外辐射源雷达信号的杂波抑制
基于波束聚焦的外辐射源雷达干扰抑制技术研究
![基于波束聚焦的外辐射源雷达干扰抑制技术研究](https://img.taocdn.com/s3/m/163b3c074a7302768e9939d3.png)
Re e r h o nt r e e e S p e so f Pa sv da s a c n I e f r nc up r s i n o s i e Ra r Ba e n Ant nn a Fo usng sd o e a Be m c i
W ANG Kui ,TAO Ra n,SHAN Ta o
内干扰 信道发 生 变化 , 致 自适 应对 消器 输 出不再 收敛 , 导 降低 了干扰 抑制 能力。本 文提 出通过 对各 阵元信 号加权 补偿 , 波 束形成 等效 于聚焦 的效果 , 积 累 时间 内维持 信 道特 性 , 使 在 改善 自适 应对 消
器 在 雷达 扫描 状态 下的性 能。仿 真和 外场采 集数据 试 验表 明, 方法提 升 了外辐 射 源 雷达 时域 自 该
v re u i g te r tt n o ne n a i sd rn h oa i fa tn a,whih b e k h o v r e c ft ea a ie c n el ro t u ,a d o c r a st e c n eg n e o h d pt a c le u p t n v
d g a e h b l y o t re e e c n elto e r d s te a ii fi e r nc a c lain. I hi p r ti r p s d t a h o g ih i g c m— t n f n t spa e ,i s p o o e h tt r u h weg tn o p n a in t v r n e n lme t h e m o mi g i q ia e tt o u i g efc . W ihn c e s t o e e y a tn a e e n ,t e b a f r n se u v ln o fc sn fe t o t i umu aie ltv tme, te c a n lc r ce it sk p ,a d t epe om a c n e a a c n i g o d p ie c n e- i h h n e haa t rsi wa e t n h r r n e u d rr d rs a n n fa a tv a c l c f l rwa mp o e e si r v d. S mu ai n nd fed e p rm e ta e e  ̄id o t i l t sa l x e i n r a e u ,wh c o e h tt e meho a n o i ih prv st a h t d c n i — c e s n e ee c a c lain a ii fp sie r d rt ma n a p ie c n elri n e n oain r a e i tr r n e c n e lto b l y o a sv a a i do i da tv a c le n a tn a r tto f t me
外辐射源雷达杂波特性及抑制技术研究的开题报告
![外辐射源雷达杂波特性及抑制技术研究的开题报告](https://img.taocdn.com/s3/m/c739fd0fb80d6c85ec3a87c24028915f804d8436.png)
外辐射源雷达杂波特性及抑制技术研究的开题报告【摘要】外辐射源雷达受到许多干扰,其中主要的是杂波干扰。
本文通过分析外辐射源雷达杂波特性,提出了多种抑制技术,包括数字信号处理技术和硬件抑制技术。
这是一项研究外辐射源雷达抗干扰能力的重要工作,对于提高雷达的探测定位效果具有重要作用。
【关键词】外辐射源雷达、杂波干扰、抑制技术【引言】外辐射源雷达已成为现代军事技术中重要的一部分。
随着科技的进步,外辐射源雷达的探测范围和探测精度已经得到了很大的提高。
然而,除了信号目标之外,雷达还会受到许多其他因素的干扰,其中包括杂波干扰。
杂波干扰不仅会影响雷达的探测效果,还可能会导致误判和误报。
因此,研究外辐射源雷达杂波特性及其抑制技术,已经成为当前雷达技术研究中的重要问题。
【研究内容】本文的研究内容主要包括以下三个方面:1. 外辐射源雷达杂波特性分析外辐射源雷达的杂波干扰主要来自于大气、地面以及其他雷达、通信等系统的辐射。
本文将分析这些因素对雷达杂波的影响,探究外辐射源雷达杂波发射频率的分布特性、功率谱密度等方面的特性,为后续的抑制技术提供理论依据。
2. 抑制技术研究本文将提出多种数字信号处理和硬件抑制技术,以解决外辐射源雷达受到的杂波干扰问题。
例如,采用多普勒滤波器消除杂波干扰、设计宽带抗干扰后向散射器、使用更高性能的前端电路等,这些技术能够有效抑制外辐射源雷达的杂波干扰,提高雷达的探测定位效果。
3. 仿真实验与结果分析为了验证所提出的抑制技术的有效性,本文将进行仿真实验,并对实验结果进行分析。
通过实验,证明了所提出的抑制技术能够有效地降低外辐射源雷达的杂波干扰,提高雷达的探测效果。
【结论】本文通过对外辐射源雷达杂波特性及其抑制技术的研究,为提高雷达的抗干扰能力和探测定位效果提供了有益的参考。
这对于提高外辐射源雷达应用的效果,进一步推动雷达技术的发展具有重要意义。
基于波形特征的外辐射源雷达杂波抑制算法
![基于波形特征的外辐射源雷达杂波抑制算法](https://img.taocdn.com/s3/m/dbcd07b86429647d27284b73f242336c1eb930a8.png)
基于波形特征的外辐射源雷达杂波抑制算法外辐射源雷达是一种用于探测外部电磁波源的雷达系统,其应用范围广泛,包括电子侦察、通信干扰监测等领域。
然而,由于外辐射源雷达的工作频率较高,其接收机容易受到来自外部的干扰信号,从而影响雷达的探测性能。
因此,如何有效地抑制外辐射源雷达的杂波干扰成为一个重要的研究方向。
基于波形特征的外辐射源雷达杂波抑制算法是一种有效的抑制杂波干扰的方法。
该算法通过对接收到的信号进行波形分析,提取出信号的特征参数,然后根据这些特征参数进行杂波抑制。
具体来说,该算法包括以下几个步骤:第一步,对接收到的信号进行预处理。
预处理的目的是去除信号中的噪声和干扰,使得信号更加清晰。
预处理的方法包括滤波、去噪等。
第二步,对预处理后的信号进行波形分析。
波形分析的目的是提取信号的特征参数,包括峰值、波形宽度、频率等。
这些特征参数可以反映信号的特点,从而用于杂波抑制。
第三步,根据特征参数进行杂波抑制。
根据特征参数,可以设计出不同的杂波抑制算法。
例如,可以根据峰值大小进行杂波抑制,也可以根据波形宽度进行杂波抑制。
第四步,对抑制后的信号进行重构。
重构的目的是使得抑制后的信号更加接近原始信号,从而减少信息损失。
基于波形特征的外辐射源雷达杂波抑制算法具有以下优点:首先,该算法可以有效地抑制杂波干扰。
由于该算法根据信号的特征参数进行杂波抑制,因此可以更加准确地抑制杂波干扰,从而提高雷达的探测性能。
其次,该算法具有较高的实时性。
由于该算法只需要对接收到的信号进行波形分析,因此可以在较短的时间内完成杂波抑制,从而满足实时性要求。
最后,该算法具有较好的适应性。
由于该算法可以根据不同的特征参数进行杂波抑制,因此可以适应不同的雷达系统和不同的工作环境。
综上所述,基于波形特征的外辐射源雷达杂波抑制算法是一种有效的抑制杂波干扰的方法。
该算法具有较高的实时性和适应性,可以提高雷达的探测性能,具有广泛的应用前景。
一种外辐射源雷达的杂波对消方法[发明专利]
![一种外辐射源雷达的杂波对消方法[发明专利]](https://img.taocdn.com/s3/m/bb12fa81a45177232e60a227.png)
专利名称:一种外辐射源雷达的杂波对消方法专利类型:发明专利
发明人:王俊,苏思元,陈刚
申请号:CN201710670060.8
申请日:20170808
公开号:CN107561507A
公开日:
20180109
专利内容由知识产权出版社提供
摘要:本发明属于雷达技术,公开了一种外辐射源雷达的杂波对消方法,包括:将外辐射源雷达天线接收到的参考信号进行延时,得到参考信号及其延时构成的滑动参考矩阵,将得到的滑动参考矩阵划分为若干子矩阵;然后,逐次求解回波信号在所述滑动参考子矩阵中的投影,并迭代作差得到纯净的目标回波信号;最后,将参考信号与所得纯净目标回波信号进行距离‑多普勒二维相关处理以提高目标回波的能量,得到目标信息;能够降低杂波对消算法的运算量,缩短运算时间,提高系统的实时性能。
申请人:西安电子科技大学
地址:710071 陕西省西安市太白南路2号
国籍:CN
代理机构:西安睿通知识产权代理事务所(特殊普通合伙)
代理人:惠文轩
更多信息请下载全文后查看。
基于梯度自适应格型滤波的外辐射源雷达多径杂波抑制算法
![基于梯度自适应格型滤波的外辐射源雷达多径杂波抑制算法](https://img.taocdn.com/s3/m/dfde92acb0717fd5360cdc2b.png)
( S c h o o l o f El e c t r o n i c I n f o r ma t i o n,Wu h a n Un i v e r s i t y,Wu h a n 4 3 0 0 7 2,C h i n a )
t e r i s r e j e c t e d .A mo d i f i e d GAL f i l t e r a l g o r i t h m i s p r o p o s e d b a s e d o n t h e t r a d i t i o n a l GAL f i l t e r a l g o r i t h m.An
波是 一 种 有 效 的 杂 波 抑 制 算 法 , 但该 算法需要根 据经验 合 理设 置步 长参 数 , 收敛 速 率慢 , 在 抑 制 杂 波 的 同 时 会 造
成 处 理 距 离元 内 的 目标 回 波 被 部 分 相 消 。 基 于传 统 的 GA L 滤 波 提 出 了 一 种 改进 的 G AL 算 法 及 其 前 后 向 预 测 误 差的归一化 形式 , 该 算 法通 过 最 小化 前 向 和 后 向预 测 误 差 的 均 方 值 估 计 反 射 系数 , 并通过 最 小化 多重回 归滤波 的
Abs t r a c t :W h i l e t h e pa s s i v e r a d a r f a c e s a s i g n i f i c a n t p r o b l e m i n mu l t i p a t h c l u t t e r ,t h e t r a d i t i o n a l g r a d i e n t
外辐射源雷达干扰与杂波抑制算法研究
![外辐射源雷达干扰与杂波抑制算法研究](https://img.taocdn.com/s3/m/34ccf85654270722192e453610661ed9ac51555b.png)
外辐射源雷达干扰与杂波抑制算法研究外辐射源雷达干扰与杂波抑制算法研究引言:随着科技的不断进步和社会的不断发展,雷达系统在军事、空域监测、气象、导航等领域中扮演着重要的角色。
然而,雷达系统在实际应用中也面临许多问题,其中之一就是外辐射源的干扰与杂波抑制。
本文将重点研究这一问题,并探讨相关的算法。
一、外辐射源干扰的概念和影响外辐射源是指雷达系统接收到的来自雷达系统范围之外的电磁波辐射。
外辐射源干扰会导致雷达系统的信号质量下降,从而影响雷达的探测和跟踪能力。
这对于雷达系统的可靠性和准确性来说是一个严重的问题,因此需要采取一定的措施来抑制外辐射源的干扰。
二、外辐射源干扰的原因和特征外辐射源的干扰主要来自于雷达系统周围的电磁辐射设备,如通讯基站、电视发射塔、输电线路等。
这些设备产生的电磁波与雷达系统发射的信号相互干扰,导致雷达系统无法准确地探测和跟踪目标。
外辐射源的干扰特征主要表现在以下几个方面:1. 频率干扰:外辐射源产生的电磁辐射信号与雷达系统工作频率相近或相同,导致频率干扰。
