数值积分法

合集下载

数值积分方法

数值积分方法
a b
的值大.
二、Simpson公式
n=2时的求积公式
将 [a, b] 二 等分,等分节点 x0 = a ,x1 = (a +b)/2, x2 = b 作为积分节点,构造二次Lagrange插值多 项式 L2(x):2 b

a
f ( x )dx Ak f ( xk ) A0 f ( x0 ) A1 f ( x1 ) A2 f ( x2 )
f ( x ) 在节 a x0 x1
xn b
f ( x0 ), f ( x1 ),
, f ( xn )
作n次Lagrange插值多项式: Ln ( x )
l
k 0
n
k
( x ) f ( xk )

b a
f ( x )dx Ln ( x )dx
a
b

b a
f ( x )dx Ln ( x )dx
b]上的积分公式,这种方法称为复合求积法。
5.2.1 复化梯形积分 将[a, b]分成若干小区间,在每个区间[xi, xi+1]上用 梯形积分公式,再将这些小区间上的数值积分累加 起来,就得到区间[a, b]上的数值积分。这种方法称 为复化梯形积分。 ★ 计算公式
将[a, b] n等分, h = xi+1- xi= (b -a)/n, xi = a + ih, i = 0,1,2,…,n,
其中
4
M 4 max f
a xb
( 4)
( x)
本题
M 4 的求法: 1 sin x cos txdt f ( x) 0 x
1 1 0 0
1 M4 5
f ( x ) t sin txdt t cos( tx

计算方法_数值积分

计算方法_数值积分

f
(b)]
其中xk=a+kh
(k=0,1,2,…,N),
h

ba N
2.复合Simpson公式
如果在每个子区间上使用Simpson公式,就得到复
合Simpson公式。将N等分后的每个子区间再对分一次,
于是共有2N+1个节点,xk 在每个N等分的子区间[x2k ,
ak x2k+2]
h (k=0,1,2,…,2N), (2k=0,1,2,…,N-1)上应
这个问题有明显的答案
I*

4 a rc tg
x
|
1 0



3 .1 4 1 5 9 2 6
取n = 8用复合梯形公式
T8

1 8

1 2

f
(0)
2
f

1 8


2
f

1 4


2
f

3 8


2
f

1 2


2
f

5 8
5.1 牛顿 ― 柯特斯(Newton―Cotes) 公式
建立数值积分公式最基本的思想是选取一个既简单又 有足够精度的函数φ(x),用φ(x)代替被积函数f(x),于是有
b
b
a f (x)dx a (x)dx
现用第四章介绍的插值多项式Pn(x)来代替被积函数f(x),即有
b
b
a
算的结果进行比较。
解 计算结果列于表5-2中。
函数f (x) 梯形值 Simpson值 Cotes值 准确值

数值积分方法

数值积分方法

数值积分方法
数值积分方法是解决数学问题的一种有效的技术。

它与其它数值技术不同,可以求出定义积分的鲁棒解决方案。

积分解决方案可以用来代替无法求解的积分操作,从而使得在积分分析中也能简化求解过程。

数值积分方法有多种,其中最常见的是数值微积分方法,也被称为精确积分法或有界积分法。

这种方法的核心思想是使用数值技术来模拟定义积分的过程,从而进行函数的数值求解。

常见的积分模拟技术有多元积分法、梯形公式法和拉格朗日积分法等,这些技术都可以用计算机实现,可以用来解决各种复杂的积分问题。

数值积分方法在科学研究、工程技术和统计分析等方面都有重要的应用。

其中,科学研究主要是利用数值积分方法进行数值模拟,模拟自然界中的物理、化学过程,从而分析其复杂的时空行为;工程技术则主要利用数值积分方法来解决力学、热力学等方面的计算问题;在统计分析方面,数值积分方法可以用来求解分布函数的统计量和拟合曲线的系数。

此外,在应用数值积分方法时,还应注意几点:首先,在使用数值积分方法前,需要对待求解函数进行适当的数值化处理,以保证得到准确的结果;其次,在求解定义积分时,需注意所用的数值计算方法及精度,以保证可以得到正确而又精确的结果;最后,要根据具体求解问题选择合适的数值积分方法,从而提高求解的效率。

