《等差数列》教学设计
等差数列数学教案精选案例大全
等差数列数学教案精选案例大全等差数列是指从其次项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。
这个常数叫做等差数列的公差,公差常用字母d表示。
下面就是我给大家带来的高中数学优质课程《等差数列》教案,盼望能关心到大家!数学《等差数列》教案一【教学目标】1. 学问与技能(1)理解等差数列的定义,会应用定义推断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简洁问题。
2.过程与方法在定义的理解和通项公式的推导、应用过程中,培育同学的观看、分析、归纳力量和严密的规律思维的力量,体验从特别到一般,一般到特别的认知规律,提高熟识猜想和归纳的力量,渗透函数与方程的思想。
3.情感、态度与价值观通过老师指导下同学的自主学习、相互沟通和探究活动,培育同学主动探究、用于发觉的求知精神,激发同学的学习爱好,让同学感受到胜利的喜悦。
在解决问题的过程中,使同学养成细心观看、仔细分析、擅长总结的良好习惯。
【教学重点】①等差数列的概念;①等差数列的通项公式【教学难点】①理解等差数列“等差”的特点及通项公式的含义;①等差数列的通项公式的推导过程.【学情分析】我所教学的同学是我校高一(7)班的同学(平行班同学),经过一年的高中数学学习,大部分同学学问阅历已较为丰富,他们的智力进展已到了形式运演阶段,具备了较强的抽象思维力量和演绎推理力量,但也有一部分同学的基础较弱,学习数学的爱好还不是很浓,所以我在授课时注意从详细的生活实例动身,注意引导、启发、讨论和探讨以符合这类同学的心理进展特点,从而促进思维力量的进一步进展.【设计思路】1.教法①启发引导法:这种方法有利于同学对学问进行主动建构;有利于突出重点,突破难点;有利于调动同学的主动性和乐观性,发挥其制造性.①分组争论法:有利于同学进行沟通,准时发觉问题,解决问题,调动同学的乐观性.①讲练结合法:可以准时巩固所学内容,抓住重点,突破难点.2.学法引导同学首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种力量的同学引导熟悉多元的推导思维方法.【教学过程】一:创设情境,引入新课1.从0开头,将5的倍数按从小到大的挨次排列,得到的数列是什么?2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的方法清理水库中的杂鱼.假如一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开头放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.根据单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元钱,年利率是0.72%,那么根据单利,5年内各年末的本利和(单位:元)组成一个什么数列?老师:以上三个问题中的数蕴涵着三列数.同学:1:0,5,10,15,20,25,….2:18,15.5,13,10.5,8,5.5.3:10072,10144,10216,10288,10360.(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让同学感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特别到一般,激发同学学习探究学问的自主性,培育同学的归纳力量.二:观看归纳,形成定义①0,5,10,15,20,25,….①18,15.5,13,10.5,8,5.5.①10072,10144,10216,10288,10360.思索1上述数列有什么共同特点?思索2依据上数列的共同特点,你能给出等差数列的一般定义吗?思索3你能将上述的文字语言转换成数学符号语言吗?老师:引导同学思索这三列数具有的共同特征,然后让同学抓住数列的特征,归纳得出等差数列概念.同学:分组争论,可能会有不同的答案:前数和后数的差符合肯定规律;这些数都是根据肯定挨次排列的…只要合理老师就要赐予确定.老师引导归纳出:等差数列的定义;另外,老师引导同学从数学符号角度理解等差数列的定义.(设计意图:通过对肯定数量感性材料的观看、分析,提炼出感性材料的本质属性;使同学体会到等差数列的规律和共同特点;一开头抓住:“从其次项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的精确表达.)三:举一反三,巩固定义1.判定下列数列是否为等差数列?若是,指出公差d.(1)1,1,1,1,1;(2)1,0,1,0,1;(3)2,1,0,-1,-2;(4)4,7,10,13,16.老师出示题目,同学思索回答.老师订正并强调求公差应留意的问题.留意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .(设计意图:强化同学对等差数列“等差”特征的理解和应用).2思索4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?(设计意图:强化等差数列的证明定义法)四:利用定义,导出通项1.已知等差数列:8,5,2,…,求第200项?2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?老师出示问题,放手让同学探究,然后选择列式具有代表性的上去板演或投影展现.依据同学在课堂上的详细状况进行详细评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让同学初步尝试处理数列问题的常用方法.(设计意图:引导同学观看、归纳、猜想,培育同学合理的推理力量.同学在分组合作探究过程中,可能会找到多种不同的解决方法,老师要逐一点评,并准时确定、赞扬同学擅长动脑、勇于创新的品质,激发同学的制造意识.鼓舞同学自主解答,培育同学运算力量)五:应用通项,解决问题1推断100是不是等差数列2,9,16,…的项?假如是,是第几项?2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.3求等差数列3,7,11,…的第4项和第10项老师:给出问题,让同学自己操练,老师巡察同学答题状况.同学:老师叫同学代表总结此类题型的解题思路,老师补充:已知等差数列的首项和公差就可以求出其通项公式(设计意图:主要是熟识公式,使同学从中体会公式与方程之间的联系.