2. 相位干扰:外辐射源的辐射信号与雷达系统的射频信号存在相位差,导致相位干扰。
3. 时域干扰:外辐射源的辐射信号引起雷达系统接收信号的时域波形变化,导致时域干扰。
4. 强度干扰:外辐射源辐射信号的强度过大,导致雷达系统的接收信号被淹没,无法正常工作。
三、外辐射源干扰的影响分析外辐射源干扰会给雷达系统带来诸多负面影响,主要有以下几点:1. 降低雷达系统的探测能力:外辐射源的干扰会使雷达系统无法准确地识别和跟踪目标。
2. 降低雷达系统的抗干扰能力:外辐射源的干扰会降低雷达系统对目标的识别能力,从而影响系统的抗干扰性能。
3. 影响雷达系统的工作稳定性:外辐射源的干扰会导致雷达系统的工作不稳定,从而影响系统的可靠性。
4. 降低雷达系统的测量精度:外辐射源的干扰会导致雷达系统的测量误差增加,从而影响系统的测量精度。
四、外辐射源干扰抑制算法的研究为了抑制外辐射源的干扰,研究人员提出了许多算法,并取得了一定的成果。
基于波形特征的外辐射源雷达杂波抑制算法
![基于波形特征的外辐射源雷达杂波抑制算法](https://img.taocdn.com/s3/m/54d0b5102bf90242a8956bec0975f46526d3a74d.png)
基于波形特征的外辐射源雷达杂波抑制算法一、引言外辐射源雷达是一种用于探测远距离目标的雷达系统。
由于工作环境的复杂性,外辐射源雷达往往会受到大量的杂波的干扰,影响探测效果。
因此,开发一种有效的杂波抑制算法对于改善外辐射源雷达系统的性能至关重要。
本文将介绍一种基于波形特征的外辐射源雷达杂波抑制算法,通过分析雷达接收到的信号波形特征,实现对杂波的有效抑制,提高雷达系统的探测性能。
二、波形特征分析为了实现杂波的抑制,首先需要对接收到的信号波形进行特征分析。
常用的波形特征包括峰值幅度、脉冲宽度、重复频率等指标。
通过分析这些波形特征,可以了解信号中的杂波成分,从而制定相应的抑制策略。
2.1 峰值幅度峰值幅度是信号波形中的最大幅度值。
通过比较接收到的信号波形的峰值幅度与预设的阈值,可以判断是否是杂波信号。
如果峰值幅度超过阈值,则认为是目标信号;否则,则是杂波信号。
2.2 脉冲宽度脉冲宽度是信号波形中的脉冲持续时间。
杂波信号通常由短脉冲组成,而目标信号通常具有较长的脉冲宽度。
通过设置适当的脉冲宽度阈值,可以实现对短脉冲的抑制,从而减少杂波干扰。
2.3 重复频率重复频率是信号波形中脉冲的重复周期。
通过分析信号波形中的重复频率,可以判断是否存在多余的杂波信号。
通过抑制重复频率较高的杂波信号,可以进一步减少杂波干扰。
三、基于波形特征的杂波抑制算法基于波形特征的杂波抑制算法主要分为两个步骤:特征提取和抑制策略。
3.1 特征提取特征提取阶段主要通过分析信号波形得到相关的特征指标。
首先,从接收到的信号波形中提取峰值幅度,通过与预设阈值进行比较得到目标信号;然后,在目标信号的基础上,进一步提取脉冲宽度和重复周期等特征。
3.2 抑制策略抑制策略阶段基于特征提取的结果,针对不同的波形特征制定相应的抑制策略。
对于峰值幅度较低的杂波信号,可以直接将其滤除;对于脉冲宽度较短的杂波信号,可以采用脉冲压缩技术将其展宽;对于重复频率较高的杂波信号,可以采用自适应滤波器对其进行抑制。
外辐射源雷达杂波抑制和航迹滤波算法研究的开题报告
![外辐射源雷达杂波抑制和航迹滤波算法研究的开题报告](https://img.taocdn.com/s3/m/c0acf24df342336c1eb91a37f111f18583d00c92.png)
外辐射源雷达杂波抑制和航迹滤波算法研究的开题报告一、研究背景和意义现代雷达系统的应用范围已经非常广泛,比如军事侦察、气象预报、火山、地震研究等领域都有其应用,同时事实上雷达系统抗干扰能力对于应用效果具有至关重要作用。
随着雷达技术的不断提高,雷达性能也在不断提高,但是雷达系统中的杂波及干扰问题仍然存在,这一点对于雷达系统的准确性和可靠性都是一定程度的影响。
而航迹滤波算法则是保证雷达跟踪系统正确、高效运行的重要措施之一,有助于减少误判和误报,并对系统的使用提供更全面和准确的信息。
二、研究内容本研究主要针对外辐射源雷达杂波抑制和航迹滤波算法进行研究,具体包括以下几个方面:1. 分析外辐射源雷达杂波抑制的方法及其原理;2. 研究航迹滤波算法的原理及相关实现技术;3. 设计针对外辐射源雷达杂波干扰的抑制算法,建立相应的仿真实验平台进行测试;4. 设计航迹滤波算法,提升雷达系统的准确性和可靠性;5. 验证抑制算法和航迹滤波算法的有效性和实用性。
三、研究方法采用文献法和实验法相结合的方法,通过对外辐射源雷达杂波抑制和航迹滤波算法相关文献的综合梳理和分析,深入了解并总结这些算法的原理、优缺点和适用范围,为后续研究提供理论基础。
同时,利用仿真实验来验证所设计算法的可行性,并采用实际数据对算法进行评估和优化。
四、研究预期成果本研究将为外辐射源雷达杂波抑制和航迹滤波算法研究提供重要的理论和实证证据,有助于对雷达系统进行优化和完善。
研究成果将有望在雷达系统的工程应用中取得广泛的应用,可以提高雷达系统的性能和可靠性,提高系统使用效益。
同时,本研究也将为相关学科领域的发展提供新的思路和研究方向。
采用时延估计的外辐射源雷达杂波抑制算法
![采用时延估计的外辐射源雷达杂波抑制算法](https://img.taocdn.com/s3/m/8bd04a1877c66137ee06eff9aef8941ea76e4b6b.png)
采用时延估计的外辐射源雷达杂波抑制算法翟永惠;吴江;王鼎【摘要】针对外辐射源雷达目标探测中监测通道存在分数倍时延杂波而造成杂波抑制性能下降的问题,提出了采用加权子空间拟合时延估计的外辐射源雷达杂波抑制算法(WSF-TDE-CM).在假设接收数据中的目标信号远远弱于杂波信号的前提下,该算法首先利用接收数据的自相关矩阵通过加权子空间拟合的方法建立杂波时延估计模型,将分数时延估计问题转化为复正弦频率估计的优化问题,然后利用量子粒子群算法求解杂波时延,最后通过估计的杂波时延构造杂波矩阵,将接收信号投影到杂波空间的正交补子空间中,从而实现杂波的抑制.WSF-TDE-CM算法不需要设置滤波器阶数,在杂波时延为分数时延的情况下仍能保持良好的杂波抑制性能.仿真实验表明,当监测通道存在分数倍时延杂波时,WSF-TDE-CM算法与扩展相消算法相比,其杂波抑制比提高了约20 dB;同时,在目标回波信噪比为-30 dB时也能很好地检测到弱目标回波.【期刊名称】《西安交通大学学报》【年(卷),期】2015(049)012【总页数】6页(P47-52)【关键词】外辐射源雷达;杂波抑制;分数时延估计;加权子空间拟合;量子粒子群算法【作者】翟永惠;吴江;王鼎【作者单位】解放军信息工程大学信息系统工程学院,450001,郑州;解放军信息工程大学信息系统工程学院,450001,郑州;解放军信息工程大学信息系统工程学院,450001,郑州【正文语种】中文【中图分类】TN985目前,雷达在军事中的应用越来越广泛。
其中,无源雷达将外界的辐射源(如调频广播信号、移动通信信号、电视广播信号和卫星信号等[1])作为发射的信号源,其本身并不向外发射电磁波,因而具有良好的隐蔽性和反侦察性能[2-3]。
由于无源探测传播环境的复杂性,监测通道中除了有微弱的目标回波外,还有很强的直达波和多径杂波,在做时频二维互相关时,目标回波的尖峰被杂波信号所淹没,所以只有采用合适的杂波抑制方法才能检测到目标回波。
单频网CP-OFDM信号外辐射源雷达的分载波杂波抑制方法
![单频网CP-OFDM信号外辐射源雷达的分载波杂波抑制方法](https://img.taocdn.com/s3/m/d9c4ec9aa1116c175f0e7cd184254b35eefd1a64.png)
单频网CP-OFDM信号外辐射源雷达的分载波杂波抑制方法易建新;万显荣;赵志欣;程丰;柯亨玉【摘要】杂波抑制是外辐射源雷达目标检测的一项关键技术。
尤其在单频网配置下,多径杂波和地杂波相对于单发射站情况成倍增长,造成其在空域和时域均具更大扩展,使得传统杂波处理方法面临新的困难。
该文研究了一种新的分载波杂波抑制方法,该方法针对带循环前缀的正交频分复用信号(CP-OFDM)所设计,能较好克服单频网配置给杂波抑制引入的新问题。
文章首先阐述了该方法的原理,接着展示了其有别于传统方法的特性,包括分载波空域处理的多普勒响应和全新的主瓣杂波问题,然后从理论上研究了该方法的鲁棒性,仿真和实测处理结果验证了该文方法的有效性。
% Clutter rejection is a key technique used by passive radars for target detection. Especially when using Single Frequency Network (SFN) configuration, the multipath clutter and ground clutter increase several times more than during a single illuminator situation, which means that the clutter extends in both the spatial and temporal dimensions. The high amount of clutter occupies numerous degrees of freedom when conventional spatial or temporal processing is used, leading to a large array requirement, a huge computational cost, or even a complete failure. This paper investigates a novel subcarrier-based processing technique that is tailored for Orthogonal Frequency Division Multiplex (OFDM) modulation with a Cyclic Prefix (CP-OFDM) to avoid the above-mentioned predicament. The algorithm principle is initially illustrated and followed by a discussion about the unique characteristics of Subcarrier-based Spatial Adaptive Processing (SSAP), which include theDoppler response and its unusual main-lobe clutter case. Then, the robustness is researched by evaluating the performance under relaxed basic assumptions. The conclusions are demonstrated by conducting test using simulated and real datasets.