多边形及其内角和知识点及精华练习题
多边形的内角和与外角和练习题
解
设一个外角为x°,则内角为(x+36)° 因为多边形的内角与相邻的外角互补;
所以 x+x+36=180
解得
x=72
360÷72=5
答 这个多边形的五边形.
10.∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.
A
G
B
E
D
O
F C
11. 如图在 ABC中,D是ACB 与 ABC的角平分 线的交点,BD的延长线交AC于E,且 EDC 50, 则 A的度数为多少?
12.如图,在六边形ABCDEF中,AF // CD, AB// DE, 且 A 120,∠B 80 ,则 ∠C 的度数是多少,D 的度 数是多少?
13.如图,在ABC中,BD是ABC的角平分线,DE//BC, 交AB于E,∠A= 45 , ∠BDC= 60 ,求ΔBDE各内
角的度数.
A
E
DBCຫໍສະໝຸດ 14.如图,已知DC是△ABC中∠ACB的外角平分线, 说明为什么∠BAC>∠B.
(第 13 题)
360°
C
7.当一个多边形的边数增加时,其外角和 ( )
A 8.某.增学加生在计算B四.减个少多边形C的.内不角变和时,得D到.不下能列确四定
个答案,其中错误的是( C )
A.180° D.1080°
B.540°
C.1900°
9. 一个正多边形的一个内角比相邻外角大36°,求这 个正多边形的边数.
多边形内角和与外 角和的练习题
复习
n边形内角和公式、外角和公式?
1. n边形的内角和等于(n-2)·180. 2. n边形的外角和都等于360°.
1、一个多边形的每个外角都是 30,这个多边形 2、的正边十数二是边_形__的1_2。每个内角的度数是_1_5_.0
多边形的内角和与外角和知识点-例题-习题
第二十四讲 多边形的内角和与外角和【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形. 2.相关概念:边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可; (2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为(3)2n n -;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形. 知识点二、多边形内角和n 边形的内角和为(n-2)·180°(n≥3). 要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180n n-°;知识点三、多边形的外角和 多边形的外角和为360°. 要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关;(2)正n 边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.凸多边形 凹多边形【典型例题】类型一、多边形的概念例1.如图,在六边形ABCDEF中,从顶点A出发,可以画几条对角线?它们将六边形ABCDEF分成哪几个三角形?【答案与解析】解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.【总结升华】从一个多边形一个顶点出发,可以连的对角线的条数(n-3)条,分成的三角形数是个数(n-2)个.举一反三:【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。
专题11.3 多边形及其内角和(讲练)(解析版)(人教版)
专题11.3 多边形及其内角和典例体系一、知识点1、n 边形的内角和=()2180-⨯n; 2、n 边形的外角和=360。
3、一个n 边形的对角线有()23-n n 条,过n 边形一个顶点能作出()3-n 条对角线,把n 边形分成了()2-n 个三角形。
4、各角都相等、各边都相等的多边形叫做正多边形,边数为n 的正多边形,也叫作正n 边形.5、多边形的镶嵌(密铺)问题.二、考点点拨与训练考点1:与多边形内角有关的计算典例:(2020·安徽省初三三模)如图,在五边形ABCDE 中,280A B E EDC BCD ︒∠+∠+∠=∠∠,、的平分线DP CP 、相交于P 点,则P ∠的度数是( )A .40︒B .45︒C .50︒D .55︒【答案】C【解析】 ∵五边形的内角和等于(5-2)×180°=540°,∠A+∠B+∠E=280°,∴∠BCD+∠CDE=540°一280°=260°,∵∠BCD ,∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=12(∠CDE+∠BCD)=130°, ∴∠P=180°-130°=50°,故选:C .方法或规律点拨本题考查了多边形的内角和,角平分线的性质,求出五边形内角和是解题关键.巩固练习1.(2020·福建省初三月考)若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .7【答案】C【解析】设这个多边形的边数为n ,由多边形的内角和是720°,根据多边形的内角和定理得(n -2)180°=720°.解得n=6.故选C.2.(2020·福建省初三二模)已知一个多边形的内角和是540︒,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形【答案】B【解析】 根据多边形内角和定理,n 边形的内角和公式为()n 2180-︒,因此,由()n 2180540︒-=︒得n=5.故选B . 3.(2020·偃师市实验中学初一月考)如果一个多边形的边数增加1倍,它的内角和是2160°,那么原来的多边形的边数是 ( )A .5B .6C .7D .8【答案】C【解析】设多边形原有边数为x ,则(2x−2)×180=2160,2x−2=12,解得x=7,故本题选C.4.(2020·江苏省初一月考)一个多边形的每个内角都等于135°,则这个多边形的边数为( ) A .5B .6C .7D .8 【答案】D【解析】∵一个多边形的每个内角都等于135°,∴这个多边形的每个外角都等于180°-135°=45°,∵多边形的外角和为360度,∴这个多边形的边数为:360÷45=8,故选D.5.(2020·北京初三二模)如图,四边形ABCD 中,过点A 的直线l 将该四边形分割成两个多边形,若这两个多边形的内角和分别为α和β,则αβ+的度数是( )A .360︒B .540︒C .720︒D .900︒【答案】B【解析】 直线l 将四边形ABCD 分成两部分,左边为四边形,其内角和为α=360°,右边为三角形,其内角和为β=180°,因此360180540αβ︒︒︒+=+=故选:B .6.(2019·河南省初一期末)下列选项可能是多边形的内角和的是( )A .580°B .1240°C .1080°D .2010°【答案】C【解析】解:判断哪个度数可能是多边形的内角和,看它是否能被180°整除.580÷180=3...40,1240÷180=6...160,1080÷180=6,2010÷180=11...30,只有1080°能被180°整除.故选:C .7.(2020·江苏省扬州教育学院附中初一期中)一个多边形的每个内角都是120°,这个多边形是( ) A .四边形B .六边形C .八边形D .十边形 【答案】B【解析】解:外角是180°-120°=60°,360÷60=6,则这个多边形是六边形.故选:B.8.(2020·江苏省初一月考)一个正多边形的每个内角度数均为135°,则它的边数为____.【答案】8【解析】设该正多边形的边数为n由题意得:(2)180?nn-⨯=135°解得:n=8故答案为8.考点2:与多边形外角有关的计算典例:(2020·陕西省初二期末)如果一个多边形的内角和与外角和之比是13:2,求这个多边形的边数.【答案】15.【解析】解:设这个多边形的边数为n,依题意得:13(2)1803602n-︒=⨯︒,解得15n=,∴这个多边形的边数为15.方法或规律点拨考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,多边形的外角和等于360度.巩固练习1.(2020·北大附属嘉兴实验学校初二期中)一个多边形的内角和比外角和的3倍多180°,则它的边数是()A.八B.九C.十D.十一【答案】B【解析】根据题意,得:(n-2)•180°=3×360°+180°,解得:n=9,则这个多边形的边数是9.故选B.2.(2020·福建省初一期末)若多边形的边数增加一条,则它的外角和()A.增加180°B.不变C.增加360°D.减少180°【答案】B【解析】根据多边形的外角和定理:多边形的外角和都等于360º,与边数多少无关,故选B.3.(2020·广东省初三一模)已知一个正多边形的每个外角都等于72°,则这个正多边形是( )A.正五边形B.正六边形C.正七边形D.正八边形【答案】A【解析】这个正多边形的边数:360°÷72°=5.故选A.4.(2020·江苏省初一月考)若一个多边形的外角和与它的内角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【答案】B【解析】解:设多边形的边数为n.根据题意得:(n-2)×180°=360°,解得:n=4.故选:B.5.(2020·山东省济宁学院附属中学初三二模)正十边形的外角和为()A.180°B.360°C.720°D.1440°【答案】B【解析】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.6.(2020·重庆西南大学附中初三月考)一个正多边形的外角为45°,则这个正多边形的内角和是()A.540° B.720° C.900° D.1080°【解析】∵正多边形的一个外角是45°,∴360°÷45°=8∴这个正多边形是正八边形∴该正多边形的内角和为:180°×(8-2)=1080°.故答案选:D.7.(2020·陕西省初三一模)已知一个多边形的内角和与外角和之比是3:2,则这个多边形的边数为____.【答案】5【解析】解:设这个多边形的边数为n,依题意得:(n−2)180°=32×360°,解得:n=5.故这个多边形的边数为5.故答案为:5.8.(2020·河南省初二期末)如图的七边形ABCDEFG中,AB,ED的延长线相交于O点,若图中∠1,∠2,∠3,∠4的外角的角度和为220°,则∠BOD的度数为何?( )A.40°B.45°C.50°D.60°【答案】A【解析】解:∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣500°=40°,考点3:正多边形的角度计算典例:(2019·吉林省第二实验学校初三二模)如图,以正六边形ABCEDF 的边AB 为直角边作等腰直角三角形ABG ,使点G 在其内部,且90BAG ∠=︒,连接FG ,则EFG 的大小是__________度.【答案】45【解析】解:在正六边形ABCDEF 中, ∵∠AFE=∠BAF=(62)180120,6-⨯︒=︒ ∵∠BAG=90°, ∴∠FAG=120°-90°=30°,又∵AF=AB=AG ,∴∠AFG=1803075,2︒-︒=︒ ∴∠EFG=∠AFE -∠AFG=120°-75°=45°,故答案为:45.方法或规律点拨本题考查了多边形的内角与外角,等腰三角形的性质,熟记多边形的内角和公式是解题方法或规律点拨 巩固练习1.(2019·江苏省初一期中)如图,一块六边形绿化园地,六角都做有半径为1m 的圆形喷水池,则这六个喷水池占去的绿化园地的面积(结果保留π)为( )A .π2mB .2π2mC .4π2mD .n π2m【答案】B∵六边形的内角和为:62180720()-⨯︒=︒,∴六个阴影部分所对的圆心角的和为:720°,∴阴影部分的面积相当于两个圆的面积之和,∴阴影部分的面积为:2π×12=2π(2m )故选B .2.(2018·内蒙古自治区初二期末)有公共顶点A ,B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )A .144°B .84°C .74°D .54°【答案】B 【解析】正五边形的内角是∠ABC =()521805-⨯=108°,∵AB =BC ,∴∠CAB =36°,正六边形的内角是∠ABE =∠E =()621806-⨯=120°,∵∠ADE +∠E +∠ABE +∠CAB =360°,∴∠ADE =360°–120°–120°–36°=84°,故选B . 3.(2020·广东省初三其他)如图,在正六边形ABCDEF 的外侧,作正方形EFGH ,则∠DFH 的度数为____.【答案】75°【解析】观察图形可知,△EFH 是等腰直角三角形,则∠EFH=45°,△DEF 是等腰三角形,∵∠DEF=120°, ∴∠EFD=(180°﹣120°)÷2=30°, ∴∠DFH=45°+30°=75°.4.(2020·陕西省西北工业大学附属中学初三月考)如果一个正多边形的内角和等于1440︒,那么这个正多边形的每一个外角的度数为______.【答案】36【解析】正多边形的内角和等于1440︒∴()21801440n-⨯=解得:10n=多边形的外角和为360,且正多边形的每一个外角均相等∴这个正多边形的每一个外角的度数为3601036÷=故答案是:365.(2020·上海初三二模)我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为3的正多边形的边数为__________【答案】8【解析】设正多边形的边数为n,∵内角和为(2)180n-⨯,外角和为360°,∴一个内角度数为(2)180nn-⨯,一个外角度数为360n,∴(2)180nn-⨯=3603n⨯,解得n=8,经检验n=8是方程的解且符合题意,故答案为:8.6.(2020·山东省初三一模)如图,该硬币边缘镌刻的正九边形每个内角的度数是_____.【答案】140°.【解析】解:该正九边形内角和()180921260=︒⨯-=︒, 则每个内角的度数12601409︒︒==. 故答案为:140°.7.(2020·江苏省泰兴市实验初级中学初一期中)如图,在五边形ABCDE 中,∠A =∠B =∠C =∠D ,点F 在边AB 上,∠AFE =45°,则∠AEF 与∠AED 的度数的比值是_______.【答案】1:4【解析】解:设∠AEF=x ,∵∠AFE =45°,∴∠A=180°-∠AFE -∠AEF=135°-x∴∠A =∠B =∠C =∠D =135°-x∵∠A +∠B +∠C +∠D +∠AED=180°×(5-2)=540°∴∠AED=540°-4(135°-x )=4x∴∠AEF :∠AED=1:4故答案为:1:4.8.(2020·常州市第二十四中学初一期中)一机器人以0.3m/s 的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s .【答案】160.【解析】解:360÷45=8,则所走的路程是:6×8=48m ,则所用时间是:48÷0.3=160s.9.(2020·江西省石城二中初三其他)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于______ 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108考点4:多边形对角线问题典例:(2020·上蔡县思源实验学校初一月考)一个多边形的外角和是它内角和的14,求:(1)这个多边形的边数;(2)这个多边形共有多少条对角线.【答案】(1)边数为10;(2)35条【解析】解:设这个多边形的边数为n,由题意得:180(n-2)×14=360,解得:n=10,答:这个多边形的边数为10;(2)10×(10-3)÷2=35(条).方法或规律点拨本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,及多边形对角线的条数公式.巩固练习1.(2020·全国初一)下列多边形中,对角线是5条的多边形是()A.四边形B.五边形C.六边形D.七边形【答案】B【解析】n边形对角线条数为(3)2n n∴A. 四边形有2条对角线,故错误;B. 五边形有5条对角线,正确;C. 六边形有9条对角线,故错误;D. 七边形有14条对角线,故错误;故选B.2.(2020·全国初一)在八边形内任取一点,把这个点与八边形各顶点分别连接可得到几个三角形()A.5个B.6个C.7个D.8个【答案】D【解析】如图,或者根据八边形内一点,和任意一边的两端点均可构成三角形,所以可求得三角形的个数为8.故选:D.3.(2020·全国初一)将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5B.6C.7D.8【答案】D【解析】如图可知,原来多边形的边数可能是5,6,7.不可能是8.故选:D .4.(2020·温州外国语学校初二月考)从十二边形的一个顶点出发,可引出对角线( )条A .9条B .10条C .11条D .12条【答案】A【解析】解:从十二边形的一个顶点出发,可引出对角线的条数是()1239-=条.故选:A .5.(2019·北京初三其他)若一个多边形从一个顶点出发的对角线共有3条,则这个多边形的内角和为( ) A .360°B .540°C .720°D .1080° 【答案】C【解析】从一个顶点出发的对角线共有3条 ∴这个多边形是一个六边形则这个多边形的内角和为180(62)720︒⨯-=︒故选:C .6.(2019·北京市第四十一中学初二期中)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .7【答案】B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B .7.