苯环上的定位基
苯环取代基定位口诀
苯环取代基定位口诀
苯环取代基定位口诀是指在苯环上发生取代反应时,如何确定取代基的位置。
其口诀为“2,4,6,8定位,1,3,5,7废物”。
具体解释如下:
1. 2,4,6,8定位:苯环上的2号、4号、6号、8号碳原子是定位位置,因为它们与苯环上的其他碳原子相邻,容易发生取代反应。
2. 1,3,5,7废物:苯环上的1号、3号、5号、7号碳原子是废物位置,因为它们与苯环上的其他碳原子隔了一个碳原子,不容易发生取代反应。
例如,苯环上有一个取代基,需要确定它的位置。
首先看取代基所连接的碳原子与苯环上的哪个碳原子相邻,如果是2号、4号、6号或8号碳原子,则取代基的位置就在相应的位置上;如果是1号、3号、5号或7号碳原子,则取代基的位置就不在这些位置上,需要继续寻找。
这个口诀虽然简单易记,但并不是绝对的,有时还需要结合实际情况进行判断。
邻对位定位基名词解释
邻对位定位基名词解释
邻对位定位基是指在苯环上,与苯环的碳原子直接相连的基团,这些基团通过诱导效应和共轭效应,影响苯环上电子云密度的分布,进而影响苯环上的取代反应的定位问题。
邻对位定位基主要是一些具有给电子能力的基团,例如:-OH(羟基)、-NH₂(氨基)、-NR₂(烷基肼基)、-NHR(芳香胺基)等。
这些基团在苯环上的位置决定了苯环上取代反应的主要方向。
邻对位定位基的作用主要表现在以下几个方面:
1.邻对位定位基通过诱导效应和共轭效应,使苯环上的电子云密度增加,有利于亲电试剂的进攻,因此苯环上的取代反应主要发生在邻位和对位上。
2.邻对位定位基的数目和强度也影响着苯环上取代反应的位置。
当有多个邻对位定位基存在时,取代反应更易发生在电子云密度更高的位置上。
3.不同邻对位定位基对苯环上取代反应的影响程度不同,这主要取决于基团的电子效应和立体效应。
例如,-OH和-NH₂的定位能力强于-CH₃和-Cl,而-CONH₂的定位能力更强。
在具体的化学反应中,邻对位定位基的作用效果可以通过实验进行验证。
例如,在傅克反应中,当苯环上有邻对位定位基时,反应主要发生在邻位和对位上;当苯环上没有邻对位定位基时,反应主要发生在间位上。
邻对位定位基在有机合成中具有广泛的应用,它可以有效地控制
苯环上取代反应的位置,从而实现化合物的定向合成。
苯环定位规则
苯环上原有的取代基对新导入取代基有影响,这种影响包括反应活性和进入位置两个方面。
通常,苯环上原有的第一取代基称为定位基,从大量实验事实的分析总结中发现,定位基的定位作用遵循一定的规律,这一规律称为苯环上亲电取代反应定位规律(又称定位规则)。
下面分别讨论定位基的类型;定位规则的理论解释;二元取代苯的定位规律;定位规律的应用。
(一)定位基的类型1.邻、对位定位基。
这类定位基的结构特征是定位基中与苯环直接相连的原子不含不饱和键(芳烃基例外),不带正电荷,且多数具有未共用电子对。
常见的邻、对位定位基及其反应活性(相对苯而言)如下:强致活基团:―NH2(―NHR,―NR2),―OH中致活基团:―OCH3(―OR),―NHCOCH3(-NHCOR)弱致活基团:―ph(―Ar),―CH3(-R)弱致钝基团:―F,―Cl,―Br,―I这类定位基多数使亲电取代反应较苯容易进行,但卤素例外。
2.间位定位基。
这类定位基的结构特征是定位基中与苯环直接相连的原子一般都含有不饱和键(-CX3例外)或带正电荷。
常见的间位定位基及其定位效应从强到弱顺序如下:―N+H3,―N+R3,―NO2,―CF3,―CCl3,―CN,―SO3H,―COH,―COR,―COOH,―COOR,―CONH2等。
这类定位基属致钝基团,通常使苯环上亲电取代反应较苯难进行,且排在越前面的定位基,定位效应越强,反应也越难进行。
(二)定位规则的理论解释苯环上的取代反应是亲电取代反应。
因此,从反应活性的角度分析,凡有助于提高苯环上电子云密度的基团,就能使苯环活化,反应活性提高;反之,凡是使环上电子云密度降低的基团,就能使苯环钝化,反应活性降低。
从反应位置的角度分析,当苯环上没有取代基时,环上六个碳原子的电子云密度是均等的;但当苯环上有取代基时,由于取代基的电子效应沿着苯环共轭体系传递。
在环上出现了出现了电子云密度的疏密交替分布现象。
第二个取代基总是进入苯环上电子云密度相对较大的部位,从而使这些碳原子上的取代物占了多数。
苯环上的定位基