【期刊名称】《雷达学报》【年(卷),期】2013(000)001【总页数】13页(P1-13)【关键词】外辐射源雷达;单频网;CP-OFDM调制;分载波处理【作者】易建新;万显荣;赵志欣;程丰;柯亨玉【作者单位】武汉大学电子信息学院电波传播实验室武汉 430072;武汉大学电子信息学院电波传播实验室武汉 430072;武汉大学电子信息学院电波传播实验室武汉 430072;武汉大学电子信息学院电波传播实验室武汉 430072;武汉大学电子信息学院电波传播实验室武汉 430072【正文语种】中文【中图分类】TN958.97Passive Coherent Location (PCL) or Passive Covert Radar, short passive radar, is an emerging and highly promising technology[1-9], which may be used in many application areas in future[10-15]. Passive radar exploits the availability of so called “illuminators-of-opportunity” in the environment for the illumination of targets. The key-benefits of passive radar are, apart from its covert operation, the low-cost nature due tosaving on expensive transmitters as well as detection of low-altitudeand/or stealthy targets. Nowadays broadcast transmissions are changing more and more from analogue to digital. Passive radar research is focusing on the use of digital broadcast trans- mitters for illumination accordingly. Among the digital transmissions, most of modern digital TV and broadcast systems adopt Single Frequency Network (SFN) technology, such as DVB-T[16], DAB[10], CMMB (China Mobile Multimedia Broadcasting)[6], and so on. In SFN each illuminator transmits the same content at the same frequency simultaneously. From the perspec- tive of broadcast and communication, SFN is an efficient coverage approach since a group of illuminators constitutes a network with a wide range of coverage but only occupies one work bandwidth. Thus, it is a kind of power and frequency saving system. Nevertheless, owing to the same waveform in all the illuminators, the direct-path signal of each illuminator is equivalent to multipath clutter in terms of correlation output. It indicates that the SFN itself constitutes a multipath channel even ignoring the external reflection and scattering. The direct-path signals are strong multipath signal. In addition respective multipath clutters and ground clutters, the received clutters possess a greater extension in both spatial and temporal dimensions compared with the single illuminator situation. In this case, conventional temporal methods, such as in Refs. [17,18], would consume much more filter order, leading to computation explosion. With respect to traditional Spatial Adaptive Processing (SAP), like in Refs. [19,20], as the broadcasting waveform is not dedicated for radar applications, there is stillinteraction between two far separated clutters in range-Doppler domain. Therefore, traditional SAP is prone to be overloaded under small or medium array.In the face of these difficulties, new methods must be explored. Fortunately, the multipath processing technique in communication provides us the inspiration. Modern digital TV systems usually adopt OFDM (Orthogonal Frequency Division Multiplex) modulation. In particular, a Cyclic Prefix (CP) is inserted between each two useful OFDM symbols to prevent Inter-Symbols Inter- ferences (ISI) and keep the inter-carrier orthogo- nality under multipath environment. It can be called CP-OFDM modulation. Then the influence of multipath signals could be compensated with channel equalization in useful symbol window. It is interesting to note that the inter-carrier orthogo- nality under multipath environment means that the multipath signals are coherent with each other in each subcarrier. The coherence feature indicates that the clutters only occupy one degree of freedom in subcarrier domain. Inspired from this, we maybe achieve clutter rejection more easily in subcarrier domain.Actually, the idea of Subcarrier-based Spatial Adaptive Processing (SSAP) is first conceived in Ref. [21] and has been preliminarily discussed in Ref. [22]. Theoretical analyses and simulation results have proved the assertion that it can save degree of freedom by beamforming in subcarrier domain. In addition, the thought of SSAP has been extended in Ref. [23] by combining the temporal cancellation technique. It shows that Subcarrier- based Temporal Rejection (STR) approach can effectively reduce computationalcomplexity compared with the conventional temporal approaches. Nevertheless, the characteristics of SSAP and STR have not been thoroughly discussed and the assumptions involved therein could be violated in real-life environment. So their charac- teristics and robustness are further investigated in this paper to promote its applications.SSAP and STR are subsumed into the frame of subcarrier-based processing in this paper. As mentioned above, the key point of subcarrier-based processing is the coherence among clutters in subcarrier domain. It is actually a coherent clutter rejection problem which presents several unique features. Specifically, we investigate its Doppler response that tells us how many samples should be selected, and the main-lobe clutter case of SSAP which is different from the one in conventional SAP. Furthermore, as the assumptions involved in strict theoretical derivation could be violated in real-life environment, the sensitivity of the algorithm to Carrier Frequency Offset (CFO) and excessive channel delay extension is explored. The robustness study will reveal the algorithm’s performance in real-life environment.The paper is organized as follows. Section 2 introduces the SFN signal model and the principle of subcarrier-based processing. The unusual charac- teristics are presented in Section 3. Then the robustness is discussed in Section 4. Section 5 gives the simulated and real-life data results to verify the above discussions. Finally conclusions are drawn in Section 6.2.1 SFN signal modelPassive radar is usually equipped with two receiving