初步熟悉“基本量法”求解等差数列问题.)六:反馈练习:教材13页练习1七:归纳总结:1.一个定义:等差数列的定义及定义表达式2.一个公式:等差数列的通项公式3.二个应用:定义和通项公式的应用老师:让同学思索整理,找几个代表发言,最终老师给出补充(设计意图:引导同学去联想本节课所涉及到的各个方面,沟通它们之间的联系,使同学能在新的高度上去重新熟悉和把握基本概念,并敏捷运用基本概念.)【设计反思】本设计从生活中的数列模型导入,有助于发挥同学学习的主动性,增加同学学习数列的爱好.在探究的过程中,同学通过分析、观看,归纳出等差数列定义,然后由定义导出通项公式,强化了由详细到抽象,由特别到一般的思维过程,有助于提高同学分析问题和解决问题的力量.本节课教学采纳启发方法,以老师提出问题、同学探讨解决问题为途径,以相互补充绽开教学,总结科学合理的学问体系,形成师生之间的良性互动,提高课堂教学效率.数学《等差数列》教案二[教学目标]1.学问与技能目标:把握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计一、教学目标1. 知识与技能:学生能够理解等差数列的定义、性质和通项公式,掌握等差数列的求和公式,掌握等差数列的应用题目解题方法。
2. 过程与方法:培养学生的逻辑思维和数学分析能力,引导学生探究、发现等差数列的规律,培养学生的数学建模能力。
3. 情感态度与价值观:引导学生态度认真,积极主动参与课堂讨论和课后习题练习,培养学生对数学的兴趣和信心。
二、教学内容1. 等差数列的定义和性质2. 等差数列的通项公式3. 等差数列的求和公式4. 等差数列的应用题目解题方法四、教学过程设计1. 导入(5分钟)教师通过举例引入等差数列的概念,让学生了解等差数列是指数列中任意两个相邻的项之差都是一个常数,称为公差。
引导学生思考公差与等差数列的关系。
2. 概念讲解(15分钟)通过实例,教师讲解等差数列的定义和性质,包括首项、公差、通项公式和前n项和公式。
并通过图示和例题,让学生理解等差数列的规律和特点。
4. 错题讲解(10分钟)针对学生在课堂练习中出现的典型错误进行讲解和订正,并强调等差数列的解题方法和答题技巧。
5. 练习与巩固(20分钟)教师让学生进行练习题目,巩固等差数列的求和公式和应用题目解题方法。
鼓励学生积极思考,主动参与课堂讨论。
6. 课堂小结(5分钟)教师对本节课的内容进行小结,强调等差数列的主要知识点和解题方法,提醒学生巩固复习。
五、教学手段1. 板书2. 多媒体教学3. 举例分析4. 练习和讨论通过本节课的设计和实施,能够引导学生深刻理解等差数列的概念和性质,掌握等差数列的通项公式、求和公式和解题方法,培养学生的逻辑推理和数学分析能力,提高学生的数学学习兴趣和自信心。
《等差数列》教学设计-优秀教案
等差数列【教学目标】1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。
2.过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。
3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。
【教学重、难点】重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。
难点:概括通项公式推导过程中体现出的数学思想方法。
【学法与教学用具】学法:引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列的特点,推导出等差数列的通项公式;可以用多种方法对等差数列的通项公式进行推导。
教学用具:投影仪【教学过程设计】一、创设情景上节课我们学习了数列。
在日常生活中,人口增长、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。
今天我们就先学习一类特殊的数列。
二、由学生观察分析并得出答案:(放投影片)在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,____,____,____,____,……2012年,在伦敦举行的奥运会上,女子举重项目共设置了7个级别。
其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63。
水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。
如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。
那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。
等差数列的教学设计(合集5篇)
等差数列的教学设计(合集5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!等差数列的教学设计(合集5篇)等差数列的教学设计(1)一、知识与技能1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.二、过程与方法1.通过对等差数列通项公式的推导培养学生:的观察力及归纳推理能力;2.通过等差数列变形公式的教学培养学生:思维的深刻性和灵活性.三、情感态度与价值观通过等差数列概念的归纳概括,培养学生:的观察、分析资料的能力,积极思维,追求新知的创新意识.教学过程导入新课师:上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子)(1)0,5.10,15.20,25.…;(2)48,53.58,63.…;(3)18,15.5.13.10.5.8,5.5…;(4)10 072.10 144.10 216,10 288,10 366,….请你们来写出上述四个数列的第7项.生:第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3.第四个数列的第7项为10 510.师:我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说.生:这是由第二个数列的后一项总比前一项多 5.依据这个规律性我得到了这个数列的第7项为78.师:说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征.