一、定位基定位效力之阳早格格创做苯环上已有的与代基喊干定位与代基.1、邻对于位定位与代基①观念:当苯环上已戴有那类定位与代基时,再引进的其余基团主要加进它的邻位大概对于位,而且第二个与代基的加进普遍比不那个与代基(即苯)时简单,大概者道那个与代基使苯环活化.②特性:那类与代基中间接连于苯环上的本子普遍具备已共用电子对于,本去不含有单键大概三键.③定位与代效力按下列序次而渐减:-N(CH3)2 , -NH2 , -OH , -OCH3 , -NHCOCH3 , -R , (Cl,Br,I)二甲氨基氨基羟基甲氧基乙酰氨基烷基卤素2、间位定位与代基①定义:当苯环上己有正在那类定位与代基时,再引进的其余基团主要加进它的间位,而且第二个与代基的加进比苯要易,大概者道那个与代基使苯环钝化.②特性:与代基中间接与苯环贯串的本子,有的戴有正电荷,有的含有单键大概三键.③定位效力按下列序次而渐减:-N+(CH3)3 , -NO2 , -CN , -SO3H , -CHO , -COOH三甲铵基硝基氰基磺酸基醛基羧基3、与代定位顺序本去不是千万于的.本质上正在死成邻位及对于位产品的共时,也有少量间位产品死成.正在死成间位产品的共时,也有少量的邻位战对于位产品死成.4、苯环的与代定位顺序的阐明当苯环上连有定位与代基时,苯环上电子云稀度的分散便爆收变更.那种效率可沿着苯环的共轭链传播.果此共轭链上便出现电子云稀度较大战电子云稀度较小的接替局面,进而使它表示出定位效力.①邻对于位定位与代基的定位效力:邻对于位定位与代基除卤素中,其余的多是斥电子的基团,能使定位与代基的邻对于位的碳本子的电子云稀度删下,所以亲电试剂简单打击那二个位子的碳本子.卤素战苯环贯串时,与苯酚羟基相似,也有目标差异的吸电子诱导战共轭二种效力.但是正在此情况下,诱导效力占劣势,使苯环上电子云稀度落矮,苯环钝化,故亲电与代反应比苯易.但是共轭使间位电子云稀度落矮的程度比邻对于位更明隐,所以与代反应主要正在邻对于位举止.②间位定位基的定位效力:那类定位与代基是吸电子的基团,使苯环上的电子云移背那些基团,果此苯环上的电子云稀度落矮.那样,对于苯环起了钝化效率,所以较苯易于举止亲电与代反应.③共振表面对于定位效力的阐明邻对于位中间体均有一种宁静的共振式(邻对于位定位基的效率).正在间位定位基的效率下,正在三个大概的碳正离子中间体中,邻对于位共振式中正电荷是正在连有吸电子基的碳上,它使碳正离子中间体更不宁静.所以间位碳正离子中间体是最有利的.二、二与代苯的定位顺序如果苯环上已经有了二个与代基,当引进第三个与代基时,效率第三个与代基加进的位子的果素较多.定性天道,二个与代基对于反应活性的效率有加战性.1.苯环上已有二个邻对于位定位与代基大概二个间位定位与代基,当那二个定位与代基的定位目标有冲突时,第三个与代基加进的位子,主要由定位效率较强的一个去决断.2.苯环上己有一个邻对于位定位与代基战一个间位定位与代基,且二者的定位目标差异,那时主要由邻对于位定位与代基去决断第三个与代基加进的位子.3.二个定位与代基正在苯环的1位战3位时,由于空间位阻的闭系,第三个与代基正在2位爆收与代反应的比率较小.参照资料:有机化教下等培养出版社。
苯环上亲电取代反应的定位规律
之阳早格格创做苯环上亲电与代反应的定位程序基础观念:定位基:正在举止亲电与代反当令,苯环上本有与代基,不但是效率着苯环的与代反应活性,共时决断着第二个与代基加进苯环的位子,即决断与代反应的位子.本有与代基称干定位基.一、二类定位基正在一元与代苯的亲电与代反应中,新加进的与代基不妨与代定位基的邻、间、对于位上的氢本子,死成三种同构体.如果定位基不效率,死成的产品是三种同构体的混同物,其中邻位与代物 40%(2/5)、间位与代物 40%(2/5)战对于位与代物 20%(1/5).本量上惟有一种或者二种主要产品.比方百般一元与代苯举止硝化反应,得到下表所示的截止:排正在苯前里的与代硝化产品主假如邻位战对于位与代物,除卤苯中,其余与代苯硝化速率皆比苯快;排正在苯后里与代硝化产品主假如间位与代物,硝化速率比苯缓得多.归纳洪量真验截止,根据苯环上的与代基(定位基)正在亲电与代反应中的定位效率,普遍分为二类:第一类定位基又称邻对于位定位基:—O-,—N(CH3)2,—NH2,—OH,—OCH3,—NHCOCH3,—OCOCH3,—F,—Cl,—Br,—I,—R,—C6H5等.第二类定位基又称间位定位基:—N+(CH3)3,—NO2,—CN,—SO3H,—CHO,—COCH3,—COOH,—COOCH3,—CONH2,—N+H3等.二类定位基的结构特性:第一类定位基与苯环间接贯串的本子上惟有单键,且普遍有孤对于电子或者是背离子;第二类定位基与苯环间接贯串的本子上有沉键,且沉键的另一端是电背性大的元素或者戴正电荷.二类定位基中每个与代基的定位本领分歧,其强度序次近似如上列程序.苯环上亲电与代反应的定位程序二、定位程序的电子表里阐明正在一与代苯中,由于与代基的电子效力沿着苯环共轭链传播,正在环上出现了电子云稀度较大战较小的接替分集局里,果而环上诸位子举止亲电与代反应的易易程度分歧,出现二种定位效率.也不妨从一与代苯举止亲电与代反应死成的中间体σ络合物的相对于宁静性的角度举止观察,当亲电试剂 E+打击一与代时,死成三苯σ络合物:Z 分歧,死成的三种σ 络合物碳正离子的宁静性分歧,出现了二种定位效率.1.第一类定位基对于苯环的效率及其定位效力以甲基、氨基战卤素本子为例证明.