综上所述,数值积分方法是一种有效的数值技术,在科学研究、
工程技术和统计分析等方面具有重要意义。

该技术的应用需要首先对函数进行数值化处理,然后根据具体问题,选择恰当的数值积分方法和计算精度,以确保定义积分的精确求解。

数值积分-计算方法

数值积分-计算方法

(k=0,1,…,n) 作代换x=a+th带入上式,变为: 其中:
(k=0,1,…,n) (1-1) 这个积分是有理多项式积分,它与被积函数f(x)和区间[a,b]无关。
只要确定n就能计算出系数
。 于是得到称为Newton—Cotes公式的求积公式: (1-2) 其中
称为Newton—Cotes系数。如表1所示。 表1 Newton—Cotes系数
§3.1计算n阶求积公式
若有m次代数精度,对(k=0,1,…)应有
而。
§3.2 Gauss求积公式的基本原理
更一般形式: (2-1) 为权函数,设>0,且在[a,b]上可积,构造n阶求积公式:
(2-2) 积分点使得(2-2)式达到2n+1次代数精度,则积分点称为Gauss 点,(2-2)式称为Gauss求积公式。
§2Newton—Cotes公式 §2.1Newton—Cotes公式的推导
当§1.1插值求积公式的插值节点为等距节点时,就得到Newton— Cotes公式。
将区间[a,b]n等分,,n+1个节点为 xk=a+kh (k=0,1,…,n)
在节点上对f(x)的Lagrange插值多项式是:
用Pn(x)代替f(x)构造求积公式: 记
y=(1-1/2*(sin(x)).^2).^(1/2); 在Matlab工作窗口中调用函数:
y2=gauss2('gaussf',0,pi/2) 运行结果为:
y2= 1.3508
第5章 结论
通过以上变成和计算,得到所求的两组积分:
应用Newton—Cotes积分公式所求的结果分别是 y1=1.5078,y2 = 1.3506,而应用Gauss-Legendre方法所求得的结果分别是y1=1.5705 和 y2= 1.3508。单从结果上看,我们也能看出,Newton—Cotes积分公式 和Gauss-Legendre积分公式在精度上的确存在着差异(两者n的取值不 同)。而结果上的差异来源很明显是插值积分在近似替代时产生的,结 合第1章理论依据的内容,Newton-Cotes积分公式的精度最高可达n+1 次,Gauss-Legendre积分公式的精度为2n+1次,由此可知,当n相同 时, Gauss -Legendre积分公式比Newton—Cotes积分公式具有更高的 代数精度。而就本题而言Gauss -Legendre积分公式具有5次代数精度, Newton—Cotes积分公式也具有5次代数精度。因此二者所求积分只存在 微小的差异,结果都比较准确。

数值积分方法

数值积分方法

数值积分方法数值积分,又称为数值分析,是一种应用科学和数学技术来求解数学分析中几何或者微分方程的数学方法。

在实际应用中,有一系列的数值积分方法可以应用于解决某些数学问题,其中包括这些方法的微元法、有限元法、线性多项式插值法、指数插值法、函数拟合法和通用积分等方法。

通过合理的数值技术及其应用,可以有效地解决众多实际问题。

数值积分是数值分析中最基本的方法,指将数学分析中的连续函数或曲线所表示的求和问题离散化,以使其被数值计算机计算出来,也被称为数值积分。

当需要用数值积分方法求某函数的定积分时,首先必须找出该函数的积分表达式,然后对该表达式进行离散化,得到计算机可以处理的函数,最后根据具体的算法,得到数值积分的解。

数值积分方法具有多种形式,分别适用于不同实际问题。

首先,常用的数值积分方法有积分公式,如梯形公式、抛物线公式、Simpson 公式等,以及牛顿-拉夫逊多项式插值公式等,这些积分公式可以以直接的方式计算定积分,但是这种方法只适用于简单的定积分计算,在复杂定积分的计算中效果不佳。

其次,还有多元积分法,如变步长梯形法、双积分法等,这些积分法可以帮助求解一些复杂的定积分,但是计算时间较长。

此外,还有有限元法、隐式Runge-Kutta法、快速积分法等,这些积分方法能够帮助求解非定积分问题,其计算效率也相对较高。

数值积分方法在实际应用中得到了广泛的应用,如仿真求解有限元方程,求解复杂的拟合问题,估计系统的运行参数,计算力学分析等等都与数值积分技术有关。

另外,今天在这一领域,全球多家著名计算数值分析软件公司也在不断改进技术,开发出更加高效的数值积分软件,从而更好地服务于实际问题的求解。

总之,数值积分方法是一门重要的数值分析学科,可用于解决多种实际问题,广泛应用于科学和技术领域,具有重要的现实意义。

python数值积分

python数值积分

python数值积分Python是一种高级编程语言,广泛用于科学计算和数据分析。

在数学和科学计算领域,数值积分是一个重要的问题。

数值积分是指用数值方法计算函数的定积分,即给定一个函数$f(x)$和积分区间$[a,b]$,求$int_a^bf(x)dx$的近似值。

本文将介绍Python中常用的数值积分方法和库。

一、数值积分方法1.矩形法矩形法是最简单的数值积分方法之一。

它的思想是将积分区间$[a,b]$分成$n$个小区间,每个小区间的宽度为$h=frac{b-a}{n}$,然后用函数在小区间中点的函数值$f(frac{a+i*h}{2})$来近似表示小区间的面积,从而得到整个积分区间的近似值。

具体公式为:$$int_a^bf(x)dxapproxhsum_{i=0}^{n-1}f(frac{a+i*h}{2})$$矩形法的优点是简单易懂,容易实现。

但是它的精度较低,误差较大。

2.梯形法梯形法是一种比矩形法更精确的数值积分方法。

它的思想是将积分区间$[a,b]$分成$n$个小区间,每个小区间的宽度为$h=frac{b-a}{n}$,然后用小区间两端点的函数值$f(a+i*h)$和$f(a+(i+1)*h)$来近似表示小区间的面积,从而得到整个积分区间的近似值。

具体公式为:$$int_a^bf(x)dxapproxfrac{h}{2}sum_{i=0}^{n-1}[f(a+i*h)+f(a+(i+1)*h)]$$梯形法的优点是比矩形法更精确,误差较小。

但是它的计算量较大,对于复杂函数和大量数据,可能需要较长的计算时间。

3.辛普森法辛普森法是一种更加精确的数值积分方法。

它的思想是将积分区间$[a,b]$分成$n$个小区间,每个小区间的宽度为$h=frac{b-a}{n}$,然后用小区间两端点和中点的函数值$f(a+i*h)$,$f(a+(i+1)*h)$和$f(frac{a+i*h+a+(i+1)*h}{2})$来近似表示小区间的面积,从而得到整个积分区间的近似值。