(2019·重庆市凤鸣山中学初一期中)一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有( )A.104条B.90条C.77条D.65条【答案】C【解析】解:22100180113÷=,则正多边形的边数是11+2+1=14.∴这个多边形的对角线共有()()314143==7722n n--条.故选:C.考点5:多边形的镶嵌问题典例:40.(2020·长春市第四十七中学初一期中)如图所示的图形中,能够用一个图形镶嵌整个平面的有()个A.1B.2C.3D.4【答案】C【解析】解:等腰三角形的内角和是180°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;四边形的内角和是360°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;正六边形的每个内角是120°,能被360°整除,能够用一种图形镶嵌整个平面;正五边形的每个内角是108°,不能被360°整除,放在同一顶点处不能够用一种图形镶嵌整个平面;圆不能够用一种图形镶嵌整个平面;综上所述,能够用一种图形镶嵌整个平面的有3个.故选:C.方法或规律点拨本题考查了平面镶嵌(密铺),掌握几何图形镶嵌成整个平面的关键是解题的钥匙.巩固练习1.(2020·偃师市实验中学初一月考)用下列边长相同的正多边形组合,能够铺满地面不留缝隙的是()A.正八边形和正三角形B.正五边形和正八边形C.正六边形和正三角形D.正六边形和正五边形【答案】C【解析】A、正八边形的每个内角为:180°-360°÷8=135°,正三角形的每个内角60°.135m+60n=360°,n=6-9m,显然m取任何正整数时,n不能得正整数,故不能铺满;4B、正五边形每个内角是180°-360°÷5=108°,正八边形的每个内角为:180°-360°÷8=135°,108m+135n=360°,m取任何正整数时,n不能得正整数,故不能铺满;C、正六边形的每个内角是120°,正三角形的每个内角是60度.∵2×120°+2×60°=360°,或120°+4×60°=360度,能铺满;D、正六边形的每个内角是120°,正五边形每个内角是180°-360°÷5=108°,120m+108n=360°,m取任何正整数时,n不能得正整数,故不能铺满.故选C.2.(2019·山西省初一月考)用若干个某种正多边形瓷砖可以铺满地面,这种正多边形瓷砖不可能是()A.B.C.D.【答案】D【解析】A.正三角形,其单个内角为60°,360°÷60°=6,A选项满足条件;B.正方形,其单个内角为90°,360°÷90°=4,B选项满足条件;C.正六边形,其单个内角为120°,360°÷120°=3,C选项满足条件;D.正八边形,其单个内角为135°,360°÷135° 2.7≈,D选项不满足条件.故选:D.3.(2020·哈尔滨市中实学校初一期中)能够铺满地面的正多边形组合是()A.正六边形和正方形B.正五边形和正八边形C.正方形和正八边形D.正三角形和正十边形【答案】C【解析】A、正六边形的每个内角是120°,正方形的每个内角是90°,120m+90n=360°,显然n取任何正整数时,m 不能得正整数,故不能铺满;B、正五边形每个内角是180°-360°÷5=108°,正八边形每个内角为135度,135m+108n=360°,显然n取任何正整数时,m 不能得正整数,故不能铺满;C 、正方形的每个内角为90°,正八边形的每个内角为135°,两个正八边形和一个正方形刚好能铺满地面;D 、正三角形每个内角为60度,正十边形每个内角为144度,60m+144n=360°,显然n 取任何正整数时,m 不能得正整数,故不能铺满.故选C .4.(2020·四川省初二期末)只用下列图形不能进行平面镶嵌的是( )A .正六角形B .正五边形C .正四边形D .正三边形【答案】B【解析】解:A 、正六边形的每个内角是120°,能整除360°,能密铺;B 、正五边形每个内角是108°,不能整除360°,不能密铺;C 、正四边形的每个内角是90°,能整除360°,能密铺;D 、正三边形的每个内角是60°,能整除360°,能密铺.故选:B .5.(2019·雷州市第二中学初三一模)在下列四种边长均为a 的正多边形中,能与边长为a 的正三角形作平面镶嵌的正多边形有( )①正方形;②正五边形;③正六边形;④正八边形A .4种B .3种C .2种D .1种 【答案】C【解析】解:正三角形的一个内角度数为180360360-÷=︒,①正方形的一个内角度数为180360490-÷=︒,360290360⨯+⨯=︒,那么3个正三角形和2个正方形可作平面镶嵌;②正五边形的一个内角度数为1803605108-÷=︒,任意若干个都不能和正三角形组成平面镶嵌;③正六边形的一个内角度数为1803606120-÷=︒,2602120360⨯+⨯=︒或460120360⨯+=︒,可作平面镶嵌;④正八边形的一个内角度数为1803608135-÷=︒,任意若干个都不能和正三角形组成平面镶嵌; 能镶嵌的只有2种正多边形.故选C .考点6:多边形的去(多)角问题典例:(2019·江苏省初一期中)小李同学在计算一个n边形的内角和时不小心多加了一个内角,得到的内角之和是1380度,则这个多边形的边数n的值是_______.【答案】9【解析】设多边形的边数为n,多加的内角度数为α,则(n-2)•180°=1380°-α,∵1380°=7×180°+120°,内角和应是180°的倍数,∴n-2=7,n=9;故答案为:9.方法或规律点拨本题考查了多边形的内角和公式,根据多边形的内角和公式判断出多边形的内角和公式是180°的倍数是解题的关键.巩固练习1.(2020·全国初一)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,故选A.2.(2019·云南省初三二模)小明在计算一个多边形的内角和时,漏掉了一个内角,结果算得800°,这个多边形应该是()A.六边形B.七边形C.八边形D.九边形【答案】B【解析】解:设多边形的边数是n.依题意有(n﹣2)•180°≥800°,解得:n≥649,则多边形的边数n=7;故选:B.3.(2019·浙江省初二学业考试)一个四边形截去一个角后,形成新的多边形的内角和是()A.180°B.360°或540°C.540°D.180°或360°或540°【答案】D【解析】解:∵一个四边形截去一个角后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和可能是180°,或(4-2) ×180°=540°,或(5-2) ×180°=540°.故选:D.4.(2018·山西省初一期末)若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为()A.90°B.105°C.130°D.120°【答案】C【解析】解:∵2570°÷180°=14…50°,又130°+50°=180°∴这个内角度数为130°故选C5.(2020·偃师市实验中学初一月考)多边形的所有内角与它的一个外角的和为600°,这个多边形的边数是_____【答案】5【解析】解:设边数为n,一个外角为α,则(n-2)×180°+α=600°,∴n=600180α-︒︒+2,∵0°<α<180°,n为正整数,∴当α=60°时,600180α-︒︒为正整数,此时n=5,内角和为(n-2)×180º=540°.故多边形的边数为5.6.(2019·山西省初一月考)如图,有一张正方形桌面,它的4个内角的和为360°,现在锯掉它的一个角,残余桌面所有的内角的和是_____________【答案】540°【解析】解:由题意得,残余桌面为五边形,∴残余桌面所有的内角的和为(5-3)×180°=540°故答案为:540°.。
多边形及其内角和练习题(含答案)
多边形及其内角和练习题(含答案)1.如果四边形ABCD中∠A+∠C+∠D=280°,那么∠B的角度是多少?选项:A.80° B.90° C.170° D.20°2.如果一个多边形的内角和为1080°,那么这个多边形有多少条边?选项:A.9 B.8 C.7 D.63.内角和等于外角和的两倍的多边形是什么形状?选项:A.五边形B.六边形C.七边形D.八边形4.六边形的内角和是多少度?5.正十边形的每个内角的度数是多少?每个外角的度数是多少?6.图中有多少种不同的四边形?7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?为什么?8.求下列图形中x的值:9.在四边形ABCD中,已知∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC。
BE与DF有什么位置关系?为什么?10.有10个城市进行篮球比赛,每个城市派出3个代表队参加比赛,规定同一城市间的代表队不进行比赛,其他代表队都要比赛一场。
按照这个规定,所有代表队需要打多少场比赛?11.在一个五边形的每个顶点处以1为半径画圆,求圆与五边形重合的面积。
12.(1) 已知一个多边形的内角和为540°,那么这个多边形是什么形状?选项:A.三角形 B.四边形 C.五边形 D.六边形 (2) 五边形的内角和是多少度?13.一个多边形的每个顶点处取一个外角,这些外角中最多有几个钝角?选项:A.1个 B.2个 C.3个 D.4个14.(1) 四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?猜想并探索:n边形有几条对角线?(2) 一个n边形的边数增加1,对角线增加多少条?15.如果一个多边形的边数增加1,那么这个多边形的内角和会增加多少度?如果将n边形的边数增加1倍,那么它的内角和会增加多少度?16.壁虎想捕捉一只害虫,它在油罐下底边A处,害虫在油罐上边缘B处。
多边形内角和(7种题型)-2023年新八年级数学核心知识点与常见题型(人教版)(解析版)
多边形内角和(7种题型)【知识梳理】一、多边形内角和n 边形的内角和为(n-2)·180°(n ≥3).要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形;二、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.三.平面镶嵌(密铺)(1)平面图形镶嵌的定义:用形状,大小完全相同的一种或几种平面图形进行拼接.彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌.(2)正多边形镶嵌有三个条件限制:①边长相等;②顶点公共;③在一个顶点处各正多边形的内角之和为360°.判断一种或几种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360°,则说明能够进行平面镶嵌,反之则不能.(3)单一正多边形的镶嵌:正三角形,正四边形,正六边形.(4)两种正多边形的镶嵌:3个正三角形和2个正方形、四个正三角形和1个正六边形、2个正三角形和2个正六边形、1个正三角形和2个正十二边形、1个正方形和2个正八边形等.(5)用任意的同一种三角形或四边形能镶嵌成一个平面图案.180°【考点剖析】题型一:利用内角和求边数例1.一个多边形的内角和为540°,则它是( )A.四边形 B.五边形 C.六边形 D.七边形解析:熟记多边形的内角和公式(n-2)·180°.设它是n边形,根据题意得(n-2)·180=540,解得n=5.故选B.方法总结:熟记多边形的内角和公式是解题的关键.【变式1】(2021·河北承德市·八年级期末)一个多边形的内角和是900°,这个多边形的边数是()A.3 B.4 C.5 D.7【答案】D【分析】根据多边形的内角和公式:(n-2)•180°去求.【详解】解:设该多边形的边数为n则:(n-2)•180°=900°,解得:n=7.故选:D.【点睛】本题考查了多边形的内角和,关键是要记住公式并会解方程【变式2】(2021·浙江省余姚市实验学校八年级期中)若一个多边形的内角和是720°,则这个多边形的边数为()A.4 B.5 C.6 D.7【答案】C【分析】根据正多边形的内角和定义(n−2)×180°,先求出边数,再用内角和除以边数即可求出这个正多边形的每一个内角.【详解】解:(n−2)×180°=720°,∴n−2=4,∴n=6.∴这个多边形的边数为6.故选:C.【点睛】考查了多边形内角与外角.解题的关键是掌握好多边形内角和公式:(n−2)×180°.题型二:求多边形的内角和例2.一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为( )A.1620° B.1800°C.1980° D.以上答案都有可能解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.【变式1】(2021·云南临沧·八年级期末)一个八边形的内角和度数为()A.360°B.720°C.900°D.1080°【答案】D【分析】应用多边形的内角和公式计算即可.【详解】(n﹣2)•180=(8﹣2)×180°=1080°.故选:D.【点睛】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n−2)•180 (n≥3)且n为整数).【变式2】(2021·广西来宾市·八年级期中)已知一个多边形的每一个内角都比它相邻的外角的4倍多30°,求这个多边形是几边形?并求出这个多边形的内角和.【答案】十二边形,1800°【分析】首先设外角为x°,则内角为(4x+30)°,根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x的值,再利用外角和360°÷外角的度数可得边数,进而求出内角和.【详解】解:设外角为x°,由题意得:x+4x+30=180,解得:x=30,360°÷30°=12,∴(12−2)×180=1800°,∴这个多边形的内角和是1800°,是十二边形.【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式以及外角和,构建方程求解即可.【变式3】(2020·南京市宁海中学八年级开学考试)问题1:如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为∠AOC=∠A+∠C+∠P.问题2:如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B=28°,∠D=48°,求∠P的大小;小明认为可以利用“镖形”图的结论解决上述问题:由问题1结论得:∠AOC=∠PAO+∠PCO+∠APC,所以2∠AOC=2∠PAO+2∠PCO+2∠APC,即2∠AOC=∠BAO+∠DCO+2∠APC;由“”得:∠AOC=∠BAO+∠B,∠AOC=∠DCO+∠D.所以2∠AOC=∠BAO+∠DCO+∠B+∠D.所以2∠APC= .所以∠APC= .请帮助小明完善上述说理过程,并尝试解决下列问题(问题1、问题2中得到的结论可以直接使用,不需说明理由);解决问题1:如图(3)已知直线平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系为解决问题2:如图(4),已知直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,则∠P与∠B、∠D的关系为【答案】问题1、问题2答案见解析;解决问题1:∠P=180°-12(∠B+∠D);解决问题2:∠P=90°+12(∠B+∠D)【分析】问题1:根据三角形的外角的性质即可得到结论;问题2:根据三角形外角的性质和问题1的结论求解即可;解决问题1:根据四边形的内角和等于360°可得(180°-∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°-∠3)+∠D=360°,然后整理即可得解;解决问题2:根据(1)的结论∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解.【详解】解:问题1:连接PO并延长.则∠1=∠A+∠2,∠3=∠C+∠4,∵∠2+∠4=∠P,∠1+∠3=∠AOC,∴∠AOC=∠A+∠C+∠P;故答案为:∠AOC=∠A+∠C+∠P;问题2:如图2,由问题1结论得:∠AOC=∠PAO+∠PCO+∠APC,所以2∠AOC=2∠PAO+2∠PCO+2∠APC,即2∠AOC=∠BAO+∠DCO+2∠APC;由“三角形外角的性质”得:∠AOC=∠BAO+∠B,∠AOC=∠DCO+∠D.所以2∠AOC=∠BAO+∠DCO+∠B+∠D.所以2∠APC=∠B+∠D.所以∠APC= 12(∠B+∠D)=38°.解决问题1:如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴(180°-2∠1)+∠B=(180°-2∠4)+∠D,在四边形APCB中,(180°-∠1)+∠P+∠4+∠B=360°,在四边形APCD中,∠2+∠P+(180°-∠3)+∠D=360°,∴2∠P+∠B+∠D=360°,∴∠P=180°-12(∠B+∠D);解决问题2:如图4,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°-2∠3)+∠D,∠2+∠P=(180°-∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°+12(∠B+∠D).故答案为:∠P=90°+12(∠B+∠D).