甲基正在甲苯中,甲基的碳为 sp3纯化,苯环碳为 sp2纯化,sp2纯化碳的电背性比 sp3纯化碳的大,果此,甲基表示出供电子的诱导效力(A).其余,甲基 C—H σ 键的轨讲与苯环的π 轨讲产死σ—π 超共轭体系(B).供电诱导效力战超共轭效力的截止,苯环上电子稀度减少,更加邻、对于位减少得更多.果此,甲苯举止亲电与代反应比苯简单,而且主要爆收正在邻、对于位上.亲电试剂 E+打击甲基的邻、间、对于位子,产死三种σ 络合物中间体,三种σ 络合物碳正离子的宁静性可用共振纯化体表示:打击邻位:打击对于位:打击间位:亲电试剂打击苯死成的σ 络合物的碳正离子也不妨用共振纯化体表示:苯环上亲电与代反应的定位程序隐然,共振纯化体Ⅰ战Ⅱ比Ⅲ宁静,果为Ⅰc战Ⅱb的正电荷正在有供电基的叔碳上,较分别.而正在Ⅲ中,正电荷皆分集正在仲碳上,不宁静.所以甲基是邻对于位定位基.共振纯化体Ⅲ比Ⅳ宁静,虽然正在Ⅲ战Ⅳ中的共振极限结构式皆是正电荷分集正在仲碳上,但是甲基有供电性,使Ⅲ的正电荷不妨分别正在环战甲基上,果此,甲基活化了苯环. 从共轭效力战共振论二种瞅面分解、观察甲苯的亲电与代反应,皆得出甲基是第一类定位基、有活化苯环效率的普遍论断.氨基正在苯胺中,N—C 键为极性键,N有吸电子的诱导效力(C),使环上电子稀度缩小;但是共时氮本子有孤对于电子,与苯环产死供电的p—π共轭效力(D),使环上电子稀度减少:正在那里,共轭效力大于诱导效力,所以概括效力使是环上电子稀度减少,更加是氨基的邻位战对于位减少更多.果此,苯胺举止亲电与代反应比苯更简单,且主要爆收正在氨基的邻、对于位上.观察死成的中间体σ络合物碳正离子的宁静性也得到共样的论断.(3)卤本子卤本子比较特殊,是一类使苯环钝化的第一类定位基.以氯苯为例,正在氯苯中氯本子是强吸支电子基,强的吸电子诱导效力使苯环电子稀度落矮,比苯易举止亲电与代反应.但是氯本子与苯环又有强的供电的 p-π 共轭效力(C的2p轨讲与 Cl 的 3p 轨讲产死 p-π 共轭体系,不 C 的 2p 轨讲与 N 的 2p 轨讲产死的 p-π 共轭体系灵验),使氯本子邻、对于位上电子稀度缩小得已几,果此表示出邻对于位定位基的本量.2.第二类定位基对于苯环的效率及其定位效力以硝基苯为例证明.正在硝基苯中,硝基存留着吸电子的诱导效力(E),还存留着吸电子的π-π共轭效力(F):那二种电子效力皆使苯环上电子稀度落矮,亲电与代反应比苯易;共轭效力的截止,使硝基的间位上电子稀度落矮得少些,表示出间位定位基的效率.亲电试剂打击硝基苯时,产死邻、间、对于三种σ 络合物中间体:打击邻位:打击对于位:打击间位:共振纯化体Ⅲ比Ⅰ战Ⅱ宁静,果为正在Ⅰ战Ⅱ中有正电荷分集正在有强吸电子基团的叔碳上的极限结构式Ⅰc战Ⅱb不宁静.果此,硝基是第二类定位基,与代反应爆收正在间位上.共振纯化体Ⅲ有强吸电子基团,与相映的苯的共振纯化体相比,Ⅲ不宁静.果此,硝基表示出钝化苯环的效率.苯环上亲电与代反应的定位程序三、对于邻、对于位产品比率的效率果素1.空间效力环上有邻对于位定位基存留时,死成邻位战对于位产品的比率与定位基战新加进基团的体积有闭系.那二种基大众积越大,空间位阻越大,邻位产品越少.烷基苯的硝化反应随着烷基的体积删大,邻位硝基苯的比率缩小.烷基硝化反当令同构体分集苯环上本有定位基稳定,随着加进基大众积删大,邻位同构体的比率也缩小.如表所示.甲基苯烷基化时同构分集2.反应温度的效率反应温度分歧,邻、对于位同构体的比率分歧.如3.催化剂的效率利用新颖催化技能,不妨统造与代基的定位效率,如使用有择型催化效率的分子筛催化乙苯的乙基化,不妨得到下采用性的对于二乙苯.工业上便是用分子筛催化合成对于二乙苯.后者催化脱氢,得到接联散苯乙烯的共散单体对于二乙烯基苯:甲苯与丙烯烷基化反应,使用分歧孔径的分子筛催化剂,分别得到间甲基同丙苯战对于甲基同丙基苯.已应用于工业死产拆置上.间甲基同丙基苯战对于甲基同丙基苯分别是造备间甲基苯酚战对于甲基苯酚的本料.四、二元与代苯的定位程序当苯环上有二个与代基时,第三个与代基加进苯环的位子,主要由本去的二个与代基的本量决断.大概上道,苯环上有二个与代基时,有三种定位情况.苯环上亲电与代反应的定位程序1.苯环上本有二个与代基对于引进第三个与代基的定位效率普遍,第三个与代基加进苯环的位子便由它们共共定位.比方,下列化合物引进第三个与代基时,第三个与代基主要加进箭头所示的位子:2.苯环上本有二个与代基,对于加进第三个与代基的定位效率纷歧致,二个与代基属共一类定位基,那时第三个与代基加进苯环的位子主要由定位效率强的与代基所决断.如果二个与代基定位效率强度较小时,得到二个定位基定位效率的混同物:3.苯环上本有二个与代基对于引进第三个与代基的定位效率纷歧致,二个与代基分歧类定位基时,那时第三个与代基加进苯环的位子主要由第一类定位基定位:正在思量第三个与代基加进苯环的位子时,除思量本有二个与代基的定位效率中,还该当思量空间位阻,如3-乙酰氨基苯甲酸的 2 位与代产品很少.