数值积分法

数值积分法
ˆ K 1 M C K t 2 t
1 1 1 i i 1 u pi 1 pi 1 M 2 ui u t 2 t t i 2 u i C ui 1 u 2 t
(1)分段解析法;
(2)中心差分法; (3)平均常加速度法; (4)线性加速度法; (5)Newmark-β法;
(6)Wilson-θ法
•••••••• 时域逐步积分法是结构动力分析问题中一个得到广泛研究 的课题,也是得到广泛应用的计算方法。
因此提出时域逐步积分法,即只假设在一个时间步距内 是线性的,相当于用分段直线来逼近实际的曲线。
ˆ u p K ˆ i 1 i 1
i 1 i t 1 i u ui 1 ui 1 u u t 2 1 1 1 i 1 i i u ui 1 u u u 2 i 1 t t 2
当τ = Δt ,即t = t i+1时刻,体系得运动状态为:
( 0) u |t ti u i , u( 0) ui u ( ) a u i 最后得: u 1 2 i ui u ( ) a u 2
i 1 at u i u
目录
1 基本问题 2 时域积分法的构造
3 Newmark法
4 方法特点比较
1.数值算法中的基本问题
车辆运动方程
(t ) cu (t ) ku (t ) p(t ) mu (t ) [C ]u (t ) [ K ]u(t ) [ p(t )] [ M ]u
时域逐步积分法——Step-by-step methods 结构动力反应分析的时域直接数值计算方法:

数值积分法

数值积分法

数值积分法数值积分法是数学中一种重要的积分技术,它用于解决一类复杂的积分方程。

简而言之,数值积分法使用数学技巧计算复杂的定积分。

它利用数值计算技术,如复合梯形法、改进梯形法、改进Simpsons 法、Romberg积分法等,将一个复杂的函数转换成一系列简单的函数,以便计算它们之间的积分值。

数值积分法包括高斯-勒让德复合梯形法、勒贝格复合梯形法、改进梯形法、改进Simpson法、Romberg积分法等。

由于各种方法的不同,它们在不同条件下的性能也不同。

为了得到最佳的数值积分法,需要仔细分析办法的优劣、特点,以便根据不同的积分问题,选择最合适的方法来求解。

首先,复合梯形法包括高斯-勒让德法和勒贝格法。

这两种方法的共同点是都使用普通梯形法来代替复杂的函数,把它分段细分成很多小段,使其变得更容易计算。

高斯-勒让德法在每个子区间中都使用两个点来定义一个梯形,而勒贝格法在每个子区间中都使用三个点,一般来说,使用三个点比两个点计算精度更高。

其次是改进梯形法和改进Simpson法。

改进梯形法是在复合梯形法的基础上加以改进,它试图使复杂函数在小区间内更准确。

它对每个子区间进行多次拆分,以一定精度来拟合函数。

改进Simpson法也是根据复合梯形法改进而来,它把一个较大的区间拆分成以三点为基础的梯形,使拟合准确性更高。

最后是Romberg积分法。

它是一种改进的复合梯形法,它使用了一种类似复合梯形法的方法,但用一种特殊的矩阵来求解梯形的积分。

它可以把拆分的子区间数值用矩阵的乘方来表示,从而实现自动化求解,用较少的计算量就能准确求解函数积分。

总结而言,数值积分法是一类复杂的积分技术,它们具有计算准确、复杂度低、计算量少等优点,是解决复杂积分问题的不可缺少的工具。

因此,正确选择数值积分法,对于求解复杂积分方程具有重要的意义,值得大力研究和推广。

数值积分法

数值积分法

数值积分法
数值积分法是一种对积分形式进行数值求解的方法,也常称数值积分技术。

数值积分是在计算技术及数学运算中非常重要的一种技术,它主要应用于定积分、不定积分和高维积分的求解,它广泛地应用于工程科学技术中,为工程实践提供了技术支持。

数值积分的基本思想是采用一定的数值方法对积分方程进行步进运算,把不容易精确求解的积分问题变为若干个步进步长固定的离散状态的积分状态,从而利用问题的离散和近似性来求解积分问题。

数值积分包括定积分、不定积分和高维积分等。

定积分可以采用梯形公式、Simpson公式和三点高斯公式等。

梯形公式是最常用的积分公式,原理是把定积分看作一个多边形;Simpson公式是二阶精度的数值积分公式,它的变化灵活;三点高斯公式是基于三个节点(3和4阶)的积分解法。

不定积分采用Gauss-Legendre三点、Gauss-Lobatto七点、Newton-Cotes三、四点和Maszkarinow公式等。

Gauss-Legendre三点公式主要用于正态分布函数的积分——其精度为2阶; Gauss-Lobatto七点公式采用一系列不同权重值,用于求解非线性三次方程,精度为3阶;Newton-Cotes三点、四点和Maszkarinow公式也通常用于积分运算。

高维积分主要包括Monte-Carlo方法和偏微分法。

Monte-Carlo法将积分区间映射到概率空间,在概率空间中设定采样点,然后求解相应的积分值;偏微分法是用一系列多项式做有限元函数,以计算机代替定积分的积分算法。

因此,数值积分法是一种重要的数值分析工具,它能够在有限时间精确地解决复杂的积分问题。

熟练掌握数值积分法,有助于提高计算效率,进而更好地解决实际问题。

常微分方程初值问题的数值积分法

常微分方程初值问题的数值积分法

y( xn1) y( xn ) hfh ( xn , y( xn )) Rh ( xn ),
并且当 h 0时,
yh,0
y(x0 )
h1 max xIh
Rh (x)
0,
(7.4.2)
则称(7.4.1) 式为初值问题(7.1.1)的一个相容近似 ,
或称此格式满足相容条件即(7.4.2)式。