生:1每相邻两项的差相等,都等于同一个常数.师:作差是否有顺序,谁与谁相减?生:1作差的顺序是后项减前项,不能颠倒.师:以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列.这就是我们这节课要研究的内容.推进新课等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;(2)对于数列{an},若an-a n-1=d(与n无关的数或字母),n ≥2.n∈NX,则此数列是等差数列,d叫做公差.师:定义中的关键字是什么?(学生:在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师:应该教会学生:如何深入理解一个概念,以培养学生:分析问题、认识问题的能力)生:从“第二项起”和“同一个常数”.师::很好!师:请同学们思考:数列(1)(2)(3)(4)的通项公式存在吗?如果存在,分别是什么?生:数列(1)通项公式为5n-5.数列(2)通项公式为5n+43.数列(3)通项公式为2.5n-15.5.….师:好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考.[合作探究]等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列{an}的首项是a1.公差是d,则据其定义可得什么?生:a2-a1=d,即a2=a1+d.师:对,继续说下去!生:a3-a2=d,即a3=a2+d=a1+2d;a4-a3=d,即a4=a3+d=a1+3d;师:好!规律性·的东西让你找出来了,你能由此归纳出等差数列的通项公式吗?生:由上述各式可以归纳出等差数列的通项公式是an=a1+(n-(1)d.师:很好!这样说来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项an了.需要说明的是:此公式只是等差数列通项公式的猜想,你能证明它吗?生:前面已学过一种方法叫迭加法,我认为可以用.证明过程是这样的:因为a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.将它们相加便可以得到:an=a1+(n-(1)d.师:太好了!真是活学活用啊!这样一来我们通过证明就可以放心使用这个通项公式了.[教师:精讲]由上述关系还可得:am=a1+(m-(1)d,即a1=am-(m-(1)d.则an=a1+(n-(1)d=am-(m-(1)d+(n-(1)d=am+(n-m)d,即等差数列的第二通项公式an=am+(n-m)d.(这是变通的通项公式) 由此我们还可以得到.[例题剖析]【例1】(1)求等差数列8,5.2,…的第20项;(2)-401是不是等差数列-5.-9,-13…的项?如果是,是第几项?师:这个等差数列的首项和公差分别是什么?你能求出它的第20项吗?生:1这题太简单了!首项和公差分别是a1=8,d=5-8=2-5=-3.又因为n=20,所以由等差数列的通项公式,得a20=8+(20-(1)X(-(3)=-49.师:好!下面我们来看看第(2)小题怎么做.生:2由a1=-5,d=-9-(-(5)=-4得数列通项公式为an=-5-4(n-(1)由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-(1)成立,解之,得n=100,即-401是这个数列的第100项.师:刚才两个同学将问题解决得很好,我们做本例的目的是为了熟悉公式,实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个)说明:(1)强调当数列{an}的项数n已知时,下标应是确切的数字;(2)实际上是求一个方程的正整数解的问题.这类问题学生:以前见得较少,可向学生:着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立.【例2】已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?例题分析:师:由等差数列的定义,要判定{an}是不是等差数列,只要根据什么?生:只要看差an-an-1(n≥(2)是不是一个与n无关的常数.师:说得对,请你来求解.生:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n ≥(2)〕an-an-1=(pn+(1)-[p(n-(1)+q]=pn+q-(pn-p+q)=p为常数,所以我们说{an}是等差数列,首项a1=p+q,公差为p.师:这里要重点说明的是:(1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,….(2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=pX+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.(3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式.课堂练习(1)求等差数列3.7,11.…的第4项与第10项.分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所┣笙.解:根据题意可知a1=3.d=7-3=4.∴该数列的通项公式为an=3+(n-(1)X4.即an=4n-1(n≥1.n∈NX)∴a4=4X4-1=15.a 10=4X10-1=39.评述:关键是求出通项公式.(2)求等差数列10,8,6,…的第20项.解:根据题意可知a1=10,d=8-10=-2.所以该数列的通项公式为an=10+(n-(1)X(-(2)即an=-2n+12.所以a20=-2X20+12=-28.评述:要求学生:注意解题步骤的规范性与准确性.(3)100是不是等差数列2.9,16,…的项?如果是,是第几项?如果不是,请说明理由.分析:要想判断一个数是否为某一个数列的其中一项,其关键是要看是否存在一个正整数n值,使得an等于这个数.解:根据题意可得a1=2.d=9-2=7.因而此数列通项公式为an=2+(n-(1)X7=7n-5.令7n-5=100,解得n=15.所以100是这个数列的第15项.(4)-20是不是等差数列0,-7,…的项?