五、定位程序正在有机合成上的应用应用定位程序不妨采用可止的合成门路,得到较下的产率战预防搀纯的分散历程.比方由甲苯合成间硝基苯甲酸,应采与先氧化后硝化的步调:由对于硝基甲苯合成2,4-二硝基苯甲酸,其合成门路犹如下二条:隐然第一条合成门路较合理,不妨简化分散步调,共时硝化一步反应较第二条门路的硝化一步反应易举止,果为二个与代基(—CH3,—NO2)的定位效率是普遍的. 定位程序只适用于能源教统造的反应.比方,叔丁苯正在FeCl3 催化下,与叔丁基氯反应死成对于二叔丁基苯:苯环上亲电与代反应的定位程序那与定位程序普遍,但是用过量的AlCl3为催化剂,则死成1,3,5-三叔丁基苯:那是果为正在过量强酸效率下,烷基化战脱烷基化完毕仄稳,邻、对于位烷基化快,脱烷基化也简单;间位烷基化缓,脱烷基化也较易,末尾形成热力教上宁静的均三叔丁基苯.六、闭键词汇定位基,定位程序,二类定位基,定位程序的本量阐明,二元与代苯的定位程序,定位程序的应用。
苯环上的定位基
一、定位基定位效应令狐采学苯环上已有的取代基叫做定位取代基。
1、邻对位定位取代基①概念:当苯环上已带有这类定位取代基时,再引入的其它基团主要进入它的邻位或对位,而且第二个取代基的进入一般比没有这个取代基(即苯)时容易,或者说这个取代基使苯环活化。
②特征:这类取代基中直接连于苯环上的原子多数具有未共用电子对,并不含有双键或三键。
③定位取代效应按下列次序而渐减:-N(CH3)2 , -NH2 , -OH , -OCH3 , -NHCOCH3 , -R , (Cl,Br,I) 二甲氨基氨基羟基甲氧基乙酰氨基烷基卤素2、间位定位取代基①定义:当苯环上己有在这类定位取代基时,再引入的其它基团主要进入它的间位,而且第二个取代基的进入比苯要难,或者说这个取代基使苯环钝化。
②特征:取代基中直接与苯环相连的原子,有的带有正电荷,有的含有双键或三键。
③定位效应按下列次序而渐减:-N+(CH3)3 , -NO2 , -CN , -SO3H , -CHO , -COOH三甲铵基硝基氰基磺酸基醛基羧基3、取代定位规律并不是绝对的。
实际上在生成邻位及对位产物的同时,也有少量间位产物生成。
在生成间位产物的同时,也有少量的邻位和对位产物生成。
4、苯环的取代定位规律的解释当苯环上连有定位取代基时,苯环上电子云密度的分布就发生变化。
这种影响可沿着苯环的共轭链传递。
因此共轭链上就出现电子云密度较大和电子云密度较小的交替现象,从而使它表现出定位效应。
① 邻对位定位取代基的定位效应:邻对位定位取代基除卤素外,其它的多是斥电子的基团,能使定位取代基的邻对位的碳原子的电子云密度增高,所以亲电试剂容易进攻这两个位置的碳原子。
卤素和苯环相连时,与苯酚羟基相似,也有方向相反的吸电子诱导和共轭两种效应。
但在此情况下,诱导效应占优势,使苯环上电子云密度降低,苯环钝化,故亲电取代反应比苯难。
但共轭使间位电子云密度降低的程度比邻对位更明显,所以取代反应主要在邻对位进行。
苯环上亲电取代反应的定位规律
苯环上亲电取代反应的定位规律苯环上亲电取代反应的定位规律基本概念:定位基:在进行亲电取代反应时,苯环上原有取代基,不仅影响着苯环的取代反应活性,同时决定着第二个取代基进入苯环的位置,即决定取代反应的位置。
原有取代基称做定位基。
一、两类定位基在一元取代苯的亲电取代反应中,新进入的取代基可以取代定位基的邻、间、对位上的氢原子,生成三种异构体。
如果定位基没有影响,生成的产物是三种异构体的混合物,其中邻位取代物40%(2/5)、间位取代物40%(2/5)和对位取代物20%(1/5)。
实际上只有一种或二种主要产物。
例如各种一元取代苯进行硝化反应,得到下表所示的结果:1.第一类定位基对苯环的影响及其定位效应以甲基、氨基和卤素原子为例说明。
甲基在甲苯中,甲基的碳为sp3杂化,苯环碳为sp2杂化,sp2杂化碳的电负性比sp3杂化碳的大,因此,甲基表现出供电子的诱导效应(A)。
另外,甲基C—H σ 键的轨道与苯环的π 轨道形成σ—π 超共轭体系(B)。
供电诱导效应和超共轭效应的结果,苯环上电子密度增加,尤其邻、对位增加得更多。
因此,甲苯进行亲电取代反应比苯容易,而且主要发生在邻、对位上。
亲电试剂E+进攻甲基的邻、间、对位置,形成三种σ 络合物中间体,三种σ 络合物碳正离子的稳定性可用共振杂化体表示:进攻邻位:进攻对位:进攻间位:亲电试剂进攻苯生成的σ 络合物的碳正离子也可以用共振杂化体表示:苯环上亲电取代反应的定位规律显然,共振杂化体Ⅰ和Ⅱ比Ⅲ稳定,因为Ⅰc和Ⅱb的正电荷在有供电基的叔碳上,较分散。
而在Ⅲ中,正电荷都分布在仲碳上,不稳定。
所以甲基是邻对位定位基。
共振杂化体Ⅲ比Ⅳ稳定,虽然在Ⅲ和Ⅳ中的共振极限结构式都是正电荷分布在仲碳上,但甲基有供电性,使Ⅲ的正电荷可以分散在环和甲基上,因此,甲基活化了苯环。