Rh (xn ) O(h p1), yh,0 y(x0) O(h p )(h 0)
a x0 x1 L xN1 xN b,
令 hn xn1 xn,称为积分网格的步长。
用y0 , y1, y2 , , yN 表示精确解 y(x)在节点 x0 , x1, x2 , , xN 上函数值 y( x0 ), y( x1), y( x2 ), , y( xN )的近似值。
对给定的数值积分法,各个 yn 是按某一递推算法确 定的。若在计算 yn1 时只用到已求出的 y0, y1,L , yn中的 yn ,而无须使用其余值 y0, y1,L , yn1 中的任何一个, 则称此法为单步法,否则,称之为多步法。
xn
的右端积分中用梯形公式,则得
yn1
yn
h 2
[
f
(
xn
,
yn
)
f (xn1, yn1)],
n 0,1,L
称该递推公式为梯形方法。
梯形公式
b f (x)dx (b a) ( f (a) f (b))
a
2
梯形方法
yn1
yn
h 2
[
f
( xn
,
yn
)
f (xn1, yn1)],
n 0,1,L
7.2 几个简单的数值积分法

欧拉数值积分

欧拉数值积分

欧拉数值积分全文共四篇示例,供读者参考第一篇示例:欧拉数值积分(Euler numerical integration)是一种数值计算方法,用于近似计算定积分的数值值。

它是以数学家欧拉命名的一种数值积分方法,被广泛应用于科学工程计算和数值模拟中。

欧拉数值积分的基本思想是将被积函数在积分区间上进行近似处理,通过对积分区间的划分和插值计算来得到数值积分的结果,从而避免直接对函数进行复杂的解析计算。

在数值积分中,通常采用数值积分公式来计算函数在给定区间上的积分值。

欧拉数值积分是一种基础的数值积分方法,它的优点在于简单易懂、易于实现和具有良好的数值稳定性。

欧拉数值积分还可以适用于各种类型的函数,包括连续函数、离散函数和多项式函数等。

对于给定的积分区间[a, b]和被积函数f(x),欧拉数值积分的基本步骤如下:1. 将积分区间[a, b]等分为n个小区间,即将积分区间划分为n个子区间[a, x1], [x1, x2], ..., [xn-1, b];2. 计算每个小区间的积分近似值,可以采用矩形法则、梯形法则、辛普森法则等数值积分公式;3. 将各个子区间上的积分近似值进行求和计算,得到整个积分区间[a, b]上的数值积分近似值。

欧拉数值积分的计算过程中需要根据具体的被积函数类型和积分区间的大小来选择合适的划分方式和数值积分公式。

在实际应用中,欧拉数值积分通常需要进行数值稳定性分析和误差估计,以确保数值积分结果的准确性和可靠性。

欧拉数值积分在科学工程计算和数值模拟中具有广泛的应用,例如在数值解微分方程、积分方程、优化问题、概率统计等领域中都能看到欧拉数值积分的身影。

它的应用范围涵盖了物理学、工程学、计算机科学、统计学等多个学科领域,为解决复杂实际问题提供了有效的数值计算方法。

第二篇示例:欧拉数值积分,又称欧拉方法(Euler method),是求解微分方程数值解的一种常用方法。

它是由瑞士数学家欧拉在18世纪提出的,是一种基本的数值积分方法,用于数值解析微分方程。

几种常用数值积分方法的比较讲解

几种常用数值积分方法的比较讲解

学科分类号110.3420本科毕业论文题目几种常用数值积分方法的比较姓名潘晓祥学号1006020540200院(系)数学与计算机科学学院专业数学与应用数学年级2010 级指导教师雍进军职称讲师二〇一四年五月贵州师范学院本科毕业论文(设计)诚信声明本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。

本人完全意识到本声明的法律结果由本人承担。

本科毕业论文作者签名:年月日贵州师范学院本科毕业论文(设计)任务书毕业设计题目几种常用数值积分方法的比较作者姓名潘晓祥学号1006020540200 年级2010级所属学院数学与计算机科专业数学与应用数学班级四班指导教师签名雍进军讲师职称讲师开题日期2013年7月10日主要目标1.了解什么数值积分基本思想和一些常用的数值积分方法;2.对各种数值积分方法的误差以及代数精度进行分析;3.对各积分方法进行比较总结出优缺点。

主要要求通过对几种常用的数值积分方法进行了的分析,并用这几种方法对被积函数是普通函数做了数值积分,并在计算机上进行实验。

数值积分是计算方法或数值分析理论中非常重要的内容,数值积分方法也是解决实际计算问题的重要方法,对几种常用数值积分方法的分析很必要。

主要内容本文通过对复化求积公式, Newton—Cotes求积公式, Romberg求积公式,高斯型求积公式进行分析讨论并在计算机上积分实验,从代数精度,求积公式误差等角度对这些方法进行分析比较,并总结出每种求积分法的优缺点以及实用性。