【点睛】本题主要考查了三角形外角的性质,角平分线的性质,四边形的内角和,解题的关键在于能够熟练掌握相关知识进行求解.题型三:复杂图形中的角度计算例3.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A.450° B.540° C.630° D.720°解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540°,故选B.方法总结:根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.【变式1】(2021·全国八年级单元测试)如图,在五边形ABCDE中,∠D=120°,与∠EAB相邻的外角是80°,与∠DEA,∠ABC相邻的外角都是60°,则∠C为________度.【答案】80【分析】利用邻补角的定义分别求出∠DEA,∠ABC,∠EAB的度数;再利用五边形的内角和为540毒,可求出∠C的度数.【详解】解:∵与∠EAB相邻的外角是80°,与∠DEA,∠ABC相邻的外角都是60°,∴∠DEA=180°-60°=120°,∠ABC=180°-60°=120°,∠EAB=180°-80°=100°;五边形的内角和为(5-2)×180°=540°;∴∠C=540°-120°-120°-120°-100°=80°.故答案为:80.【点睛】此题考查了多边形内角和的性质,涉及了邻补角的定义,熟练掌握相关基本性质是解题的关键.【变式2】(2020·南京市宁海中学八年级开学考试)如图,五边形ABCDE的两个内角平分线相交于点O,∠1,∠2,∠3是五边形的3个外角,若∠1+∠2+∠3=220°,则∠AOB=___________.【答案】70°【分析】先求出与∠EAB和∠CBA相邻的外角的度数和,然后根据多边形外角和定理即可求解.【详解】如图,∵∠1+∠2+∠3=220°,∴∠4+∠5=360°-220°=140°,∴∠EAB+∠CBA=220°,∵AO,BO分别平分∠EAB,∠ABC,∴∠OAB+∠OBA=110°,∴∠AOB=180°-(∠OAB+∠OBA)=70°.故答案是:70°.【点睛】本题主要考查了多边形外角和定理,三角形的内角和定理,熟练掌握多边形的外角和等于360°是解题的关键.【变式3】(2022春•武冈市期中)如图,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数.【分析】利用三角形内角和定理将不规则图形转化成规则图形:五边形.【解答】解:如图,由三角形内角和定理得:∠1+∠5=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠5+∠2+∠3+∠4+∠6+∠7=∠8+∠9+∠2+∠3+∠4+∠6+∠7=180°×(5﹣2)=540°.【点评】本题主要考查多边形内角和,解题关键是利用三角形内角和定理将不规则图形转化成规则图形.【变式4】(2022春•宿城区校级月考)利用“模型”解决几何综合问题往往会取得事半功倍的效果.几何模型:如图(1),我们称它为“A”型图案,易证明:∠EDF=∠A+∠B+∠C.运用以上模型结论解决问题:(1)如图(2),“五角星”形,求∠A1+∠A2+∠A3+∠A4+∠A5=?分析:图中A1A3DA4是“A”型图,于是∠A2DA5=∠A1+∠A3+∠A4,所以∠A1+∠A2+∠A3+∠A4+∠A5=;(2)如图(3),“七角星”形,求∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7的度数.【分析】(1)根据三角形外角的性质把5个角转化到一个三角形中可得答案;(2)根据三角形外角的性质把7个角转化到一个三角形中可得答案.【解答】解:(1)如图,由三角形外角的性质可得,∠1=∠A1+∠A4,∵∠A2DA5=∠1+∠A3,∴∠A2DA5=∠A1+∠A4+∠A3,∵∠A2DA5+∠A2+∠A5=180°,∴∠A1+∠A2+∠A3+∠A4+∠A5=180°,故答案为:180°;(2)如图,由(1)得,∠1=∠A1+∠A4+∠A5,∠2=∠A2+∠A3+∠A6,∵∠1+∠2+∠A7=180°,∴∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7=180°.【点评】本题考查多边形的内角和与三角形外角的性质,能够根据三角形外角的性质进行转化是解题关键.题型四:利用方程和不等式确定多边形的边数例4.一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.解:设此多边形的内角和为x ,则有1125°<x <1125°+180°,即180°×6+45°<x <180°×7+45°,因为x 为多边形的内角和,所以它是180°的倍数,所以x =180°×7=1260°.所以7+2=9,1260°-1125°=135°.因此,漏加的这个内角是135°,这个多边形是九边形.方法总结:解题的关键是由题意列出不等式求出这个多边形的边数. 【变式1】.(2023春·全国·八年级专题练习)看图回答问题:(1)内角和为2014°,小明为什么说不可能?(2)小华求的是几边形的内角和?【答案】(1)理由见详解(2)13【分析】(1(2)根据题意设多边形的边数为x ,根据多边形的内角和定理即可求解.【详解】(1)解:∵设多边形的边数为n ,则n 边形的内角和是180(2)n ︒⨯−,∴内角和一定是180︒度的倍数,∵20141801134÷=,∴内角和为2014︒不可能.(2)解:设多边形的边数为x ,∴180(2)2014x ︒⨯−<︒,解得,171390x <, ∴多边形的边数是13,∴小华求的是十三边形的内角和.【点睛】本题主要考查多边形的内角和定理,掌握多边形的内角和定理是解题的关键.【变式2】(2023春·全国·八年级专题练习)解决多边形问题:(1)一个多边形的内角和是外角和的3倍,它是几边形?(2)小华在求一个多边形的内角和时,重复加了一个角的度数,计算结果是1170︒,这个多边形是几边形?【答案】(1)八边形(2)八边形【分析】(1)根据多边形的内角和公式、多边形的外角和等于360︒建立方程,解方程即可得;(2)设这个多边形是n 边形,重复加的一个角的度数为x ,则0180x ︒<<︒,再根据多边形的内角和公式建立等式,结合0180x ︒<<︒建立不等式组,解不等式组即可得.【详解】(1)解:设这个多边形是n 边形,由题意得:()18023360n ︒−=⨯︒,解得8n =,答:这个多边形是八边形.(2)解:设这个多边形是n 边形,重复加的一个角的度数为x ,则0180x ︒<<︒,由题意得:()18021170n x ︒−+=︒,解得1530180x n =︒−︒,则01530180180n ︒<︒−︒<︒,即153018001530180180n n ︒−︒>︒⎧⎨︒−︒<︒⎩,解得151722n <<, n Q 为正整数,8n ∴=,答:这个多边形是八边形.【点睛】本题考查了多边形的内角和与外角和、一元一次不等式组的应用,正确建立方程和不等式组是解题关键.题型五:已知各相等外角的度数,求多边形的边数例5.正多边形的一个外角等于36°,则该多边形是正( )A .八边形B .九边形C .十边形D .十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【变式1】.(2022春·八年级单元测试)已知一个多边形的每个外角都是30︒,那么这个多边形的边数是__________.【答案】12【分析】利用任何多边形的外角和是360︒除以外角度数即可求出答案.÷=,【详解】解:多边形的外角的个数是3603012所以多边形的边数是12,故答案为:12.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.【变式2】(2021·广西八年级期中)己知一个n边形的每一个外角都等于30°.(1)求n的值.(2)求这个n边形的内角和.【答案】(1)12;(2)1800°【分析】(1)用360°除以外角度数可得答案.(2)先求出每个内角的度数,再利用内角度数×内角的个数即可.【详解】解:(1)∵n边形的每一个外角都等于30°∴n=360°÷30°=12;(2)∵每个内角=180°-30°=150∴内角和=12×150°=1800°.【点睛】此题主要考查了多边形的内角和、外角和,关键是掌握多边形的外交和等于360°.题型六:多边形内角和与外角和的综合运用例6.一个多边形的内角和与外角和的和为540°,则它是( )A.五边形 B.四边形 C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.【变式1】(2021·陕西)一个多边形的内角和与外角和的度数之和为1260︒,求这个多边形的边数.【答案】多边形的边数为7【分析】设这个多边形的边数为n,根据这个多边形的内角和+外角和360°=1800°,列出方程求解即可.【详解】解:设多边形的边数是n,由题意得,()21803601260n−⨯︒+︒=︒,n=.解得:7答:多边形的边数为7.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关,熟练多边形的内角和定理是解题的关键.【变式2】(2021·广西来宾市·八年级期中)已知一个多边形的每一个内角都比它相邻的外角的4倍多30°,求这个多边形是几边形?并求出这个多边形的内角和.【答案】十二边形,1800°【分析】首先设外角为x°,则内角为(4x+30)°,根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x的值,再利用外角和360°÷外角的度数可得边数,进而求出内角和.【详解】解:设外角为x°,由题意得:x+4x+30=180,解得:x=30,360°÷30°=12,∴(12−2)×180=1800°,∴这个多边形的内角和是1800°,是十二边形.【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式以及外角和,构建方程求解即可.【变式3】(2021秋•泰州期末)【相关概念】将多边形的内角一边反向延长,与另一条边相夹形成的那个角叫做多边形的外角.如图,将△ABC中∠ACB的边CB反向延长,与另一边AC形成的∠ACD即为△ACB的一个外角.三角形外角和与三角形内角和对应,为与三个内角分别相邻的三个外角的和.【求解方法】借助一组内角与外角的数量关系,可以求出三角形的外角和.如图,△ABC的外角和=(180°﹣∠ACB)+(180°﹣∠CAB)+(180°﹣∠ABC)=540°﹣(∠ACB+∠ABC+∠CAB)=540°﹣180°=360°.【自主探究】根据以上提示,完成下列问题:(1)将下列表格补充完整.(2)如果一个八边形的每一个内角都相等,请用两种不同的方法求出这个八边形一个内角的度数.【分析】(1)根据n 边形的内角和为(n ﹣2)×180°,n 边形的外角和为360°即可得出答案;(2)根据多边形的内角和公式和多边形的外角和360°即可得出答案.【解答】解:(1)内角和分别为:四边形内角和是:(4﹣2)×180°=360°,,五边形内角和是:(5﹣2)×180°=540°,n 边形内角和是:180°(n ﹣2);外角和分别为:360°、360°、360°;故答案为:360°、540°、180°(n﹣2),360°、360°、360°;(2)这个八边形一个内角的度数是:方法一:(8﹣2)×180°÷8=135°,方法二:180°﹣360°÷8=135°.【点评】本题考查了多边形内角与外角:n边形的内角和为(n﹣2)×180°;n边形的外角和为360°.题型七:平面镶嵌例7.(2022春·八年级单元测试)用同一种下列形状的图形地砖不能进行平面镶嵌的是()A.正三角形B.长方形C.正八边形D.正六边形【答案】C【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.【详解】解:A.正三角形的每个内角是60︒,能整除360︒,能密铺,故A不符合题意;B.长方形的每个内角是90︒,能整除360︒,能密铺,故B不符合题意;C.正八边形的每个内角为:1803608135︒−︒÷=︒,不能整除360︒,不能密铺,故C符合题意;D.正六边形的每个内角为120︒度,能整除360︒,能密铺,故D不符合题意.故选:C.【点睛】本题主要考查了平面镶嵌,解题的关键是熟练掌握一种正多边形的镶嵌应符合一个内角度数能整除360︒.【变式】(2022春·八年级单元测试)用正多边形来镶嵌平面的原理是共顶点的各个角之和必须等于360︒.现在有七种不同的正多边形:①正三角形、②正方形、③正六边形、④正八边形、⑤正十边形、⑥正十二边形、⑦正十五边形.请你用其中的不同的三种正多边形来镶嵌平面,这三种正多边形可以是:________.(请用序号表示,只需写出两种即可)【答案】①②③或①②⑥或②③⑥【分析】先分别求出正三角形、正方形、正五边形、正六边形、正七边形、正八边形的每个内角,然后根据平面镶嵌的条件解答即可.【详解】解:用公式()1802nn︒⨯−分别计算出正三角形的内角为60︒,正方形的内角为90︒,正六边形的内角为120︒,正八边形内角为135︒,正十边形的内角为144︒,正十二边形的内角为150︒,正十五边形的内角为156︒,∵609090120360︒+︒+︒+︒=︒,∴正三角形、正方形、正六边形可以进行平面镶嵌;∵606090150360︒+︒+︒+︒=︒,∴正三角形、正方形、正十二边形可以进行平面镶嵌;∵90120150360︒+︒+︒=︒,∴正方形、正六边形、正十二边形可以进行平面镶嵌;故答案为:①②③或①②⑥或②③⑥.【点睛】本题主要考查了镶嵌的条件,镶嵌的条件是看位于同一顶点处的几个角之和能否为360︒.【过关检测】一、单选题A.180︒B.360【答案】B【分析】根据多边形的外角和等于360︒解答即可.【详解】解:由多边形的外角和等于360︒可知,123456360∠+∠+∠+∠+∠+∠=︒,故选:B.【点睛】本题考查的是多边形的外角和,掌握多边形的外角和等于360︒是解题的关键.2.(2023春·山东泰安·八年级校考期末)正多边形的内角和为720︒,则这个多边形的一个内角为()A.90︒B.60︒C.120︒D.135︒【答案】C【分析】由正多边形的内角和为720︒,可得()2180720n−︒=︒,再求解n可得答案.【详解】解:∵正多边形的内角和为720︒,∴()2180720 n−︒=︒,解得:6n=,∴这个多边形的一个内角为720=1206︒︒;故选C【点睛】本题考查的是正多边形的内角和问题,熟记多边形的内角和公式与正多边形的定义是解本题的关键.3.(2023春·浙江·八年级专题练习)一个多边形的内角和是其外角和的2倍,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【答案】A【分析】设这个多边形的边数为n,根据多边形的内角和公式和多边形的外角和都是360︒,列出方程即可求出结论.【详解】解:设多边形的边数是n,根据题意得,()21802360n−⨯︒=⨯︒,解得:6n=,∴这个多边形为六边形.故选:A.【点睛】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.4.(2023春·浙江·八年级专题练习)一个多边形的每个内角都相等,这个多边形的外角不可能是()A.30︒B.40︒C.50︒D.60︒【答案】C【分析】根据多边形的每个内角都相等,则这个多边形的每一个外角均相等,根据外角和等于360︒即可求解.【详解】解:由题意得,多边形的每个内角都相等,∴这个多边形的每一个外角均相等.∴每一个外角的度数整除360︒,∵30︒、40︒、60︒均能整除360︒,50︒不能整除360︒,∴选项C 符合题意.故选:C .【点睛】本题考查了多边形的外角和,熟记知识点是解题关键. 5.(2023春·全国·八年级专题练习)如图,A B C D E F ∠+∠+∠+∠+∠+∠等于( )A .240︒B .300︒C .360︒D .540︒【答案】C 【分析】连接BD ,根据四边形内角和可得360A ABO OBD BDO CDO C ∠+∠++∠+∠+∠=︒,再由“8”字三角形可得OBD ODB E F ∠+∠=∠+∠,进而可得答案.【详解】解:连接BD ,如图,∵360A ABO OBD BDO CDO C ∠+∠+∠+∠+∠+∠=︒,OBD ODB E F ∠+∠=∠+∠,∴360A ABO E F CDO C ∠+∠+∠+∠+∠+∠=︒,故选C .【点睛】本题考查了多边形的内角和,以及“8”字三角形的特点,正确作出辅助线是解答本题的关键.6.(2022春·八年级单元测试)将一个多边形切去一个角后所得的多边形内角和为2520,则原多边形的边数为( )A .15或16B .16或17C .15或16或17D .16或17或18【答案】C【分析】因为一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据多边形的内角和即可解决问题.【详解】解:多边形的内角和可以表示成()2180n −⋅︒(3n ≥且n 是正整数),一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据题意得()21802520n −⋅︒=︒,解得:16n =,则多边形的边数是15或16或17,故C 正确.故选:C .【点睛】本题主要考查了多边形的内角和定理,本题容易出现的错误是:认为截取一个角后角的个数减少1. 7.(2023秋·广西钦州·八年级统考期末)小红:我计算出一个多边形的内角和为2020︒;老师:不对呀,你可能少加了一个角!则小红少加的这个角的度数是( )A .110︒B .120︒C .130︒D .140︒【答案】D【分析】设这个多边形的边数为n ,少加的角的度数为x ,由多边形内角和定理可得等式:180(2)2020n x −=+,由n 为整数即可确定x 的值.