第六章 向量空间

合集下载

第六章 平面向量及其应用 数学探究 教材分析与教学建议 (无棣一中 李春阳)

第六章 平面向量及其应用  数学探究  教材分析与教学建议 (无棣一中 李春阳)

必修第二册第六章《平面向量及其应用数学探究》教材分析与教学建议发言日期:2020年3月20日学校:山东省无棣第一中学******各位数学同仁,大家上午好!我发言的专题是必修二第六章《平面向量及其应用数学探究》部分,不当之处请批评指正!第一方面:本章在整册教材及高中数学中的地位与作用.向量是重要的数学概念和工具,具有深刻的数学内涵和丰富的物理背景,利用它能有效地解决许多问题,向量具有几何形式与代数形式的“双重性”,与代数、几何有着密切的关系.向量作为数学知识网络的一个交汇点,它是联系众多知识的媒介与桥梁,因此以向量为工具是高考命题的一个亮点.解此类题的关键是把那些以向量形式出现的条件“还其本来面目”,作为工具,向量在代数、几何、物理、三角、数列等领域的应用是高考命题的方向,常考常新.本章编写从整体来看,着重体现了“问题引导学习”的理念,从生活实例切身感悟,通过探究、推广等方式环环相扣地给出了一条观察事物(情景)、提出问题、分析问题、解决问题的线索,把学生的思维活动逐步引向深入,帮助学生在获得“四基”的过程中,逐步提高“四能”,发展数学实践能力及创新意识,培育科学精神,促进学生学会学习.从以下几个方面可以进一步体会教材编写的特点。

一、多角度展开向量知识的研究.本章是必修课程与选择性必修课程中几何与代数主题的开篇.本章编写更注重了内容的整体性,体现了内容之间的有机衔接。

突出了几何直观与代数运算之间的融合,及通过形与数的结合,感悟数学知识之间的关联,加强对数学整体性的理解。

另外,本章内容与物理联系紧密。

因而可从物理、几何、代数三个角度展开本章内容的研究,形成贯穿全章的三条主线.1.物理角度. 教科书注意从丰富的物理背景中引入向量内容。

例如,借助位移、速度、力等现实中的常见现象,让学生认识引进向量的必要性,并得出向量是既有大小又有方向的量,从而给出向量的概念。

又如,从位移的合成,力的合成引入向量加法的三角形法则与平行四边形法则。

向量代数与空间解析几何习题详解

向量代数与空间解析几何习题详解

坐标平面所围成; ( 3 ) z = 0, z = a(a > 0) , y = x,x 2 + y 2 = 1 及 x
z x 2 y 2 , z 8 x 2 y2 所围 .
0 在 第 一 卦 限 所 围 成 ;( 4 )
解:(1 )平面 3x 4 y 2z 12 0 与三个坐标平面围成一个在第一卦限的四面体;
,化为 y
1
3 cos t (0 t 2 ) ;
2
99
z 3 sin t
x 1 3 cos
( 2) y 3 sin
(0
z0
2 ).
x a cos 6、 求螺旋线 y a sin 在三个坐标面上的投影曲线的直角坐标方程 .
zb
x2 y2 解:
z0
a2
z y a sin
z x a cos

b;
b.
x0
y0
第六章 向量代数与空间解析几何
习 题 6—3
1、 已知 A(1,2,3) , B(2, 1,4) ,求线段 AB 的垂直平分面的方程 .
解 :设 M ( x, y, z) 是所求平面上任一点,据题意有 | MA | | MB |,
x 12 y 2 2 z 32
x 2 2 y 12 z 4 2,
化简得所求方程 2x 6 y 2 z 7 0 .这就是所求平面上的点的坐标所满足的方程
6、 设平面过原点及点 (1,1,1) ,且与平面 x y z 8 垂直,求此平面方程 .
解: 设所求平面为 Ax By Cz D 0, 由平面过点 (1,1,1) 知平 A B C D 0, 由
r 平面过原点知 D 0 , Q n {1, 1,1},
A B C 0 A C, B 0 ,所求平面方程为

空间向量与立体几何(整章教案

空间向量与立体几何(整章教案

空间向量与立体几何第一章:空间向量基础1.1 向量的定义与表示介绍向量的概念,理解向量是有大小和方向的量。

学习如何用坐标表示空间中的向量,包括二维和三维空间中的向量。

1.2 向量的加法和数乘学习向量的加法运算,掌握三角形法则和平行四边形法则。

学习向量的数乘运算,理解数乘对向量大小和方向的影响。

1.3 向量的长度和方向学习向量的长度(模)的定义和计算方法。

学习向量的方向,理解余弦定理在向量夹角计算中的应用。

1.4 向量垂直与向量积学习向量垂直的概念,掌握向量垂直的判定方法。

学习向量积的定义和计算方法,理解向量积的几何意义。

第二章:立体几何基础2.1 平面和直线学习平面的定义和表示方法,掌握平面的基本性质。

学习直线的定义和表示方法,掌握直线的性质和判定方法。

2.2 点、线、面的位置关系学习点、线、面之间的位置关系,包括点在线上、点在面上、线在面上的判定。

学习线与线、线与面、面与面之间的位置关系。

2.3 空间角的计算学习空间角的定义和计算方法,包括二面角和平面角的计算。

学习空间角的性质和应用,理解空间角在立体几何中的重要性。

2.4 立体几何中的定理和公式学习立体几何中的重要定理和公式,如欧拉公式、施瓦茨公式等。

学会运用定理和公式解决立体几何问题。

后续章节待补充。

空间向量与立体几何第六章:空间向量的应用6.1 向量在几何中的应用学习利用向量解决几何问题,如计算线段长度、向量夹角、向量垂直等。

掌握向量在三角形和平面几何中的应用。

6.2 向量在物理中的应用引入物理中的向量概念,如速度、加速度、力等。

学习利用向量解决物理问题,如计算物体的运动轨迹、速度变化等。

6.3 向量在坐标变换中的应用学习坐标变换的基本概念,如平移、旋转等。

掌握利用向量进行坐标变换的方法和应用。

第七章:立体几何中的特殊形状7.1 柱体和锥体学习柱体和锥体的定义和性质,包括圆柱、圆锥、棱柱、棱锥等。

掌握计算柱体和锥体的体积、表面积等方法。

7.2 球体学习球体的定义和性质,掌握球体的方程和参数。

教程资料:第六章 向量空间

教程资料:第六章  向量空间
双射(或称一一对应,bijection) .
例 8 在例 1 ----例 6 中,
例 1 M 是全体整数的集合,N 是全体偶数
的集满合射,的定有义:例 1,(2n,)4=, 26,n ,当n n =M1. 时的例 3 ;
单例射2的有M:是例数1域,P3 上,全6 ;体 n 级矩阵的集合,
定义双射的有1:(A例) =1|,A6| .,A M .
全体 n 级矩定阵义的集合到自身的一个映射.
对于集合 X 到 Y 的任1 (A一)映= 射| A| ,,显A 然M有. 这1是YM=到 1PX的= 一 .个映射.
2) 运算规律例 3 M 是数域 P 上全体 n 级矩阵的
映射的乘定法义满足结合律. 设 、 、 分别是
集合 A 到 B,B 到 C,C2 (到a) =D,aE则,a P . E 是 n级(单 )位=矩(阵 ), 这是 P 到 M 的一个映
证毕
注意: 映射的乘法不满足交换律,例如
设 f (x) = sin x , g (x) = x + 1 , 则 g ( f (x) ) = sin x + 1 ; f ( g (x) ) = sin (x + 1) .
故 gf fg.
5. 满射、单射、双射
定义4 设 是集合 X 到 Y 的一个映射 , 如果:
(a) = (a)
则称它们相等,记为 = .
4. 映射的乘积 1) 定义 定义3 设 、 分别是集合 A 到 B 和 B 到 C 的两个映射,乘积 定义为
( ) (a) = ( (a) ) , a A , 即相继施行 和 的结果, 是 A 到 C 的一个
映射.
例如,前面 例 2 和例 3 中映射的乘积 12 就是把每个 n 级例矩阵2 AM映是到数数域量矩P 上阵全| A体|En,级它矩是阵的

《线性代数》教案

《线性代数》教案

《线性代数》教案一、前言1. 教学目标(1)理解线性代数的基本概念和原理;(2)掌握线性代数的基本运算方法和技巧;(3)能够应用线性代数解决实际问题。

2. 教学内容(1)线性方程组;(2)矩阵及其运算;(3)线性空间和线性变换;(4)特征值和特征向量;(5)二次型。

二、第一章:线性方程组1. 教学目标(1)理解线性方程组的定义和性质;(2)掌握线性方程组的求解方法;(3)能够应用线性方程组解决实际问题。

2. 教学内容(1)线性方程组的定义和性质;(2)线性方程组的求解方法:高斯消元法、克莱姆法则;(3)线性方程组的应用:线性规划、电路方程等。

三、第二章:矩阵及其运算1. 教学目标(1)理解矩阵的定义和性质;(2)掌握矩阵的运算方法;(3)能够应用矩阵解决实际问题。

2. 教学内容(1)矩阵的定义和性质;(2)矩阵的运算:加法、数乘、乘法;(3)矩阵的逆矩阵及其求法;(4)矩阵的应用:线性方程组、线性变换等。

四、第三章:线性空间和线性变换1. 教学目标(1)理解线性空间和线性变换的定义和性质;(2)掌握线性变换的表示方法;(3)能够应用线性变换解决实际问题。

2. 教学内容(1)线性空间的定义和性质;(2)线性变换的定义和性质;(3)线性变换的表示方法:矩阵表示、坐标表示;(4)线性变换的应用:图像处理、信号处理等。

五、第四章:特征值和特征向量1. 教学目标(1)理解特征值和特征向量的定义和性质;(2)掌握特征值和特征向量的求法;(3)能够应用特征值和特征向量解决实际问题。

2. 教学内容(1)特征值和特征向量的定义和性质;(2)特征值和特征向量的求法:幂法、矩阵对角化;(3)特征值和特征向量的应用:线性变换、振动系统等。

六、第五章:二次型1. 教学目标(1)理解二次型的定义和性质;(2)掌握二次型的标准形和规范形;(3)能够应用二次型解决实际问题。

2. 教学内容(1)二次型的定义和性质;(2)二次型的标准形和规范形:配方法、矩阵的对角化;(3)二次型的应用:最小二乘法、优化问题等。

第六章 线性变换

第六章 线性变换

ξ = x1α 1 + x 2α 2 + ⋯ + x nα n
σ (ξ )仍是 的一个向量,设 仍是V的一个向量 的一个向量,
过标坐标来 刻画
σ (ξ ) = y1α 1 + y2α 2 + ⋯ + ynα n
σσ
−1
= σσ
−1
=t
§6.3 线性变换和矩阵
教学目标:渗透现代代数学同构、 教学目标:渗透现代代数学同构、代数表示论的思 和化归的数学思想方法, 想,和化归的数学思想方法,让学生了解 向量空间的线性变换关于基的矩阵之间的 关系,理解矩阵相似这一重要概念, 关系,理解矩阵相似这一重要概念,掌握 线性变换关于基的矩阵和线性变换作用下 的向量关于基的坐标的计算方法。 的向量关于基的坐标的计算方法。 重 线性变换关于基的矩阵之间的关系, 点:线性变换关于基的矩阵之间的关系,矩阵 相似概念, 相似概念,线性变换关于基的矩阵和线性 变换作用下的向量关于基的坐标的计算。 变换作用下的向量关于基的坐标的计算。 线性变换关于基的矩阵之间的关系, 点:线性变换关于基的矩阵之间的关系,矩阵 相似概念。 相似概念。
证明:显然 σ是R 2 到R 3 的一个映射。
σ (aξ + bη ) = aσ (ξ ) + bσ (η ) ∵由σ (aξ + bη ) = σ (aξ ) + σ (bη ) = aσ (ξ ) + bσ (η )
∴ σ是R 2 到R 3 的一个线一个线性
又 ∀a, b ∈ R, ∀ξ = (x 1, x 2 ),η = ( y1 , y 2 ) ∈ R ,
从而一个线性变换的任何非负整数幂都有意义
设f ( x) = a 0 + a1 x + ... + a n x ,