贵州师范学院本科毕业论文(设计)开题报告书论文题目几种常用数值积分方法的比较作者姓名潘晓祥学号1006020540200 年级2010级数学与计算机所属学院专业数学与应用数学班级数本(4)班科学学院指导教师姓名雍进军职称讲师预计字数5000.00字题目性质应用研究日期2013年7月05 日选题的原由:研究意义:数值积分是数学上的重要课题之一,是数值分析中的重要内容之一,也是数学的研究重点.并在实际问题及应用中有着广泛的应用.常用于科学与工程的计算中,如涉及到积分方程,工程计算,计算机图形学,金融数学等应用科学领域都有着相当重要的应用,所以研究数值积分问题有很重要的意义.数值积分是研究如何求出一个积分的数值.这一课题的起源可追溯到古代,其中一个突出的例子是希腊人用内接与外接正多边形推算出圆面积的方法.也正是此法使阿基米德得以求出π值得上界与下界,若干世纪以来,尤其是十六世纪后,已提出了多种数值积分方法,其中有矩形求积法,内插求积法,牛顿科特斯公式,复化求积公式,龙贝格求积公式,高斯型求积公式.但各种方法都有特点,在不同的情况下试用程度不同,我们将着重从求积公式的代数精度和余项等角度对这些方法进行分析比较. 研究动态:这些年来,有关数值积分的研究已经成为一个很活跃的研究领域,历史上,阿基米德,牛顿,欧拉,高斯,切比雪夫等人都对此有过贡献.研究出各种各样的数值求积公式,但一个好的数值求积公式应该满足:计算简单,误差小,代数精度高.我们将对矩形求积法,内插求积法,牛顿科特斯公式,化求积公式,贝格求积公式,斯型求积公式进行比较.对数值求积公式能有进一步的了解和学习.主要内容:1 数值积分方法的基本思想2 几类常用数值积分方法的基本分析2.1 Newton—Cotes求积公式2.2 复化求积公式2.3 Romberg求积公式2.4 高斯型求积公式3 几类数值积分方法的简单比较评述4利用MATLAB编程应用对几类求积算法的分析比较研究方法:本论文主要通过对相关文献和书籍的参考,合自己的见解,复化求积公式,Newton—Cotes求积公式,Romberg求积公式,高斯型求积公式进行讨论并进行上机实验,从代数精度,求积公式误差等角度对这些方法进行分析比较.完成期限和采取的主要措施:本论文计划用6个月的时间完成,阶段的任务如下:(1)7月份查阅相关书籍和文献;(2)8月份完成开题报告并交老师批阅;(3)9月份完成论文初稿并交老师批阅;(4)10月份完成论文二搞并交老师批阅;(5)11月份完成论文三搞;(6)12月份定稿.主要措施:考相关书籍和文献,合自己的见解,老师的指导下和同学的帮助下完成主要参考文献及资料名称:[1] 关治. 陆金甫. 数学分析基础(第二版)[M]. 北京:等教育出版社.2010.7[2] 胡祖炽. 林源渠. 数值分析[M] 北京:等教育出版社.1986.3[3] 薛毅. 数学分析与实验[M] 北京:业大学出版社2005.3[4] 徐士良. 数值分析与算法[M]. 北京:械工业出版社2007.1[5] 王开荣. 杨大地. 应用数值分析[M] 北京:等教育出版社2010.7[6] 杨一都. 数值计算方法[M]. 北京:等教育出版社 . 2008.4[7] 韩明. 王家宝. 李林. 数学实验(MATLAB)版[M]. 上海:济大学出版社2012.1[8] 圣宝建. 关于数值积分若干问题的研究[J]. 南京信息工程大学. 2009.05.01. : 42[9] 刘绪军. 几种求积公式计算精确度的比较[J]. 南京职业技术学院. 2009.[10] 史万明.吴裕树.孙新.数值分析[M]. 北京理工大学出版社.2010.4.开题报告会纪要时间2013年8月26日地点宁静楼229教师办公室与会人员姓名职务(职称)姓名职务(职称)姓名职务(职称)雍进军导师(讲师)邓喜才副教授李晟副教授龙林林组长指导教师意见:签名:年月日会议记录摘要:指导小组针对课题《二次函数性质的应用》提问了以下问题以及报告人的回答:雍老师问:选择此题目的目的?潘晓祥答:随着计算机和计算方法的飞速发展,几乎所有学科都走向定量化和精确化,计算数学中的数值计算方法则是解决“计算”问题的桥梁和工具。

用matlab求数值积分的方法

用matlab求数值积分的方法

用matlab求数值积分的方法
数值积分也称为数值积分法,是一种用计算机来近似求解定积分的方法。

在MATLAB中,可以使用三种数值积分方法:梯形法、辛普森法和积分变换法。

梯形法是最简单的数值积分方法之一,它通过将被积函数在区间上近似为一条直线,然后计算这条直线下的面积来近似定积分。

在MATLAB中,可以使用trapz函数来使用梯形法进行数值积分。

辛普森法是梯形法的改进版,它通过将被积函数在区间上近似为一个二次函数,然后计算这个二次函数下的面积来近似定积分。

在MATLAB中,可以使用quad函数来使用辛普森法进行数值积分。

积分变换法是一种更加精确的数值积分方法,它通过将被积函数进行一定的变换,然后将变换后的函数在区间上近似为一个多项式函数,最后计算这个多项式函数下的面积来近似定积分。

在MATLAB中,可以使用quadgk函数来使用积分变换法进行数值积分。

总之,MATLAB提供了许多数值积分的函数,选择合适的数值积分方法可以根据具体问题的要求来确定。

仿真3数值积分法

仿真3数值积分法


• 描述各类系统最基本的模型用微分方程或 状态空间表达式,二次建模就是要求出适合用数 字计算机求解的模型,就需要把微分运算转化成 算术运算在用计算机求解。
连续系统数值积分法:就是利用数值积分 方法对常微分方程建立离散化形式的数学模型( 差分方程)并求出数值解。
最常用的数值解法有:
欧拉法、梯形法、Adams、Runge—Kutta法 。
• 实际在逐步递推过程中,计算 yn+1 时已经获
得一系列的近似值:
以及

