊥c不一定成立,故错误;(3)若同旁内角相等,则两直线不一定平行,故错误;(4)若同位角相等,则两直线平行,故正确.故选:B.5.【解答】解:∵a∥b,∴∠1=∠2,∵∠1=50°,∴∠2=50°,故选:B.6.【解答】解:∵直线a∥b,∴∠3=∠1=115°.又∵∠3=∠2+∠4,∴∠2=∠3﹣∠4=115°﹣60°=55°.故选:C.7.【解答】解:∵AB∥CD,∴∠D=∠1=40°.∵EF⊥BD,∴∠DFE=90°,∴∠2=180°﹣∠DFE﹣∠D=50°.故选:C.二.填空题8.【解答】解:命题“对顶角相等”可写成:如果两个角是对顶角,那么这两个角相等.故命题“对顶角相等”的题设是“两个角是对顶角”.故答案为:两个角是对顶角.9.【解答】解:∵a∥b,∠1=50°,∴∠1=∠3=50°,∴∠2=180°﹣∠3=130°,故答案为:130°.10.【解答】解:如图,∠1=∠2=110°,∵AB∥CD,∴∠A+∠2=180°,∴∠A=180°﹣∠2=70°,故答案为:70°.11.【解答】解:①若a2=b2,则a=±b,故原命题错误,是假命题,不符合题意.②内错角相等,两直线平行,正确,是真命题,符合题意.③若a,b是有理数,则|a+b|=|a|+|b|,错误,是假命题,不符合题意.④如果∠A=∠B,那么∠A与∠B是对顶角长,错误,是假命题,不符合题意.⑤如果a<b,b<c,那么a<c,正确,是真命题,符合题意.真命题有②⑤,故答案为:②⑤.12.【解答】解:过点C作CD∥a,∵a∥b,∴CD∥a∥b,∴∠1+∠ECD=180°,∠3+∠DCF=180°,∵∠2=95°,∠3=150°,∴∠1+∠2+∠3=360°,∴∠1=360°﹣∠2﹣∠3=360°﹣150°﹣95°=115°,故答案为:115°.13.【解答】解:∵∠A与∠B的两边分别平行,∴∠A=∠B或∠A+∠B=180°,∵∠A=50°,∴∠B=50°,或∠B=180°﹣∠A=180°﹣50°=130°.故答案为:50或130.14.【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故答案为:①②④.三.解答题15.【解答】解:∵AB∥CD,AC∥BD,∴∠GCQ=∠1=∠P AB=∠EAC,∠1+∠CAF=∠1+∠ACG=∠1+∠QCH=180°,∠CDN=∠1=∠BDH=∠MBF=∠ABD,∠1+∠CDB=∠1+∠NDH=∠1+∠DBF=∠1+∠ABM =180°,即与∠1相等的角为∠GCQ、∠P AB、∠EAC、∠CDN、∠BDH、∠MBF、∠ABD,与∠1互补的角为∠CAF、∠ACG、∠QCH、∠CDB、∠NDH、∠DBF、∠ABM.16.【解答】解:(1)∵∠2+∠4=180°,∴DE∥AC(同旁内角互补,两直线平行).(2)∵∠1=∠C,∴DE∥AC(同位角相等,两直线平行).(3)∵AB∥DF,∴∠2=∠BED(两直线平行,内错角相等).(4)∵AB∥DF,∴∠B=∠3 (两直线平行,同位角相等).故答案为:同旁内角互补,两直线平行;AC,同位角相等,两直线平行;BED,两直线平行,内错角相等;AB,DF,两直线平行,同位角相等.17.【解答】解:∵DB⊥AF于点G,EC⊥AF于点H(已知),∴∠DGH=∠EHF=90°(垂直的定义),∴DB∥EC(同位角相等,两直线平行),∴∠C=∠DBA(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠D=∠DBA(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:垂直的定义;同位角相等,两直线平行;∠DBA,两直线平行,同位角相等;∠DBA,等量代换;内错角相等,两直线平行;两直线平行,内错角相等.18.【解答】解:(1)上述问题有三种正确命题,分别是:命题1:①②⇒③;命题2:①③⇒②;命题3:②③⇒①.(2)解:选择命题2:①③⇒②.证明:∵CE∥AB,∴∠ACE=∠A,∠DCE=∠B.∵CE平分∠ACD,∴∠ACE=∠DCE.∴∠A=∠B.19.【解答】解:(1)∵AB∥CD,∴∠MEB=∠MFD,∵A′E∥C′F,∴∠MEA′=∠MFC′,∴∠MEA′﹣∠MEB=∠MFC′﹣∠MFD,即∠1=∠2;(2)由折叠知,∠C′FN==70°,∵A′E∥C′F,∴∠A′EN=∠C′FN=70°,∵∠1=∠2,∴∠BEF=70°+40°=110°.20.【解答】解:(1)∠BEC=∠1+∠3.证明:过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠1,∠CEF=∠3,∴∠BEC=∠BEF+∠CEF=∠1+∠3;(2)∠2+∠4=∠1+∠3+∠5.理由:分别过点E,G,M,作EF∥AB,GH∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥EF∥GH∥MN,∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠CMN=∠5,∴∠2+∠4=∠BEF+∠FEG+∠GMN+∠CMN=∠1+∠EGH+∠MGH+∠5=∠1+∠3+∠5;(3)∠2+∠4+∠6=∠1+∠3+∠5+∠7.理由:分别过点E,G,M,K,P,作EF∥AB,GH∥AB,MN∥AB,KL∥AB,PQ∥AB,∵AB∥CD,∴AB∥CD∥EF∥GH∥MN∥KL∥PQ,∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠KMN=∠LKM,∠LKP=∠KPQ,∠QPC =∠7,∴∠2+∠4+∠6=∠1+∠3+∠5+∠7.。