如果是,是第几项?如果不是,请说明理由.解:由题意可知a1=0,因而此数列的通项公式为.令,解得.因为没有正整数解,所以-20不是这个数列的项.课堂小结师:(1)本节课你们学了什么?(2)要注意什么?(3)在生:活中能否运用?(让学生:反思、归纳、总结,这样来培养学生:的概括能力、表达能力)生:通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式a n-a n-1=d(n≥(2);其次要会推导等差数列的通项公式an=a1+(n-(1)d(n≥(1)等差数列的教学设计(2)【教学目标】一、知识与技能1.掌握等差数列前n项和公式;2.体会等差数列前n项和公式的推导过程;3.会简单运用等差数列前n项和公式。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计课时:第一课时教学目标:1. 理解等差数列的概念和特点;2. 能够求解等差数列的通项公式;3. 能够判断数列是否是等差数列,并求出等差数列的公差;4. 能够应用等差数列解决实际问题。
教学重点:1. 理解等差数列的概念和特点;2. 能够求解等差数列的通项公式。
教学准备:1. 教师准备教学课件和多媒体设备;2. 学生准备课本、作业本和笔记本等学习材料。
教学过程:Step 1 导入新课(5分钟)1. 教师通过多媒体展示几个数字的排列,让学生思考这些数字之间是否有规律;2. 通过问答的形式引导学生发现数字之间的规律,并引出等差数列的概念。
Step 2 探究等差数列的特点(15分钟)1. 教师通过示例展示等差数列的特点,如公差相同、相邻项之间的差恒定等;2. 引导学生根据示例找出两个差恒定的数字序列,让学生自主发现等差数列的特点。
Step 3 等差数列的通项公式(30分钟)1. 教师通过多媒体展示等差数列的通项公式,并解释公式中各项的含义;2. 引导学生通过示例计算等差数列的通项,培养学生运用公式解题的能力。
Step 5 应用等差数列解决实际问题(20分钟)1. 教师通过示例展示如何应用等差数列解决实际问题,如计算某年龄段人口数量、计算等差数列中的某一项等;2. 引导学生通过实际问题的变化,灵活运用等差数列解决实际问题。
Step 6 小结与反馈(10分钟)1. 教师对本节课的重点知识进行总结,并强调学生需要继续巩固的内容;2. 鼓励学生讨论本课的问题和困惑,并互相解答。
教学反思:通过本课的设计与实施,学生能够初步理解等差数列的概念和特点,并掌握求解等差数列的通项公式的方法。
但在判断数列是否为等差数列及求公差的部分,学生存在一定的困难,需要加强练习和巩固。
在应用等差数列解决实际问题的环节,也需要引导学生加强问题分析和解决能力,更好地应用所学知识。
等差数列教案大班
等差数列教案大班一、教学目标:1. 了解等差数列的概念和性质。
2. 掌握等差数列的通项公式及应用。
3. 能够运用等差数列解决实际问题。
4. 培养学生的逻辑思维和分析问题的能力。
二、教学重点:1. 等差数列的概念和性质。
2. 等差数列的通项公式及应用。
三、教学难点:1. 运用等差数列解决实际问题。
2. 发现等差数列在生活中的应用。
四、教学准备:1. 教学课件、教学书籍。
2. 黑板、粉笔。
3. 习题和练习题。
五、教学过程:步骤一:导入(5分钟)老师通过提问的方式,复习学生对数列的基本概念的理解。
引出等差数列的概念,并给出一个生活中的例子,如每天步行的步数。
引导学生思考等差数列的性质。
步骤二:讲解(20分钟)1. 通过教学课件,详细讲解等差数列的定义和性质。
2. 指导学生理解等差数列的通项公式,并给出相关的示例。
3. 鼓励学生自己推导等差数列的通项公式,帮助他们理解公式的由来。
步骤三:练习(25分钟)1. 分发练习题,并让学生独立完成。
2. 学生完成后,老师逐个讲解题目的解答过程,同时解释解题的思路和方法。
3. 引导学生分析实际问题,应用等差数列进行计算。
步骤四:拓展(20分钟)1. 引导学生思考等差数列在生活中的应用。
例如,车速、水位的变化等。
2. 让学生分组进行小研究,找出更多生活中的等差数列应用,并分享给全班。
3. 整理学生的发现,鼓励他们运用数学知识解决生活中的问题。
步骤五:总结与反思(5分钟)老师引导学生总结今天学习的内容,回顾所学的知识点和解题方法。
并鼓励学生进行反思,思考自己在学习过程中的问题和不足之处。
六、教学延伸:1. 教师可以带领学生进行更复杂的等差数列的计算和应用。
2. 引导学生进行等差数列的推广,如等差数列的和公式等。
3. 给学生提供更多的练习题和挑战题,以更好地巩固所学的知识。
七、教学评价:1. 教师可以通过课堂练习和小组讨论的方式进行学生的评价。
2. 老师可以提供一些练习题或考试题,检查学生对等差数列的掌握程度。
等差数列教学设计及教案
教案:等差数列教学设计及教案第一章:等差数列的概念1.1 引入通过实际例子(如计算连续自然数的和)引入等差数列的概念。
1.2 等差数列的定义引导学生理解等差数列的定义,即每一项与前一项的差是一个常数。
解释等差数列的通项公式:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
1.3 等差数列的性质探讨等差数列的性质,如相邻两项的差是常数,首项和末项的关系等。
第二章:等差数列的求和2.1 等差数列的前n项和公式引导学生理解等差数列的前n项和的概念,即前n项的和。
解释等差数列的前n项和公式:Sn = n/2 (a1 + an),其中Sn表示前n项的和。
2.2 等差数列的求和应用通过例题引导学生运用前n项和公式计算等差数列的和。
探讨等差数列求和的其他方法,如分组求和、错位相减等。
第三章:等差数列的通项公式3.1 等差数列的通项公式的推导引导学生理解等差数列的通项公式,并解释如何推导出该公式。
利用等差数列的性质和数学归纳法推导出通项公式。
3.2 等差数列的通项公式的应用通过例题引导学生运用通项公式计算等差数列的特定项的值。
探讨等差数列的特定项的性质,如第n项的值与首项和公差的关系。
第四章:等差数列的性质和求和4.1 等差数列的性质引导学生理解等差数列的性质,如相邻两项的差是常数,首项和末项的关系等。
利用性质解决问题,如找出等差数列中的特定项的值。
4.2 等差数列的求和引导学生运用前n项和公式计算等差数列的和。
探讨等差数列求和的其他方法,如分组求和、错位相减等。
第五章:等差数列的综合应用5.1 等差数列的应用问题通过实际问题引导学生运用等差数列的知识解决实际问题,如计算工资、统计数据等。