channels: reference and surveillance channels. The reference channel serves as a source of the original transmitted signal. The other channel, or digitally formed beam, is looking towards the area of interest and is a source of the surveillance (echo) signal. Assume that the ground clutters and multipath clutters can be represented as a collection of multiple stationary point scatters. These clutters usually possesses zero Doppler frequency (at least nearly zero Doppler frequency), while the echoes of moving targets are charac- terized by nonzero Doppler frequency. If there are transmitters in the SFN, then the complex envelope of the surveillance signal is given bywhere is the direct-path signal of p-th transmitter (without loss of generality, assume the first transmitter is the nearest one, ), is the corresponding complex amplitude; are the complex amplitude and the delay (with respect to the first path) of the n-th stationary point scatterer (), respectively; , are the complex amplitude, the delay and the Doppler frequency of the m-th target (), respectively; is CFO between the transmitter and receiver; is the thermal noise.Obviously, the clutters under SFN configure- tion increase to times of the single transmitter case. In fact, there is no much difference between the direct-path signals of SFN transmitters and the reflections of fixed scatterers. We call them clutters without distinction under unambiguous situation. For description convenience, we recast Eq. (1) as followswhere and . The maximum value of denotes the channel delay extension. For the sake of argument, we further established the array signal model toinvestigate spatial processing. The temporal processing can be conducted on the signal of each array element or each beamformer output. Assuming the CFO has been compensated, i.e. , the array signal model based on model Eq. (2) can be expressed aswhere is the receiving signal vector, is the signal of the i-th antenna, superscript “T” denotes transpose operation, is the number of array antennas; is the array steering vector with dimension ; is the thermal noise vector.According to the CP-OFDM principle, the direct signal can be written as withwhere is the duration of useful symbol, is the duration of the CP, is the duration of one OFDM block (the typical structure of CP-OFDM modulation is shown in Fig. 1), represents the transmitted information of l-th OFDM block at k-th subcarrier and the subcarriers . Direct signal is used as reference sample in temporal cancellation and matched filtering. It is assumed to have been obtained from the reference channel.2.2 Principle of subcarrier-based processingAs we all know, the good anti-interference performance of CP-OFDM modulation for commu- nication purpose attributes to the insertion of CP. The CP is usually assumed to be greater than or equal to the channel delay extension so as to avoid ISI and assure inter-carrier orthogonality. When this assumption is satisfied, the benefits related to CP for communication purpose could also be derived as advantages for passive radar application. By truncating the part of CPs corresponding to the first path, the receivedsignal in the useful duration at k-th subcarrier can be expressed aswhere is the number of OFDM blocks used as snapshots, andThe constant phase rotation approximation within one OFDM block, i.e. , is applied in Eq. (7), and the is also assumed. This approximation is satisfied when the product between and the Doppler shift is small compared to unity.Note that the samples of the clutters at one subcarrier are coherent with each other, whereas target signals are uncorrelated to the clutters due to phase rotation introduced by the Doppler frequency. After merging similar terms, Eq. (6) can be simplified asAs expected, all the zero-Doppler clutters are integrated into a single term. could be viewed as the compos- ite steering vector of clutters. It indicates that only one degree of freedom is required for cancelling the zero-Doppler clutters. Thus the degree of freedom is no longer a limiting factor in subcarrier-based processing. This characteristic indicates that subcarrier-based processing possesses the potential for clutter rejection under SFN configuration in CP-OFDM signal based passive radar. In summary, the diagram of subcarrier-based processing is illustrated in Fig. 2.Observing Eq. (8), there are two aspects to distinguish between clutters and target echoes. (1) Clutters are coherent with the transmitted information at each subcarrier, whereas target signals are different due to Doppler frequency. (2) Clutters and target signals have different steering vectors if spatial information is further considered. Thus, when SSAP is adopted, there is something different with conventional SAP as timecorrelation is further utilized in SSAP. Corresponding novel characteristics are discussed in this section.3.1 Doppler responseSSAP utilizes the time correlation among multi- path clutters at each subcarrier in clutter rejection and distinguishes targets from clutters by their Doppler frequency. So the effect of clutter rejection with SSAP could be regarded as a zero-Doppler removal filter. It is conceivable that the target signal with zero