新课标2023版高考数学一轮总复习第6章立体几何第5节空间向量及其运算课件

新课标2023版高考数学一轮总复习第6章立体几何第5节空间向量及其运算课件

2
解析:|E→F|2=
→ EF
2=(E→C+C→D+D→F)2
=E→C2
+C→D2+D→F2+
→→ 2(EC·CD
+E→C·D→F+C→D·D→F
)=12+22+12+2(1×2×cos
120°+0+
2×1×cos 120°)=2,所以|E→F|= 2,所以 EF 的长为 2.
02
关键能力·研析考点强“四翼”
B 解析:M→N=O→N-O→M=12(O→B+O→C)-23O→A=-23a+12b+12c.
2.在正方体 ABCD-A1B1C1D1 中,点 E 为上底面 A1C1 的中心.若 A→E=A→A1+xA→B+yA→D,则 x,y 的值分别为( )
A.1,1
B.1,12
向量的数量积运算有两条途径,一是根据数量积的定义,利 用模与夹角直接计算;二是利用坐标运算.
考向 2 空间数量积的应用 如图,已知平行六面体 ABCD-A1B1C1D1 中,底面 ABCD
是边长为 1 的正方形,AA1=2,∠A1AB=∠A1AD=120°. (1)求线段 AC1 的长; (2)求异面直线 AC1 与 A1D 所成角的余弦值; (3)求证:AA1⊥BD.
空间向量基本定理 空间向量 p,存在唯一的有序实数组(x,y,z),
使得 p=xa+yb+zc
设 O,A,B,C 是不共面的四点,则对平面 ABC
推论
内任一点 P,都存在唯一的三个有序实数 x,y, z,使O→P=xO→A+yO→B+zO→C,且 x+y+z=1
空间向量基本定理的 3 点注意 (1)空间任意三个不共面的向量都可构成空间的一个基底. (2)由于零与任意一个非零向量共线,与任意两个非零向量共面, 故零不能作为基向量. (3)基底选定后,空间的所有向量均可由基底唯一表示.

《高等代数》考试大纲

《高等代数》考试大纲

《高等代数》考试大纲(适用专业:数学与应用数学、应用统计学)第一章基本概念一.主要内容1、集合子集集的相等集合的交与并及其运算律笛卡儿积2、映射映射满射单射双射映射的相等映射的合成可逆映射映射可逆的充要条件3、数学归纳法自然数的最小数原理第一数学归纳法第二数学归纳法4、整数的一些整除性质5、数环和数域二. 考试要求(一)掌握1、集合的交与并及其运算律2、映射满射单射双射映射的相等映射的合成3、数环和数域的定义及性质4、数学归纳法的运用(二)理解1、集合的交与并及其运算律2、可逆映射映射可逆的充要条件3、数环和数域的判别(三)了解自然数的最小数原理第一数学归纳法、第二数学归纳法的证明整数的一些整除性质第二章多项式一. 主要内容1、一元多项式的定义和运算2、多项式的整除性整除的基本性质带余除法定理3、多项式的最大公因式最大公因式概念、性质辗转相除法多项式互素概念、性质4、多项式的唯一因式分解定理不可约多项式概念唯一因式分解定理典型分解式5、多项式的重因式多项式的重因式概念多项式有重因式的充要条件6、多项式函数与多项式的根多项式函数的概念余式定理综合除法多项式的根的概念根与一次因式的关系多项式根的个数7、复数域和实数域上多项式的因式分解(代数基本定理不证明)8、有理数域上多项式的可约性及有理根本原多项式的定义Gauss引理整系数多项式在有理数域上的可约性问题Eisenstein判别法有理数域上多顶式的有理根9、多元多项式多元多项式的概念字典排列法多元多项式的和与积的次数10、对称多项式对称多项式的概念初等对称多项式对称多项式基本定理二. 考试要求(一)掌握1、一元多项式的定义和运算2、整除的基本性质带余除法定理3、最大公因式概念、性质辗转相除法多项式互素概念、性质4、唯一因式分解定理典型分解式5、多项式的重因式概念多项式有重因式的充要条件6、余式定理综合除法多项式的根的概念7、复数域和实数域上多项式的因式分解有理数域上多顶式的有理根(二)理解1、不可约多项式概念2、多项式的重因式概念3、多项式函数与多项式的根4、多项式函数的概念5、本原多项式的定义 Gauss引理6、整系数多项式在有理数域上的可约性问题Eisenstein判别法(三)了解1、对称多项式的概念2、多元多项式的概念3、多元多项式的概念字典排列法初等对称多项式对称多项式基本定理三. 说明本章主要介绍数域上一元多项式的概念及其运算、整除性、因式分解和有理系数多项式有理根的求法,简单介绍了多元多项式及对称多项式。