5.2 等差数列的综合练习提供一些综合练习题,让学生运用等差数列的知识解决问题。
分析和解答练习题,帮助学生巩固等差数列的知识。
第六章:等差数列的图像和性质6.1 等差数列的图像引导学生绘制等差数列的图像,展示等差数列的单调性。
数学等差数列教案
数学等差数列教案数学等差数列教案「篇一」一、等差数列1、定义注:“从第二项起”及“同一常数”用红色粉笔标注二、等差数列的通项公式(一)例题与练习通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。
由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二)新课探究1、由引入自然的给出等差数列的概念:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。
强调:① “从第二项起”满足条件; f②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1—an=d (n≥1) ;h4z+0"6vG同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1、 9 ,8,7,6,5,4,√ d=—12、2、2、2、2、2、2、2、2、2、74√ d=0。
013、3、3、3、3、3、3、√ d=04、4、4、4、4、4、4、×5、5、5、5、5、5、×其中第一个数列公差<0,>0,第三个数列公差=0由此强调:公差可以是正数、负数,也可以是02、第二个重点部分为等差数列的通项公式在归纳等差数列通项公式中,我采用讨论式的教学方法。
给出等差数列的首项,公差d,由学生研究分组讨论a4 的通项公式。
通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。
整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d。
则据其定义可得:a2 — a1 =d 即: a2 =a1 +da3 – a2 =d 即: a3 =a2 +d = a1 +2da4 – a3 =d 即: a4 =a3 +d = a1 +3d猜想: a40 = a1 +39d进而归纳出等差数列的通项公式:an=a1+(n—1)d此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:a2 – a1 =da3 – a2 =da4 – a3 =dan+1 – an=d将这(n—1)个等式左右两边分别相加,就可以得到 an– a1= (n—1) d 即 an= a1+(n—1) d (1)当n=1时,(1)也成立。
等差数列教学设计及教案
等差数列教学设计及教案第一章:等差数列的概念1.1 等差数列的定义引导学生回顾数列的概念,理解数列的顺序性和连续性。
引入等差数列的定义,解释公差的概念。
1.2 等差数列的性质探讨等差数列的性质,如相邻两项的差为常数,首项和末项的关系等。
引导学生通过观察和归纳总结等差数列的性质。
第二章:等差数列的通项公式2.1 等差数列的通项公式的推导引导学生回顾数列的通项公式的概念,理解通项公式与数列的关系。
通过示例和引导学生推导等差数列的通项公式。
2.2 等差数列的通项公式的应用探讨等差数列的通项公式在解决实际问题中的应用,如求指定项的值等。
引导学生通过练习题目的方式,加深对通项公式的理解和应用。
第三章:等差数列的前n项和3.1 等差数列的前n项和的定义引导学生回顾数列的前n项和的概念,理解前n项和的含义。
引入等差数列的前n项和的定义,解释首项和末项的关系。
3.2 等差数列的前n项和的公式探讨等差数列的前n项和的公式,引导学生理解和记忆公式。
通过示例和练习题目,引导学生应用前n项和公式解决问题。
第四章:等差数列的求和性质4.1 等差数列的求和性质引导学生回顾数列的求和性质,如等差数列的求和与项数的关系等。
引入等差数列的求和性质,如等差数列的求和与首项和末项的关系。
4.2 等差数列的求和性质的应用探讨等差数列的求和性质在解决实际问题中的应用,如求特定项的和等。
引导学生通过练习题目的方式,加深对求和性质的理解和应用。
第五章:等差数列的综合应用5.1 等差数列在实际问题中的应用通过实际问题引入等差数列的综合应用,如人口增长模型、投资收益等。
引导学生运用等差数列的知识解决实际问题。
5.2 等差数列在数学竞赛中的应用探讨等差数列在数学竞赛中的重要性,引导学生了解等差数列在竞赛中的应用。
提供一些数学竞赛题目,引导学生挑战自我,提高解题能力。
第六章:等差数列的图像与性质6.1 等差数列的图像引导学生回顾数列图像的基本知识,如数列的点表示等。
数学等差数列教案(优秀5篇)
数学等差数列教案(优秀5篇)高一数学等差数列教案篇一一、教学内容分析本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的`极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
二、学生学习情况分析教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。
三、设计思想1.教法⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
⑴分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
⑴讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。
2.学法引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。
用多种方法对等差数列的通项公式进行推导。
在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学目标通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计教学目标:1、通过学习,掌握等差数列的定义及其性质;2、培养学生观察、分析和解决问题的能力;3、培养学生合作学习的能力;4、通过实际生活中的例子,激发学生对数学的兴趣。
教学重点:1、等差数列的定义;2、等差数列的通项公式;3、等差数列的前n项和公式。
