全国高考数学复习微专题:几何概型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高考数学复习微专题:几何概型
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
几何概型
一、基础知识:
1、几何概型:
每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型
2、对于一项试验,如果符合以下原则:
(1)基本事件的个数为无限多个
(2)基本事件发生的概率相同
则可通过建立几何模型,利用几何概型计算事件的概率
3、几何概型常见的类型,可分为三个层次:
(1)以几何图形为基础的题目:可直接寻找事件所表示的几何区域和总体的区域,从而求出比例即可得到概率。
(2)以数轴,坐标系为基础的题目:可将所求事件转化为数轴上的线段(或坐标平面的可行域),从而可通过计算长度(或面积)的比例求的概率(将问题转化为第(1)类问题)
(3)在题目叙述中,判断是否运用几何概型处理,并确定题目中所用变量个数。从而可依据变量个数确定几何模型:通常变量的个数与几何模型的维度相等:一个变量→数轴,两个变量→平面直角坐标系,三个变量→空间直角坐标系。从而将问题转化成为第(2)类问题求解
二、典型例题:
例1:已知函数()[]22,5,5f x x x x =--∈-,在定义域内任取一点0x ,使()00f x ≤的概率是( ) A. 110 B. 23 C. 310 D. 45
思路:先解出()00f x ≤时0x 的取值范围:22012x x x --<⇒-<<,从而在数轴上()1,2-区间长度占[]5,5-区间长度的比例即为事件发生的概率,所以310P = 答案:C 例2:如图,矩形OABC 内的阴影部分是由曲线()()()sin 0,f x x x π=∈及直线()()0,x a a π=∈与x 轴围成,向矩形OABC 内随机投掷一
点,若落在阴影部分的概率为
14
,则a 的值是( ) A. 712π B. 23π C. 34π D. 56π 思路:落在阴影部分的概率即为阴影部分面积与长方形面积
的比值
长方形的面积66S a a
=⋅=,阴影面积'00sin cos |1cos a a S xdx x a ==-=-⎰,所以有'1cos 164S a P S -===,可解得1cos 2a =-,从而23
a π= 答案:B
例3:已知正方形ABCD 的边长为2,H 是边DA 的中点,在正方形ABCD 内部随机取一点P ,则满足2PH <的概率为( )
A. 8π
B. 184π+
C. 4
π D. 144π+ 思路:2PH <可理解为以H 为圆心,2为半径的圆的
内部,通过作图可得概率为阴影部分面积所占正方形面积的
比例。可将阴影部分拆为一个扇形与两个直角三角形,可计
算其面积为'12S π=+,正方形面积2
24S ==,所以'184S P S π==+
答案:B
小炼有话说:到某定点的距离等于(或小于)定长的轨迹为圆(或圆的内部),所以从2PH <和H 为定点便可确定P 所在的圆内 例4:一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几何体ADF BCE -内自由飞翔,由它飞入几何体F AMCD -内的概率为(
)
A. 34
B. 23
C. 13
D. 12
思路:所求概率为棱锥F AMCD -的体积与棱柱ADF BCE -体积的比值。由三视图可得AD DF CD a ===,且,,AD DF CD 两两垂直,可得
31122ADF BCE ADF V S DC AD DF DC a -=⋅=
⋅⋅=,棱锥体积13F AMCD ADMC V DF S -=⋅,而()21324ADCM S AD AM CD a =
⋅+=,所以214
F AMCD V a -=。从而12F AMCD ADF BCE V P V --== 答案:D 例5:如图,点P 等可能分布在菱形ABCD 内,则214
AP AC AC ⋅≤
的概率是( ) A. 12 B. 14 C. 16 D. 18
思路:对AP AC ⋅联想到数量积的投影定义,即AC 乘以
AP 在AC 上的投影,不妨将投影设为l ,则
214AP AC l AC AC ⋅=⋅≤,即14l AC ≤即可,由菱形性质可得,取,AB AD 中点,M N ,有MN BD ∥,
所以MN AC ⊥ 且垂足四等分AC ,P 点位置应该A D P M
位于AMN 内。所以18AMN ABCD S P S ==菱形 答案:D 例6:某人睡午觉醒来,发现表停了,他打开收音机,想听电台报时,则他等待时间不多于15分钟的概率为( )
A. 14
B. 12
C. 23
D. 34
思路:所涉及到只是时间一个变量,所以考虑利用数轴辅助解决。在一个小时中,符合要求的线段长度所占的比例为
12,所以概率12P = 答案:B
例7:已知函数()22f x x ax b =+-,若,a b 都是区间[]0,4内的数,则使()10f >成立的概率是( )
A. 34
B. 14
C. 38
D. 58
思路:题目中涉及,a b 两个变量,所以考虑利用直角坐标系解决。设Ω为“,a b 在区间[]0,4内”,则Ω要满足的条件为:
0404a b ≤≤⎧⎨≤≤⎩
,设事件A 为“()10f >成立”,即210a b -+>,所以A 要满足的条件为:
0404
210a b a b ≤≤⎧⎪≤≤⎨⎪-+>⎩
,作出各自可行域即可得到()()
()S A P A S ==Ω38
答案:C
例8:在区间[]0,1上随机取两个数,x y ,记1P 为事件“12x y +≥
”的概率,2P 为事件“12x y -≤”的概率,3P 为事件“12
xy ≤”的概率,则( )