第六章向量空间

第六章向量空间

第六章 向量空间一 综述向量空间是高等代数最基本的概念之一,它用公理化方法首次引进了一个代数系,而这种公理化方法在高等代数以后各章以及在近世代数中将屡次遇到,它是近代数学研究的一个重要方法.本书以后各章如线性变换、欧几里德空间等概念都是直接建立在向量空间定义的基础上的.因此本章内容又是以后各章学习的基础. 二 教学目的使学生在集合、映射概念的基础上,理解并掌握向量空间的定义、性质和构造,并培养学生用公理化方法研究代数系的能力. 三 重点、难点教材重点:向量空间的定义、性质 教学难点:向量空间的定义6.1 定义和例子一 教学思考向量空间的定义是本章的重点和难点,是学生首次接触的一个用公理化方法引进的代数系.这一节的教学目的,不仅使学生正确理解和掌握向量空间的概念,而且应该使学生初步了解以集合论为基础运用公理化方法从具体的代数系抽象出一般的代数系的方法和意义,对此要心中有数,以便在教学中把传授知识与培养能力结合起来. 二 内容和要求1.内容:定义、例子及简单性质2.要求:掌握向量空间的概念及其简单性质,初步了解公理化的思想方法. 三 教学过程1. 引例 三维几何空间的实质及更多的类似结构的代数对象(略). 2. 定义及例子定义 1 令F 是一个数域,F 中的元素用小写拉丁字母 ,,b a 表示;令V 是一个非空集合,V 中元素用小写希腊字母 ,,,γβα表示.我们把V 中的元素叫做向量,F 中的元素叫做纯量.若下列条件满足,就称V 是F 上的一个向量空间.1)在V 中定义了一个叫加法,对V 中任意两个向量βα,都有V 中唯一确定的向量与它们对应,这个向量叫做α与β的和,记为βα+.2)有一个纯量乘法,对于F 中的每一个数a 和V 中每一个向量α,有V 中唯一确定的向量与它们对应,这个向量叫做a 与α的积,记为αa .3)向量的加法和纯量乘法满足下列算律:F b a V ∈∈∀,;,,γβα有 (1)αββα+=+; (2))()(γβαγβα++=++;(3)在V 中存在一个向量叫零向量,积作ο;它满足对V ∈∀α 有ααο=+; (4)对V ∈∀α,V ∈'∃α使得οαα=+';这样的α'叫做α的负向量;(负向量的定义) (5)βαβαa a a +=+)(; (6)αααb a b a +=+)(; (7))()(ααb a ab =; (8)αα=1. 3. 向量空间的简单性质1)由于向量的加法满足结合律,所以任意n 个向量相加有唯一确定的含义且可写为不加括号的和的形式;再者由于加法满足结合律和交换律,所以在求任意n 个向量的和时可以任意交换被加项的次序.2)命题6.1.1(零向量、负向量的唯一性)在一个向量空间V 中,零向量是唯一的;对V ∈∀α,α的负向量是由α唯一确定的.(同一法,略) 3)命题6.1.2 对V ∈∀α,F a ∈∀有οα=0,οο=a ; αααa a a -=-=-)()(; 0=⇒=a a οα或οα=.4. 介绍一种写法-——(向量矩阵的记法)设V n ∈ααα,,,21 ,把它们排成一行写成一个以向量为元素的n ⨯1矩阵(n ααα,,,21 ),设)()(F M a A m n m n ij ⨯⨯∈=;定义(n ααα,,,21 )),,,(21m A βββ =,其中)1(,1m j a ni i ij j ≤≤=∑=αβ.即按照数域F 上矩阵的乘法定义(n ααα,,,21 )右乘以A (这里约定对V ∈∀α,F a ∈∀有a a αα=).并且设)(F M A m n ⨯∈,)(F M B P m ⨯∈,由向量与纯量乘法所满足的算律有:(n ααα,,,21 )B A AB n )),,,(()(21ααα = ,即结合律成立.6.2 子空间一 教学思考1.向量空间一章主要讨论向量空间的运算、性质和结构,一般是通过向量空间自身(基、维数等)或其子结构(子空间)来讨论的,这正是代数学的基本方法.因而本节的概念(子空间)和结论在理论上与方法上是重要的.2.由于本章与以后内容的(抽象)特点,需重点培养学生逻辑论证能力,除了在教学中经常结合问题讲解分析解决问题的一般思想方法外,还需对以后教学有重要影响的几类具体问题的论证思路作出明确的交代.本章主要是“子空间的判定”.3.内容作如下调整,即先定义子空间,再介绍为何称为子空间,然后介绍子空间的判定和运算. 二 内容要求1.内容:子空间的定义、子空间的交与和.2.要求:理解和掌握向量空间的子空间的概念和判定方法、子空间的交与和的概念.三 教学过程1.子空间的概念及判定 (1)定义定义1 设V 是数域F 上的向量空间,W 是V 的非空子集,若对V ∈∀βα,都有W ∈+βα,则称W 对V 的加法封闭.若对F a V ∈∀∈∀,α都有W a ∈α,则称W 对纯量乘法封闭.定义2 令W 是数域F 上的向量空间V 的一个非空子集,若W 对V 的加法和纯量乘法封闭,则称W 是V 的一个子空间.TH6.2.1设W 是数域F 上的向量空间V 的一个非空子集,若W 对V 的加法和纯量乘法封闭,则W 本身也作成F 上一个向量空间.(2)子空间的判定TH6.2.2向量空间V 的一个非空子集W 是V 的一个子空间的充要条件是对W F b a ∈∀∈∀βα,,,都有W b a ∈+βα.2.子空间的交与和定义3 设21,W W 都是V 的子空间,则21W W 称为两个子空间的交. 命题 21W W 也是V 的子空间.定义 4 设21,W W 都是V 的子空间,由所有能表示为),(221121W W ∈∈+αααα的向量组成的集合成为1W 与2W 的和,记为21W W +;即21W W +={}221121,|W W ∈∈+αααα. 命题 21W W +也是V 的子空间.6.3 向量的线性相关性一 教学思考1.向量的线性相关性在研究向量空间的结构时极为重要,并且学生在学习时感到困难的多是由于逻辑思维混乱以及推理不严谨造成的.2.本节重要的在于讲清诸概念,理清它们之间的关系,介绍一般方法和特殊方法,补充一些容易混淆的问题及一些错误做法或判断. 二 内容要求内容:向量的线性相关性定义、性质;替换定理;极大无关组.要求:正确理解和掌握向量组的线性相关性的概念及性质,掌握判断向量组线性关系的一般方法和特殊方法. 三.教学过程1.线性相关与线性无关(1)线性组合、线性表示及其性质定义 1 设r ααα,,,21 是向量空间V 的r 个向量,r a a a ,,,21 是数域F 中任意r 个数,我们把和r r a a a ααα ++2211叫做向量r ααα,,,21 的一个线性组合.定义 2 若V 中向量α可以表示成r ααα,,,21 的线性组合,即∃F a a a r ∈,,,21 使得r r a a a αααα ++=2211,则称α可以由r ααα,,,21 线性表示.(例略)性质 命题6.3.1向量组r ααα,,,21 中每一向量都可以由这一组向量线性表示.命题6.3.2若向量γ可以由r βββ,,,21 线性表示,而每个i β可由s ααα,,,21 线性表示,则γ可以由s ααα,,,21 线性表示.(2)线性相关、线性无关及有关性质定义3 设r ααα,,,21 是向量空间V 的r 个向量,若存在数域F 中r 个不全为0的数ra a a ,,,21 使得οααα=++r r a a a 2211,则称r ααα,,,21 线性相关,否则称r ααα,,,21 线性无关. 例1 若r ααα,,,21 中有一个零向量,则r ααα,,,21 一定线性相关. 例2 判断3F 中向量)9,7,1(),0,1,2(),3,2,1(321-==-=ααα是否线性相关 例3 在][x F 中对任意非负整数n ,证明nx x x ,,,,12线性无关.(解略)性质命题 6.3.3 若向量组{r ααα,,,21 }线性无关,则它的任一部分向量组也线性无关;等价地:若{r ααα,,,21 }有一部分组线性相关,则整个向量组{r ααα,,,21 }也线性相关.(证略)命题 6.3.4 设{r ααα,,,21 }线性无关,而{βααα,,,,21r }线性相关,则β一定可以由r ααα,,,21 线性表示,且表示法唯一.命题6.3.5 向量r ααα,,,21 (2≥r )线性相关的充要条件是其中某个向量是其余向量的线性组合.(证略)2.向量组的等价、替换定理定义 4 设{}r ααα,,,21 和{}s βββ,,,21 是V 中的两个向量组,若每个),2,1(r i i =α都可以由s βββ,,,21 线性表示,而每个),2,1(s j j =β也可以由r ααα,,,21 线性表示,则称这两个向量组等价.定理6.3.6(替换定理)设向量组{}r ααα,,,21 (1)线性无关,且每个),2,1(r i i =α都可以由{}s βββ,,,21 (2)线性表示.则A )s r ≤;B )必要时对(2)中向量重新编号,使得用r ααα,,,21 替换r βββ,,,21 后得向量组{}s r r ββααα,,,,,,121 +(3)与(2)等价.推论6.3.7两个等价的线性无关向量组含有相同个数的向量. 3.极大无关组(讨论一个非零向量组的一种部分组)定义 5 向量组{r i i i ααα,,,21 }是向量组{}n ααα,,,21 的一个部分组(n r ≤),若满足:1)ri i i ααα,,,21线性无关;2)每个),,1(n j j =α都可由ri i i ααα,,,21线性表示.则称rii i ααα,,,21是向量组{}n ααα,,,21 的一个极大线性无关部分组(简称极大无关组). 极大无关组的求法:1)一般方法——设给定{}n ααα,,,21 ,求其一个极大无关组.先从1α考虑,若οα≠1,保留;考虑21,αα看其是否线性无关.无关,保留;相关舍去2α,考虑31,αα看其是否线性无关.依次类推直至n α,便得.(由于考虑次序不同可得不同的极大无关组)例4 求向量组{}32,2,,12+++x x x x 的一个极大无关组.(解略)2)特殊方法——对n F 中向量组{}n ααα,,,21 ,求极大无关组. 首先:可以证明“命题”:“设)(F M m n ⨯的矩阵A 经过行的初等变换得到)(F M m n ⨯的矩阵B ,则A 与B 的列向量有相同的线性关系.”(证略)这样可得:A )求nm F ∈ααα,,,21 的线性关系,可以以m ααα,,,21 列作矩阵A ,通过对A 作行初等变换化为标准形B ,由B 的列向量的线性关系可得A 的列向量的线性关系.进而B )用上述方法可求n F 中向量组{}n ααα,,,21 的极大无关组. 例5 求3R 中向量组)6,1,5(),4,0,3(),3,1,2(),1,2,1(4321====αααα的一个极大无关组. 解:以4321,,,αααα为列作矩阵B A =⎪⎪⎪⎭⎫⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛=210010101001643110125321.设B 的列向量为4321,,,ββββ,这样4321,,,αααα与4321,,,ββββ有相同的线性关系.容易看出321,,βββ线性无关,且=4β3212βββ+-;因此321,,ααα线性无关且=4α3212ααα+-.于是321,,ααα是4321,,,αααα的一个极大无关组.6.4 基与维数一 教学思考1.向量空间的结构中基起着重要作用,那么基概念的引入及作用为重点.2.从内容上本节在于给出了基与维数的概念后,解决基的存在性、个数及求法,要注意方法的总结归纳,特别是生成子空间.3.从定义上维数依赖于基,即要求一个向量空间的维数须求一个基;但反过来从结果上看,若已知维数n 求基的话,即求一组n 个线性无关的向量.4.本节及以后主要讨论有限维向量空间,有所谓的维数公式,其反映有限维向量空间的两个子空间与它们的和与交空间的维数之间的关系.在证明中,从“最小”的子空间的基出发逐步扩充为所出现的子空间的基的方法是重要的.5.基的存在性、个数、求法(生成子空间的基的求法)、余子空间等方法,注意总结归纳. 二 内容要求内容:向量空间的基与维数,有限维向量空间的维数公式,余子空间要求:正确理解和掌握向量空间的基与维数的概念,余子空间的定义,了解基在向量空间的结构中的重要作用,掌握求基、余子空间的一般方法和特殊方法. 三 教学过程1.引言我们知道当{}ο≠V 时,V 有无穷多向量,那么它们之间的结构如何?具体地,我们能否用V 中有限个向量表示所有向量.下面讨论这个问题.2.一类特殊子空间——由一组向量生成的子空间定义1设V r ∈ααα,,,21 ,那么由r ααα,,,21 的线性组合组成的集合{}F a a a a W i r r ∈+++=|2211ααα 称为由这一组向量r ααα,,,21 生成的子空间.记为L (r ααα,,,21 ),其中r ααα,,,21 叫做生成元.例1 n F 中)1,,0,0(,),0,,,0,1(1 ==n εε,则nn F L =),,(1εε . 例2 ][x F 中n n x x ===+121,,,1ααα ,则][),,,1(x F x x L n n= .关于生成子空间有:定理 6.4.1设V n ∈ααα,,,21 ,且不全为零向量,r i i i ααα,,,21 为其一个极大无关组,则L (n ααα,,,21 )=L (r i i i ααα,,,21 ).3.基与维数1)定义2 设V n ∈ααα,,,21 ,若1)n ααα,,,21 线性无关;2)V ∈∀α都可由n ααα,,,21 线性表示.则称n ααα,,,21 为V 的一个基.定义 3 一个向量空间V 的一个基所含向量的个数叫做V 的维数;记为V dim .规定零空间的维数为0.2)定理定理6.4.2(基的作用)设n ααα,,,21 为V 的一个基,则V ∈∀α都可唯一地由n ααα,,,21 线性表示.定理6.4.3n 维向量空间V 任意多于n 个向量的向量组一定线性相关.定理 6.4.4设n V =dim ,V r ∈ααα,,,21 线性无关(易知n r ≤),则总可以添加r n -个向量n r r ααα,,,21 ++,使得n ααα,,,21 作为V 的一个基.特别V 的任意n 个线性无关向量都可以取作基.例3 将)1,2,3,1(),1,0,2,1(21-==αα扩充为4R 的一个基.