【详解】设这个多边形的边数为n ,少加的角的度数为x ,由题意得:180(2)2020n x −=+,4013180xn +∴=+,由于n 为整数,x 为正数且小于180,40180x ∴+=,则140x =,故选:D .【点睛】本题考查了多边形内角和定理,关键是设多边形的边数及少加的角的度数,由多边形内角和定理得到等式,根据边数为整数确定少加的角.8.(2023·全国·八年级假期作业)已知一个多边形内角和为1080︒,则这个多边形可连对角线的条数是( )A .10B .16C .20D .40【答案】C【分析】先根据多边形内角和计算公式求出这个多边形是八边形,再根据多边形对角线计算公式求解即可.【详解】解:设这个多边形为n边形,由题意得,()180210802n⨯−=,∴8n=,∴这个多边形为八边形,∴这个多边形可连对角线的条数是()883202⨯−=,故选C.【点睛】本题主要考查了多边形内角和定理,多边形对角线计算公式,熟知n边形的对角线条数是()32 n n−是解题的关键.9.(2023秋·八年级课时练习)一个多边形截去一角后,变成一个八边形,则这个多边形原来的边数是()A.8或9B.7或8C.7或8或9D.8或9或10【答案】C【分析】画出所有可能的情况,即可作答.【详解】如图所示∴这个多边形原来是7边形或8边形或9边形故选C.【点睛】本题考查的知识点是多边形内角与外角,解题关键是注意分情况作答.二、填空题10.(2023春·安徽淮北·八年级淮北一中校联考阶段练习)若n边形的每个内角都是108,则边数n为___.【答案】5【分析】根据多边形的内角和公式()2180n︒−⋅列方程求解即可.【详解】解:由题意得, ()2180108n n ︒︒−⋅=⋅解得:5n =.故答案为:5.【点睛】本题考查了多边形的内角和,熟记内角和公式并列出方程是解题的关键. 11.(2022春·八年级单元测试)如图是由射线AB 、BC 、CD 、DA 组成的平面图形,则1234∠+∠+∠+∠=______°.【答案】360【分析】根据多边形的外角和为360︒求解即可.【详解】解:由图可知,1∠、2∠、3∠、4∠为组成的四边形的外角,∴1234360∠+∠+∠+∠=︒,故答案为:360.【点睛】本题考查多边形的外角性质,熟知多边形的外角和为360︒是解题的关键.12.(2023春·浙江宁波·八年级校联考期中)一个正n 多边形的一个内角是它的外角的4倍,则n =___________.【答案】10【分析】由多边形的每一个内角与相邻的这个外角互补先求解每一个外角,从而可得答案.【详解】解:∵一个正n 多边形的一个内角是它的外角的4倍,∴正多边形的每一个外角为:180365︒=︒,∴3601036n ︒==︒,故答案为:10.【点睛】本题考查的是正多边形的内角和与外角和的综合,熟记多边形的每一个内角与相邻的这个外角互补是解本题的关键.13.(2023春·全国·八年级专题练习)若一个多边形的每个外角均为36︒,则这个多边形的内角和为_______度.【答案】1440【分析】依据多边形外角和为360︒求得边数,再依据多边形内角和公式代入求解即可.【详解】解:因为多边形的每个外角均为36︒,且外角和为360︒,所以这个多边形边数:3603610︒÷︒=,则这个多边形的内角和为:()1021801440−⨯︒=︒,故答案为:1440.【点睛】本题考查了多边形内角和公式、外角和为360︒;通过外角和求得边数是解题的关键.【答案】12【分析】设这个多边形的边数为n,根据题意得多边形的内角和是外角和的5倍,列出方程求解即可.【详解】解:设这个多边形的边数为n,根据题意得多边形的内角和是外角和的5倍,∴() 36052180n⨯=−⨯,解得:12n=,所以这个多边形的边数为12.故答案为:12.【点睛】题目主要考查一元一次方程的应用及多边形的内角和与外角和等,理解题意,列出方程是解题关键.15.(2023春·陕西西安·八年级西安行知中学校考阶段练习)一个多边形的内角和是外角和的3倍,则它是____________边形.【答案】八【分析】多边形的外角和是360度,多边形的内角和是外角和的3倍,则多边形的内角和是()3603︒⨯度,根据多边形的内角和可以表示成()2180n−⋅︒,依此列方程可求解.【详解】解:设多边形边数为n.则() 36032180n⨯=−⋅,解得8n=.∴这个多边形是八边形.故答案为:八.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.16.(2023·全国·八年级假期作业)一个n边形的所有内角和等于540︒,则n的值等于__.【答案】5【分析】已知n边形的内角和为540︒,根据多边形内角和的公式易求解.【详解】解:依题意有()2180540n−⋅︒=︒,解得5n=.故答案为:5.【点睛】主要考查的是多边形的内角和公式,本题的难度简单.掌握多边形的内角和为()2180n−⋅︒是解题的关键.【答案】1080°【分析】连KF,GI,根据n边形的内角和定理得到7边形ABCDEFK的内角和=(7-2)×180°=900°,则∠A +∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,由三角形内角和定理可得到∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,即可得到∠A +∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数.【详解】解:连KF,GI,如图,。
多边形的内角和与外角和练习题
多边形的内角和与外角和一、填空题1。
若一凸多边形的内角和等于它的外角和,则它的边数是______。
2。
五边形的内角和等于______度。
3。
十边形的对角线有_____条。
4.正十五边形的每一个内角等于_______度。
5.内角和是1620°的多边形的边数是________.6。
用正n边形拼地板,则n的值可能是_______。
二、选择题7.一个多边形的内角和是720°,则这个多边形是( )A。
四边形 B.五边形 C。
六边形 D.七边形8。
一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( )A。
5 B.6 C.7 D.89。
若正n边形的一个外角为60°,则n的值是( )A。
4 B。
5 C。
6 D。
810。
下列角度中,不能成为多边形内角和的是()A.600°B.720°C.900° D。
1080°11。
若一个多边形的内角和与外角和之和是1800°,则此多边形是()A.八边形 B。
十边形 C。
十二边形 D.十四边形12。
用下列两种正多边形能拼地板的是( )A.正三角形和正八边形B.正方形和正八边形 C。
正六边形和正八边形 D。
正十边形和正八边形三、解答题13。
一个多边形的每一个外角都等于45°,求这个多边形的内角和。
14.已知一个多边形的内角和是1440°,求这个多边形的对角线的条数。
15.一个多边形,除一个内角外,其余各内角之和等于1000°,求这个内角及多边形的边数。
16、已知一个多边形的内角和是外角和的6倍,求这个多边形的边数17、一个正多边形的一个内角的度数比相邻外角的6倍还多12°,求这个正多边形的内角和.18.一个多边形中,每个内角都相等,并且每个外角等于它的相邻内角的23,求这个多边形的边数及内角和。
19。
若两个多边形的边数之比是1:2,内角和度数之比为1:3,求这两个多边形的边数。
多边形及其内角和-八年级数学上册同步精品课堂知识清单+例题讲解+课后练习(人教版)(原卷版)
第三课时——多边形及其内角和知识点一:多边形及其相关概念:1.多边形的概念:在平面内,由多条线段首位顺次连接所组成的图形是多边形。
组成的线段有多少条,则图形就是一个几边形。
如图:多边形ACDE是四边形,多边形ABCDE是五边形。
2.多边形的边:组成多边形的叫做多边形的边。
如图:AB、BC、CD、DE、AE是五边形的边。
3.多边形的内角:多边形两边组成的角叫多边形的内角。
如图:∠ABC、∠BCD、∠CDE、∠DEA、∠BAE是五边形的内角。
4.多边形的外角:多边形的边与它的邻边的构成的角是多边形的外角。
如图:∠BAF是五边形的其中一个外角。
5.多边形的对角线:连接任意两个不相邻的顶点得到的叫做多边形的对角线。
如图:AC是五边形的一条对角线。
6.凸多边形:作多边形任意一边所在直线,多边形在直线的,则这样的多边形是凸多边形。
7.凹多边形:如果作多边其中一边的直线,多边形在直线的,则这样的多边形是凹多边形。
【类型一:多边形的简单认识】1.如图所示的图形中,属于多边形的有()A.3个B.4个C.5个D.6个2.下列平面图形中,属于八边形的是()A.B.C.D.知识点一:多边形的有关计算1.多边形的对角线数量计算:总结规律:(下列式子中出现的n都是多边形的边数)多边形一个顶点引出的对角线条数为:条。
多边形所有对角线条数为:条。
2.多边形一个顶点的对角线分多边形的成三角形的数量计算:由上图总结:一个顶点的对角线分多边形成三角形的个数为:个。
3.多边形的内角和计算:由上图可知,多边形的内角和等于图中所有三角形的内角和之和。
即:。
特别提示:多边形的内角和一定是180的整数倍。
多边形每增加一边,内角和增加180°。
4.多边形的外角和计算:任意多边形的外角和都等于。
证明提示:多边形相邻的内外角之和等于180°,所以所有外角之和为:()︒1802n180n⋅360⋅=︒--︒【类型一:内外角和公式的理解】3.下列各度数不是多边形的内角和的是()A.540°B.900°C.1080°D.1700°4.当多边形的边数增加1时,它的内角和与外角和()A.都不变B.都增加180°C.内角和增加180°,外角和减少180°D.内角和增加180°,外角和不变【类型二:根据公式求内角和】5.湖南革命烈士纪念塔是湖南烈士公园的标志性建筑,塔于1959年建成,以纪念近百年为人民解放事业献身的革命先烈,塔底平面为八边形,这个八边形的内角和是()A.720°B.900°C.1080°D.1440°6.如图,足球图片中的一块黑色皮块的内角和是()A.720°B.540°C.360°D.180°7.七边形的内角和是()A.360°B.540°C.720°D.900°【类型二:利用内角和求多边形的边数】8.若一个多边形的内角和是1440°,则此多边形的边数是()A.十二B.十C.八D.十四9.若多边形的内角和是1980°,则此多边形的边数为()A.16B.15C.14D.1310.一个正多边形的内角和是900度,则这个多边形是()A.正六边形B.正七边形C.正八边形D.正九边形【类型二:利用多边形内外角关系计算】11.一个多边形的内角和是其外角和的6倍,则这个多边形的边数是()A.12边B.14边C.16边D.18边12.如果一个多边形的内角和是外角和的4倍,那么这个多边形是()A.四边形B.六边形C.八边形D.十边形13.某多边形的内角和是其外角和的2倍,则此多边形的边数为()A.3B.4C.5D.6【类型二:多边形截角计算】14.一个多边形截去一个角后,形成另一个多边形的内角和为900°,那么原多边形的边数为()A.5B.5或6C.6或7或8D.7或8或915.一个多边形减去一个角后,所得多边形的内角和是720°,则这个多边形的边数不可能是()A.4B.5C.6D.716.用剪刀将一个四边形沿直线剪去一部分,剩下部分的图形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能17.在一个凸n边形的纸板上切下一个三角形后,剩下的是一个内角和为2160°的多边形,则n的值为()A.只能为13B.只能为14C.只能为15D.以上都不对知识点一:正多边形:1.正多边形的定义:每条边都,每个内角都的多边形是正多边形。
多边形及其内角和(精选精练)(专项练习)(教师版) 2024-2025学年八年级数学上册基础知识专项
专题11.8多边形及其内角和(精选精练)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.(23-24六年级下·山东烟台·期中)过多边形一个顶点的所有对角线将这个多边形分成3个三角形,这个多边形是()A .五边形B .六边形C .七边形D .八边形2.(23-24八年级下·安徽阜阳·阶段练习)一个正多边形的内角和为1080︒.则这个正多边形的边数为()A .9B .8C .7D .63.(2024·福建福州·模拟预测)如图1是颐和园小长廊五角加膛窗,其轮廓是一个正五边形,如图2是它的示意图,它的一个外角α的度数为()A .70︒B .72︒C .60︒D .108︒4.(2020·辽宁葫芦岛·三模)如图,多边形ABCDEFG 中,108E F G ∠=∠=∠=︒,72C D ∠=∠=︒,则A B ∠∠+的值为()A .108︒B .72︒C .54︒D .36︒5.(2024·内蒙古赤峰·三模)如果一个正多边形的一个外角是45︒,则这个正多边形是正()边形A .六B .八C .十D .十二6.(2024·湖北荆门·模拟预测)小聪利用所学的数学知识,给同桌出了这样一道题:假如从点A 出发,沿直线走9米后向左转θ,接着沿直线前进9米后,再向左转θ,…,如此下去,当他第一次回到点A 时,发现自己一共走了72米,则θ的度数为()A.60︒B.75︒C.30︒D.45︒7.(2024·云南玉溪·三模)若一个正多边形的每一个外角都是36︒,则该正多边形的内角和的度数是().A.1440︒B.360︒C.1800︒D.2160︒∠=︒,则1∠的度数为8.(2024·河北石家庄·三模)如图,五边形ABCDE是正五边形,AF DG∥,若226()A.86︒B.64︒C.62︒D.52︒9.(23-24九年级下·河北邯郸·期中)综合实践课上,嘉嘉用八个大小相等的含45°角的直角三角板拼成了一个环状图案,如图1,若淇淇尝试用含60°角的直角三角板拼成类似的环状图案,如图2,除了图上3个还需要含60°角的直角三角板的数量为()A.3个B.6个C.9个D.12个10.(2024·河北沧州·二模)用“筝形”和“镖形”两种不同的瓷砖铺设成如图所示的地面,则“筝形”瓷砖中的∠的度数为()内角BCDA.120︒B.135︒C.144︒D.150︒二、填空题(本大题共8小题,每小题4分,共32分)11.(2024八年级下·全国·专题练习)一个八边形的内角和是.12.(23-24六年级下·山东济南·期中)若从n边形的一个顶点最多能引出2条对角线,则n是.13.(2024·湖北咸宁·一模)一个多边形的内角和为540︒,这个多边形的边数是.14.(2024·陕西宝鸡·模拟预测)一个正多边形的内角比外角大90︒,则这个多边形的内角和为.15.(23-24八年级上·辽宁营口·期中)如果把一个多边形剪去一个内角,剩余部分的内角和为1440︒,那么原多边形有条边.16.(19-20七年级下·江苏扬州·期末)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=.17.(2024·陕西西安·模拟预测)一个正多边形的外角和与内角和的比为1:3,则这个多边形是正边形.18.(2024·云南昆明·二模)如图,一个正n边形被树叶遮掩了一部分,若直线a,b所夹锐角为36︒,则n的值是.三、解答题(本大题共6小题,共58分)19.(8分)(21-22八年级下·广西桂林·期中)列式计算:求图中x的值.20.(8分)(23-24八年级上·江西南昌·期末)如果多边形的每个内角都比与它相邻的外角的4倍多30︒.(1)这个多边形的内角和是多少度?(2)求这个多边形的对角线的总条数.21.(10分)(23-24八年级上·新疆昌吉·期中)如图,在五边形ABCDE 中,100120AE CD A B �靶=,,∥(1)若110D ∠=︒,请求E ∠的度数;(2)试求出C ∠及五边形外角和的度数.22.(10分)(23-24七年级下·湖南衡阳·阶段练习)如图,阅读佳佳与明明的对话,解决下列问题:(1)多边形内角和为什么不可能为2020︒?(2)明明求的是几边形的内角和?(3)错当成内角的那个外角为多少度?23.(10分)(2024·浙江杭州·一模)问题情境:在探索多边形的内角与外角关系的活动中,同学们经历了观察、猜想、实验、计算、推理、验证等过程,提出了问题,请解答.(1)若四边形的一个内角的度数是α.①求和它相邻的外角的度数(用含α的代数式表示);②求其他三个内角的和(用含α的代数式表示).n>,除了一个内角,其余内角的和为920︒,求n的值.(2)若一个n边形(3)深入探究:n>的一个外角与和它不相邻的(n)1-个内角的和之间满足的等量关系,说明理由.(3)探索n边形(3)24.(12分)(1)已知图①中的三角形ABC,分别作AB,BC,CA的延长线BD,CE,AF,测量∠CBD,∠ACE,∠BAF的度数,并计算∠CBD+∠ACE+∠BAF.由此你有什么发现?请利用所学知识解释说明;(2)类似地,已知图②中的四边形PQRS,分别作PQ,QR,RS,SP的延长线QG,RH,SM,PN,测量∠RQG,∠SRH,∠PSM,∠QPN的度数,并计算∠RQG+∠SRH+∠PSM+∠QPN.由此你又有什么发现?(3)综合(1)(2)的发现,你还能进一步得到什么猜想?参考答案:1.A【分析】本题考查了多边形的对角线数量问题,根据n 边形从一个顶点出发可引出()3n -条对角线,可组成()2n -个三角形,依此可求出n 的值,得到答案.【详解】解:设这个多边形是n 边形,由题意得:23n -=,解得:5n =,即这个多边形是五边形,故选:A .2.B【分析】本题多边形内角和公式,解题关键是理解并熟记多边形内角和公式.根据多边形内角和定理:可得方程()18021080x ︒⨯-=︒,再解方程即可.