教学准备:1、教师准备计算机及投影仪;2、教师准备图表和实际问题的例子;3、学生准备笔记本和课本。
教学过程:一、导入(5分钟)通过一个实际生活中的例子引入等差数列的概念,树木的年龄。
二、新知呈现(15分钟)三、示范演练(20分钟)选取一些典型的等差数列题目,通过教师示范解题,引导学生运用等差数列的性质和公式解决问题。
四、合作学习(20分钟)将学生分成小组,每个小组选择一个等差数列的例子,通过合作讨论解答问题,并将结果展示给全班。
五、巩固练习(15分钟)学生独立完成练习题,对学生的掌握情况进行评价。
六、总结反思(10分钟)教师对本节课的重点内容进行总结,并提醒学生课后复习。
教学辅导、鼓励学生积极参与课堂活动,及时纠正学生的错误,激发学生对数学的兴趣和学习的动力。
教学设计的难点和解决方案:难点:学生理解并运用等差数列的通项公式和前n项和公式。
解决方案:通过多种实例和计算展示其应用,帮助学生理解和记忆公式,并设计合适的练习题让学生加深印象和应用能力。
难点:运用等差数列的性质解决实际问题。
解决方案:选取一些具有实际意义的例子,通过示范演练和小组合作学习,引导学生运用等差数列的性质解决问题,激发学生思考和分析问题的能力。
通过以上设计,能够培养学生对等差数列的兴趣,掌握等差数列的定义及其性质,并能够运用等差数列的公式解决实际问题。
通过合作学习和课后复习巩固,提高学生的学习效果和学习兴趣。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计一、教学目标1. 知识与能力:(1)掌握等差数列的概念;(2)了解等差数列的性质和特点;(3)能够求解等差数列的通项公式和前n项和公式;(4)能够运用等差数列解决实际问题。
2. 过程与方法:(1)通过讲解、示范和练习的方式教学;(2)引导学生进行思维的碰撞,培养学生的逻辑思维能力;(3)激发学生的学习兴趣,提高学生的学习动力。
3. 情感态度价值观:(1)培养学生的合作精神和团队意识;(2)鼓励学生勇于探索、勇于实践,培养学生的探究精神。
二、教学重难点1. 教学重点:等差数列的概念、性质和公式的求解。
2. 教学难点:等差数列的前n项和公式的推导。
三、教学过程1. 导入(5分钟)呈现一组数字序列:2,4,6,8,10,……,让学生观察并找出规律。
看出这组数列是等差数列,每一项与前一项的差均相等。
2. 概念讲解(10分钟)(1)教师引导学生总结等差数列的概念:在一个数列中,从第二项起,每一项与它的前一项之差等于一个常数d,这个数列称为等差数列,公差d即为等差数列中的两项之差。
(2)举例讲解,让学生理解等差数列的基本概念。
3. 性质讲解(10分钟)(1)等差数列中,任意三项成等差数列;(2)任意等差数列的前n项和公式的关键在于首项和末项的和与次首项和次末项的和相等;(3)讲解等差数列的通项公式和前n项和公式的求法。
4. 公式的求解(15分钟)(1)教师讲解等差数列的通项公式和前n项和公式的求法;(2)通过例题讲解,让学生掌握等差数列的公式求解方法。
5. 练习(15分钟)(1)教师布置练习题,让学生独立完成;(2)对学生进行辅导和指导;(3)检查学生的答题情况,及时给予反馈。
6. 拓展应用(10分钟)讲解等差数列在实际生活中的应用,如日常生活中的数学应用题、物理运动问题等。
7. 总结与归纳(5分钟)教师对本节课的主要内容进行总结,并提出下节课的预习任务,鼓励学生多加练习,巩固所学知识。
高三数学必修五教案等差数列优秀4篇
高三数学必修五教案等差数列优秀4篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!高三数学必修五教案等差数列优秀4篇等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。
等差数列教案(多篇)
一、等差数列的定义1. 导入:引导学生回顾数列的概念,进而引出等差数列的定义。
2. 讲解:等差数列是一种特殊的数列,从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做等差数列的公差。
3. 举例:给出几个等差数列的例子,让学生观察并找出它们的公差。
4. 练习:让学生练习判断一些数列是否为等差数列,并找出它们的首项和公差。
二、等差数列的通项公式1. 导入:引导学生思考如何表示等差数列的任意一项。
2. 讲解:等差数列的通项公式为$a_n = a_1 + (n-1)d$,其中$a_1$ 是首项,$d$ 是公差,$n$ 是项数。
3. 推导:引导学生利用等差数列的定义和通项公式,推导出前$n$ 项和的公式。
4. 练习:让学生运用通项公式计算等差数列的任意一项,以及求前$n$ 项和。
三、等差数列的性质1. 导入:引导学生思考等差数列有哪些性质。
2. 讲解:等差数列的性质有:①首项和末项的平均值等于中项;②相邻两项的差等于公差;③前$n$ 项和的公式为$S_n = \frac{n(a_1 + a_n)}{2}$。
3. 举例:给出一些等差数列,让学生观察并运用性质进行判断。
4. 练习:让学生运用等差数列的性质解决问题,如求等差数列的中项、判断两个数列是否为等差数列等。
四、等差数列的应用1. 导入:引导学生思考等差数列在实际问题中的应用。
2. 讲解:等差数列在实际问题中的应用举例:①计算等差数列的前$n$ 项和;②求等差数列的通项公式;③解决与等差数列相关的实际问题,如工资增长、人口增长等。
3. 举例:给出一些实际问题,让学生运用等差数列的知识进行解决。
4. 练习:让学生运用等差数列的知识解决实际问题,如计算工资总额、预测人口增长等。
五、等差数列的综合练习1. 给出一些关于等差数列的练习题,让学生独立完成。
2. 针对学生的练习情况,进行讲解和解答疑惑。
3. 总结本节课所学内容,强调等差数列的定义、通项公式、性质和应用。
等差数列教学设计及教案
等差数列教学设计及教案教学目标:1. 理解等差数列的定义和性质。
2. 学会求等差数列的通项公式和前n项和公式。
3. 能够运用等差数列解决实际问题。
教学重点:1. 等差数列的定义和性质。
2. 等差数列的通项公式和前n项和公式。
教学难点:1. 等差数列的通项公式的推导。
2. 等差数列前n项和公式的推导。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾等差数列的定义和性质。