Doppler frequency or near zero Doppler frequency is also rejected or weakened. Specifically, we notice thatwhereand operation “” denotes element product.According to Rayleigh limit criterion, when target Doppler frequency is greater than , the correlation between the clutters and target signal could be ignored. It is expected that the target signal will not be cancelled with the clutters. This kind of Doppler response provides the basis for the snapshot duration selection.Specifically, to quantitatively illustrate this response, we exploit the data set acquired in a typical real-life scenario. A synthesized target echo has been injected into the available data, generated as a delayed and Doppler shifted replica data of the reference signal with known input power. Then SSAP has been applied and the output target power has been evaluated by coherent integration. By varying the Doppler frequency (which is normalized to the Doppler resolution to make the results independent on the coherent processing interval) of the injected target and averaging theresults over 100 data files, the Doppler response is represented by the Signal-to-Noise Ratio (SNR) gains versus Doppler. As showed in Fig. 3 where the SNR gains has been normalized to the maximum theoretical SNR gain, the SSAP yields a corre- sponding SNR loss for small Doppler targets. Specifically, the SNR los s could be less than 1.5 dB when target’s Doppler is equal to or greater than the Doppler resolution, which is consistent with the above theoretical discussion.3.2 Unusual main-lobe clutter caseGenerally, conventional SAP can not cancel the main-lobe clutter, leading to some blind bearing intervals that correspond to the illuminators. Especially under SFN configuration, these blind bearing intervals may occupy a large proportion of the whole region. Fortunately, SSAP can address the main-lobe clutters to some degree. Because the composite steering vector of the clutters can be different from the scanned steering vector with quite a probability even if some clutters exist in the main lobe. This can be regarded as an additional advantage of SSAP. Nevertheless, the composite steering vector may cause other effect under subcarrier-based pro- cessing. For example, considering the case of two clutters, then the composite steering vector can be expressed asNow we investigate the array response in on condition that the main lobe is pointing to . Assume the weight vector , then we getwhere superscript “H” denotes Hermitian operation.Substitute Eq. (11) into Eq. (12), we further obtainTwo points should be noted in Eq. (13). (1) The amplitude response insidelobe clutter azimuth is proportional to the clutter strength ratio. Specifically, the greater the main-lobe to sidelobe clutter ratio, the higher the amplitude response in sidelobe clutter azimuth. (2) The phase response is a linear function of subcarrier frequency. This linear phase response will cause delay shift of target signal if it does exist in the sidelobe. The shift amount is equal to the delay difference between the main-lobe clutter and sidelobe clutter. Then a peak with new delay may be detected if the strength ratio is proper, which is a false alarm.The case that considers more clutters will reach similar results. Certainly, the derivation is more difficult so that it have to adopt a reasonable approximation. It can be concluded that, even though the main-lobe clutter could be rejected with SSAP to some degree, false alarms may caused by the target signals in certain azimuths of sidelobe clutters. These false alarms are at its height when main lobe is pointing to the azimuth of the strongest clutters.This main-lobe clutter case may be alleviated from two respects. (1) Adopt STR instead of SSAP. Temporal processing does not involve main-lobe clutter problem. (2) Appropriate deploy the receiver site to avoid such situation where the area of interest is in the direction of the strongest illuminators.Notice that above explanation about the principle of subcarrier-based processing is based on two basic assumptions, i.e. CFO is equal to zero and the channel delay extension is shorter than CP. However, these two assumptions may be violated slightly in real systems. Thus, the sensitivityof subcarrier-based processing to these two factors should be discussed.4.1 Sensitivity to CFOWhen there is residual CFO, i.e. , the array signal model is given byThe approximation of clutters should be cautious as clutters are the components to be rejected. Without loss of generality, we consider one clutter at first, for example, the clutter . After discretization at the l-th OFDM block, the clutter in the useful symbol conforms towhere is sampling period, and is the sampling frequency. Besides, is assumed to be the integer multiple sampling periods.Then clutter information atk-th subcarrier can be expressed asIn addition, we haveSubstitutes Eq. (17) into Eq. (16), then we getIn Eq. (18), if , we can arrive at that is merely relevant with , which is what subcarrier orthogonality asserts. However, when is the function of transmitted information at all subcarriers, i.e. , . Employing superposition principle, it can be observed that clutters at k-th subcarrier