【详解】解:设多边形边数有x 条,由题意得:()18021080x ︒⨯-=︒解得:8x =故选B3.B【分析】本题主要考查多边形的内角和外角,熟练掌握正多边形的外角和为360︒是解题的关键.根据多边形的外角和为360︒即可作答.【详解】解:360572÷=︒.故选:B .4.B【分析】连接CD ,设AD 与BC 交于点O ,根据多边形的内角和公式即可求出∠E +∠F +∠G +∠EDC +∠GCD ,根据各角的关系即可求出∠ODC +∠OCD ,然后根据对顶角的相等和三角形的内角和定义即可求出结论.【详解】解:连接CD ,设AD 与BC 交于点O∵∠E +∠F +∠G +∠EDC +∠GCD=180°×(5-2)=540°,108E F G ∠=∠=∠=︒,72∠=∠=︒GCB EDA ,∴108°+108°+108°+72°+∠ODC +72°+∠OCD=540°∴∠ODC +∠OCD=72°∵∠AOB=∠COD∴∠A +∠B=180°-∠AOB=180°-∠COD=∠ODC +∠OCD=72°故选B .【点拨】此题考查的是多边形的内角和公式和对顶角的性质,掌握多边形的内角和公式和对顶角相等是解决此题的关键.5.B【分析】本题考查了正多边形的外角性质,根据正多边形的外角都相等以及外角和为360︒,列式36045︒÷︒进行计算,即可作答.【详解】解:∵一个正多边形的一个外角是45︒,∴360458︒÷︒=,∴这个正多边形是正八边形,故选:B .6.D【分析】本题考查了多边形的内角与外角,解决本题的关键是明确第一次回到出发点A 时,所经过的路线正好构成一个正多边形.第一次回到出发点A 时,所经过的路线正好构成一个正多边形,用8972=÷,求得边数,再根据多边形的外角和为360︒,即可求解.【详解】解:∵第一次回到出发点A 时,所经过的路线正好构成一个正多边形,∴正多边形的边数为:8972=÷,根据多边形的外角和为360︒,∴则他每次转动θ的角度为:360845︒÷=︒,故选:D .7.A【分析】本题主要考查了多边形的内角和与外角和,掌握内角和公式是解题的关键.根据任何多边形的外角和都是360︒,可以求出多边形的边数,再根据多边形的内角和公式,就得到多边形的内角和.【详解】解:根据题意得:该多边形的边数为:3601036︒=︒,∴该正多边形的内角和为:()1021801440-⨯︒=︒.故选:A .8.C【分析】此题考查了多边形的内角和外角及平行线的性质,熟记多边形内角和公式及平行线的性质是解题的关键.连接AD ,根据多边形的内角和及平行线的性质求解即可.【详解】如图,连接AD ,∵五边形ABCDE 是正五边形,()521801085E BAE -⨯︒∴∠=∠==︒,EA ED =,()34180108236∴∠=∠=︒-︒÷=︒,5108472∴∠=︒-∠=︒,226∠=︒ ,2598,DAF ∴∠=∠+∠=︒,AF DG 98,ADG ∴∠=︒1362.ADG ∴∠=∠-∠=︒故选:C .9.C【分析】本题主要考查了正多边形的外角和.多边形由拼图方法可知:环状图案的外围是正多边形,根据正多边形外角和等于360︒即可求出正多边形的边数.【详解】解:依题意可知:用含60°角的直角三角板按图示拼成类似的环状图案是正多边形,正多边形的外角180(9060)30=︒-︒+︒=︒,故正多边形的边数为3603012︒÷︒=(条)∴除了图上3个还需要含60°角的直角三角板的数量为1239-=(个)故选C .10.C【分析】本题主要考查了多边形内角和定理,根据5个“筝形”组成一个正十边形,结合多边形内角和定理求解即可【详解】解;由图可知,5个“筝形”组成一个正十边形,∴()180********BCD ︒⨯-∠==︒,故选:C11.1080︒/1080度【分析】本题考查了多边形内角和定理,直接套用多边形的内角和()2180n -⋅︒进行计算可求八边形的内角和,【详解】解:内角和:()8218061801080-⨯︒=⨯︒=︒.故答案为:1080︒12.5【分析】本题考查了多边形的对角线,牢记n 边形从一个顶点出发可引出(3)n -条对角线是解题的关键.据此求解即可.【详解】解:∵从n 边形的一个顶点最多能引出2条对角线,∴32n -=,∴5n =.故答案为:5.13.5【分析】本题考查多边形的内角和公式,n 边形的内角和公式为()2180n -⨯︒,由此列方程即可得到答案.【详解】解:设这个多边形的边数为n ,则()2180540n -⨯︒=︒,解得5n =,故答案为:5.14.1080︒/1080度【分析】本题考查了多边形外角和与内角和,掌握其计算公式是解题的关键.多边形的内角和公式为:()2180n -⨯︒(其中n 为多边形的边数),多边形的外角和是360︒.因为多边形的外角和是360︒,且正多边形的每个内角都相等,每个外角也都相等,设这个正多边形的一个外角为x ,则内角为90x +︒,根据内角与外角的和为180︒可列出方程.【详解】设外角是x ,则内角是180x ︒-,则18090x x ︒--=︒,解得45x =︒.则多边形的边数是:360458︒÷︒=.∴内角和是:()821801080-⨯︒=︒.故答案为:1080︒.15.11或10或9【分析】本题考查了多边形的内角和度数,熟记相关结论是解题关键.【详解】解:以五边形为例,如图所示:剪去一个内角后,多边形的边数可能加1,可能不变,也可能减1设新多边形的边数为n ,则()21801440n -⨯︒=︒,解得:10n =∴原多边形可能有11或10或9条边.故答案为:11或10或9.16.540°【分析】连接ED ,由三角形内角和可得∠A+∠B=∠BED+∠ADE ,再由五边形的内角和定理得出结论.【详解】连接ED ,∵∠A+∠B=180°-∠AOB ,∠BED+∠ADE=180°-∠DOE ,∠AOB=∠DOE ,∴∠A+∠B=∠BED+∠ADE ,∵∠CDE+∠DEF+∠C+∠F+∠G=(5-2)×180°=540°,即∠CDO+∠ADE+BED+∠BEF+∠C+∠F+∠G=540°,∴∠A+∠B+∠C+∠CDO+∠BEF+∠F+∠G=540°.故答案为:540°.【点拨】本题考查了三角形的内角和公式,以及多边形的内角和公式,熟记多边形的内角和公式为(n -2)×180°是解答本题的关键.17.八【分析】本题主要考查了多边形的内角和,熟练掌握多边形的内角和公式,是解决问题的关键设这个正多边形的边数为n ,根据正多边形的外角和与内角和的比为1:3,利用多边形内角和公式与外角和列方程解答并检验,即得【详解】设这是个正n 边形,∵这个正多边形的外角和与内角和的比为1:3,∴()360121803n =-⨯,解得,8n =,经体验8n =是所列方程的解,且符合题意,∴这是个正八边形,故答案为:八18.5【分析】本题主要考查了多边形的内角和外角,解题关键是熟练掌握正多边形的定义及性质和外角和.先根据题意画出图形,再根据已知条件求出2∠和3∠的度数,然后根据正多边形的性质和外角和,求出正多边形的边数即可.【详解】解:如图所示:由题意得:136∠=︒,123180∠+∠+∠=︒ ,2318036144∴∠+∠=︒-︒=︒,正多边形每个外角都相等,23144272∴∠=∠=︒÷=︒,正多边形的外角和为360︒,∴它的边数为:360725÷=,n ∴的值为5,故答案为:5.19.100【分析】本题考查了四边形的内角和定理,根据题意,列式109060360x x +++︒+︒=︒计算即可.【详解】根据题意,列式109060360x x +++︒+︒=︒,解得100x =,故图中x 的值为100.20.(1)1800︒(2)54【分析】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式寻求等量关系,构建方程求解即可.另外还要注意从n 边形一个顶点可以引3n -()条对角线.(2)求出多边形的边数,利用多边形内角和公式即可得到答案;(3)根据n 边形有()32n n -条对角线,即可解答.【详解】(1)解:设这个正多边形的一个外角为x ︒,依题意有430180x x ++=,解得30x =,3603012︒÷︒=∴这个正多边形是十二边形.∴这个正多边形的内角和为(122)1801800-⨯︒=︒(2)解:对角线的总条数为4(1231)252-=⨯(条).21.(1)70E ∠=︒(2)140C ∠=︒,五边形外角和的度数是360︒【分析】本题主要考查多边形内角和、外角和及平行线的性质,熟练掌握多边形内角和及平行线的性质是解题的关键.(1)根据平行线的性质可进行求解;(2)根据多边形内角和、外角和及平行线的性质可进行求解.【详解】(1)解:∵AE CD ∥,∴180D E ∠+∠=︒,∴180********E D ∠∠=︒-=︒-︒=︒;(2)解:五边形ABCDE 中,()52180540A B C D E ∠+∠+∠+∠+∠=-⨯︒=︒,∵180D E ∠+∠=︒,100A ∠=︒,120B ∠=︒,∴()540C D E A B∠∠∠∠∠=︒-+--140=︒;五边形外角和的度数是360︒.22.(1)见解析(2)十三边形或十四边形(3)110︒或20︒【分析】本题主要考查了多边形内角和定理,多边形内角和外角的关系以及二元一次方程组的应用.(1)根据多边形内角和定理公式计算判断即可.(2)设应加的内角为x ,多加的外角为y ,依题意可列方程为()21802020n y x -=-+ ,结合角的属性建立不等式求整数解即可.(3)分别计算十三边形的内角和以及十四边形的内角和,分别列出关于x ,y 的二元一次方程组求解即可.【详解】(1)设多边形的边数为n ,由题意得()18022020n -= ,解得2139n =,∵n 为正整数,∴多边形的内角和不可能为2020︒.(2)设应加的内角为x ,多加的外角为y ,依题意可列方程为()21802020n y x -=-+ ,∵180180x y -<-< ,∴()202018018022020180n -<-<+ ,解得22121499n <<,又∵n 为正整数,∴n 13=或14n =.故明明求的是十三边形或十四边形的内角和.(3)十三边形的内角和为()1801321980⨯-= ,∴2020198040y x -=-= ,又180x y += ,∴70x = ,110y = .十四边形的内角和为()1801422160⨯-= ,∴21602020140x y -=-= ,又180x y += ,∴160x = ,20y = .所以错当成内角的那个外角为110︒或20︒.23.(1)①180α︒-,②360α︒-(2)8n =;(3)(3)180n βα-=-⨯︒,理由见解析【分析】(1)①根据一个内角与它相邻的外角的和是180︒进行计算即可;②四边形的内角和是360︒进行计算即可;(2)根据多边形的内角和的计算方法进行计算即可;(3)表示出和它不相邻的(n )1-个内角的和即可.【详解】解:(1)①四边形的一个内角的度数是α,则与它相邻的外角的度数180α︒-;②由于四边形的内角和是360︒其中一个内角为α,则其它三个内角的和为360α︒-;(2)由题意得,(2)180920n α-⨯︒-=︒,3n > 的正整数,0180α︒<<︒,8n ∴=,即这个多边形为八边形;(3)设n 边形(3)n >的一个外角为α,它不相邻的(n )1-个内角的和为β,则有180(2)180n αβ︒-+=-⨯︒,即(3)180n βα-=-⨯︒.24.(1)见解析,∠CBD +∠ACE +∠BAF =360°,三角形中的外角和为360°,见解析;(2)∠RQG +∠SRH +∠PSM +∠QPN =360°,见解析;(3)多边形的外角和和都是360°,见解析【分析】(1)经测量得出∠CBD =138°,∠ACE =117°,∠BAF =105°,∠CBD +∠ACE +∠BAF =360°,则据此得出结论三角形中的外角和为360°,根据平角是180°和多边形内角和证明即可;(2)分别测量出几个角并求出这几个角的和,得出结论:在四边形的外角和是360°;根据(1)中证明方法证明即可;(3)猜想:多边形的外角和和都是360°.根据(1),(2)方法证明即可;【详解】解:(1)经测量知∠CBD =138°,∠ACE =117°,∠BAF =105°,∴∠CBD +∠ACE +∠BAF =360°,发现:三角形中的外角和为360°,理由:∵∠CBD+∠ABC=180°,∠ACE+∠ACB=180°,∠BAC+∠BAF=180°,∴∠CBD+∠ACE+∠BAF+∠ABC+∠ACB+∠BAC=540°,又∵∠ABC+∠ACB+∠BAC=180°,∴∠CBD+∠ACE+∠BAF=360°;(2)∠RQG=125°,∠SRH=113°,∠PSM=48°,∠QPN=74°,所以∠RQG+∠SRH+∠PSM+∠QPN=360°;发现:在四边形的外角和是360°;∵∠RQG+∠PQR=180°,∠SRH+∠QRS=180°,∠PSM+∠RSP=180°,∠QPN+∠QPS=180°,∵∠RQG+∠PQR+∠SRH+∠QRS+∠PSM+∠RSP+∠QPN+∠QPS=720°,∵∠PQR+∠QRS+∠RSP+∠QPS=360°,∴∠RQG+∠SRH+∠PSM+∠QPN=360°.(3)猜想:多边形的外角和都是360°.设多边形为n边形,则n边形的每一个内角与它相邻的外角的和为180°,∴n边形的外角和=180°n﹣(n﹣2)×180°=180°n﹣180°n+360°=360°.【点拨】此题考查多边形外角和的知识,利用平角是180°结合多边形内角和证明即可.。
八年级数学多边形及其内角和(含解析答案)
多边形和内角和练习题温故而知新:1.多边形多边形的内角和:n边形内角和等于_(n-2)·180°__多边形的外角和:任意多边形外角和等于__360°_多边形的对角线:凸n边形共有_1(3)2n n-_条对角线。
2.平面镶嵌定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)问题.说明:正三角形、正方形和正六边形可以镶嵌平面图案,正五边形不能镶嵌平面图案.多边形的对角线多边形的对角线例 1 今年暑假,佳一学校安排全校师生的假期社会实践活动,将每班分成三个组,每组派1名教师作为指导教师,为了加强同学间的联系,学校要求该班每两人之间(包括指导教师)每周至少通一次电话,现知该校七(1)班共有50名学生,那么该班师生之间每周至少要通几次电话?为了解决这一问题,小明把该班师生人数n与每周至少通话次数s之间的关系用下列模型表示,如图。
解析:师生53人看作是53边形的53个顶点,n边形的对角线条数公式为:1(3)2n n-。
答案:解:将七(1)班师生53人看作是53边形的53个顶点,由多边形对角线条数公式1(3)2n n-得153(533)1325´´-=2所以1325+53=1378次。
答:该班每周师生之间至少要通1378次电话小结:(1)建立数学模型是解决实际问题的基本方法;(2)n边形的对角线的条数公式是1(3)n n-2多边形的内角和与外角和多边形的内角和与外角和例2 已知一个多边形的外角和等于内角和的1/3,求这个多边形的边数。
解析:多边形的外角和为360°,根据多边形的内角和及外角和列方程.答案:解:设这个多边形的边数为n,根据题意,得1(2)180360n-´=3解得 n=8答:这个多边形的边数是8.小结:小结:利用方程求解是解决此类问题的一般方法。
例3 如图,小陈从O点出发,前进5米后向右转20°,再前进5米后又向右转20°,……这样一直走下去,他第一次回到出发点O时一共走了()A.60米B.100米C.90米D.120米解析:根据多边形的外角和求出这个多边形的边数。
11.3 多边形及其内角和(基础训练)(解析版)