• 如果能利用多步计算信息(历史时刻值), 则可能既加快仿真速度又获得较高的仿真精度, 这就是构造多步法的出发点。
• 多步法中以 Adams 法最具代表性,应用最为 普遍。

• 一、Adams算法
• 对一阶连续系统

•连续解为:
•此时,RK4公式的4个 k 值:

例:系统方程
•解
•取步长 h=0.1,试用RK4法求t=0.1,0.2时的解 •将原系统方程化为状态方程形式
::


•见仿真结 果
•作业:P149 3.2


• 第三节 数值积分法的多步算法
• 单步法的特点:计算 n+1 时刻的值 yn+1 时, 只用到第 n 时刻的 yn 和 fn 。

(1)
• 之间的误差为:
• 局部截断误差与hp+1是同阶无穷小量,记为 •O(以hp上+1)公式(1)就称为p阶的Taylor展开法递推公


欧拉法的Taylor级数展开
•只取一次项,其余忽略
•写成差分方程 为 •这就是解微分方程初值问题的欧拉算法。

积分的数值方法

积分的数值方法
Pn ( x) f ( xk )lk ( x)
k 0 n
式中 这里
( x) lk ( x ) ( x xk )( xk ) j 0 xk x j
n j k
x xj
( x) ( x x0 )(x x1 )( x xn )
的近似值,即:
多项式Pn(x)易于求积,所以可取
ab 和 f ( ) f ( ) 则分别 2 得到梯形公式和中矩形公式。
2
y=f(x) y=f(x)

梯形公式

b
a
1 f ( x)dx (b a) f (a) f (b) 2
中矩形公式
b
a a
y y=f(x)
b bx


a
ab f ( x)dx (b a ) f ( ) 2
ba a f ( x)dx 2 f (a) f (b) b ba 取f(x)=1时, 1dx b a, (1 1) b a 两端相等 a 2
b
取f(x)=x时,
1 2 2 a xdx 2 (b a ),
b
ba 1 2 2 (a b) (b a ) 2 2
两端相等
取f(x)=x2 时,

b
a
1 3 ba 2 1 2 3 2 x dx (b a ), (a b ) (a b 2 )( b a) 3 2 2
2
两端不相等
所以梯形公式只有1次代数精度。
例3.2 试确定一个至少具有2次代数精度的公式
f ( x)dx Af (0) Bf (1) Cf (3)
定理3.1 n+1个节点的求积公式

实验:控制系统数字仿真之数值积分法

实验:控制系统数字仿真之数值积分法

1
1
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0
0
0 50 100 150 200 250 300 350 400 450 500
0
50
100
150
200
250
300
350
400
450
500
1.4
1.2
ts=199, Mp=18.2175, FAI=0.93537, tr=73, tp=106, ys=1.0003 ts=147, Mp=16.7351, FAI=0.94362, tr=74, tp=107, ys=1.0003 ts=147, Mp=16.7505, FAI=0.94355, tr=74, tp=107, ys=1.0003
ts=147.2, Mp=16.8911, FAI=0.94279, tr=73.9, tp=107, ys=1.0003
1
0.8
0.6
0.4
0.2
0
0
50
100
150
200
250
300
350
400
450
500
用梯形法得出系统响应曲线:
若采用欧拉法,误差为红色曲线围成的面积,而如果用梯形法,误差减少为 蓝色曲线围成的面积。同时,要求出蓝色曲线围成的面积,就要先出下一个点的 值。因此增加了计算量。 算法: 先用欧拉法求出下一个点的值, 用下一个点的值求这个点的斜率, 接着就能 求出梯形的面积。用新的面积(代表斜率)求出下一个点的值。 实验程序代码(与之前相同的部分没有复制):
实验:控制系统数字 仿真之数值积分法
实验目的:

计算方法数值积分

计算方法数值积分

计算方法数值积分数值积分也叫数值积分法,是一种利用数值计算方法来近似计算定积分的技术。

数值积分法的基本思想是将求解定积分的问题转化为连续函数的逼近问题,通过对确定的函数值进行加权平均来估计定积分的值。

数值积分法的步骤如下:1.将被积函数f(x)分割成若干个小区间;2.在每个小区间上选择一个或多个代表点,计算这些代表点的函数值;3.将这些函数值与一组预先选定的权重相乘,并将结果求和,即可得到最终的近似积分值。