解:(法一)思想方法:由定理的证明过程,取4R 的一个基(如标准基4321,,,εεεε),然后用21,αα代替其中某两个如21,εε,使得21,αα,43,εε线性无关;而代替哪两个,可用逐步添加法使添在21,αα上后线性无关.(法二)思想方法:可以从21,αα出发,利用21,αα为列再添上两个作成一个4阶方阵A ,使得0≠A ,如⎪⎪⎪⎪⎪⎭⎫⎝⎛-1011012000320011,取)1,0,0,0(),0,1,0,0(23==αα,则4321,,,αααα为4R 的一个基. 定理6.4.5设21,W W 是F 上向量空间V 的两个有限维子空间,则21W W +也是V 的一个有限维子空间,且:)dim (dim dim )dim (212121W W W W W W ⋂-+=+.推论 对n 维向量空间V 的子空间21,W W 有:}{dim dim dim 2121ο=⋂⇔=+W W V W W .4.余子空间(1) 定义:设W 是V 的子空间,若存在V 的子空间W '满足:1)V W W ='+,2)){ο='⋂W W ;则称W '是W 的一个余子空间,且称V 是W 与W '的直和,记为W W V '⊕=. (2)定理定理 6.4.6设W W V '⊕=,则对V ∈∀α有α可以唯一地表示成ββα'+=,其中W W '∈'∈ββ,.定理 6.4.7n 维向量空间V 的任一子空间W 都有余子空间.若W '是W 的一个余子空间,则V W W dim dim dim ='+.(3)上述概念及结论可扩充至有限设t W W W ,,,21 是V 的子空间,若1)t W W V ++= 1;2){}),,2,1(,)(111t i W W W W W t i i i ==+++++⋂+-ο,则称V 是t W W W ,,,21 的直和,记为t W W V ⊕⊕= 1.且有类似于定理6、7的结论.6.5 坐标一 教学思考1.对n 维向量空间V 取定基后,任意向量引入了坐标的概念后,可将抽象的对象用具体的形式(nF中的向量)表示出来,为我们研究抽象的向量空间提供了方便,如由此可建立n V 与nF 的同构,所以本节概念及结论在空间的讨论中有重要的作用.2.注意坐标的概念依赖于基的选择,坐标变换依赖于相应的基变换;注意过渡矩阵的概念与性质以及结论,其是下节建立n V 与nF 的同构的基础.3.具体方法有:1)坐标的求法(定义法、坐标变换法);2)过渡矩阵的求法;3)过渡矩阵的性质及由此反映的矩阵的运算的意义. 二 内容要求1. 内容:坐标、基变换、坐标变换、过渡矩阵;2. 要求:掌握坐标的概念及其意义,基变换与坐标变换公式,过渡矩阵的概念和性质. 三 教学过程(一) 坐标的概念1.定义 设{}n n V αα,,,dim 1 =是V 的一个基,对V ∈∀ξ有n n a a ααξ++= 11,则称n 元有序数组),,(1n a a 为向量ξ关于基{}n αα,,1 的坐标;其中i a 叫做向量ξ关于基{}n αα,,1 的第i 个坐标.2.定理6.5.1设{}n n V αα,,,dim 1 =是V 的一个基,V ∈ηξ,关于此基的坐标分别为),,(1n x x 和),,(1n y y ,则ξηξk ,+关于此基的坐标分别为: ),,(11n n y x y x ++ ,),,(1n ax ax .(二)坐标变换 1.基变换设,dim n V ={}n αα,,1 和{}n ββ,,1 是V 的两个基,则每个j β),,2,1(n j =可由{}n αα,,1 线性表示,设⎪⎪⎩⎪⎪⎨⎧++=++=++=nn n n nn nn a a a a a a ααβααβααβ1112112211111 (1),以j β关于基{}n αα,,1 的坐标为列构成的矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a T212222111211称为由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵. (1)式可以写成矩阵等式),,(1n ββ =T n ),,(1αα (2);称(1)或(2)为(由基{}n αα,,1 到基{}n ββ,,1 的)基变换. 设V ∈ξ关于基{}n αα,,1 的坐标为),,(1n x x ,关于基{}n ββ,,1 的坐标为),,(1n y y ,则一方面=ξ⎪⎪⎪⎭⎫ ⎝⎛n n x x 11),,(αα (3);另一方面=ξ⎪⎪⎪⎭⎫⎝⎛n n y y 11),,(ββ (4);(2)代入(4)得=ξ⎪⎪⎪⎭⎫ ⎝⎛n n y y T 11)),,((αα=))(,,(11⎪⎪⎪⎭⎫⎝⎛n n y y T αα (5),比较(3)和(5)由坐标的唯一性得⎪⎪⎪⎭⎫ ⎝⎛n x x 1=⎪⎪⎪⎭⎫⎝⎛n y y T 1 (6);于是得 定理 6.5.2设,dim n V =T 由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵,则V ∈ξ关于基{}n αα,,1 的坐标与关于基{}n ββ,,1 的坐标为),,(1n y y 由等式(6)⎪⎪⎪⎭⎫ ⎝⎛n x x 1=⎪⎪⎪⎭⎫⎝⎛n y y T 1联系着.3.过渡矩阵的性质 (1)基变换的传递性设,dim n V ={}n αα,,1 、{}n ββ,,1 、{}n γγ,,1 都是V 的基,且由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵为A ,基{}n ββ,,1 到基{}n γγ,,1 的过渡矩阵为B ,即),,(1n ββ =A n ),,(1αα 、),,(1n γγ =),,(1n ββ B ,则),,(1n γγ =A n ),,(1αα B ,即由基{}n αα,,1 到基{}n γγ,,1 的过渡矩阵为AB .(2)定理6.5.3设,dim n V =由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵为A ,那么A 是一个可逆矩阵.反过来,任意一个n 阶可逆矩阵A 都可以作为n 维向量空间中由一个基到另一个基的过渡矩阵.且若由基{}n αα,,1 到基{}n ββ,,1 的过渡矩阵为A ,则由基{}n ββ,,1 到基{}n αα,,1 的过渡矩阵为1-A .6.6 向量空间的同构一 教学思考1.向量空间的本质是一个带有加法和数乘的代数系,我们研究向量空间着眼点主要在于运算,至于元素是什么无关紧要.把具有某种关系的向量空间作为本质上没有区别的加以研究,从而取出其代表加以研究讨论以达到目的,本节正是解决这样一个问题.2.“同构”是这种关系的体现,在此关系下,同构的向量空间可以不加区别,因而维数就成了数域F 上有限维向量空间的唯一本质特征.3.注意“同构”映射的概念,向量空间同构的概念及各自的性质,以及有限维向量空间同构的判定. 二 内容要求1、内容:同构映射、向量空间同构的概念及各自的性质,有限维向量空间同构的判定.2、要求:理解向量空间同构的概念及性质,有限维向量空间同构的判定. 三 教学过程1.同构的概念和性质 (1)概念1)同构映射 设V 和W 是数域F 上两个向量空间,V 到W 的一个映射f 叫做一个同构映射; 若A )f 是V 到W 的一个双射;B )对)()()(,ηξηξηξf f f V +=+⇒∈∀;C )对)()(,,ξξξaf a f V F a =∈∀∈∀.(2)定理6.6.1数域F 上任一n 维向量空间V 都与nF 同构. (3)性质 1)同构映射的性质定理6.6.2设V 和W 是数域F 上两个向量空间, f 是V 到W 的一个同构映射,则: A);)(οο=f B)对ααα-=-∈∀)(,f V ;C))()()(1111n n n n f a f a a a f αααα++=++ ,其中V F a i i ∈∈α,; D))(,,1V n ∈αα 线性相关))((,),(1W f f n ∈⇔αα 线性相关; E) f 的逆映射1-f是W 到V 的一个同构映射.2)同构关系的性质(等价关系)A ) 反身性:V V ≅;B ) B )对称性:若W V ≅,则V W ≅;C) 传递性:若W V ≅,U W ≅,则U V ≅.(由双射性质及定义易证) 2.有限维向量空间同构的充要条件定理6.6.3数域F 上两个有限维维向量空间V 和W 有:W V ≅W V dim dim =⇔.6.7 矩阵的秩,齐次线性方程组的解空间一 教学思考1.矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构.2.注意:齐次线性方程组(含n 个未知量)的解的集合构成nF 的子空间,而非齐次线性方程组的解的集合非也.3.注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系. 二 内容要求1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间.2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法. 三 教学过程1.矩阵的秩的几何意义几个术语:设)(F M A n m ⨯∈,⎪⎪⎪⎭⎫⎝⎛=mn m n a a a a A 1111,A 的每一行看作nF 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的nF 的子空间),,(1m L αα 叫做矩阵A 的行空间.类似地,A 的每一列看作mF 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的mF 的子空间叫做矩阵A 的列空间.引理6.7.1设)(F M A n m ⨯∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间.定理6.7.2矩阵)(F M A n m ⨯∈的行空间的维数等于列空间的维数,等于这个矩阵的秩.定义 矩阵A 的行(列)向量组的极大无关组所含(行(列)空间的维数)向量的个数,叫做矩阵A 的秩.2.线性方程组的解的结构1)再证线性方程组有解的判定定理:“数域F 上线性方程组有解的充要条件是它的系数矩阵与增广矩阵的秩相同.”2)齐次线性方程组的解空间设⎪⎩⎪⎨⎧=++=++00111111n mn m n n x a x a x a x a(3)是数域F 上一个齐次线性方程组,令A 为其系数矩阵,则(3)可写为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001 n x x A (4)或ο=AX ;(3)的每一个解都可以看作n F 的一个向量,叫做(3)的一个解向量.令S 表示(3)的全体解向量构成的集合;首先:因S ∈ο,所以Φ≠S ;其次:F b a S ∈∀∈∀,,,ηξ,有οηξηξ=+=+bA aA b a A )(,即S b a ∈+ηξ.因此S 作成nF 的一个子空间,这个子空间叫做齐次线性方程组(3)的解空间.重新回顾解线性方程组的过程:设(3)的系数矩阵A 的秩为)(n r <,则A 可经过一系列(行)初等变换化为⎪⎪⎭⎫ ⎝⎛----r n r m r r m r n r r C I ,,,οο,与此相应的齐次线性方程组为:(5)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+++=+++++++0000001111111 n rn r rr r n n r r y c y c y y c y c y ,这里n y y ,,1 是n x x ,,1 的重新编号.(5)有r n -个自由未知量n r y y ,,1 +,依次让它们取)1,,0,0(,),0,,1,0(),0,,0,1( ,可得(5)的r n -个解向量:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=++++++100,,010,001122121111 rn n n rr r r rr r r c c c c c c ηηη.下面证其是(5)的解空间的一个基. 首先:n r ηη,,1 +线性无关.事实上设οηη=++++n n r r k k 11,由下面r n -个分量易得01===+n r k k .其次:设),,,(21n k k k 是(5)的任一解,代入(5)得:n rn r rr r nn r r nn r r k c k c k k c k c k k c k c k ---=---=---=++++++112112211111又有恒等式:nn r r k k k k ==++ 11此n 个等式即为n n r r n k k k k ηη++=⎪⎪⎪⎭⎫ ⎝⎛++ 111,即(5)的每个解向量都可以由n r ηη,,1 +线性表示,故{n r ηη,,1 +}为(5)的解空间的一个基.注意到(5)与(4)在未知量重新编号后同解,所以重新编排n r ηη,,1 +的次序可得(4)的解空间的一个基,从而解决了齐次线性方程组的解的构造问题.并且上述讨论也给出了求解空间的具体方法:即通过解方程组的允许变换得到等价组,在等价组中自由未知量是清楚的,给其一组线性无关值,便得等价组的一组解向量,其构成等价组的解空间的一个基,再调整解向量的次序便得.上述讨论得:定理 6.7.3数域F 上一个n 元齐次线性方程组的一切解作成nF 的一个子空间,称之为这个线性方程组的解空间.若所给方程组的系数矩阵的秩为r ,则解空间的维数为r n -.定义 一个齐次线性方程组的解空间的一个基,叫做这个方程组的一个基础解系.3)非齐次线性方程组的解的结构 设))((,11F M A b b x x A n m m n ⨯∈⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛ (6)是数域F 上一个n 元线性方程组.问题当(6)有无穷解时,解的结构如何?为此先引入:把(6)的常数项都换成0,便得一个齐次线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001 n x x A (7),齐次线性方程组(7)叫做方程组(6)的导出齐次线性方程组.定理6.7.4若(6)有解,则(6)的任一解都可以表示为(6)的一个固定解与(7)的一个解的和.。