no longer occupy just one degree of freedom, and each term seems to occupy one instead. Fortunately, the CFO is usually not large under modern hardware level. It is easy to reach , which means the term related to is the dominant component of clutter at k-th subcarrier. What we are interested now is that what CFO level can prevent remarkable rejection performance degradation without adding array degree of freedom if SSAP is utilized.Notice that if the power of the terms related to is lower than noise, it would be reasonable to ignore it with little performance degradation.Furthermore, terms or possess the highest power among these terms. So it only needs to compare the power of terms and with the noise to determine the required CFO level. Specifically, through comparing the reciprocal of Clutter-to- Noise Ratio (CNR) with the amplitude of terms and , the required CFO level could be obtained. As the amplitude of terms and are the discrete version of sinc function in accordance with Eq. (18), it can be regarded as the function about with great accuracy especially when get a relatively large value. Fig. 4 shows the amplitude of the larger one between and versus . For example, if CNR is 40 dB, it can be derived that the required CFO conforms to , i.e. . In fact, denotes the Subcarrier Frequency Interval (SFI). So the condition indicates that the CFO should be smaller that 0.01 SFI. Usually the SFI is relative large, for instance, the SFI of 8 MHz mode CMMB signal is about 2.44 kHz, 0.01 SFI means that the required CFO should be smaller than 24.4 Hz. 24.4 Hz CFO is a relative large value which can represent the most cases in practice. So SSAP is not sensitive to CFO.As for STR, the philosophy behind it is to cancel the component of surveillance sample that are coherent with the reference sample at k-th subcarrier. Since the terms related to () in Eq. (18) is not correlated with reference sample , so these terms will sustain after STR, constituting inter- ference for target detection. Thus, the CFO requirement for SSAP should be also satisfied in STR. In addition, there is another phase factor term caused by CFO in Eq. (18), i.e. . The phase factor will lead to correlation loss between the term related to in surveillance signal and referencesample.Record the term in sur- veillance signal aswhere the complex amplitude is ignored for brevity.Applying orthogonal projection principle, the residual sample conforms to Assume the module of is a constant, then the residual power ratio can be expressed asSimilarly, the residual power ratio versus is presented in Fig. 5. It can be observed that the required CFO should satisfy () if 40 dB rejection is needed. denotes the frequency resolution as is the processing duration. Thus, the required CFO level is directly related to the frequency resolution, which is a tougher restriction compared with the SSAP case. For instance, if the processing duration is 25 ms, then required CFO should be smaller than 0.22 Hz. Apparently, STR is more sensitive to CFO. In practice, the transmitters in SFN adopt GPS technique to achieve frequency and time synchronization. Thus, to employ STR method for clutter rejection under SFN config- ation, it is necessary to adopt GPS in the receiving terminal and to be supplemented with CFO estimation and compensation methods. In fact, if the module of is not a constant, Eq. (21) reflects the mean level of clutter rejection performance. Thus, above discussion also applies to CFO sensitivity analysis of other types of temporal approaches.4.2 Excessive channel delay extensionThe assumption that CP is greater than or equal to the channel delay extension could not always hold. This is really true from a radar point of view, especially in SFN configuration, and will be substantiated in thesuccessive experimental results. For convenience, we name the clutter whose delay exceeds the CP as far clutter and the clutter whose delay is less than or equal to the CP as near clutter. Even though the far clutters pose little threat to the correct decoding for communication purpose as they are usually 10-40 dB below the direct-path signal or other strong near clutters, they indeed cause trouble for radar detection since they could still be much stronger than the reflected target echoes. Thus, further discussion should be conducted to investigate the robustness of SSAP to far clutters. Without loss of generality, here we consider the case of one far clutter. The received signal conforms towhere the first and second terms denote near clutter and the third term denotes far clutter.The distinction between far clutters and near clutters can be clearly figured out from Fig. 6. If far clutters exist, there are signals from both the current OFDM block and the previous OFDM block in the selected useful symbol interval . So the far clutter can be written aswhereandAt this moment the subcarrier samples of the far clutter are not totally correlated with the ones of the near clutters. Specifically, the subcarrier samples of component are partially correlated with the near clutters and the subcarrier samples of component are uncorrelated with the near clutters.To gain insight into the subcarrier-based processing in the case