常用的数值积分法有矩形法、梯形法、辛普森法等。

矩形法是数值积分中最简单粗糙的近似计算方法。

它将每个小区间上的函数值等分为一个常量,用矩形面积的和来近似计算定积分。

具体来说,矩形法可分为左矩形法、右矩形法和中矩形法三种。

其中,左矩形法以每个小区间的左端点作为代表点,右矩形法以右端点作为代表点,中矩形法以每个小区间的中点作为代表点。

梯形法是通过近似使用梯形面积来计算定积分。

它的计算思想是将每个小区间上的函数值重新排列为两个连续点的直线,并计算这些直线与x轴之间的面积和。

具体来说,梯形法通过连接每个小区间的左右两个函数值,构成一个梯形来近似计算定积分。

辛普森法是一种更加精确的数值积分方法。

它的计算思想是将每个小区间上的函数值近似为一个二次多项式,并计算这些多项式的积分值。

辛普森法使用了更多的代表点,其中每两个相邻的代表点组成一个小区间,并使用一个二次多项式来逼近这个小区间上的函数。

辛普森法的精度比矩形法和梯形法要高。

数值积分法的精度受步长的影响,步长越小,近似误差越小。

在实际计算中,需要根据被积函数的特点和计算精度的要求来选择合适的数值积分法和步长。

此外,为了提高计算精度,还可以采用自适应步长和复合数值积分等方法。

总之,数值积分是求解定积分的一种近似计算方法,其基本思想是对函数的逼近和面积的加权平均。

常用的数值积分法有矩形法、梯形法和辛普森法等,选择合适的方法和步长可以提高计算精度。

数值积分法在科学计算领域和工程实践中被广泛应用。

数值积分方法课件

数值积分方法课件
热力学分析
通过数值积分方法,可以对物体的传热过程进行精确 分析。
在金融计算中的应用
01
股票价格预测
数值积分方法可以用于预测股票 价格的变动趋势,为投资决策提 供支持。
02
03
风险管理
精算学
在金融风险管理中,数值积分方 法可以用于评估投资组合的风险 水平。
在精算学中,数值积分方法可以 用于计算生命保险、养老保险等 保险产品的精算现值。
THANKS
感谢观看
按照被积函数的特征分类
可以分为有理函数的积分、无理函数的积分、超越函数的积分等。
02
常见数值积分方法
矩形法
总结词
简单、易理解、精度低
详细描述
矩形法是一种简单的数值积分方法,其基本思想是将积分区间划分为一系列小的矩形,然后用每个小 矩形的面积近似代替该区域的积分。该方法易于理解和实现,但精度较低。
分。
Gauss-Legendre积分法
03
精度高,计算量较大,适用于求解具有特定形状的积
分。
适用范围与场景
梯形法则
适用于简单的一维函数不定积分,如常数函 数、三角函数等。
Simpson法则
适用于具有对称性的积分,如奇函数或偶函数的积 分。
Gauss-Legendre积分法
适用于求解具有特定形状的积分,如圆环域 、球域等。
常见的数值积分公式包括梯形法则、辛普森法则 、高斯积分等。
数值积分的重要性
解决实际问题
数值积分被广泛应用于各种实际问题中,如物理学、工程学、经济学等。
理论计算基础
数值积分也是许多理论计算的基础,如微分方程、偏微分方程的求解等。
数值积分的分类
按照所使用的数值方法分类
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章 数值积分法7.1 实验目的了解求积公式及代数精度概念,理解并掌握求定积分的求积公式的算法构造和计算,学习用计算机求定积分的一些科学计算方法和简单的编程技术和能用程序实现这些算法。

7.2 概念与结论1. 求积公式计算定积分的如下形式的近似公式:称为求积公式。

2.代数精度若求积公式对一切不高于m 次的 多项都准确成立,而对于m+1次多项式等号不成立,则称此求积公式的代数精度为m 。

代数精度越高,求积公式越好。

3.求积余项4.Newton-Cotes 求积公式的代数精度n 点Newton-Cotes 求积公式的代数精度至少可以达到n-1,且当n 为奇数时,可以达到n 。

⎰∑=≈ba nk k k x f A dx x f 1)()(⎰∑=≈ba nk k k x f A dx x f 1)()(⎰∑=-=b a nk k k x f A dx x f f R 1)()()(⎰=b a dx x f I )(5.Richardson 外推定理设函数F 1(h)逼近量F*的余项为:F*-F 1(h)=a 1h p1+a 2h p2+····+a k p k+···式中p k >p k-1>···>p 2>p 1>0, F*和a i (i=1,2, ···)都是与h 无关的常数,且k ≥1时,a k ≠0,则由:定义的函数F 2(h)也逼近F*,且有F*-F 2(h)= b 2h p2+····+b k p k +···6. 关于复合梯形公式的展开定理设f(x)在[a,b]区间上无穷次可微,则有如下展开式:T(h)=I+a 1h 2+a 2h 4+a 3h 6+…+a m h 2m +…式中T(h)是函数f(x)在[a,b]区间上的复化梯形值Tn,7.3 程序中Mathematica 语句解释1. 随机函数Random[] 随机给出闭区间[0,1]内的一个实数Random[Real, xmax] 随机给出闭区间[0,xmax]内的一个实数Random[Real, {xmin, xmax}] 随机给出闭区间[xmin,xmax]内的一个实数Random[Integer] 随机给出整数0或1Random[Integer, {xmin, xmax}] 随机给出xmin 到xmax 之间的一个整数Random[Complex] 随机给出单位正方形内的一个复数2.{a1,a2,…,an}表示由元素a1,a2,…,an 组成的一个表,元素可以是任何内容。

)10(1)()()(11112<<--=q q h F q qh F h F p p如:{1,3,4,5},{1,x,{2,3},x+y},{{1,3},{1,2,3},{3,2,4}}等3.list[[k]]表list 中的第k 个元素4.list[[i,j]]表list 中第i 个元素中的第j 个元素,此时list 中的第i 个元素应该也是一个表。

7.4 方法、程序、实验在实际问题中,往往会遇到被积函数f(x)的原函数无法用初等函数来表示,或函数只能用表格表示,或有的虽然能用初等函数表示,但过分复杂,所以这些情形都需要去建立定积分的近似计算公式来做积分计算。

数值积分是进行定积分计算的一种方法,它可以解决不能用定积分基本公式计算的所有定积分问题。

数值积分涉及很多计算公式,这里主要介绍Newton-Cotes 求积公式、复合求积公式、Romberg 求积方法和Monte-Carlo 方法的构造过程和算法程序。

1. n 点 Newton —Cotes 求积公式n 点 Newton —Cotes 求积公式又称为等距节点求积公式,它是利用被积函数f(x)在积分区间[a,b]的n 个等分节点上的函数值构造的插值函数ϕ(x)代替f(x)做定积分计算所构造求积公式。