2. 提问:等差数列有哪些性质?如何判断一个数列是等差数列?二、等差数列的通项公式(15分钟)1. 介绍等差数列的通项公式:an = a1 + (n-1)d。
2. 解释通项公式的含义和推导过程。
3. 举例说明如何使用通项公式求等差数列的第n项。
三、等差数列的前n项和公式(15分钟)1. 介绍等差数列的前n项和公式:Sn = n/2 (a1 + an)。
2. 解释前n项和公式的含义和推导过程。
3. 举例说明如何使用前n项和公式求等差数列的前n项和。
四、等差数列的实际应用(15分钟)1. 举例说明如何运用等差数列解决实际问题,如求等差数列的和、求等差数列中的特定项等。
2. 让学生尝试解决一些实际问题,并讨论解题思路和方法。
五、总结与作业(5分钟)1. 总结等差数列的定义、性质、通项公式和前n项和公式。
2. 布置作业:求等差数列的第n项和前n项和,以及解决一些实际问题。
教学反思:本节课通过导入、讲解、举例和实际应用等环节,让学生掌握了等差数列的定义、性质、通项公式和前n项和公式。
在教学过程中,注意引导学生主动参与,积极思考,通过练习题的解答和实际问题的解决,巩固了所学知识。
在下一节课中,可以进一步拓展等差数列的应用领域,让学生更好地理解和运用等差数列。
六、等差数列的性质深入探讨(15分钟)1. 讲解等差数列的单调性,即等差数列是递增还是递减的。
2. 解释等差数列的奇数项和偶数项的性质。
3. 举例说明等差数列的性质在解决实际问题中的应用。
《等差数列》教学设计-经典教学教辅文档
《等差数列》教学设计
教学目标:
1.知识与技能教学目标:
理解等差数列的概念,掌握等差数列的通项公式;初步培养先生观察、归纳、推理论证的逻辑思想能力;培养先生数学应意图识和言语表达能力;浸透分类讨论的数学思想,培养先生逻辑思想的严谨性,进步数学素养。
2.过程与方法教学目标:
由实践例子引发先生探求数学知识的愿望,师生共同探求知识的发生发展的过程,促进先生自主探求合作交流,使技能得以进步,充分发挥先生的主观能动性。
3.情感态度与价值观:
充分激发先生学习数学的兴味,让先生体验成功的快乐,培养先生严谨的科学态度和实事求是的精神,让先生建立正确的人生观和价值观,提升先生实践用用的能力。
重点:掌握等差数列的概念及其通项公式的推导过程和运用:
难点:①理解等差数列“等差”的特点及通项公式的含义;
②“数学建模”的思想方法。
五、板书设计:表现重点,难点,及知识结构。
设计如下:
3.2等差数列
一、等差数列的定义……………… 练习:……………
二、等差数列的本质……………… ……………
三、等差数列的通项公式………… 成绩:……………例1
例2。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计教学目标:1.了解等差数列的定义和性质;2.掌握等差数列的通项公式及其推导过程;3.能够计算等差数列的前n项和。
教学难点:等差数列通项公式的推导。
教学准备:投影仪、黑板、粉笔、课件、举例用的物件(如铅笔、橡皮擦等)。
教学过程:Step 1:导入(5分钟)引入等差数列的概念,让学生回忆一下对等差数列的认识。
然后,通过举几个简单的例子,引导学生思考等差数列有什么特点。
Step 2:引入(10分钟)通过投影仪或者黑板展示等差数列通项公式an+b的推导过程,通过多个具体的例子,帮助学生理解等差数列的通项公式。
Step 3:练习(15分钟)提供一些练习题,要求学生计算给定等差数列的前n项和。
教师可以提供一些简单的等差数列,让学生上台演算,并帮助分析解题思路和方法。
Step 4:总结(10分钟)总结等差数列的定义、性质和通项公式。
并通过实例验证通项公式的正确性。
Step 5:拓展(10分钟)引导学生思考等差数列的应用领域,如金融、统计等方面,并展示一些实际应用案例。
Step 6:课堂练习(10分钟)布置若干道练习题,要求学生在课堂上完成,并检查答案。
Step 7:课堂小结(5分钟)回顾本节课所学的内容,并对学生的表现给予肯定和鼓励。
教学反思:通过这节课的教学,学生对等差数列的概念和性质有了初步的了解,并能正确运用等差数列的通项公式进行求解。
课堂氛围活跃,学生的参与度较高,但是对于一些更复杂的推导过程还不够理解。
今后在教学中,可以通过更多的实例和例题帮助学生更好地掌握等差数列的推导过程,同时扩大教学内容,让学生更好地理解等差数列的应用。
等差数列教案(5篇)
等差数列教案(5篇)第一篇:等差数列教案等差数列教案教学目的1.理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题.(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列,了解等差中项的概念;(2)正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;(3)能通过通项公式与图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题.2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.关于等差数列的教学建议(1)知识结构(2)重点、难点分析①教学重点是等差数列的定义和对通项公式的认识与应用,等差数列是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外,出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.(3)教法建议①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项其图像的形状相对应.可看作项数的一次型()函数,这与⑤有穷等差数列的末项与通项是有区别的,数列的通项公式是数列第项与项数之间的函数关系式,有穷等差数列的项数未必是,即其末项未必是该数列的第项,在教学中一定要强调这一点.⑥等差数列前项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的兴趣.⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.等差数列通项公式的教学设计示例教学目标1.通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;3.通过参与编题解题,激发学生学习的兴趣.教学重点,难点教学重点是通项公式的认识;教学难点是对公式的灵活运用.