11.3 多边形及其内角和【基础训练】一、单选题1.若一个正多边形的每个内角为144︒,则这个正多边形的边数是()A.7B.10C.12D.14【答案】B【分析】根据多边形的内角和公式,可得答案.【详解】解:设正多边形是n边形,由内角和公式得(n-2)180°=144°×n,解得n=10,故选:B.【点睛】本题考查了多边形内角与外角,由内角和得出方程是解题关键.2.一个正多边形的一个内角是150︒,则这个正多边形的边数为()A.2B.3C.9D.12【答案】D【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:外角是:180°-150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:D.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数是解题关键.3.一个n边形的各内角都等于120 ,则n等于()A.5B.6C.7D.8【答案】B【分析】首先求出外角度数,再用360°除以外角度数可得答案.【详解】解:∵n边形的各内角都等于120°,∵每一个外角都等于180°-120°=60°,∵边数n=360°÷60°=6.故选:B.【点睛】此题主要考查了多边形的外角和定理,外角与相邻的内角的关系,关键是掌握各知识点的计算公式.4.如图,在∵ABC中,∵A=90°,若沿图中虚线截去∵A,则∵1+∵2的度数为()A.90°B.180°C.270°D.300°【答案】C【分析】在∵ABC中,利用三角形内角和定理可求出∵B+∵C的度数,再利用四边形内角和为360°,即可求出∵1+∵2的度数.【详解】解:在∵ABC中,∵A=90°,∵A+∵B+∵C=180°,∵∵B+∵C=180°﹣90°=90°,又∵∵1+∵2+∵B+∵C=360°,∵∵1+∵2=360°﹣90°=270°.故选:C.【点睛】本题考查三角形和四边形内角和的性质,熟知:“三角形内角和为180°,四边形内角和为360°”是解答本题的关键.5.下列多边形中,内角和为360°的图形是()A.B.C.D.【答案】B【分析】若多边形的边数是n,则其内角和计算公式为(n﹣2)•180°,据此进行解答即可.【详解】解:由多边形内角和公式可得,(n﹣2)•180°=360°,解得n=4,是四边形,故选择B.【点睛】本题考查了多边形的内角和计算,牢记其公式是解题关键.6.若一个正多边形的内角和等于其外角和的3倍,则这个正多边形是()A.5边形B.6边形C.7边形D.8边形【答案】D【分析】设多边形的边数是n,根据多边形的外角和是360°,以及多边形的内角和公式列出方程即可求解.【详解】解:设多边形的边数是n,则180(n﹣2)=3×360,解得:n=8.故选:D.【点睛】本题考查了多边形的内角和公式以及外角和定理,根据多边形的内角和公式以及外角和定理列出方程是解题关键.7.某校初一数学兴趣小组对教材《多边形的内角和与外角和》的内容进行热烈的讨论,甲说:“∵∵∵∵∵∵∵∵∵1,则内角和增加180°”;乙说:“∵∵∵∵∵∵∵∵∵1,则外角和增加180°”;丙说:“∵∵∵∵∵∵∵∵∵∵∵∵∵∵”;丁说:“∵∵∵∵∵∵,外角和都是360°”∵∵∵∵∵∵∵∵( )A .甲和丁B .乙和丙C .丙和丁D .以上都不对【答案】A【分析】根据多边形的内角和与外角和逐个判断即可.【详解】多边形的内角和公式为180(2)n ︒-,n 为多边形的边数当n 增加1,则内角和增加180︒,甲说法正确任意多边形的外角和都等于360︒,则乙说法错误,丁说法正确当3n =时,多边形的内角和为180︒,外角和为360︒,则丙说法错误综上,说法正确的是甲和丁故选:A .【点睛】本题考查了多边形的内角和与外角和,熟记多边形的内角和与外角和是解题关键.8.如图,七边形ABCDEFG 中,AB 、ED 的延长线交于点O ,若1∠,2∠,3∠,4∠相邻的外角的和等于210,则BOD ∠的度数是( )A .30B .35C .40D .45【答案】A【分析】 由外角和内角的关系可求得∵1、∵2、∵3、∵4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∵BOD .【详解】解:∵∵1、∵2、∵3、∵4的外角的角度和为210°,∵∵1+∵2+∵3+∵4+210°=4×180°,∵∵1+∵2+∵3+∵4=510°,∵五边形OAGFE 内角和=(5−2)×180°=540°,∵∵1+∵2+∵3+∵4+∵BOD=540°,∵∵BOD=540°−510°=30°,故选A.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∵1、∵2、∵3、∵4的和是解题的关键.9.若一个多边形的内角和为外角和的3倍,则这个多边形为()A.八边形B.九边形C.十边形D.十二边形【答案】C【分析】设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4,解方程可得.【详解】解:设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4n-2=8解得:n=10所以,这是个十边形故选C.【点睛】本题考核知识点,多边形的内角和外角.解题关键点,熟记多边形内角和计算公式.10.五边形的外角和等于()A.180°B.360°C.540°D.720°【答案】B【详解】根据多边形的外角和等于360°解答.解:五边形的外角和是360°.故选B.本题考查了多边形的外角和定理,多边形的外角和与边数无关,任意多边形的外角和都是360°.11.在某广场整修工程中,计划采用同一种正多边形地板砖铺设地面.则下列满足要求的地板砖是()A.正五边形B.正六边形C.正七边形D.正八边形【答案】B【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.【详解】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∵用同一种正多边形铺满地面,则可供选择的正多边形是正六边形.故选:B.【点睛】此题主要考查了平面镶嵌,用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.12.一个多边形的内角和是外角和的2倍,这个多边形是()A.三角形B.四边形C.五边形D.六边形【答案】D【分析】根据多边形的内角和公式(n-2)•180°和外角和定理列出方程,然后求解即可.【详解】解:设多边形的边数为n,由题意得,(n-2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选:D.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.13.一个五边形截去个角后剩下的多边形内角和是()A.360︒B.540︒C.720︒D.360︒或540︒或720︒【答案】D【分析】一个五边形剪去一个角后,分三种情况:∵边数可能减少1,∵边数可能增加1,∵边数可能不变;然后分别求出每一种情况下的多边形的内角和.【详解】解:一个五边形剪去一个角后,分三种情况:∵边数可能减少1,∵边数可能增加1,∵边数可能不变;∵四边形的内角和为:360°;∵六边形的内角和为:(6-2)×180°=720°;∵五边形的内角和为:(5-2)×180°=540°;故选D.【点睛】此题主要考查了多边形内角和公式,解题的关键是:根据题意,讨论出剪去一个角后的各种情况.∠+∠=()14.如图三角形纸片,剪去60︒角后,得到一个四边形,则12A.120︒B.180︒C.240︒D.300︒【答案】C【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∵1+∵2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∵1,∵2后的两角的度数为180°-60°=120°,则根据四边形的内角和定理得:∵1+∵2=360°-120°=240°.故选:C.【点睛】本题主要考查四边形的内角和,解题的关键是掌握四边形的内角和为360°及三角形的内角和为180°.15.一个多边形的每一个外角都等于36°,则该多边形的内角和等于()A .360°B .1080°C .1260°D .1440°【答案】D【分析】 根据外角和以及每一个外角确定出多边形的边数,即可求出内角和.【详解】解:根据题意得:360°÷36°=10,(10-2)×180°=1440°,则该多边形的内角和等于1440°,故选:D .【点睛】此题考查了多边形的内角与外角,熟练掌握各自的性质是解本题的关键.16.如图,B E F ∠+∠+∠等于( )A .360°B .335°C .385°D .405°【答案】C【分析】根据多边形的内角和公式解答即可.【详解】解:由多边形的内角和公式可得:()62180720-⨯︒=︒,∵72012012590385B E F ∠+∠+∠=︒-︒-︒-︒=︒,【点睛】本题考查多边形的内角和,掌握多边形的内角和公式是解题的关键.17.下列说法中,正确的个数有()∵若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形;∵一个三角形中,至少有一个角不小于60°;∵三角形的外角大于与它不相邻的任意一个内角;∵一个多边形的边数每增加一条,这个多边形的内角和就增加180°;A.1个B.2个C.3个D.4【答案】C【分析】分别根据三角形的三边关系,三角形的内角和定理,三角形的外角性质以及多边形的内角和公式逐一判断即可.【详解】解:∵若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形,说法错误;改正为:若任意两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形;∵一个三角形中,至少有一个角不小于60°,说法正确;∵三角形的外角大于与它不相邻的任意一个内角,说法正确;∵一个多边形的边数每增加一条,这个多边形的内角和就增加180°,说法正确.所以正确的个数有3个.故选:C.【点睛】本题主要考查了三角形的三边关系,三角形的内角和定理,多边形的内角与外角以及三角形的外角性质,熟记相关知识是解答本题的关键.18.一个多边形的每个内角都相等,已知它的一个外角为20°,那么这个多边形是一个()A.正十八边形B.正十六边形C.正十四边形D.正十二边形【答案】A【分析】根据多边形的外角和为360°,而多边形每个外角都等于20°,可求多边形外角的个数,确定多边形的边数.解:∵多边形的外角和为360°,360°÷20°=18,∵这个多边形是正十八边形,故选:A.【点睛】本题考查了多边形内角与外角.关键是利用多边形的外角和为360°的性质,求多边形的边数.19.科技馆为某机器人编制了一个程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为()A.12米B.16米C.18米D.20米【答案】C【分析】先判断出机器人所走过的路线是正多边形,然后用多边形的外角和除以每一个外角的度数求出多边形的边数,再根据周长公式列式进行计算即可得解.【详解】解:根据题意得,机器人所走过的路线是正多边形,∵每一次都是左转20°,∵多边形的边数=360°÷20°=18,周长=18×1=18(米),故选:C.【点睛】本题考查了多边形的内角与外角,判断出走过的路线是正多边形是解题的关键.20.如图,有一个正五边形木框,若要保证它不变形,需要再钉的木条根数至少是()A.1B.2C.3D.4【答案】B【分析】根据三角形具有稳定性,钉上木条后把五边形分成三角形即可.【详解】解:如图,要保证它不变形,至少还要再钉上2根木条.故选:B.【点睛】本题考查了三角形具有稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.21.内角和为720°的多边形是().A.三角形B.四边形C.五边形D.六边形【答案】D【分析】根据多边形内角和的计算方法(n-2)•180°,即可求出边数.【详解】解:依题意有(n-2)•180°=720°,解得n=6.该多边形为六边形,【点睛】本题考查了多边形的内角和,利用多边形的内角和计算公式正确计算是解题关键.22.若一个多边形的每个内角都等于160°,则这个多边形的边数是()A.18B.19C.20D.21【答案】A【分析】设多边形的边数为n,然后根据多边形的内角和公式(n−2)•180°列方程求解即可.【详解】设多边形的边数为n,由题意得,(n−2)•180=160•n,解得:n=18,故选:A.【点睛】本题考查了多边形内角和公式,熟记多边形的内角和公式是解题的关键.23.如图,在五边形ABCDE中,AB∵CD,∵A=135°,∵C=60°,∵D=150°,则∵E的大小为()A.60°B.65°C.70°D.75°【答案】D【分析】先根据多边形的内角和公式求出五边形的内角和,根据AB∵CD得到∵B+∵C=180°,即可求出∵E的大小.【详解】解:由五边形的内角和公式得(5-2)×180°=540°,∵AB∵CD,∵∵B+∵C=180°,∵∵E=540°-∵A-∵B-∵C-∵D=540°-135°-180°-150°=75°.【点睛】本题考查了多边形的内角和公式,平行线的性质,熟练掌握多边形的内角和公式是解题关键.24.如图,四边形ABCF ≅四边形EDCF ,若150AFC DCF ∠+∠=︒,则A B D E ∠+∠+∠+∠的大小是( )A .240︒B .300︒C .420︒D .460︒【答案】C【分析】 根据全等的性质得到300AFE BCD ∠+∠=,再根据六边形的内角和即可求解.【详解】解:∵四边形ABCF ≅四边形EDCF ,150AFC DCF ∠+∠=,∵150EFC DCF ∠+∠=,∵300AFE BCD ∠+∠=.又∵六边形的内角和为()62180720-⨯=,∵720300420A B D E ∠+∠+∠+∠=-=.故选C .【点睛】此题主要考查多边形的角度求解,解题的关键是熟知多边形的内角和的求解公式.25.如图的七边形ABCDEFG 中,AB 、ED 的延长线相交于O 点.若图中1∠、2∠、3∠、4∠的外角的角度和为220︒,则BOD ∠的度数为( )A .40︒B .35︒C .80︒D .20︒【答案】A【分析】 根据外角和内角的关系可求得∵1、∵2、∵3、∵4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∵BOD .【详解】解:∵∵1、∵2、∵3、∵4的外角的角度和为220°,∵∵1+∵2+∵3+∵4+220°=4×180°,∵∵1+∵2+∵3+∵4=500°,∵五边形OAGFE 内角和=(5﹣2)×180°=540°,∵∵1+∵2+∵3+∵4+∵BOD =540°,∵∵BOD =540°﹣500°=40°.故选:A.【点睛】本题主要考查的是多边形内角与外角的知识点,熟练掌握多边形内角与外角的关系是本题的解题关键. 26.一副三角板如图所示摆放,则α∠与β∠的数量关系为( )A .180αβ∠+∠=︒B .225αβ∠+∠=︒C .270αβ∠+∠=︒D .αβ∠=∠【答案】B【分析】先根据对顶角相等得出1α∠=∠,2β∠=∠,再根据四边形的内角和即可得出结论【详解】解: ∵219045360∠+∠++=︒︒︒;∵21225∠+∠=︒;∵1α∠=∠,2β∠=∠;∵225αβ∠+∠=︒故选:B【点睛】本题考查了四边形的内角和定理,和对顶角的性质,熟练掌握相关的知识是解题的关键27.如图,已知∵ABC 为直角三角形,90B ∠=︒,若沿图中虚线剪去∵B ,则∵1+∵2等于( )A .315°.B .180°C .270°D .135°.【答案】C【分析】 根据三角形的内角和定理及四边形的内角和定理进行计算即可得解.【详解】∵90B ∠=︒,180A B C ∠+∠+∠=︒,∵90A C ∠+∠=︒,∵12360A C ∠+∠+∠+∠=︒,∵1236090270∠+∠=︒-︒=︒,故选:C.【点睛】本题主要考查了三角形的内角和定理及四边形的内角和定理,熟练掌握相关角的计算是解决本题的关键. 28.如图,∵1,∵2,∵3是五边形ABCDE 的3个外角,若∵A+∵B =220°,则∵1+∵2+∵3=( )A.140°B.180°C.220°D.320°【答案】C【分析】根据∵A+∵B=220°,可求∵A、∵B的外角和,再根据多边形外角和360°,可求∵1+∵2+∵3的值.【详解】解:根据∵A+∵B=220°,可知∵A的一个邻补角与∵B的一个邻补角的和为360°﹣220°=140°.根据多边形外角和为360°,可知∵1+∵2+∵3=360°﹣140°=220°.故选C.【点睛】本题主要考查多边形的外角和公式,内外角的转化是解题的关键.29.如图,五边形ABCDE中,AB∵CD,∵1、∵2、∵3分别是∵BAE、∵AED、∵EDC的外角,则∵1+∵2+∵3等于A.90°B.180°C.210°D.270°【答案】B【详解】试题分析:如图,如图,过点E作EF∵AB,∵AB∵CD ,∵EF∵AB∵CD ,∵∵1=∵4,∵3=∵5,∵∵1+∵2+∵3=∵2+∵4+∵5=180°,故选B30.已知一个多边形的内角和等于900º,则这个多边形是( ∵A .五边形B .六边形C .七边形D .八边形【答案】C【详解】试题分析:多边形的内角和公式为(n -2)×180°,根据题意可得:(n -2)×180°=900°,解得:n=7. 考点:多边形的内角和定理.二、填空题31.如图:在六边形ABCDEF 中,//,//,//,150AB DE BC EF CD AF A ∠=︒,则C E ∠+∠=__________.【答案】210°【分析】连接DE ,利用平行线的性质证明∵ABC =∵DEF ,∵A =∵D ,∵C =∵F ,再计算出六边形内角和,结合∵A 的度数可得结果.【详解】解:如图,连接DE,∵AB∵DE,BC∵EF,∵∵1=∵2,∵3=∵4,∵∵1+∵4=∵2+∵3,即∵ABC=∵DEF,同理:∵A=∵D,∵C=∵F,∵∵A+∵C+∵D+∵F+∵ABC+∵DEF=(6-2)×180°=720°,∵∵A+∵C+∵DEF=360°,∵∵A=150°,∵∵C+∵DEF=210°,故答案为:210°.【点睛】本题考查了平行线的性质,多边形内角和,作出辅助线,证明∵ABC=∵DEF是解题的关键.∠+∠+∠+∠+∠+∠=______.32.一个不规则的图形如右图所示,那么A B C D E F【答案】360°【分析】根据三角形外角的性质,可得∵1与∵E、∵AFE的关系,∵1、∵2、∵D的关系,根据多边形的内角和公式,可得答案.【详解】解:如图延长AF交DC于G点,由三角形的外角等于与它不相邻的两个内角的和,得∵1=∵E+∵AFE,∵2=∵1+∵D,等量代换,得∵2=∵E+∵F+∵D,∵A+∵B+∵C+∵D+∵E+∵AFE=∵A+∵B+∵2+∵C=(4﹣2)×180°=360°.故答案为:360°.【点睛】本题考查的是三角形外角的性质及四边形的内角和,熟知三角形外角的性质和多边形内角和公式是解答此题的关键.33.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∵1、∵2、∵3、∵4的外角的角度和为220°,则∵BOD的度数为__________.【答案】40【分析】由外角和内角的关系可求得∵1、∵2、∵3、∵4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∵BOD.【详解】解:∵∵1、∵2、∵3、∵4的外角的角度和为220°,∵∵1+∵2+∵3+∵4+220°=4×180°,∵∵1+∵2+∵3+∵4=500°,∵五边形OAGFE内角和=(5-2)×180°=540°,∵∵1+∵2+∵3+∵4+∵BOD =540°,∵∵BOD =540°-500°=40°,故答案为:40°.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∵1、∵2、∵3、∵4的和是解题的关键. 