从共轭效应和共振论两种观点分析、考察甲苯的亲电取代反应,都得出甲基是第一类定位基、有活化苯环作用的一致结论。
苯环的定位规则概要
苯环的定位规则
62%
33%
5%
NO2
+ HN
NO2 +
NO2
+
NO2
6%
1%
NO2 NO2
93%
第二个取代基进入的位置是受苯环上原有基团的影响,这种 现象称为定位效应。苯环上原有基团称为定位基。
一、定位效应
1、邻对位定位基
-NHCH3 >–NH2 >– OH >– OCH3 >–R >–X
b.不同类型—由邻 对位定位基决定
谢
制作人:
谢
石云
2、间位定位基
–N+(CH3)3 >–NO2 >–SO3H >–CHO >–COOH
二、定位效应的解释
H
1、邻对位基的定位效应
--CH3使苯环电子云密度升高,而 活化苯环, 为邻、对位定位基。
HCH
δ
δ-
δ-
A
A 的定位能力次序大致为(从强到弱)
-O , -NR2, -NHR, -NH2, -OH, -OR, -NHCOR -OCOR, -R, -CH3 , -X
给电子基团
二、定位效应的解释
2、间位定位基的定位效应
O
O
N
存在着:
吸电子诱导效应(-I) 吸电子共轭效应(-C)
δ-
δ-
间位取代基使苯环上电子云密度下降,苯环钝化,亲电试剂难于进攻。
吸电子基团
B
B 的定位能力次序大致为(从强到弱)
-NR3, -NO2, -CF3, -CCl3, -CN, -SO3H,
-CHO, -COR,-COOH, -CONH2。
三、定位效应的应用
1、预测反应产物
苯环上亲电取代反应的定位规律
苯环上亲电取代反应的定位规律基本概念:定位基:在进行亲电取代反应时,苯环上原有取代基,不仅影响着苯环的取代反应活性,同时决定着第二个取代基进入苯环的位置,即决定取代反应的位置.原有取代基称做定位基。
一、两类定位基在一元取代苯的亲电取代反应中,新进入的取代基可以取代定位基的邻、间、对位上的氢原子,生成三种异构体。
如果定位基没有影响,生成的产物是三种异构体的混合物,其中邻位取代物40%(2/5)、间位取代物40%(2/5)和对位取代物20%(1/5)。
实际上只有一种或二种主要产物.例如各种一元取代苯进行硝化反应,得到下表所示的结果:排在苯前面的取代硝化产物主要是邻位和对位取代物,除卤苯外,其它取代苯硝化速率都比苯快;排在苯后面取代硝化产物主要是间位取代物,硝化速率比苯慢得多。
归纳大量实验结果,根据苯环上的取代基(定位基)在亲电取代反应中的定位作用,一般分为两类:第一类定位基又称邻对位定位基:-O—,—N(CH3)2,—NH2,—OH,—OCH3,—NHCOCH3,—OCOCH3,—F,—Cl,—Br,-I,—R,—C6H5等。
第二类定位基又称间位定位基:-N+(CH3)3,—NO2,-CN,—SO3H,—CHO,—COCH3,—COOH,-COOCH3,-CONH2,—N+H3等。
两类定位基的结构特征:第一类定位基与苯环直接相连的原子上只有单键,且多数有孤对电子或是负离子;第二类定位基与苯环直接相连的原子上有重键,且重键的另一端是电负性大的元素或带正电荷.两类定位基中每个取代基的定位能力不同,其强度次序近似如上列顺序。
苯环上亲电取代反应的定位规律二、定位规律的电子理论解释在一取代苯中,由于取代基的电子效应沿着苯环共轭链传递,在环上出现了电子云密度较大和较小的交替分布现象,因而环上各位置进行亲电取代反应的难易程度不同,出现两种定位作用。
也可以从一取代苯进行亲电取代反应生成的中间体σ络合物的相对稳定性的角度进行考察,当亲电试剂E+进攻一取代时,生成三苯σ络合物:Z 不同,生成的三种σ 络合物碳正离子的稳定性不同,出现了两种定位作用.1.第一类定位基对苯环的影响及其定位效应以甲基、氨基和卤素原子为例说明。
苯环上取代反应的定位规则
苯环上原有的取代基对新导入取代基有影响,这种影响包括反应活性和进入位置两个方面。
通常,苯环上原有的第一取代基称为定位基,从大量实验事实的分析总结中发现,定位基的定位作用遵循一定的规律,这一规律称为苯环上亲电取代反应定位规律(又称定位规则)。
下面分别讨论定位基的类型;定位规则的理论解释;二元取代苯的定位规律;定位规律的应用。
(一)定位基的类型1.邻、对位定位基。
这类定位基的结构特征是定位基中与苯环直接相连的原子不含不饱和键(芳烃基例外),不带正电荷,且多数具有未共用电子对。
常见的邻、对位定位基及其反应活性(相对苯而言)如下:强致活基团:―NH2(―NHR,―NR2),―OH中致活基团:―OCH3(―OR),―NHCOCH3(-NHCOR)弱致活基团:―ph(―Ar),―CH3(-R)弱致钝基团:―F,―Cl,―Br,―I这类定位基多数使亲电取代反应较苯容易进行,但卤素例外。
2.间位定位基。
这类定位基的结构特征是定位基中与苯环直接相连的原子一般都含有不饱和键(-CX3例外)或带正电荷。