高中数学必修二第六章平面向量及其应用专项训练题(带答案)

高中数学必修二第六章平面向量及其应用专项训练题(带答案)

高中数学必修二第六章平面向量及其应用专项训练题单选题1、定义空间两个向量的一种运算a⃑⊗b⃑⃑=|a⃑|⋅|b⃑⃑|sin⟨a⃑,b⃑⃑⟩,则关于空间向量上述运算的以下结论中恒成立的有()A.λ(a⃑⊗b⃑⃑)=(λa⃑)⊗b⃑⃑B.(a⃑⊗b⃑⃑)⊗c⃑=a⃑⊗(b⃑⃑⊗c⃑)C.(a⃑+b⃑⃑)⊗c⃑=(a⃑⊗c⃑)+(b⃑⃑⊗c⃑)D.若a⃑=(x1,y1),b⃑⃑=(x2,y2),则a⃑⊗b⃑⃑=|x1y2−x2y1|答案:D分析:A.按λ的正负分类讨论可得,B.由新定义的意义判断,C.可举反例说明进行判断,D.与平面向量的数量积进行联系,用数量积求出两向量夹角的余弦值,转化为正弦值,代入计算可判断.A.(λa⃑)⊗b⃑⃑=|λa⃑||b⃑⃑|sin<λa⃑,b⃑⃑>,λ>0时,<λa⃑,b⃑⃑>=<a⃑,b⃑⃑>,(λa⃑)⊗b⃑⃑=λ|a⃑||b⃑⃑|sin<a⃑,b⃑⃑>=λ(a⃑⊗b⃑⃑),λ=0时,λ(a⃑⊗b⃑⃑)=0,(λa⃑)⊗b⃑⃑=0,成立,λ<0时,<λa⃑,b⃑⃑>=π−<a⃑,b⃑⃑>,sin<λa⃑,b⃑⃑>=sin(π−<a⃑,b⃑⃑>)=sin<a⃑,b⃑⃑>(λa⃑)⊗b⃑⃑=−λ|a⃑||b⃑⃑|sin< a⃑,b⃑⃑>=−λ(a⃑⊗b⃑⃑),综上,A不恒成立;B.a⃑⊗b⃑⃑是一个实数,(a⃑⊗b⃑⃑)⊗c⃑无意义,B不成立;C.若a⃑=(0,1),b⃑⃑=(1,0),c⃑=(1,1),则a⃑+b⃑⃑=(1,1),<a⃑+b⃑⃑,c⃑>=0,(a⃑+b⃑⃑)⊗c⃑=|a⃑+b⃑⃑||c⃑|sin0=√2×√2×0=0,<a⃑,c⃑>=π4,<b⃑⃑,c⃑>=π4,(a⃑⊗c⃑)+(b⃑⃑⊗c⃑)=1×√2×sinπ4+1×√2×sinπ4=2,(a⃑+b⃑⃑)⊗c⃑≠(a⃑⊗c⃑)+(b⃑⃑⊗c⃑),C错误;D.若a⃑=(x1,y1),b⃑⃑=(x2,y2),则|a⃑|=√x12+y12,|b⃑⃑|=√x22+y22,cos <a ⃑,b ⃑⃑>=1212√x 12+y 12×√x 22+y 22,sin <a ⃑,b ⃑⃑>=√1−cos 2<a ⃑,b ⃑⃑>=√1−(x 1x 2+y 1y 2)2(x 12+y 12)(x 22+y 22)=1221√(x 1+y 1)(x 2+y 2), 所以a ⃑⊗b ⃑⃑=|a ⃑||b ⃑⃑|sin <a ⃑,b⃑⃑>=|x 1y 2−x 2y 1|,成立. 故选:D .小提示:本题考查向量的新定义运算,解题关键是理解新定义,并能运用新定义求解.解题方法一种方法是直接利用新定义的意义判断求解,另一种方法是把新定义与向量的数量积进行联系,把新定义中的sin <a ⃑,b ⃑⃑>用cos <a ⃑,b⃑⃑>,而余弦可由数量积进行计算. 2、若|AB⃑⃑⃑⃑⃑⃑|=5,|AC ⃑⃑⃑⃑⃑⃑|=8,则|BC ⃑⃑⃑⃑⃑⃑|的取值范围是( ) A .[3,8]B .(3,8)C .[3,13]D .(3,13)答案:C分析:利用向量模的三角不等式可求得|BC⃑⃑⃑⃑⃑⃑|的取值范围. 因为|BC⃑⃑⃑⃑⃑⃑|=|AC ⃑⃑⃑⃑⃑⃑−AB ⃑⃑⃑⃑⃑⃑|,所以,||AC ⃑⃑⃑⃑⃑⃑|−|AB ⃑⃑⃑⃑⃑⃑||≤|BC ⃑⃑⃑⃑⃑⃑|≤|AC ⃑⃑⃑⃑⃑⃑|+|AB ⃑⃑⃑⃑⃑⃑|,即3≤|BC ⃑⃑⃑⃑⃑⃑|≤13. 故选:C.3、已知非零平面向量a ⃗,b ⃑⃗,c ⃗,下列结论中正确的是( )(1)若a ⃗⋅c ⃗=b ⃑⃗⋅c ⃗,则a ⃗=b ⃑⃗;(2)若|a ⃗+b ⃑⃗|=|a ⃗|+|b ⃑⃗|,则a ⃗//b⃑⃗ (3)若|a ⃗+b ⃑⃗|=|a ⃗−b ⃑⃗|,则a ⃗⊥b ⃑⃗(4)若(a ⃗+b ⃑⃗)⋅(a ⃗−b ⃑⃗)=0,则a ⃗=b ⃑⃗或a ⃗=−b⃑⃗ A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(3)(4)答案:B解析:根据向量的数量积运算,以及向量模的计算公式,逐项判断,即可得出结果.已知非零平面向量a ⃗,b ⃑⃗,c ⃗,(1)若a ⃗⋅c ⃗=b ⃑⃗⋅c ⃗,则(a ⃗−b ⃑⃗)⋅c ⃗=0,所以a ⃗=b ⃑⃗或(a ⃗−b ⃑⃗)⊥c ⃗,即(1)错;(2)若|a ⃗+b ⃑⃗|=|a ⃗|+|b ⃑⃗|,则a ⃗与b ⃑⃗同向,所以a ⃗//b⃑⃗,即(2)正确;(3)若|a ⃗+b ⃑⃗|=|a ⃗−b ⃑⃗|,则|a ⃗|2+|b ⃑⃗|2+2a ⃗⋅b ⃑⃗=|a ⃗|2+|b ⃑⃗|2−2a ⃗⋅b ⃑⃗,所以2a ⃗⋅b ⃑⃗=0,则a ⃗⊥b⃑⃗;即(3)正确;(4)若(a ⃗+b ⃑⃗)⋅(a ⃗−b ⃑⃗)=0,则|a ⃗|2−|b ⃑⃗|2=0,所以|a ⃗|=|b⃑⃗|,不能得出向量共线,故(4)错; 故选:B.小提示:本题主要考查向量数量积的运算,考查向量有关的判定,属于基础题型.4、已知向量a ⃑,b ⃑⃑满足|a ⃑|=√3,|b ⃑⃑|=2,且a ⃑⊥(a ⃑−b ⃑⃑),则a ⃑与b⃑⃑的夹角为( ) A .30°B .60°C .120°D .150°答案:A分析:利用数量积的定义,即可求解.解:a ⃑⊥(a ⃑−b ⃑⃑),所以a ⃑⋅(a ⃑−b ⃑⃑)=0,即|a →|2−|a →||b →|cos <a →,b →>=0,解得cos <a →,b →>=√32,又因为向量夹角的范围为[0°,180°],则a ⃑与b ⃑⃑的夹角为30°,故选:A. 5、在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且(a +b )2−c 2=4,C =120°,则△ABC 的面积为( )A .√33B .2√33C .√3D .2√3 答案:C解析:利用余弦定理可求ab 的值,从而可求三角形的面积.因为C =120°,故c 2=a 2+b 2−2abcos120°=a 2+b 2+ab ,而(a +b )2−c 2=4,故c 2=a 2+b 2+2ab −4=a 2+b 2+ab ,故ab =4,故三角形的面积为12×ab ×sin120°=√34×4=√3,故选:C.6、△ABC 内角A,B,C 的对边分别为a,b,c ,已知b 2+c 2−a 2=bc ,则A =( )A .π6B .5π6C .π3D .2π3答案:C分析:利用余弦定理求出cosA ,再求出A 即可.∵b 2+c 2−a 2=bc ,∴cosA =b 2+c 2−a 22bc =bc 2bc =12,∵0<A <π,∴A =π3. 故选:C7、已知向量a ⃑=(−1,m ),b ⃑⃑=(m +1,2),且a ⃑⊥b⃑⃑,则m =( ) A .2B .−2C .1D .−1答案:C分析:由向量垂直的坐标表示计算.由题意得a ⃑⋅b⃑⃑=−m −1+2m =0,解得m =1 故选:C .8、已知直角三角形ABC 中,∠A =90°,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则PB⃑⃑⃑⃑⃑⃑⋅PC ⃑⃑⃑⃑⃑⃑的最大值为( )A .16+16√55B .16+8√55C .165D .565答案:D分析:建立如图所示的坐标系,根据PB ⃑⃑⃑⃑⃑⃑·PC⃑⃑⃑⃑⃑⃑=|PD ⃑⃑⃑⃑⃑⃑|2−5可求其最大值. 以A 为原点建系,B (0,2),C (4,0),BC:x 4+y 2=1,即x +2y −4=0,故圆的半径为r =√5 ∴圆A:x 2+y 2=165,设BC 中点为D (2,1),PB ⃑⃑⃑⃑⃑⃑·PC ⃑⃑⃑⃑⃑⃑=PD ⃑⃑⃑⃑⃑⃑2−14BC ⃑⃑⃑⃑⃑⃑2=|PD ⃑⃑⃑⃑⃑⃑|2−14×20=|PD ⃑⃑⃑⃑⃑⃑|2−5, |PD |max =|AD |+r =√5+√5=√5,∴(PB ⃑⃑⃑⃑⃑⃑·PC ⃑⃑⃑⃑⃑⃑)max =815−5=565, 故选:D.多选题9、下列说法正确的有( )A .若a ⃑//b ⃑⃑,b ⃑⃑//c ⃑,则a ⃑//c ⃑B .若a ⃑=b ⃑⃑,b ⃑⃑=c ⃑,则a ⃑=c ⃑C .若a ⃑//b ⃑⃑,则a ⃑与b⃑⃑的方向相同或相反D .若AB ⃑⃑⃑⃑⃑⃑、BC ⃑⃑⃑⃑⃑⃑共线,则A 、B 、C 三点共线 答案:BD分析:取b⃑⃑=0⃑⃑可判断AC 选项的正误;利用向量相等的定义可判断B 选项的正误;利用共线向量的定义可判断D 选项的正误.对于A 选项,若b ⃑⃑=0⃑⃑,a ⃑、c ⃑均为非零向量,则a ⃑//b ⃑⃑,b ⃑⃑//c ⃑成立,但a ⃑//c ⃑不一定成立,A 错;对于B 选项,若a ⃑=b ⃑⃑,b ⃑⃑=c ⃑,则a ⃑=c ⃑,B 对;对于C 选项,若b ⃑⃑=0⃑⃑,a ⃑≠0⃑⃑,则b⃑⃑的方向任意,C 错; 对于D 选项,若AB ⃑⃑⃑⃑⃑⃑、BC ⃑⃑⃑⃑⃑⃑共线且AB 、BC 共点B ,则A 、B 、C 三点共线,D 对.故选:BD.10、下列说法正确的是( )A .向量不能比较大小,但向量的模能比较大小B .|a ⃑|与|b ⃑⃑|是否相等与a ⃑与b⃑⃑的方向无关 C .若a ⃑//b ⃑⃑,b ⃑⃑//c ⃑,则a ⃑//c ⃑D .若向量AB ⃑⃑⃑⃑⃑⃑与向量CD⃑⃑⃑⃑⃑⃑是共线向量,则A ,B ,C ,D 四点在一条直线上 答案:AB分析:根据向量的定义以及向量模的定义可判断A ,B ;举反例b⃑⃑=0⃑⃑时可判断C ;由共线向量的定义可判断D ,进而可得正确选项.对于A :向量即有大小又有方向不能比较大小,向量的模可以比较大小,故选项A 正确;对于B :|a ⃑|与|b ⃑⃑|分别表示向量a ⃑与b ⃑⃑的大小,与a ⃑,b⃑⃑的方向无关,故选项B 正确; 对于C :当b ⃑⃑=0⃑⃑时,向量a ⃑与c ⃑可以是任意向量都满足a ⃑//b ⃑⃑,b ⃑⃑//c ⃑,故选项C 不正确;对于D :若向量AB⃑⃑⃑⃑⃑⃑与向量CD ⃑⃑⃑⃑⃑⃑是共线向量,表示AB ⃑⃑⃑⃑⃑⃑与CD ⃑⃑⃑⃑⃑⃑方向相同或相反,得不出A ,B ,C ,D 四点在一条直线上,故选项D 不正确;故选:AB.11、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2cosAsinB =b 2sinAcosB ,则△ABC 的形状为( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形答案:AC分析:根据正弦定理和二倍角公式进行求解.∵a 2cosAsinB =b 2sinAcosB∴由正弦定理得sin 2AcosAsinB =sin 2BsinAcosB ,∵sinAcosA ≠0∴sinAcosA =sinBcosB ,即sin2A =sin2B∴2A =2B 或2A +2B =π,即该三角形为等腰三角形或直角三角形.故选:AC.填空题12、已知a ⃗,b ⃑⃑是空间两个向量,若|a ⃗|=2,|b ⃑⃗|=2,|a ⃗−b ⃑⃗|=√7,则cos 〈a ⃗,b⃑⃑〉=________. 答案:18 分析:根据向量几何法的模长公式,可得向量数量积的值,根据向量夹角余弦值的公式,可得答案.由|a ⃑−b ⃑⃑|=√7,可知(a ⃑−b ⃑⃑)2=7,则|a ⃑|2−2a ⃑⋅b⃑⃑+|b ⃑⃑|2=7, ∵|a ⃑|=2,|b ⃑⃑|=2,∴a ⃑⋅b ⃑⃑=12,则cos⟨a ⃑⋅b ⃑⃑⟩=a ⃑⃑⋅b ⃑⃑|a ⃑⃑|⋅|b ⃑⃑|=18. 所以答案是:18. 13、如图,在矩形ABCD 中,AB =3,AD =2,DE =2EC ,M 为BC 的中点,若点P 在线段BD 上运动,则PE⃑⃑⃑⃑⃑⃗⋅PM ⃑⃑⃑⃑⃑⃑⃗的最小值为______.答案:2352 分析:构建直角坐标系,令AP⃑⃑⃑⃑⃑⃗=λAB ⃑⃑⃑⃑⃑⃗+(1−λ)AD ⃑⃑⃑⃑⃑⃗求P 的坐标,进而可得PE ⃑⃑⃑⃑⃑⃗,PM ⃑⃑⃑⃑⃑⃑⃗,由向量数量积的坐标表示及二次函数的性质求最值即可.以A 为坐标原点,AB ,AD 分别为x ,y 建系,则E(2,2),M(3,1),又AB ⃑⃑⃑⃑⃑⃗=(3,0),AD ⃑⃑⃑⃑⃑⃗=(0,2),令AP⃑⃑⃑⃑⃑⃗=λAB ⃑⃑⃑⃑⃑⃗+(1−λ)AD ⃑⃑⃑⃑⃑⃗=(3λ,2−2λ),0≤λ≤1, 故P(3λ,2−2λ),则PE⃑⃑⃑⃑⃑⃗=(2−3λ,2λ),PM ⃑⃑⃑⃑⃑⃑⃗=(3−3λ,2λ−1), PE⃑⃑⃑⃑⃑⃗⋅PM ⃑⃑⃑⃑⃑⃑⃗=(2−3λ)(3−3λ)+2λ(2λ−1) =13λ2−17λ+6, 所以λ=1726时,PE ⃑⃑⃑⃑⃑⃗⋅PM ⃑⃑⃑⃑⃑⃑⃗取最小值2352. 所以答案是:2352.14、海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得CD =45m ,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则AB 两点的距离为______m .答案:45√5分析:先将实际问题转化为解三角形的问题,再利用正、余弦定理求解。