34.一个正多边形的每一个内角比每一个外角的5倍还小60°,则这个正多边形的内角和是______.【答案】1260°【分析】设这个正多边形的外角为x ,则内角为5x ﹣60,根据内角和外角互补可得x +5x ﹣60=180,解可得x 的值,再利用外角和360°÷外角度数可得边数,根据内角和公式:(n ﹣2)×180°计算内角和即可.【详解】解:设这个正多边形的外角为x ,则内角为5x ﹣60°,由题意得:x +5x ﹣60=180,解得:x =40,360°÷40°=9.(9﹣2)×180°=1260°故答案为:1260°.【点睛】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.35.如图,一个直角三角形纸板的直角边,AC BC 分别经过正八边形的两个顶点,则图中12∠+∠=____【答案】180º【分析】利用∵C=90︒,求得∵3+∵4=90︒,利用公式求出正八边形的每个内角的度数=(82)1801358-⨯︒=︒,即可求出答案.【详解】解:如图,∵∵C=90︒,∵∵3+∵4=90︒,∵正八边形的每个内角的度数=(82)1801358-⨯︒=︒,∵∵1+∵2=135290︒⨯-︒=180︒,故答案为:180︒.【点睛】此题考查直角三角形两锐角互余的性质,正多边形内角和公式,熟记正多边形内角和公式是解题的关键.三、解答题36.一个正多边形的一个外角的度数等于它的一个内角度数的13,求这个正多边形的边数.【答案】8【分析】首先设正多边形的一个外角等于x°,则内角为3x°,即可得方程:x+3x=180,解此方程得到外角度数,再根据外角和求边数即可.【详解】解:设正多边形的一个外角等于x°,∵外角等于它的一个内角的13,∵这个正多边形的一个内角为:3x°,∵x+3x=180,解得:x=45,∵这个多边形的边数是:360°÷45°=8.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用.37.一个多边形的内角和比外角和的13多780︒,它是几边形?【答案】它是七边形【分析】根据多边形的内角和公式(n-2)•180°和外角和等于360°列方程求解即可.【详解】解:设这个多边形边数为n,依题意得:()121803607803n-⋅︒=︒⨯+︒,解得:7n=,答:它是七边形.【点睛】本题考查了多边形的内角和与外角和,只要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.38.(1)计算:()2 031220183-⎛⎫+---⎪⎝⎭(2)若一个多边形的内角和与它的外角和相等,求这个多边形边数.【答案】(1)0;(2)4.【分析】(1)先分别计算乘方,再计算加减法.(2)多边形内角和公式为(2)180n-⨯,外角和为360,由此设边数列方程解答即可.【详解】(1)()2031220183-⎛⎫+--- ⎪⎝⎭ =8+1-9=0;(2)设这个多边形的边数为n ,(2)180360n -⨯=,n=4,.【点睛】此题(1)考查实数的运算,正确理解正指数幂、零次幂、负指数幂的计算方法是解题的关键;(2)考查多边形的内角和公式与外角和,熟记公式即可正确列式计算.39.已知n 边形的内角和()2180n θ=-⨯︒.(1)当900θ=︒时,求出边数n ;(2)小明说,θ能取800︒,这种说法对吗?若对,求出边数n ;若不对,说明理由.【答案】(1)7n =;(2)不能取800︒.∵∵∵∵∵.【分析】(1)将900θ=︒代入内角和公式计算即可得;(2)将800θ=︒代入内角和公式计算n 的值,如果n 是正整数,则说法对;如果n 不是整数,则说法不对.【详解】(1)()9002180n ︒=-⨯︒,整理得25n -=,解得7n =;(2)小明的说法不对,理由如下:当θ取800︒时,()8002180n ︒=-⨯︒,解得589n = n 为正整数,θ∴不能取800︒.【点睛】本题考查了多边形的内角和公式,依据题意正确求解是解题关键.40.如图,已知四边形ABCD 中,∵A=∵D ,∵B=∵C ,试判断AD 与BC 的关系,并说明理由.【答案】AD∵BC ,理由见解析【分析】根据四边形的内角和是360°,结合已知条件得到∵A+∵B=180°,根据同旁内角互补,两直线平行得AD∵BC .【详解】解:AD 与BC 的关系是:AD∵BC .理由:∵四边形ABCD 的内角和是360°,∵∵A+∵B+∵C+∵D=360°,∵∵A=∵D ,∵B=∵C ,∵∵A+∵B+∵B+∵A=360°,∵∵A+∵B=180°,∵AD∵BC (同旁内角互补,两直线平行).【点睛】本题考查四边形的内角和,平行线的判定,解题的关键是熟记四边形的内角和是360°.41.如图,在∵ABC 中,AB =AC ,BD 、CE 是高,BD 与CE 相交于点O .(1)求证:OB =OC ;(2)若∵BAC =80°,求∵BOC 的度数.【答案】(1)见解析;(2)∵BOC =100°.【分析】(1)证明∵ABD∵∵ACE (AAS ),即可得出BD =CE ;(2)利用四边形内角和定理即可解决问题;【详解】(1)证明:∵BD 、CE 是高,∵∵ADB =∵AEC =90°,在∵ABD 和∵ACE 中,ADB AEC BAD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∵∵ABD∵∵ACE(AAS),∵BD=CE.(2)解:∵∵A=80°,∵ADB=∵AEC=90°,∵∵BOC=360°﹣∵BAC﹣∵AEC﹣∵ADB,=360°﹣80°﹣90°﹣90°=100°.【点睛】本题考查全等三角形的判定和性质、四边形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题.42.画出图中多边形的所有对角线。
多边形及其内角和练习题(答案)
第9章 多边形总复习一、知识点1.三角形:由三条不在同一直线上的线段首尾顺次连结组成的平面图形叫做三角形。
2.三角形的内角:在三角形中,每两条边所组成的角叫做三角形的内角。
3.三角形的外角:三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角。
4.三角形的分类:⑴按角分类:三角形 ⎝⎛钝角三角形直角三角形锐角三角形⑵按边分类:三角形 ⎝⎛ ⎝⎛)()(正三角形等边三角形三角形底边和腰不相等的等腰等腰三角形三条边互不相等不等边三角形 5.三角形的三条重要线段⑴中线:连结三角形的一个顶点与对边中点的线段叫做三角形的中线。
⑵高:从三角形的一个顶点向对边作垂线,顶点与垂足间的线段叫做三角形的高。
钝角三角形有两条边上的高在三角形外。
⑶三角形的角平分线:三角形一个内角的平分线与对边相交于一点,顶点与交点之间的线段叫做三角形的角平分线。
⑷重要规律:①三角形的三条中线相交于一点,该点叫做三角形的重心。
②三角形的三条高(或其所在直线)相交于一点。
三角形的三条高(或其所在直线)相交于一点,该点叫做三角形的垂心。
③三角形的三条角平分线相交于一点,这一点叫做三角形的内心,它到三角形的三边的距离相等。
6.三角形的内角和等于180°。
7.三角形的外角和等于360°。
8.三角形的外角性质:⑴三角形的一个外角等于和它不相邻的两个内角的和; ⑵三角形的一个外角大于任何一个与它不相邻的内角。
9.三角形的三边关系:⑴三角形任意两边之和大于第三边; ⑵三角形的任意两边之差小于第三边。
10.多边形的定义:由n 条不在同一直线上线段首尾顺次连结组成的平面图形叫做n 边形。
11.正多边形的定义:各边相等且各内角也相等的多边形叫做正多边形。
12.多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。
经过)3(≥n n 多边形的一个顶点....有)3(-n 条对角线;)3(≥n n 边形共有..2)3(-n n 条对角线。
多边形和内角和知识点及练习
多边形和内角和知识点及练习知识点一、多边形及其相关概念(1)多边形的概念:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.(2)多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.(3)正多边形的概念:各个角都相等,各条边都相等的多边形叫做正多边形.(4)多边形的内角:多边形相邻两边组成的角叫做它的内角.(5)多边形的外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. (6)正多边形的定义:边、角都相等的多边形才是正多边形知识点二、多边形的分类多边形可分为凸多边形和凹多边形,辨别凸多边形可用两种方法:①画多边形任何一边所在的直线整个多边形都在此直线的同一侧;②每个内角的度数均小于180°,通常所说的多边形指凸多边形.知识点三、多边形相关公式巩固练习1.下面图形是多边形的是()A B C D2.下列是正多边形的是()A.三条边都相等的三角形 B.四个角都是直角的四边形C.四条边都相等的四边形 D.六条边都相等的六边形3. 在八边形内任取一点,把这个点与八边形各顶点分别连接可得到几个三角形()A.5 个 B.6 个 C.7 个 D.8 个4. 从十二边形的一个顶点画出所有的对角线,对角线的条数为()A.12 B.11 C.10 D.95. 从多边形的一个顶点出发,可以引出 2003 条对角线,则这个多边形的边数为()A.2001 B.2005 C.2004 D.20066.把一个多边形纸片沿一条直线截下一个三角形后,变成一个 7 边形,则原多边形纸片的边数不可能是()A.6 B.7 C.8 D.97.若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为()A.14 或 15 或 16 B.15 或 16C.14 或 16 D.15 或 16 或 178. 下列说法:①正多边形的各边都相等;②各边都相等的多边形是正方形;③各角都相等的多边形一定是正多边形;④正多边形的各个外角都相等.其中结论正确的个数有()A.1个B.2个C.3个D.4个9.已知一个多边形的内角和是 1080°,则这个多边形是()A.六边形 B.七边形 C.八边形 D.九边形10.下列关于多边形的说法不正确的是()A.内角和与外角和相等的多边形是四边形B.七边形的内角和为 900°C.多边形的内角中最多有四个直角D.十边形共有 40 条对角线11. 正多边形的一个内角是144°,则该正多边形的边数为()A.7B.8C.9D.1012. 一个正n边形的每个外角为72°,则这个正n边形的所有对角线的条数为()A.3B.4C.5D.613. 一个正多边形的内角和是720°,则这个多边形的每个外角等于()A.60°B. 72°C.90°D.108°14.一个多边形剪去一个角后(剪痕不过任何一个其它顶点),内角和为 1800°,则原多边形的边数为()A.11 B.12 C.13 D.11 或 1215.如图,五边形 ABCDE 中,AB∥CD,∠1.∠2.∠3 分别是∠BAE.∠AED.∠EDC 的外角,若∠1=32°,∠3=60°,则∠2 等于()A.92° B.88° C.98° D.无法确定二、填空题16.若凸 n 边形的每个外角都是 30°,则从一个顶点出发引的对角线条数是_________17. 若凸 n 边形的每个外角都是 60°,则n边形对角线条数是_________18. 如果多边形的每个内角都比它相邻的外角的 4 倍多30°,则这个多边形的内角和____19. 一个多边形的对角线的条数等于它的边数的4倍,则这个多边形的边数是_________20. 八边形的对角线条数为____________,内角和为__________21. 正十四边形的内角和为___________,外角和为___________三、解决问题22.分别求出图(1),(2),(3)中x的值23.一个多边形的内角和与外角和相加是 1620°,求这个多边形的边数.24.一个多边形,除一个内角外,其余各内角之和等于 2020°,求这个内角的度数及多边形的边数.25.已知两个多边形内角和相加的结果为1440°,这两个多边形的比为 1:3(1)求两个多边形的边数分别是多少;(2)求两个多边形的对角线的和是多少拓展拔高题1.如图所示,从 O 点出发,沿直线前进 10 米后左转 36°,再沿直线前进 10 米,又向左转 36°,…,照这样走下去,他第一次回到出发地 A 点时,一共走的路程是()A.100 米 B.120 米C.130 米 D.140 米2.求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的值.3.解答下列问题(1)如图①,求证:∠A+∠B=∠C+∠D.(2)如图②,求证:∠A+∠B+∠C=∠BDC.(3)如图③,则:∠A+∠B+∠C+∠D+∠E=_________ (4)如图④,则:∠A+∠B+∠C+∠D+∠E+∠F= _________ (5)如图⑤,则:∠A+∠B+∠C+∠D+∠E= _________ (6)如图⑥,则:∠A+∠B+∠C+∠D+∠E+∠F= _________。
人教版八年级下册数学专题复习及练习(含解析):多边形及其内角和
专题11.3 多边形及其内角和1.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
2.多边形的内角:多边形相邻两边组成的角叫做它的内角。
3.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
4.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
5.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
6.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
7.多边形内角和公式:n边形的内角和等于(n-2)·180°8.多边形的外角和:多边形的外角和为360°。
9.多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分成(n-2)个三角形。
(2)n边形共有n(n-3)/2条对角线。
【例题1】已知正多边形的一个外角为36°,则该正多边形的边数为()A.12B.10C.8D.6【例题2】若一个多边形的内角和是540°,则该多边形的边数是.【例题3】如图的七边形ABCDEFG中,AB、DE的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,求∠BOD的度数。
一、选择题1.若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°2.一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°3.六边形的内角和是()A.540° B.720° C.900° D.1080°4.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B.540°C.630°D.720°5.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a>b B.a=b C.a<b D.b=a+180°6.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.6 B.7 C.8 D.97.内角和为540°的多边形是()A B C D8.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米9.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108° B.90° C.72° D.60°10.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或911.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360° B.540° C.720° D.900°12.若一个正n边形的每个内角为144°,则正n边形的所有对角线的条数是()A.7 B.10 C.35 D.70二、填空题13.如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=.14.一个凸多边形的内角和与外角和相等,它是______边形.15.若一个多边形内角和等于1260°,则该多边形边数是________.16.正八边形的一个内角的度数是_______度.17.如图,∠A+∠B+∠C+∠D=________度.三、解答题18.一个多边形的内角和是外角和的2倍,求这个多边形的边数为.19.求正十二边形每个内角的度数.专题11.3 多边形及其内角和1.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
(完整版)多边形及其内角和练习题(答案).doc