常见的间位定位基及其定位效应从强到弱顺序如下:―N+H3,―N+R3,―NO2,―C F3,―CCl3,―CN,―SO3H,―COH,―COR,―COOH,―COOR,―CONH2等。
这类定位基属致钝基团,通常使苯环上亲电取代反应较苯难进行,且排在越前面的定位基,定位效应越强,反应也越难进行。
(二)定位规则的理论解释苯环上的取代反应是亲电取代反应。
因此,从反应活性的角度分析,凡有助于提高苯环上电子云密度的基团,就能使苯环活化,反应活性提高;反之,凡是使环上电子云密度降低的基团,就能使苯环钝化,反应活性降低。
从反应位置的角度分析,当苯环上没有取代基时,环上六个碳原子的电子云密度是均等的;但当苯环上有取代基时,由于取代基的电子效应沿着苯环共轭体系传递。
在环上出现了出现了电子云密度的疏密交替分布现象。
第二个取代基总是进入苯环上电子云密度相对较大的部位,从而使这些碳原子上的取代物占了多数。
7.2 定位规则多环及非苯
C.还原反应 (加氢)
采用Brich还原,得到1,4-二氢萘,它有 一个孤立双键,不被进一步还原:
Na,液NH 3,C2H5OH Brich还原 1,4-二氢萘
Brich还原——用金属钠在液氨和乙醇的混合物中进行还原。
• 在强烈条件下加氢,可得到四氢化萘或十氢化萘:
Na-Hg,C 2H5OH 四氢萘 。 b.p 207.2 C or H 2/Pd-C, 加压
这类定位基的特点是它们都有吸电子效应, 使苯环电子云密度↓,从而使苯环钝化。
静态:-C使硝基的m-相对较负,∴新引入基团上m-
动态:当E+进攻硝基的不同位置时, 所形成的C+的共振情况如下:
NO2 δ δ+
+
H δ
+
+
NO2
(1)邻位硝代
NO2 δ+ + δ+ H δ+ NO2
(2)对位硝代
NO2 δ
R=CH3 CH2CH3 CH(CH3)2 C(CH3)3 58.4% 45 30 15.8 37.2% 48.6 62.5 72.7 4.4% 6.5 7.7 11.5
CH3 +
CH3
R
取代基与试剂体积都大时,邻位取代产物极少
C(CH3)3 H2SO4
C(CH3)3
SO3H 100% Br H2SO4-SO3 SO3H Br
H2/Rh-C或Pt-C 加压 十氢萘 b.p 191.7 C
。
以上的反应说明苯环有特殊的稳定性!
3 萘环上二元取代反应的定位规则
与苯相比,萘环上的取代基的定位作用显得复杂些。一般来说, 由于萘环上α 位的活性高,新导入的取代基容易进入α 位。
苯环的定位规则.ppt
33%
5%
NO2
+ HNO3(发烟)
浓H2SO4 90℃
NO2
NO2 +
6%
NO2
+
NO2
1%
NO2 NO2
93%
第二个取代基进入的位置是受苯环上原有基团的影响,这种 现象称为定位效应。苯环上原有基团称为定位基。
一、定位效应
1、邻对位定位基
-NHCH3 >–NH2 >– OH >– OCH3 >–R >–X
2、间位定位基
–N+(CH3)3 >–NO2 >–SO3H >–CHO >–COOH
二、定位效应的解释
H
1、邻对位基的定位效应
--CH3使苯环电子云密度升高,而 活化苯环, 为邻、对位定位基。
HCH
δ
δ-
δ-
A
A 的定位能力次序大致为(从强到弱)
-O , -NR2, -NHR, -NH2, -OH, -OR, -NHCOR -OCOR, -R, -CH3 , -X
-CHO, -COR,-COOH, -CONH2。
三、定位效应的应用
1、预测反应产物
(1)两个定位基对于引入第三取代基的定位效应 一致:
三、定位效应的应用
1、预测反应产物
(2)两个定位基对于引入第三取代基的定位效应不一致
a.同类型—定位效应 强的取代基所决定
三、定位效应的应用
1、预测反应产物
(2)两个定位基对于引入第三取代基的定位效应不一致
给电子基团
二、定位效应的解释
2、间位定位基的定位效应
O
O
N
存在着:
吸电子诱导效应(-I) 吸电子共轭效应(-C)
4.5 苯环上亲电取代反应定位规则解析
取代苯硝化时相对速率与异构体分布
R
HNO3 H2SO4
R
R
NO2
NO2
R NO2
R=
—H
—OCH3 —NHCOCH3 —CH3 —C(CH3) 3 —CH2Cl —CL
NO2
SO3H
主要产物
8-硝基-2-萘磺酸
NO2 NO2
13%
SO3H
NO2
次要产物
4.6.2.3 加成反应
Na, 液NH3, C2H5OH
H2,Pd—C, 高温高压 or Na— Hg, C2H5OH
1,2,3,4-四氢化萘
磺化及烷基化、酰基化通常发生在β-位
CH3 96%H2SO4
90-100 0CHO3S
CH3
80%
6-甲基-2-萘磺酸
O CH3
AlCl3
O PhNO2
H3C
O
COCH2CH2COOH
60-70%
4-[2-(6-甲基萘基)]-4-氧代丁酸