线性代数_第六章

线性代数_第六章
a x1a1 + x2a2 + … + xnan
成立, 则称这组有序数x1, x2, …, xn 为元素a 在 基a1, a2, …, an下的坐标,记作(x1, x2, …, xn )T , 称
为坐标向量.
例4 求四维线性空间R2╳2中矩阵a在基{E11,
E12, E21, E22}下的坐标。
试求P[x]2中向量在这两个基下的坐标变换公式。
§6.3 欧氏空间
线性空间中,只定义了加法与数乘两种 运算;
在线性空间中引入度量的概念后,成为 欧几里德空间;
6.3.1 内积的概念与性质
定义1 设V是实数域R上的线性空间,若在V上定义了一个二元
实函数(a, b),它满足以下条件: 1)对称性 (a, b) (b, a) 2)齐次性 (ka, b) k(a, b) 3)可加性 (ab,g)(a, b)(a, g) 4)非负性 (a, a)≥0, 当且仅当a0时(a, a)0 其中, a,b,g为V中任意元素,则称此二元实函数(a, b)为元素a与 b的内积;定义了内积的线性空间称为内积空间.
例7 齐次线性方程组
AX=0 的全部解向量构成线性空间Rn的一个子 空间,称为(1)的解空间.
例8 设C[a,b]是闭区间[a,b]上所有连续实函 数组成的线性空间,P[x][a,b]是 [a,b]上所有的 实系数多项式集合;
则C[a,b]中的定义加法与数乘, P[x][a,b]构成 C[a,b]的一个子空间.
R, R2, Rn 都是有限维线性空间; P[x]是无限维线性空间;
例1 求齐次线性方程组的解空间N(A)的维数.
x1 x1
2x2 3x2
3x3 x4 10x3 5x4
0

第6章课后题

第6章课后题

第六章 向量空间 §6.1 定义和例子1.令F 是一个数域,在3F 里计算 (i )()()();1,1,0212,1,11,0,231-+--+-(ii )()().1,3,12,31,131,1,05-+⎪⎭⎫⎝⎛--2.证明:如果()()()()0,0,04,1,12,1,03,1,2=-++c b a ,那么a = b = c = 0.3.找出不全为零的三个有理数a ,b ,c (即a ,b ,c 中至少有一个不是0),使得()()()().0,0,06,2,54,0,32,2,1=-++c b a4.令ε1 =()0,0,1,ε2 =()0,1,0,ε3 =()1,0,0.证明,3R 中每一个向量α 可以唯一地表示为332211εεεαa a a ++=形式,这里R a a a ∈321,,.5.证明,在数域F 上向量空间V 里,以下算律成立: (i )a (βα-) = a α- a β;(ii) (a- b) α= a α- b α, 这里a ,b ∈ F ,α,β∈V .6.证明:数域F 上一个向量空间如果含有一个非零向量,那么它一定含有无限多个向量.7.证明,对于任意正整数n 和任意向量α,都有n α=α+…+α.8.证明,向量空间定义中条件3º,8)不能由其余条件推出. 9.验证本节最后的等式:(α1,…,αn )(AB ) =((α1,…,αn )A )B .§6.2 子空间1.判断R n 中下列子集哪些是子空间: (i){(a 1,0,…,0,a n )| a 1,a n ∈R }; (ii){(a 1 ,a 2 ,…,a n )|∑=ni 1a i =0};(iii){(a 1 ,a 2 ,…,a n )|∑=ni 1a i =1};(iv){(a 1 ,a 2 ,…,a n )| a i Z ∈,i = 1,…,n }.2.()F M n 表示数域F 上一切n 阶矩阵所组成的向量空间(参看6.1,例2)令S={ A ∈()F M n |A A =' }, T ={ A ∈()F M n |A A -=' }.证明,S 和T 都是 ()F M n 的子空间,并且M n (F) = S + T ,S ⋂ T={0}.3.设1W ,2W 是向量空间V 的子空间,证明:如果V 的一个子空间既包含1W 又包含2W ,那么它一定包1W +2W .在这个意义下,1W +2W 是V 的既含1W 又含2W 的最小子空间.4.设V 是一个向量空间,且V ≠{0}.证明:V 不可能表成它的两个真子空间的并集.5.设W ,1W ,2W 都是向量空间V 的子空间,其中1W ⊆2W 且W ⋂1W =W ⋂2W ,W +1W =W +2W .证明:=1W 2W .6.设1W ,2W 是数域F 上向量空间V 的两个子空间,α,β是V 的两个向量,其中α∈W 2,但α∉ 1W ,又β∉ 2W 证明:(i)对于任意k ∈F, β+k α∉2W ; (ii)至多有一个k ∈F ,使得β+k α∈1W .7.设1W ,2W ,…,W r 是向量空间V 的子空间,且V W i ≠,r i ,2,1=. 证明:存在一个向量ξ∈V ,使得ξ∉i W , r i ,2,1=.[提示:对r 作数学归纳法并且利用第6题的结果.] §6.3 向量的线性相关性1.下列向量组是否线性相关:(i)(3,1,4),(2,5,-1),(4,-3,7); (ii)(2,0,1),(0,1,-2),(1,-1,1);(iii)(2,-1,3,2),(-1,2,2,3),(3,-1,2,2),(2,-1,3,2). 2.证明,在一个向量组{r ααα,,,21 }里,如果有两个向量i α与j α成比例,即i α=k j α,F k ∈,那么{r ααα,,,21 }线性相关.3.令i αn i F a a a n in i i ,,2,1,),,,(21 =∈=。