多边形及其内角和练习一、选择题1.从 n 边形的一个顶点出发共有对角线()A . ( n- 2) 条B. ( n- 3) 条C.( n- 1) 条D. ( n- 4) 条2.如图,图中凸四边形有()A . 3 个B . 5 个C. 2 个D. 6 个3.下列图形中,是正多边形的是( )A .三条边都相等的三角形B .四个角都是直角的四边形C.四边都相等的四边形 D .六条边都相等的六边形4.四边形的内角和等于()A . 180°B .270°C. 360°D . 150°5.一个多边形的内角和与外角和之和为2520°,这个多边形的边数为()A . 12B . 13 C.14 D . 156.当多边形的边数增加 1 时,它的内角和与外角和()A .都不变B .内角和增加 180°,外角和不变C.内角和增加 180°,外角和减少 180°D.都增加 180°7. ( 湖南郴州 ) 如图所示,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+ ∠2 的度数为 ( )A . 135°B .240°C. 270° D . 300°二、填空题8.一个多边形的每一个外角的度数等于与其邻角的度数的1,则这个多边形是边形. 39.从 n 边形的一个顶点出发可作________条对角线,从n 边形 n 个顶点出发可作________ 条对角线,除去重复作的对角线,则n 边形的对角线总数为________条.10.在有对角线的多边形中,边数最少的是________边形,它共有________条对角线.11.若一凸多边形的内角和等于它的外角和,则它的边数是________.12.一个多边形的内角和为5040°,则这个多边形是____边形,共有 _____条对角线.三、解答题13.已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的 2 倍,求此多边形的边数.14.如图所示,根据图中的对话回答问题.问题: ( 1) 王强是在求几边形的内角和?( 2) 少加的那个内角为多少度?15.如图,某学校一块草坪的形状是三角形( 设其为△ ABC ) .李俊同学从BC 边上的一点 D 出发,沿DC→ CA →AB → BD 的方向走了一圈回到点 D 处.问:李俊从出发到回到原处在途中身体转过的角度是多少?【答案与解析】一、选择题1.【答案】 B ;2.【答案】 A;【解析】四边形 ABOD、 ABCO、 ABCD3.【答案】 A ;【解析】正多边形:各边都相等,各角都相等4.【答案】 C;【解析】代入公式进行计算即可5.【答案】 C;【解析】由 180(n 2) 360 2520 ,解得:n146.【答案】 B;【解析】当多边形的边数增加1 时,内角和增加 180°,外角和不变7.【答案】 C;二、填空题8.【答案】八 .【解析】设每个外角为 x ,则x (180 x) 1,解得x 45 ,而多边形边数3n 3608 ..459. 【答案】 n- 3 n( n- 3) n(n 3) ;210.【答案】四, 2;11.【答案】 4;12.【答案】三十, 405;三、解答题13.【解析】解:设多边形的边数为n,根据题意,有:n= 2( n- 3) ,解得 n= 6,故这个多边形的边数为6.14.【解析】解: ( 1) 因为 1140°÷ 180°=61,故王强求的是九边形的内角和;3( 2) 少加的内角的度数为( 9- 2) · 180° - 1140°= 120°.15.【解析】解: 360° ( 提示;由任何多边形的外角和为 360°,可知李俊从出发到回到原处在途中身体转过的角度是 360°. )。
11.3多边形及其内角和练习题(含答案)
11.3多边形及其内角和练习题姓名:_______________班级:_______________考号:_______________一、选择题1、n边形所有对角线的条数有()A. B. C. D.2、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315° B.270°C.180° D.135°3、一个多边形的内角和与它的一个外角的和为,那么这个多边形的边数为()A.5 B.6C.7D.84、如图,四边形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分线相交于点O,则∠COD的度数是()A.80°B.90°C.100°D.110°5、一个四边形,截一刀后得到的新多边形的内角和将()A.增加180°B.减少180° C.不变 D.以上三种情况都有可能6、如果一个多边形的边数变为原来的2倍后,其内角和增加了1260°,则这个多边形的边数为()A.7 B.8 C.9 D.107、一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A. 5 B. 5或6 C. 5或7 D. 5或6或78、多边形的每个内角都等于150°,则从此多边形的一个顶点出发可引的对角线有A.8条B.9条C.10条D.11条9、一个多边形有14条对角线,那么这个多边形有()条边A.6B.7C.8D.910、一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为--()A.8 B.9 C.10 D.1211、如图,国旗上的五角星的五个角的度数是相同的,每一个角的度数都是()A.30° B.35° C.36° D.42°12、一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.813、一个正多边形每个外角都是30°,则这个多边形边数为()A.10 B.11 C.12 D.1314、正多边形的一个内角的度数为108°,则这个正多边形的边数为A. 4B. 5C. 6D. 715、多边形的边数增加1,则它的外角和()A.不变 B.增加180° C.增加360° D.无法确定二、填空题16、一块四边形绿化园地,四角都做有半径为R的圆形喷水池,则这四个喷水池占去的绿化园地的面积为.17、如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= _________ .18、如图,正方形ABCD中,截去∠B、∠D后,∠1、∠2、∠3、∠4的和为19、一个多边形的内角和与外角和之比为9:2,则从这个多边形的个顶点可以引_______条对角线。
多边形及其内角和练习题(含答案)
9.2 多边形的内角和与外角和练习一一、填空题1.若一凸多边形的内角和等于它的外角和,则它的边数是______.2.五边形的内角和等于______度.3.十边形的对角线有_____条.4.正十五边形的每一个内角等于_______度.5.内角和是1620°的多边形的边数是___.6.用正n边形拼地板,则n的值可能是_______. 二、选择题7.一个多边形的内角和是720°,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形8.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( ) A.5 B.6 C.7 D.89.若正n边形的一个外角为60°,则n的值是( ) A.4 B.5 C.6 D.810.下列角度中,不能成为多边形内角和的是( )A.600°B.720°C.900°D.1080°11.若一个多边形的内角和与外角和之和是1800°,则此多边形是( )A.八边形B.十边形C.十二边形D.十四边形12.用下列两种正多边形能拼地板的是( )A.正三角形和正八边形B.正方形和正八边形C.正六边形和正八边形D.正十边形和正八边形三、解答题13.一个多边形的每一个外角都等于45°,求这个多边形的内角和.14.已知一个多边形的内角和是1440°,求这个多边形的对角线的条数.15.一个多边形,除一个内角外,其余各内角之和等于1000°,求这个内角及多边形的边数.11.3 多边形及其内角和16.一个多边形中,每个内角都相等,并且每个外角等于它的相邻内角的2/3, 求这个多边形的边数及内角和.17.如图,一个六边形的六个内角都是120°,AB=1,BC=CD=3,DE=2,求该六边形的周长.19.若两个多边形的边数之比是1:2,内角和度数之比为1:3, 求这两个多边形的边数.20.如果多边形恰有四个内角是钝角,那么多边形的边数共有几种可能? 其中最多是几边形?最少是几边形?21.下列地板是由正方形、正六边形、正十二边形拼成的,试说明由这三种正多边形能拼地板的理由.22.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°, 求各内角的度数.23.一个多边形除了一个内角等于α,其余角的和等于2750°,求这个多边形的边数及α.21.下列地板是由正方形、正六边形、正十二边形拼成的,试说明由这三种正多边形能拼地板的理由.22.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°求各内角的度数.23.一个多边形除了一个内角等于α,其余角的和等于2750°,求这个多边形的边数及α.24.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地砖, 周围用正三角形和正方形的大理石地砖拼成,从里往外共12层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形.若中央正六边形地砖的边长是0.5米, 则第12层的外边界所围成的多边形的周长是多少1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80° B.90° C.170° D.20°2.一个多边形的内角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.内角和等于外角和2倍的多边形是() A.五边形B.六边形C.七边形D.八边形4.六边形的内角和等于_______度.5.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,南通)已知一个多边形的内角和为540°,则这个多边形为()A.三角形 B.四边形 C.五边形 D.六边形(2)(2005年,福建泉州)五边形的内角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A.1个 B.2个 C.3个 D.4个14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的内角和增加多少度?若将n边形的边数增加1倍,则它的内角和增加多少度?攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°点拨:正十边形每一个内角的度数为:(102)18010-⨯︒=144°,每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个内角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的内角和为360°,如果四个内角都是锐角或都是钝角,•则内角和小于360°或大于360°,与四边形的内角和为360°矛盾.•所以四个内角不可以都是锐角或都是钝角.若四个内角都是直角,则四个内角的和等于360°,与内角和定理相符,所以四个内角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n(n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的内角和.12.(1)C 点拨:设这个多边形的边数为n,依题意,得(n-2)×180°=540°,解得n=5,故选C.(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C 14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;…… n边形有(3)2n n-条对角线.(2)当n边形的边数增加1时,对角线增加(n-1)条.点拨:从n边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n个顶点共可引n(n-3)条,但这些对角线每一条都重复了一次,故n边形的对角线条数为(3)2n n-.15.180°,n·180°.是最短的路程.可用纸板做一个模型,沿AB剪开便可看出结论.。
多边形的内角和专题(含答案)
13.一个正多边形的每个外角为 ફ ,那么这个正多边形的内角和是________.
14.如图,
ꡰમ⺁
三、解答题 1 一个多边形的各内角都等于 1ꡰફ ,它是几边形?
1 一个多边形的内角和等于 1ꡰ ફ ,它是几边形?
17.如图,在四边形 ꡰમ⺁ 中, 与 મ 互补, ꡰમ、 ⺁મ 的平分线分别交 મ⺁、 ꡰ 于点 、 ܧ䁞䁞 ꡰ,交 ꡰમ
ꡰમ ⺁મ ફ 1ౘફ 1ౘફ ,
ꡰ 、⺁ 分别平分 ꡰમ、 ⺁મ,
1
1 ꡰ
⺁મ,
ꡰ
ܧ䁞䁞 ꡰ,
1 ꡰ
ꡰમ,
ꡰ
ꡰ,
1
ꡰ
1 ꡰ
⺁મ
1 ꡰ
ꡰમ
Ꟑફ ,
即 1 与 ꡰ 互余.
ꡰમ
1ફફ , 1 ꡰꡰ ,
મ ౘફ , ꡰ ꡰౘ ,
ꡰ
મꡰ ꡰౘ ,
ꡰ મ 1ౘફ ꡰౘ ౘફ ꡰ ,
મ ܧꡰ ꡰౘ ꡰ .
因为多边形的外角和为 ફ ,
所以这个多边形的边数为 ફ ફ ,
所以这个多边形是六边形.
16.【答案】解:设这个多边形是 边形,
根据多边形内角和公式,得 ꡰમ 1ౘફ 1ꡰ ફ , 解得 Ꟑ
所以这个多边形是九边形.
17.【答案】解: 1મ 1 与 ꡰ 互余.
四边形 ꡰમ⺁ 的内角和为 ફ , 与 મ 互补,
A. ꡰ1ફ
B. 11ફ
C. 1 ફ
D. 1ફફ
1
10.若一个正 边形的每个内角为1ꡰꡰ ,则这个正 边形的所有对角线的条数是 ( )
A.
B. 1ફ
C.
D. ફ
二、填空题
11.若一个多边形的内角和是外角和的两倍,则该多边形的边数是______.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形及其内角和知识点
知识点一:多边形及有关概念
1、多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.
2、多边形的分类: (1)多边形可分为凸多边形和凹多边形
知识点二:正多边形
各个角都相等、各个边都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
知识点三:多边形的对角线
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.
(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
(2)n边形共有条对角线。
知识点四:多边形的内角和公式:边形的内角和为.
知识点五:多边形的外角和公式:多边形的外角和等于360°.
知识点六:镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)。
这里的多边形可以形状相同,也可以形状不相同。
2、实现镶嵌的条件:拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边。
3、常见的一些正多边形的镶嵌问题:
(1)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°。
(2)只用一种正多边形镶嵌地面
只有正三角形、正方形、正六边形的地砖可以用。
注意:任意四边形的内角和都等于360°。
所以用一批形状、大小完全相同但不规则的四边形地砖也可以铺成无空隙的地板,用任意相同的三角形也可以铺满地面。
(3)用两种或两种以上的正多边形镶嵌地面
用两种或两种以上边长相等的正多边形组合成平面图形,关键是相关正多边形“交接处各角之和能否拼成一个周角”的问题。
例如,用正三角形与正方形、正三角形与正六边形、正三角形与正十二边形、正四边形与正八边形都可以作平面镶嵌。
一、选择题:
1.一个多边形的外角中,钝角的个数不可能是( )
个个个个
2.不能作为正多边形的内角的度数的是( )
° B.(1284
7
)°°°
3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( )
:1 :1 :2 :4
4.一个多边形的内角中,锐角的个数最多有( )
个个个个
5.四边形中,如果有一组对角都是直角,那么另一组对角可能( )
A.都是钝角;
B.都是锐角
C.是一个锐角、一个钝角
D.是一个锐角、一个直角
6.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )
A.十三边形
B.十二边形
C.十一边形
D.十边形
7.若一个多边形共有十四条对角线,则它是( )
A.六边形
B.七边形
C.八边形
D.九边形
8.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( )
°°°°
二、填空题:
1.多边形的内角中,最多有________个直角.
2.从n边形的一个顶点出发,最多可以引______条对角线.
3.如果一个多边形的每一个内角都相等,且每一个内角都大于135°, 那么这个多边形的边数最少为________.
4.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为_________.
5.每个内角都为144°的多边形为_________边形.
6.若一个多边形的内角和等于1080°,则这个多边形的边数是
7.一个多边形的每一个外角都等于24°,这个多边形的边数为 .
三、探索发现:
1.如图,一个六边形的六个内角都是1200,AB=1,CD=BC=3,DE=2,求该六边形的周长.
2.如图1、图2、图3中,点E、D分别是正ABC、正四边形ABCM、正五边形ABCMN中
以C点为顶点的一边延长线和另一边反向延长线上的点,且△ABE?与△BCD能互相重合,BD延长线交AE于点F.?
(1)求图1中,∠AFB的度数;?
(2)图2中,∠AFB的度数为_______,图3中,∠AFB的度数为_______;?。