wherethere exist far clutters, we divide the component atk-th subcarrier into two parts where the first term is totally correlated with the one of near clutter while the second one contributed by spectrum leakage is uncorrelated with near clutter. Usually the strength of the second one is much below the first one. Then the k-th subcarrier samples conforms toThis recombination of near clutter and far clutter gives us a new perspective to the spatial property of the clutters. First, the degree of freedom required for clutter rejection in subcarrier domain will not exceed the one in time domain. Second, even though one additional degree of freedom may be needed for a far clutter, the power distribution on each steering vector has changed. Note that the component is generally the dominant component of far clutter as long as the exceeded delay is small compared to the useful symbol duration. It indicates that only accounts for a small fraction of the energy of far clutter in the subcarrier domain. In extreme cases where the power of is lower than the thermal noise, this term can merge into noise with little deterioration of the detection performance. Two such cases can occur in practice. (1) The exceeded delay is very short. (2) The far clutters have low power. Certainly, even these two conditions do not hold, adding array elements can effectively rejected the far clutters. As there is usually a small amount of strong far clutters thanks to the networking signal structure considerations in communication, relatively small array can achieve desirable clutter rejection under SFN configuration with SSAP. Thus, SSAP is robust to far clutters.As for STR, is the residual component of far clutters that can not berejected with STR. So STR possesses slightly lower performance with respect to far clutters compared with SSAP. However, the influence of far clutters is a gradual process. No “threshold effect” exists. In this sense, STR still possesses robustness to far clutters to some degree.5.1 Simulations about the robustnessTo verify the theoretical analyses about the robustness, several simulations are conducted. The main parameters involving in the simulations are listed in Tab. 1.For each considered case, 100 independent simulations are performed. Simulation 1 and Simulation 2 are conducted to verify the discussion about sensitivity to CFO. The results are shown in Fig. 7(a) where the CFO of SSAP case is normal- ized to and the CFO of STR case is normalized to . As expected, the SNR of both cases decreases with the increase of normalized CFO. With respect to SSAP, when CFO reach , the SNR loss is about 8 dB, which is consistent with the theoretical analysis as shown in Fig. 4. As for STR, when CFO arrive at , the SNR loss is about 12 dB, which is slightly lower than theoretical value (about 14 dB) since the residual power of the clutter is not totally equal to Gauss white noise. On the whole, the simulations confirm the theoretical analysis about the CFO sensitivity.In the Simulation 3, we want to investigate how much exceeded delay will have impact on the clutter suppression performance without adding extra degree of freedom. The results are shown in Fig. 7(b). When the exceeded delay is small, specifically, for 20 dB CNR and more than for 10 dB CNR, one degree of freedom is enough to cancel the clutters with SNR loss lessthan 1 dB in the considered case.In the Simulation 4, the influence of CNR on the clutter rejection performance is researched and the results are presented in Fig. 7(c). Concluding from the results, we get that the output SNR decline gently versus exceeded delay with CNR equal to 5 dB and 10 dB. The results of Simulation 3 and Simulation 4 validate the discussed extreme cases following Eq. (27).In the Simulation 5, the results (as illustrated in Fig. 7(c)) show that adding a degree of freedom can effectively suppresses a strong far clutter. Combining the theoretical and simulation results, it can be concluded that the SSAP is not sensitive to CFO whereas STR is sensitive to CFO. In addition, SSAP is robust to far clutters. When the exceeded delay is short or the far clutters are weak, little deterioration can be observed without increasing the degree of freedom. If this case does not hold, adding array elements can effectively handle the far clutters. Therefore small array can achieve desirable clutter rejection in the complex environment with SSAP as there is usually a small amount of strong far clutters.5.2 Real-life data resultsTo demonstrate the validity of subcarrier- based processing in practical environment, real-life data is used for evaluation. The real-life data is acquired by Wuhan University under typical airborne target detection scenario. The ARD (Amplitude Range-Doppler) map before clutter rejection is illustrated in Fig. 8(a). The ARD maps have been normalized to the maximum amplitude. In Fig. 8(a), the strong peak appearing at zero。
外辐射源雷达目标检测和干扰抑制技术研究
![外辐射源雷达目标检测和干扰抑制技术研究](https://img.taocdn.com/s3/m/52c0d79332d4b14e852458fb770bf78a65293ad8.png)
外辐射源雷达目标检测和干扰抑制技术研究外辐射源雷达目标检测和干扰抑制技术研究随着信息化技术的快速发展,雷达系统在军事、民用和科研领域中扮演着重要角色。
然而,雷达系统在其工作过程中经常面临着各种各样的问题,其中最常见的就是外辐射源和干扰信号对雷达目标检测造成的干扰。
因此,外辐射源雷达目标检测和干扰抑制技术的研究变得至关重要。