4.6.2.2 萘的二元取代
原取代基为致活基:亲电试剂进同环α-位,
CH3 R
CH3
53.8
45 37.5 0
R
28.8 25 32.7 93
CH3
R
17.3 30 29.8 7
Cl E+
氯化(Cl) 硝 化(NO2) 溴 化(Br) 磺 化(SO3H)
Cl
Cl
E
E
39
55
30
70
础基是苯环上的第二类定位基,它能使苯环钝化。(
础基是苯环上的第二类定位基,它能使苯环钝化。
(苯环是有机化合物中最简单、最基本的芳香族化合物结构之一,也是生物学和化学学科中最基础的概念之一。
苯环由六个碳原子和六个氢原子组成,呈圆形。
苯环具有一系列的物理和化学性质,很容易地参与化学反应,因此引起了研究人员的巨大兴趣。
在苯环上,有许多不同的官能团可以加入,以改变其物理和化学性质。
这些官能团可以让苯环上的碳原子化学性质发生变化,从而实现对苯环的化学修饰。
在这些官能团中,硷基就是一种非常重要的官能团,它可以改变苯环的性质,使其变得更加反应性高。
硷基是苯环上的第二类定位基,它位于苯环上的2、4或6位置。
与氨基(NH2)、羟基(OH)以及其他一些官能团不同,硷基是一种非常特殊的官能团。
它可以使苯环钝化,也就是让苯环的化学反应性下降,更难参与一些化学反应。
硷基的结构类似于氨基,但它相对于苯环上的碳原子而言,比氨基多一个碳-碳双键,这使得硷基比氨基更为稳定。
硷基上的氢原子会因为苯环的共振结构而成为一个不轻易失去的负电荷。
这样,硷基就可以通过这种共振结构来影响苯环的化学性质。
硷基的主要作用是钝化苯环。
这一过程可以通过三个步骤实现。
首先,硷基与苯环上的碳原子形成一个共振结构。
接着,这个结构会导致苯环的电子密度度分布向硷基靠拢,使得苯环上的碳原子减少了一部分π电子。
最后,苯环上的碳原子变得不那么反应活性了,因为它的π电子被硷基吸引了。
硷基的另一个重要作用是改变苯环上的位置效应。
硷基上的两个碳原子中绕过苯环所形成的二面角会使苯环变形。
这种变形会使苯环上的其他功能团地位改变,从而产生一些新的化学性质和反应途径。
除了在化学合成中的应用,硷基在许多生物学领域中也有重要的应用。
例如,它们可以用于制备药物,还可以用于研究蛋白质和DNA的结构和功能。
在蛋白质和DNA的结构研究中,硷基可以用作标记物,以便更好地追踪它们在分子级别上的构成和动态变化。
总之,硷基是苯环上一种非常重要的官能团,它的存在可以改变苯环的物理和化学性质。
苯环上的取代定位规则
苯环上的取代定位规则大量实验事实表明,当一些基团处于苯环上时,苯环的亲电取代反应会变得容易进行,同时指使再进入的基团将连接在它的邻位或对位。
例如,当苯环上已存在一个甲基时(即甲苯),它的卤化、硝化和磺化等反应,反应温度均远低于苯,且新基团的导入均进入苯环上甲基的邻或对位:甲基的这种作用称为定位效应。
在这里甲基是一个邻、对位指向基,具有活化苯环的作用,称为活化基。
类似的活化基团还有许多,它们也被称为第一类取代基,并按活化能力由大到小的顺序排列如下:-NH2,—NHR,—NR2,—OH>-NHCOR,-OR,>—R,-Ph>—X处于这一顺序最末的卤素是个特例。
它一方面是邻、对位指向基,另一方面又是使苯环致钝的基团,这是由于卤素的电负性远大于碳,因此其吸电子效应已超过了本身的供电子能力,这就使环上的电子云密度比卤素进入前有所降低,因而使亲电试剂的进攻显得不力。
此称为钝化作用.还有许多比卤素致钝力更强,而且使再进基团进入间位的取代基,它们被称为间位指示基或第二类取代基,按其致钝能力由大到小的顺序排列如下:—NR3+,-NO2,—CF3,—CCl3〉-CN,-SO3H,—CH=O,-COR,-COOH,-COOR常见的取代基的定位作用见表邻对位定位基间位定位基活化苯环钝化苯环-NR2 -NR2—NHR—NH2-OH—OCH3 -NHCOR—CH3—C2H5 —CH(CH3)2 —C(CH3)2—Ar(—H)(-H)(—H)-CH2Cl—CH2Cl-F—Cl—Br—I-NO2—CN—SO3H-CHO—COCH3-COOH—COOR—CONH2由于取代基的指向和活化或钝化作用,在合成一个指定化合物时,采取哪种路线就必须事先作全面考虑。
如:欲合成下列化合物时,显然b-路线是合理的。
如果以苯为原料,欲合成对-硝基苯甲酸(此物质在后面章节将学到)时,则应该先对苯进行甲基化后再进行硝化,最后将甲基氧化:。
钝化苯环的邻对位定位基
钝化苯环的邻对位定位基钝化苯环的邻对位定位基苯环是有机化学中最为基础的结构之一,其具有较高的稳定性和反应活性。
在许多有机合成反应中,苯环常常被用作反应物或中间体。
然而,在某些情况下,苯环上邻对位(2,6-位)的活性会影响到反应的进行,因此需要进行钝化处理。
本文将介绍钝化苯环邻对位定位基的主要内容。
1. 钝化原理在苯环上,邻对位上的氢原子具有较高的活性,容易发生取代反应。