这个求积公式是通常做定积分近似计算的梯形公式和抛物线公式的推广,主要在理论上用的多些。

1) n 点 Newton —Cotes 求积公式的构造过程将积分区间[a,b] 分为n-1等分,其中n 个节点 x i =a+(i-1}h, i=1,2,…,n ,h=(b -a)/(n-1),然后用f(x)在这n 个节点上建立插值于f(x)的n-1次代数多项式P n-1(x),引入变换x=a+th, 0≤t ≤n-1则有)1)(())(()(,11,111∏∑∏∑≠==≠==--+-=--=n i k k n i i ni k k k i k n i i n k i k t x f x x x x x f x P带入定积分,有:C k (n)称为Cotes(柯特斯)系数, 则得到n 点 Newton —Cotes 求积公式:n 点 Newton —Cotes 求积公式的求积余项为当n=2时,2点的 Newton —Cotes 求积公式就是如下梯形公式:梯形求积公式求积余项为当n=3时,3点的Newton —Cotes 求积公式就是如下抛物线(Simpson )公式:⎰∑=-≈b a n k k n k x f C a b dx x f 1)()()()())()((2)(b f a f a b dx x f b a +-≈⎰⎰∏⎰∏∑⎰∏∑⎰⎰-≠=-≠==≠==--+--=-+---=--=≈10,1)(10,11,111111)1)((1))(()()(n n i k k n i n n i k k ni i b a n i k k ki k n i i b a n ba dt ki k t n c dt k i k t x f n a b dx x x x x x f dx x P dx x f 令dx x x x x x x n f f R n b a n )())((!)()(21)(---=⎰ξ],{)()(121)(3b a f a b f R ∈''--=ηηSimpson 求积公式求积余项为如果想得到其他的 Newton —Cotes 求积公式只要在有关书中查出Cotes 系数表就可以马上得到相应的Newton —Cotes 求积公式。

2) n 点 Newton —Cotes 求积公式算法1. 输入被积函数f(x)及积分上下限a,b2. 选择Cotes 系数构造求积公式3. 用求积公式求定积分3) n 点 Newton —Cotes 求积公式程序Clear[a,b,x,n,s];a=Input["a="]b=Input["b="]f[x_]=Input["被积函数f(x)="]n= Input["求积节点个数n="];c={{1/2,1/2},{1/6,4/6,1/6},{1/8,3/8,3/8,1/8},{7/90,16/45,2/15,16/45,7/90},{19/288,25/96,25/144,25/144,25/96,19/288}, {41/840,9/35,9/280,34/105,9/280,9/35,41/840},))()2(4)((6)(b f b a f a f a b dx x f b a +++-≈⎰],{)()(28801)()4(5b a f a b f R ∈--=ηη{751/17280,3577/17280,1323/17280,2989/17280,1323/17280,3577/17280,751/17280},{989/28350,5888/28350,-928/28350,10496/28350,-4540/28350,10496/28350,-928/28350,5888/28350,989/28350}};h=(b-a)/(n-1);x=Table[a+k*h,{k,0,n-1}];s=(b-a)*Sum[c[[n-1,k]]*f[x[[k]]],{k,1,n}]Print["定积分=",N[s,8]];说明本程序用n(n=2,3,4,5,6,7,8,9)点 Newton—Cotes求积公式求[a,b]上的定积分近似值。

程序执行后,按要求通过键盘输入积分下限a、积分上限b、被积函数f(x)和求积节点个数n后,计算机则给出定积分的近似值。

程序中变量说明a:存放积分下限b: 存放积分上限f[x]: 存放被积函数f(x)n: 存放求积节点个数c: 存放Cotes系数s: 存放定积分近似值h: 存放节点步长x:存放节点xi注语句c={{1/2,1/2},{1/6,4/6,1/6},{1/8,3/8,3/8,1/8},{7/90.16/45,2/15,16/45,7/90},{19/288,25/96,25/144,25/144,25/96,19/288}}的第i个分量表是具有i个节点的Cotes系数。

4)例题与实验例1.用n=3和n=4的Newton-Cotes求积公式求定积分的近似值。

解:执行n 点 Newton —Cotes 求积公式程后,在输入的窗口中按提示分别输入1、3、Exp[-x/2]、3每次输入后用鼠标点击窗口的“OK ”按扭,计算机在屏幕上给出用n=3的Newton-Cotes 求积公式计算出的定积分结果:)613261(23E E E ++定积分=0.76705953再执行n 点 Newton —Cotes 求积公式程后,在输入的窗口中按提示分别输入1、3、Exp[-x/2]、4每次输入后用鼠标点击窗口的“OK ”按扭,计算机在屏幕上给出用n=4的Newton-Cotes 求积公式计算出的定积分结果:)81838381(265673E E E E +++定积分=0.76691628因此用n=3和n=4的Newton-Cotes 求积公式求本题定积分近似值分别为0.76705953和0.76691628注意到本题的精确值为0.766800999….,可见n=4的Newton-Cotes 求积公式计算结果较好。

2. 复化求积公式复化求积公式是把积分区间分成若干小区间,在每个小区间上采用次数不高的插值公式,如梯形公式或抛物线公式,构造出相应的求积公式,然后再把它们加起来得到整个区间上的求积公式。

复化求积公式克服了高次Newton-Cotes 公式计算不稳定的问题,其运算简单且易于在计算机上实现。

常用的复化求积公式是复化梯形公式和复化抛物线公式,下面分别讨论。

相关文档
最新文档