向量空间的定义、例子和子空间

向量空间的定义、例子和子空间

例4: F x中次数不超过一个给定的整数n的多项式全体连同零多项
式一起作成
的一个子空间.
Fx
例5:(补充)数域F上齐次线性方程组
a11 x1 a12 x2 a1n xn 0 a21 x1 a22 x2 a2n xn 0 am1 x1 am2 x2 amn x n 0
k W2 , k k W2即 W2
与 W2 矛盾
(ⅱ)用反证法,若至少有两个
kF
st k W1 k1 W1, k2 W1
k1 k2 W1, W1与 W1矛盾
作业:P225 1,2,3
W1 W2是V的子空间
W1 W2或W1 W2 [课堂练习]
5.例题讲解
P225 习题4
证明:(分两种情况讨论)
(ⅰ)若
是V的真子空间,且
W1 ,W2
W1 W2或W2 W1 结论显然成立.
(ⅱ)若 W1 ,W互不2 包含,用反证法,
V W1 W2 V 0 由于 W1,W互2 不包含,
③不利用向量空间中加法的可交换性,证明左逆元和左零元也是右 逆元和右零元.
④向量空间定义中的加法交换律可由定义中的其它公理推出(证 明见高代选讲).
⑤(习题8)向量空间定义中条件中的8)不能由其余条件推出, 即条件
1 不是显然的,也不是多余的
例如,令 W a,b | a,b F
在V中定义加法如下,
1o 因为V中任意两个元素的乘积仍在V中
2o k K, V , k k V 3o 下验证上述定义的两种运算满足8条
1)
2)( ) ( )
3)V中的零向量为1(而不是通常理解的0),因为
1 1
4)k k k
k k k k k k

第六章空间向量与空间解析几何简介

第六章空间向量与空间解析几何简介

Q2
y
图 6-14
2. 向量的坐标表示
❖ 定理2 向量 AB在轴 u上的投影,等于向量的模乘以
轴与向量夹角 的余弦,即

Pr ju AB A1B1 | AB | cos
(6-4)
❖ 证 如图6-16所示,过 A 引轴 u与轴 u平行且有相同
的正方向,那么,AB 与u 轴的夹角也等于 ,且
有Pr ju AB Pr ju AB,
个相同的单位长度,这样的三条坐标轴就构成了一个空间直
角坐标系,记为O-xyz.
❖ 空间两点M1M2之间的距离公式
M1M 2 (x2 x1)2 ( y2 y1)2 (z2 z1)2
OM x2 y2 z2
z R M
z
R2
R1
R M1
P
M2
Q
N
O
P
x
图 6-13
Qy
O P1 P2
x
Q1
平面,且 a,b,ab 符合右手规则
食指
(图 6-19),从几何上看|ab|等于 b
以 a、b 为邻边的平行四边形的面
a
拇指
图 6-19
积.
向量积满足以下规律和性质:
(1)b a=-a b; (2)结合律:( a)b=a( b)= (ab); (3)分配律:(a+b) c=a c+b c;
注 向量的减法不适合交换律和结合律.
3. 向量与数的乘法(数乘)
❖ 设 是一个数,a为一向量.向量a与 的乘积a 仍为一向量,我们规定:
❖ 当 0时, a与 a同方向,模|a |= |a |; ❖ 当 0时, a与 a方向相反;|a |=| ||a|; ❖ 当 0时, a是零向量. ❖ 由定义即可得向量的数乘满足以下运算规律: ❖ (1)结合律:(ka) k(a) (k)a

2025年高考数学总复习课件48第六章第五节空间向量及其运算

2025年高考数学总复习课件48第六章第五节空间向量及其运算

第五节 空间向量及其运算
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
2.(教材改编题)如图,在平行六面体ABCD-A1B1C1D1中,AC与BD的交点为点M.
设AB=a,AD=b,AA1=c,则下列向量中与C1M相等的向量是( )
A.-12
a+
1 2
b+c
B.12
a+
1 2
b+c
√C.-12
第五节 空间向量及其运算
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
空间向量线性运算的解题策略 (1)用已知向量来表示未知向量,结合图形,以图形为指导是解题的关键. (2)将已知向量与所求向量转化到三角形或平行四边形中,利用三角形法则、平 行四边形法则、多边形法则把所求向量用已知向量表示出来. (3)空间向量的坐标运算类似平面向量的坐标运算.
3
90˚
解析:因为EF=
1 2
BD,BD·BC=2×2×cos
60˚=2,
所以
BC-EF
2=
BC-
1 2
BD
2

BC
2-BC·BD+
1 4
BD
2=4-2+14×4=3,
所以 BC-EF = 3.
因为EF=
1 2
BD=
1 2
AD-AB

所以AC·EF=
1 2
AC·
AD-AB
=12
AC·AD-AC·AB
A.(2a+b)∥a
√B.5|a|= 3 b
√C.a⊥(5a+6b)
D.a与b夹角的余弦值为
3 6
第五节 空间向量及其运算

[高等代数(下)课外习题-第六章-向量空间]

[高等代数(下)课外习题-第六章-向量空间]

[高等代数(下)课外习题-第六章-向量空间]第六章 向量空间一、判断题 1.121{(,,,)|1,}nn i i i x x x x x R ==∈∑L 为nR 的子空间.( ).2、所有n 阶实反对称矩阵的集合为全矩阵空间()n M R 的子空间. ( ).3、n 维向量空间V 的任意n 个线性无关的向量都可构成V 的一个基. ( ).4、设线性空间V 的子空间W 中每个向量可由W 中的线性无关的向量组12,,,sαααL 线性表出,则维(W )=s .5、 子空间12(,,,)rL αααL 的维数等于向量组12,,,rαααL 的秩 ( ) 6、sααα,,,21Λ为V 的基,sβββ,,,21Λ为V 中向量,且 As s ),,,(),,,(2121αααβββΛΛ=,则sβββ,,,21Λ为V 的基当且仅当A可逆。

( )7、有限维线性空间同构的充要条件是维数相同. ( )8. 设12,,,nαααL 是向量空间V 的一个基, f 是V 到W 的一个同构映射, 则W 的一个基是12(),(),,()nf f f αααL .9、.如果向量空间V 是3维的,那么V 中任意4个向量必是线性相关的( )。

10.、非齐次线性方程组的解集不构成一个向量空间( )。

11、线性空间的一组基所含向量的个数是该空间的维数.12、设1V ,2V 均为线性空间V 的子空间,满足12{0}V V =I ,则12V V V =⊕。

( ).14.若21V V V ⊕=,rααα,,,21Λ是1V 的基,sr r ααα,,,21Λ++是2V 的基,则sααα,,,21Λ是V 的基.二、填空题1、 复数域C 作为实数域R 上的向量空间, 维数等于______, 它的一个基为_______.2、在4P 中,若1234(1,2,0,1),(1,1,1,1),(1,,1,1),(0,1,,1)k k αααα===-=线性无关,则k 的取值范围是____________. 3、若12V V V =⊕,则12V V ⋂= ;4、若1212dim()dim dim V V V V +=+,则12V V ⋂=;5、3][x P 中由基2,,1x x 到基2321,21,1x x x x ++++的过渡矩阵是 , 21x x ++在这两组基下的坐标分别是 , . 6、子空间33{|000a bc W A P A de f ⨯⎛⎫⎪=∈= ⎪ ⎪⎝⎭的维数= ;7、设基11232123323,,βαααβααβα=-+=+=,则由基123123,,,,αααβββ到基的过渡矩阵T= ;8、在22⨯P 中,已知⎪⎪⎭⎫⎝⎛=11111A,⎪⎪⎭⎫⎝⎛=01112A,⎪⎪⎭⎫⎝⎛=00113A,⎪⎪⎭⎫⎝⎛=00014A是22⨯P 的基,那么,⎪⎪⎭⎫⎝⎛=4321A 在该基下的坐标为 。

空间向量与立体几何(整章教案

空间向量与立体几何(整章教案

空间向量与立体几何第一章:空间向量基础1.1 向量的定义与表示了解向量的概念,掌握向量的几何表示和代数表示。

学习向量的长度和方向,掌握向量的模和单位向量。

1.2 向量的运算学习向量的加法、减法和数乘运算。

掌握向量加法和减法的几何意义,理解数乘向量的意义。

1.3 向量的坐标表示学习空间直角坐标系,了解向量的坐标表示方法。

掌握向量坐标的加法和数乘运算,理解向量坐标的几何意义。

第二章:立体几何基础2.1 平面立体几何学习平面的基本性质,掌握平面方程和点到平面的距离公式。

学习直线与平面的位置关系,了解线面平行、线面相交和线面垂直的判定条件。

2.2 空间立体几何学习空间几何体的基本性质,包括点、线、面的位置关系。

掌握空间几何体的体积和表面积计算公式,了解空间几何体的对称性。

第三章:空间向量在立体几何中的应用3.1 空间向量与直线的位置关系学习利用空间向量判断直线与直线、直线与平面的位置关系。

掌握向量夹角的概念,学习利用向量夹角判断直线与直线的夹角。

3.2 空间向量与平面的位置关系学习利用空间向量判断平面与平面的位置关系。

掌握平面法向量的概念,学习利用平面法向量求解平面方程。

3.3 空间向量与空间几何体的位置关系学习利用空间向量判断空间几何体与空间几何体的位置关系。

掌握空间几何体的体积和表面积计算方法,学习利用空间向量求解空间几何体的体积和表面积。

第四章:空间向量的线性运算与立体几何4.1 空间向量的线性组合学习空间向量的线性组合,掌握线性组合的运算规律。

理解线性组合在立体几何中的应用,包括线性组合与空间几何体的关系。

4.2 空间向量的线性相关与线性无关学习空间向量的线性相关和线性无关的概念。

掌握判断空间向量线性相关和线性无关的方法,理解线性相关和线性无关在立体几何中的应用。

4.3 空间向量的基底与坐标表示学习空间向量的基底概念,掌握基底的选取方法。

学习空间向量的坐标表示方法,理解坐标表示在立体几何中的应用。

线性方程组的解空间

线性方程组的解空间

第六章 向量空间6.1 定义和例子6.2 子空间6.3 向量的线性相关性6.4 基和维数6.5 坐标6.6 向量空间的同构6.7 矩阵的秩齐次线性方程组的解空间返回教案总目录6.7矩阵的秩,齐次线性方程组的解空间一、教学思考1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。

2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。

3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。

二、内容要求1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。

2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。

三、教学过程1、矩阵的秩的几何意义几个术语:设)(F M A n m ⨯∈,⎪⎪⎪⎭⎫ ⎝⎛=mn m n a a a a A 1111,A 的每一行看作n F 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。