为了避免这种情况发生,在合成中需要通过引入特定官能团来钝化邻对位。
常见的钝化官能团包括甲基、叔丁基、烷氧基等。
2. 钝化方法(1)甲基化法甲基化是一种常见的钝化方法,其原理是将甲醇或二甲醚加入到反应物中,在存在酸催化剂下进行取代反应,使得邻对位上出现一个甲基官能团。
这种方法简单易行且效果显著,但需要注意控制反应条件和选择合适的催化剂,避免产生副反应。
(2)叔丁基化法叔丁基化是一种较为常用的钝化方法,其原理是将叔丁醇加入到反应物中,在存在酸催化剂下进行取代反应,使得邻对位上出现一个叔丁基官能团。
这种方法具有较高的选择性和效率,但需要注意控制反应条件和选择合适的催化剂。
(3)烷氧基化法烷氧基化是一种较为特殊的钝化方法,其原理是将烷氧基引入到反应物中,在存在酸催化剂下进行取代反应,使得邻对位上出现一个烷氧基官能团。
这种方法具有较高的稳定性和选择性,但需要注意控制反应条件和选择合适的催化剂。
3. 应用实例钝化苯环邻对位定位基在有机合成中具有广泛的应用。
例如,在苯甲酸乙酯合成过程中,可以采用甲基、叔丁基等方法钝化邻对位上的氢原子,从而提高产率和纯度;在芳香醛类合成过程中,也可以采用烷氧基化方法钝化邻对位上的氢原子,从而增加反应的选择性和效率。
总之,钝化苯环邻对位定位基是有机合成中不可或缺的一项技术。
通过选择合适的钝化方法和催化剂,可以实现对邻对位上活性较高的氢原子进行有效地控制,从而提高反应的效率和选择性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苯环上的定位基
Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT
一、定位基定位效应
苯环上已有的取代基叫做定位取代基。
1、邻对位定位取代基
①概念:当苯环上已带有这类定位取代基时,再引入的其它基团主要进入它的邻位或对位,而且第二个取代基的进入一般比没有这个取代基(即苯)时容易,或者说这个取代基使苯环活化。
②特征:这类取代基中直接连于苯环上的原子多数具有未共用电子对,并不含有双键或三键。
③定位取代效应按下列次序而渐减:
-N(CH3)2 , -NH2 , -OH , -OCH3 , -NHCOCH3 , -R , (Cl,Br,I)
二甲氨基氨基羟基甲氧基乙酰氨基烷基卤素
2、间位定位取代基
①定义:当苯环上己有在这类定位取代基时,再引入的其它基团主要进入它的间位,而且第二个取代基的进入比苯要难,或者说这个取代基使苯环钝化。
②特征:取代基中直接与苯环相连的原子,有的带有正电荷,有的含有双键或三键。
③定位效应按下列次序而渐减:
-N+(CH3)3 , -NO2 , -CN , -SO3H , -CHO , -COOH
三甲铵基硝基氰基磺酸基醛基羧基
3、取代定位规律并不是绝对的。
实际上在生成邻位及对位产物的同时,也有少量间位产物生成。
在生成间位产物的同时,也有少量的邻位和对位产物生成。
4、苯环的取代定位规律的解释
当苯环上连有定位取代基时,苯环上电子云密度的分布就发生变化。
这种影响可沿着苯环的共轭链传递。
因此共轭链上就出现电子云密度较大和电子云密度较小的交替现象,从而使它表现出定位效应。
①邻对位定位取代基的定位效应:
邻对位定位取代基除卤素外,其它的多是斥电子的基团,能使定位取代基的邻对位的碳原子的电子云密度增高,所以亲电试剂容易进攻这两个位置的碳原子。
卤素和苯环相连时,与苯酚羟基相似,也有方向相反的吸电子诱导和共轭两种效应。
但在此情况下,诱导效应占优势,使苯环上电子云密度降低,苯环钝化,故亲电取代反应比苯难。
但共轭使间位电子云密度降低的程度比邻对位更明显,所以取代反应主要在邻对位进行。
②间位定位基的定位效应:
这类定位取代基是吸电子的基团,使苯环上的电子云移向这些基团,因此苯环上的电子云密度降低。
这样,对苯环起了钝化作用,所以较苯难于进行亲电取代反应。
③共振理论对定位效应的解释
邻对位中间体均有一种稳定的共振式(邻对位定位基的影响)。
在间位定位基的影响下,在三个可能的碳正离子中间体中,邻对位共振式中正电荷是在连有吸电子基的碳上,它使碳正离子中间体更不稳定。
所以间位碳正离子中间体是最有利的。
二、二取代苯的定位规律
如果苯环上已经有了两个取代基,当引入第三个取代基时,影响第三个取代基进入的位置的因素较多。
定性地说,两个取代基对反应活性的影响有加和性。
1.苯环上已有两个邻对位定位取代基或两个间位定位取代基,当这两个定位取代基的定位方向有矛盾时,第三个取代基进入的位置,主要由定位作用较强的一个来决定。
2.苯环上己有一个邻对位定位取代基和一个间位定位取代基,且二者的定位方向相反,这时主要由邻对位定位取代基来决定第三个取代基进入的位置。
3.两个定位取代基在苯环的1位和3位时,由于空间位阻的关系,第三个取代基在2位发生取代反应的比例较小。
参考资料:有机化学高等教育出版社。