教学用具实物投影仪,多媒体软件,电脑.教学方法研探式.教学过程一.复习提问前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.二.主体设计通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求,求).找学生试举一例如:“已知等差数列中,首项,公差.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.1.方程思想的运用(1)已知等差数列的第______项.中,首项,公差,则-397是该数列(2)已知等差数列中,首项,则公差(3)已知等差数列中,公差,则首项这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.2.基本量方法的使用(1)已知等差数列中,求的值.(2)已知等差数列中,求.若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于的,由和和的二元方程组,所以这些等差数列是确定写出通项公式,便可归结为前一类问题.解决这类问题只需把两个和的二元方程组,以求得和,和称作基条件(等式)化为关于本量.教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于这是一个和和的二元方程,的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).如:已知等差数列中,…由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知等差数列中,求;;;;….类似的还有(4)已知等差数列中,求的值.以上属于对数列的项进行定量的研究,有无定性的判断?引出 3.研究等差数列的单调性,考察随项数的变化规律.着重考虑的符号,由学生叙的情况.此时是的一次函数,其单调性取决于述结果.这个结果与考察相邻两项的差所得结果是一致的.4.研究项的符号这是为研究等差数列前项和的最值所做的准备工作.可配备的题目如(1)已知数列始小于0?的通项公式为,问数列从第几项开(2)等差数列三.小结从第________项起以后每项均为负数.1.用方程思想认识等差数列通项公式;2.用函数思想解决等差数列问题.第二篇:等差数列教案(精选)等差数列教案一、教材分析从教材的编写顺序上来看,等差数列是必修五第二章的第二节的内容,一方面它是数列中最基础的一种类型、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习等比数列及数列的极限等内容作准备.就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,对其在性质的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体.依据课标“等差数列”这部分内容授课时间3课时,本节课为第2课时,重在研究等差数列的性质及简单应用,教学中注重性质的形成、推导过程并让学生进一步熟悉等差数列的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等差数列》教学设计
教学目标
1.通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;
2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;
3.通过参与编题解题,激发学生学习的兴趣.
教学重点,难点
教学重点是通项公式的认识;教学难点是对公式的灵活运用.
教学用具
实物投影仪,多媒体软件,电脑.
教学方法
研探式.
教学过程
一.复习提问
前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?
等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.
二.主体设计
通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求).找学生试举一例如:“已知等差数列中,首项,公差,求.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.
1.方程思想的运用
(1)已知等差数列中,首项,公差,则-397是该数列的第
______项.
(2)已知等差数列中,首项,则公差
(3)已知等差数列中,公差,则首项
这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.
2.基本量方法的使用
(1)已知等差数列中,,求的值.
(2)已知等差数列中,,求 .
若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些等差数列是确定的,由和写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量.
教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于和的.二元方程,这是一个和的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).
如:已知等差数列中,…
由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题
(3)已知等差数列中,求;;;;….
类似的还有
(4)已知等差数列中,求的值.
以上属于对数列的项进行定量的研究,有无定性的判断?引出
3.研究等差数列的单调性
考察随项数的变化规律.着重考虑的情况. 此时是的一次函数,其单调性取决于的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.
4.研究项的符号
这是为研究等差数列前项和的最值所做的准备工作.可配备的题目如
(1)已知数列的通项公式为,问数列从第几项开始小于0?
(2)等差数列从第________项起以后每项均为负数.
三.小结
1. 用方程思想认识等差数列通项公式;
2. 用函数思想解决等差数列问题.
四.板书设计
等差数列通项公式
1. 方程思想的运用
2. 基本量方法的使用
3. 研究等差数列的单调性
4. 研究项的符号
【《等差数列》教学设计】。