类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。

注:)(F M A n m ⨯∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。

引理6.7.1设)(F M A n m ⨯∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。

分析:设()()()m m ij n m ij n m ij p P b B a A ⨯⨯⨯===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
闭合性: 闭合性: (c1) V上有 闭合的 加法运算,即:对任意 属于 一定有 上有(闭合的 加法运算, 对任意u,v属于 一定有u+v属于 属于V, 上有 闭合的)加法运算 属于 V. (c2) F上的数对 上的向量有 (闭合的 数乘运算,即:对任意 中数 上的数对V上的向量有 闭合的 数乘运算, 闭合的)数乘运算 对任意F中数 上的数对 中元素v, 属于V. 和V中元素 一定有: v属于 中元素 一定有: 属于 加法的性质: 加法的性质: (a1) u+v= v +u,对所有 和v属于 属于V. ,对所有u和 属于 (a2) u+(v+w)= (u+v)+w, 对所有 、v和w属于 对所有u、 和 属于 属于V. (a3) V中存在一 中存在一个向量, 对所有V中的 中的v. 中存在一个向量 记作o, 它满足: (a4) 给定 中每一个向量 V中存在一个向量 满足: 给定V中每一个向量 中每一个向量v, 中存在一个向量 满足: 中存在一个向量u满足 u+v= 0. 这样的 称为 的负向量 这样的u称为 的负向量. 称为v的负向量
注1:刚开始,步骤要完整. 刚开始,
宁波工程学院理学院《高等代数》课程组制作
例5 C[a,b]表示区间 表示区间[a,b]上连续实函数按照通常的加法 表示区间 上连续实函数按照通常的加法 与数乘构成实数域R的向量空间 称为函数空间. 的向量空间, 与数乘构成实数域 的向量空间,称为函数空间 证明: 比照例3,给出完整步骤. 证明: 比照例 ,给出完整步骤 例6 (1)数域 是F上的向量空间 (2)R是Q上的向量 上的向量空间. )数域F是 上的向量空间 ) 是 上的向量 空间, 是否为 上的向量空间? 是否为C上的向量空间 空间,R是否为 上的向量空间?
宁波工程学院理学院《高等代数》课程组制作
向量空间( 向量空间(Vector Spaces)又称线性空间(Linear )又称线性空间( Spaces).本章的特点及要求: 本章的特点及要求: ) 本章的特点及要求 向量空间是线性代数的最基本的、最重要的概念之一, 向量空间是线性代数的最基本的、最重要的概念之一, 是进一步学习数学必备的内容. 是进一步学习数学必备的内容 向量空间产生有着丰富的数学背景,又在许多领域(包 向量空间产生有着丰富的数学背景,又在许多领域( 括数学本身)中有着广泛的应用,例如: 括数学本身)中有着广泛的应用,例如:线性非常组解 的结构. 的结构 向量空间是我们遇到的第一抽象的代数系统. 向量空间是我们遇到的第一抽象的代数系统 所谓代数 系统,就是带有运算的集合.通过本章的学习 通过本章的学习, 系统,就是带有运算的集合 通过本章的学习,初步熟悉 用公理系统处理代数问题的思维方法、逻辑推理的方法. 用公理系统处理代数问题的思维方法、逻辑推理的方法
3. 进一步的例子――加深定义的理解 进一步的例子―― ――加深定义的理解
例3 按照定义 , m×n 是数域 上的向量空间,称为矩阵 按照定义1, 上的向量空间, F 是数域F上的向量空间 空间. 空间. n 1×n n×1 表示. 统称为n元向量空间, (1) F , F 统称为n元向量空间,统一用符号 F 表示 ) (2) Rn是解析几何的坐标平面、坐标空间的推广它是常 ) 是解析几何的坐标平面、 用的一类. …… 用的一类 例4 数域F上一元多项式集合 数域 上一元多项式集合F[x]按照通常的加法与数乘 按照通常的加法与数乘 上一元多项式集合 构成F上的向量空间 称为多项式空间. 上的向量空间, 构成 上的向量空间,称为多项式空间 证明:根据多项式加法和数乘的定义, 证明:根据多项式加法和数乘的定义, (c1) f(x)+g(x) (c2) (a1) 任给f(x),g(x) ∈F[x]. ∈F[x], 任给 F[x]. F,f(x)∈ 任给 af(x) ∈F[x],任给 a∈ F[x]. f(x)+g(x)= g(x) + f (x), 任给 任给f(x),g(x)∈
宁波工程学院理学院《高等代数》课程组制作
6.2.1 子空间的概念
是数域F上一个向量空间 设V是数域 上一个向量空间 W是V 的一个非空子集 是数域 上一个向量空间. 是 的一个非空子集. 对于W 中任意两个向量α 它们的和α+β α+β是 对于 中任意两个向量α,β,它们的和α+β是V 中一个向量. 一般说来,α+β不一定在 不一定在W 如果 如果W 中一个向量 一般说来,α+β不一定在 内.如果 中任意两个向量的和仍在W内,那么就说,W对于 对于V 中任意两个向量的和仍在 内 那么就说, 对于 的加法是封闭的. 同样,如果对于W中任意向量 中任意向量α 的加法是封闭的 同样,如果对于 中任意向量α和 数域F中任意数 , 仍在 仍在W内 那么就说, 数域 中任意数a,aα仍在 内,那么就说,W 对于 中任意数 标量与向量的乘法是封闭的. 标量与向量的乘法是封闭的
(5) aV = 0 ⇒ a = 0,或 = 0. ) V
宁波工程学院理学院《高等代数》课程组制作
6.2 子空间
一、内容分布 6.2.1 子空间的概念 6.2.2子空间的交与和 子空间的交与和. 子空间的交与和 二、教学目的 1.理解并掌握子空间的概念. .理解并掌握子空间的概念 2.掌握子空间的判别方法,熟悉几种常见的 .掌握子空间的判别方法, 子空间. 子空间 3.掌握子空间的交与和的概念 .掌握子空间的交与和的概念. 三、重点、难点 重点、 子空间的判别,子空间的交与和. 子空间的判别,子空间的交与和.
注2:这个例子说明向量空间与F有关.
宁波工程学院理学院《高等代数》课程组制作
例7 设数域取 集合为 设数域取R, 集合为R+(实数 ,加法和数乘定义为: 实数), 实数 加法和数乘定义为:
a ⊕b = ab, k o a = ak , ∀a, b∈R+ , k ∈R 关于给定的运算构成R上的向量空间 上的向量空间. 证明 R+ 关于给定的运算构成 上的向量空间
第6章 向量空间
6.1 6.2 6.3 6.4 6.5 6.6 6.7 向量空间的定义和例子 子空间 向量的线性相关 基和维数 坐 标 向量空间的同构 矩阵的秩 齐次线性方程组的解空间
数学研究理想结构(突出应用于实际问题),并在这 数学研究理想结构(突出应用于实际问题),并在这 ), 种研究中去发现各种结构之间的未知关系。 种研究中去发现各种结构之间的未知关系。 ---皮尔斯 皮尔斯(S. Peirce,1838- ---皮尔斯(S. Peirce,1838-1914) 不懂几何者勿入内 (指:柏拉图学园) 柏拉图学园) ---柏拉图(Plato,约公元前427 柏拉图(Plato 427年 347年 ---柏拉图(Plato,约公元前427年-前347年) 不懂向量空间者无法进入数学圣殿的大门 ---匿名者 ---匿名者
宁波工程学院理学院《高等代数》课程组制作
例8
上定义加法和数乘: 在 R2 上定义加法和数乘:
(a, b) ⊕(c, d) = (a + c, b + d + ac) k(k −1) 2 k o (a, b) = (ka, kb + a) 2
关于给定运算构成R上的向量空间 上的向量空间. 证明 R2 关于给定运算构成 上的向量空间 证明:留作课外练习 证明:留作课外练习.
宁波工程学院理学院《高等代数》课程组制作
§6.1 向量空间的定义和例子
1. 引例 引例―――定义产生的背景 定义产生的背景. 定义产生的背景 2. 向量空间的定义 向量空间的定义――――抽象出的数学本质 抽象出的数学本质. 抽象出的数学本质 3. 进一步的例子 进一步的例子―――加深对定义的理解 加深对定义的理解. 加深对定义的理解 4. 一些简单性质 一些简单性质.
宁波工程学院理学院《高等代数》课程组制作
定理6.2.1 定理6.2.1
是数域F上向量空间 的一个非空子集.如果 设W是数域 上向量空间 的一个非空子集 如果 对 是数域 上向量空间V的一个非空子集 如果W 的加法以及标量与向量乘法是封闭的, 于V 的加法以及标量与向量乘法是封闭的,那么本 身也作成上一个向量空间. 身也作成上一个向量空间
宁波工程学院理学院《高等代数》课程组制作
4. 简单性质
是唯一的. (1) 零向量 是唯一的 ) 零向量0是唯一的 的负向量是唯一的, (2) 一个向量 的负向量是唯一的,用(- v)表示 ) 一个向量v的负向量是唯一的 )表示. (3) 0v=0,a0=0. ) = , = (4) )
a(-v)= ( −a)V = −(aV)
宁波工程学院理学院《高等代数》课程组制作
1. 引例―――定义产生的背景 引例――― ―――定义产生的背景
例1 表示上m× 矩阵的集合 矩阵的集合, 是一个数域, 设 F 是一个数域,Fm×n 表示上 ×n矩阵的集合,
m×n
回忆一下 F
上所能够施行的运算(教材 ):只有 上所能够施行的运算(教材P182):只有 ):
宁波工程学院理学院《高等代数》课程组制作
乘法的性质: 乘法的性质: (m1) (ab)V = a(bV ),∀a,b ∈ F. (m2)
a(U +V ) = aU + aV.
(m3) (a + b)U = aU + bU. (m4) 1u= u 对所有u属于V. 对所有u属于 属于V.
宁波工程学院理学院《高等代数》课程组制作
宁波工程学院理学院《高等代数》课程组制作
例2
是实数域, 表示空间向量的集合 表示空间向量的集合.两个向量可 设R是实数域,V3表示空间向量的集合 两个向量可 是实数域 按照解析几何的
以作加法(平行四边形法则),可以用 中的一个数乘一个 以作加法(平行四边形法则),可以用R中的一个数乘一个 ),可以用 向量,加法和数乘满足同样的 条性质 条性质. 向量,加法和数乘满足同样的8条性质 有表达式,…… 有表达式, 类似的问题许多, 类似的问题许多,……,有必要总结它们的共性: ,有必要总结它们的共性: I. II. 涉及两个集合(其中一个集合 涉及两个集合(其中一个集合……). ) 涉及两种运算(什么样的运算?). 涉及两种运算(什么样的运算?) ?) 方法,向量可以用的坐标( 方法,向量可以用的坐标(x,y,z)来表达,加法和数乘都 )来表达,
相关文档
最新文档