首先,我们需要了解外辐射源对雷达目标检测的影响。
外辐射源是指不同频率和功率的电磁波信号源,这些信号源可能来自雷达系统周围的信号源,比如电视和广播发射塔、手机基站等。
外辐射源会产生干扰信号,这些信号与雷达系统本身的信号混合,导致目标检测的准确性下降。
为了解决这个问题,研究人员一直致力于改善雷达系统的抗干扰能力,提高雷达目标检测的准确性。
其次,为了抑制外辐射源的干扰,研究人员提出了一系列的技术。
其中之一就是差分方位多普勒处理技术。
该技术通过对雷达接收到的信号处理,从而抑制外辐射源产生的干扰信号。
它基于观察到的干扰信号和目标信号的不同分布特征,通过自适应处理器对两者进行分离,从而提高雷达系统的目标检测性能。
此外,自适应滤波技术也被广泛应用于外辐射源雷达目标检测和干扰抑制中。
该技术基于对接收到的干扰信号进行建模和估计,并利用这些信息设计滤波器,将干扰信号从雷达系统中抑制出去。
自适应滤波技术能够根据干扰信号的变化自动调整滤波器的参数,从而更加适应不同的工作环境和信号情况。
除了以上技术,利用空间域信息和时间域信息的处理方法也是外辐射源雷达目标检测和干扰抑制的重要技术手段。
空间域信息处理方法通过对雷达系统接收到的信号进行空间域的分析和处理,从而抑制干扰信号。
时间域信息处理方法则基于对信号在时间上的变化进行分析和处理,从而提高雷达系统的目标信号检测能力。
最后,为了进一步改善外辐射源雷达系统的性能,研究人员还将深度学习技术应用于这一领域。
深度学习技术通过建立神经网络模型,实现对不同信号的自动分类和辨识,从而提高目标检测的准确性和抗干扰能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外辐射源雷达信号的杂波抑制摘要:利用外辐射源(如GSM信号、调频广播、电视、GPS等的发射信号)的无源雷达探测技术一直是国内外研究的热点。
在目标检测上,直达波信号的干扰不但对通道的动态范围提出了极高的要求,同时对微弱目标回波的检测构成了限制。
本文中针对外辐射源雷达的杂波(包括直达波和地杂波)抑制问题,运用一种顺序抵消算法来抑制杂波, 并将该算法应用于理论和实测数据,通过编程仿真分析,验证了该算法对于外辐射源雷达的杂波抑制具有有效性和实用性。
关键词:外辐射源雷达,直达波,杂波抑制Abstract: The technologies of the passive radar based on noncooperative illuminator have interested us greatly. To target detect the interference of direct signal requires rigorously dynamic scope of channel also restricts detection of weak signal The direct signals is suppressed by w ay of two arrays, and the result of simulation is given. A sequential approach was used for disturbance cancellation in passive radar, which was based on project ion s of the received signals in a sub space orthogonal to disturbance. Then the sequential cancellation algorithm was simulated to process both the theoretical data and radar received data to p rove it s feasibility and validity.Key words: passive radar, direct signal, clutter cancellation1 绪论1.1 无源雷达及其产生背景在现代战争中,先进电子进攻技术的不断发展给有源雷达带来了严重的生存危机,主要包含四大威胁:电子干扰、超低空突防以及反辐射导弹和隐身技术,因此雷达必须具备对抗这四大威胁的能力才能在战争中生存[1]。
无源雷达由于本身不辐射电磁波,具有隐蔽性高、抗干扰能力强、作用距离远等优点,而受到各国雷达研究者的广泛关注,因为这对于提高现代电子战环境下的军事电子系统的生存能力具有重要的意义。
另一方面,科技的进步导致了越来越多的民用信号的产生,继广播信号之后,电视信号、第二、三代无线通信信号GSM 和CDMA等通信信号以及GPS 相继出现,为无源定位系统寻找合适的外辐射源提供了更多的可能。
而其中第二代手机信号——GSM 信号因其分布广泛、冗余度大、容易组网等特点而越来越受到广泛重视和研究,其通信标准也已相对完善。
所谓无源雷达,指的是本身不辐射电磁信号,而是利用目标反射的电磁信号对其进行定位与跟踪的雷达。
它与传统双(多)基地雷达类似,区别在于无源雷达没有发射机部分,取而代之的是空间中已存在的民用信号[2]。
可以分为两种情况,分类的依据是所利用辐射源的来源,一是利用目标携带的电子设备辐射的信号作为辐射源;第二种利用的是除了发射机与目标外的第三方辐射源发射的信号,通过接收目标反射的部分对目标进行定位与跟踪的无源雷达。
其中,这个第三方辐射源被称为外辐射源,可能是广播信号、电视信号、无线通信信号、GPS 信号等[3]。
本文研究的是利用第二代无线通信信号GSM (Global System for Mobile Communications)信号作为外辐射源的无源雷达,是上述分类中的第二类。
无源雷达利用非合作的第三方信号,无发射机,只靠接收机来探测和跟踪目标。
从传统雷达体制来看,它类似于双(多)基地雷达。
根据外辐射源和接收机的数量和位置关系组成来看,无源雷达可以分为如下几类:单发单收双基地雷达系统、单发多收的多基地雷达系统、多发多收的多基地雷达系统、单发射机和机载平台上的接收机组成的双基地雷达系统[4]。
1.2 研究现状利用民用辐射源来探测目标并不是一个新的技术,它的历史几乎和雷达技术本身一样悠久。
早在1935年,罗伯特·沃森·瓦特曾在单基地无源雷达系统中利用英国广播公司发射的短波射频,照射10公里外的“海福特”轰炸机,但当时的系统缺乏足够的处理能力,不能计算出目标的精确位置。
当前,利用电视、广播或通信基站等民用辐射源来探测目标仍然是各国研究的热点。
英国伦敦大学的H.D.Griffiths[5]研究了基于电视信号的非合作式双基地雷达。
该实验系统将Crystal Palace电视台作为外辐射源,在相距11.8km的伦敦大学设置了接收机。
该接收机由 2 个通道组成,参考天线系统由一个10 阵元八木天线组成,接收电视台的直达信号;目标回波天线系统由 4 个17 阵元的八木天线组成,用于接收目标回波信号。
此外,该实验系统还添加了一个单独的八木天线,并在其上固定一个视频相机,用于监视飞机的有无。
新加坡南洋理工大学的H.Sun等研究人员利用GSM信号构建了简单的无源雷达系统[9-10],通过实验证明其可以检测出近地移动目标以及海面目标并对其进行航迹跟踪。
由于新加坡的移动基站分布密集,蜂窝小区覆盖面积非常小(1.5-2km),基站发射功率较小,用双通道实验系统时,对海上船只的检测距离大于 1 公里,对民航飞机的检测距离大约为 3.5 公里,而采用 4 阵元喇叭天线实验系统时,对于民航飞机的检测距离可以达到 6 公里。
可以推测,在其他蜂窝基站地理分布更合理,基站发射功率更大的国家或地区,这种基于GSM的无源探测系统将具有更好的性能。
德国Wachtberg的Ulrich Nickel[11]等研究了基于GSM信号的无源雷达系统,并用该系统检测到了距离为 2.3km外的3辆运动小车。
该实验系统使用了GAMMA阵列天线,该天线是长为3.12米的均匀线阵,由40 个相互分开的圆柱形天线阵元组成,其中32 个阵元是活跃的,另外8个阵元不起作用,每个阵元又由3个Vivaldi天线组成。
该实验显示,GSM基站的选择至关重要,它直接决定实验系统的性能好坏,但是对于如何选择基站,暂时还没有简单的规则。
意大利罗马的Fabiola Colone[3]等研究人员利用WiFi发射的信号检测到了160米外速度为20km/h的运动物体。
该实验系统由双通道组成,一个是参考通道,另一个是目标回波通道。
天线的波束宽度为15 ,前后瓣幅度比大于30dB。
除此之外,还有很多国家热衷于无源技术的应用研究。
美国国防部国防高级研究计划局以及华盛顿大学、乔治亚技术大学等高校和雷声等公司,都对这一领域进行了研究。
在欧洲,法国也进行了相应的技术研究工作,英国研究了无源相干雷达和“蜂窝”雷达(Celldar),俄罗斯和捷克也进行了类似研究。
我国自八十年代以来也开始研究双(多)基地雷达技术,试验了多种型号的双(多)基地雷达系统。
西安电子科技大学雷达信号处理国防科技重点实验室王俊教授等研制了基于调频广播信号的无源雷达系统。
该系统可以检测到距离约为290 公里外的飞行目标,同时实现了对目标的定位和航迹跟踪。
此外,国防科技大学、南京理工大学、电子科学研究院、北京理工大学等多家单位也正在对利用广播、电视、通信信号作照射源的双(多)基地雷达技术进行研究,并通过实验初步检测到飞行目标的存在。
研究基于外辐射源的无源雷达系统的国家还有很多,但在所有这些系统中,最引人注目的是美国洛克希德·马丁公司推出的名为“沉默哨兵”(Silent Sentry)[5-10]的全被动式空中监视系统。
该系统是洛克希德·马丁公司经15 年的研究后,唯一投入实际工作的系统。
该系统在实验中以被动方式跟踪到了48km 外飞行的飞机,而且定位精度与常规的空中搜索雷达相差无几。
其信号处理的核心算法被称为被动相参定位(PCL)算法。
系统的接收信号为50~800MHz的调频广播和电视信号,天线为8×25 英尺的相控阵天线,可以覆盖方位105°,俯仰50°的空域。
公开报道的第一代系统为固定站,第二代系统发展成为更加灵活机动的雷达车快速部署形式。
1.3外辐射源雷达的关键技术1.3.1 辐射源的优化选择外辐射源即被利用来进行定位与跟踪的非合作信号,是目标和接收机以外的第三方信号。
目标的测量和跟踪精度可以通过增加辐射源的数量来实现,这同时还可以使系统的稳定性和容错性大幅度提高,但增加辐射源的数量同时又使得计算量大幅提升,并且若增加的是无效的辐射源,或者辐射源利用难度较大,则不仅不会提高定位精度,反而浪费系统资源[13]。
因此,必须综合考虑辐射源的组网技术、功率控制方式以及系统具备的其他特点对其进行优化选择。
1.3.2 直达波抑制技术由于是利用第三方的非合作信号对目标进行定位,且外辐射源信号的功率相对比较小,通过目标反射回来的信号功率也就更微弱了。
同时,在目标回波接收通道中还混有从直达通道中泄露进来的强直达波信号,这势必会淹没真正的目标位置信息。
在典型情况下,到达接收机处的直达波信号相对目标回波信号强度高70dB以上[14],所以,对直达波进行有效抑制,提取出淹没在直达波中的微弱目标反射信号成为了系统的一项关键技术。
针对这个问题,文献[7]提到采用空间电磁屏蔽方法,其主要思想是使接收机避开直达波方向,但实际操作时达到的抑制效果较差,且使得观测范围变小,故实用性不强;更有效也是更常用的方法是利用两个天线分别接收直达波和目标回波,以纯净直达波作为参考信号,采用自适应滤波器来对目标回波通道中混入的直达波进行对消[11]。
1.3.3 多基站信号分离GSM 系统为了提高通信系统的频率利用率,其小区组网时采用的是蜂窝形式,在小区内或小区之间采用一定的频率复用方式。
所以当无源雷达利用GSM 信号作为外辐射源时,除了如上提到的直达波干扰,周边基站发射的信号经过目标反射后进入接收机,也会对目标检测形成干扰[10]。
这其中,邻近基站所产生的干扰最大,所以必须将来自多个基站的信号分离开。
根据网络优化布局的准则,虽然两个基站的BCCH (广播控制信道)和FCCH (频率校正信道)是同步的,但是它们的载频点和基站识别码不同,其载波频率差大于等于 200kHz ,根据此特点,可以考虑在频域利用带宽 200kHz 的带通滤波器将需要的照射源滤出,从而成功达到多基站信号的分离。