(压轴题)高中数学必修一第三单元《指数函数和对数函数》测试题(含答案解析)
最新北师大版高中数学必修一第三单元《指数函数和对数函数》检测题(答案解析)
一、选择题1.形如221n+(n 是非负整数)的数称为费马数,记为F n 数学家费马根据F 0,F 1,F 2,F 3,F 4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F 5不是质数,请你估算F 5是( )位数(参考数据:lg2≈0.3010). A .8B .9C .10D .112.已知函数2()log x f x =,在[116,m ]上的值域为[0,4],2m f ⎛⎫⎪⎝⎭的取值范围是( ) A .[1,2] B .[0,2]C .[1,3]D .[0,3]3.若x ,y ,z 是正实数,满足2x =3y =5z ,试比较3x ,4y ,6z 大小( )A .3x >4y >6zB .3x >6z >4yC .4y >6z >3xD .6z >4y >3x4.已知函数)()lnf x x =,则120212020a f ⎛⎫= ⎪⎝⎭,20201log 2021b f ⎛⎫= ⎪⎝⎭,()2021log 2020c f =的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>5.已知函数22()lg[(1)(1)1]f x a x a x =-+++的值域为R .则实数a 的取值范围是( ) A .5[1,]3B .5(1,]3C .(]5,1(,)3-∞-⋃+∞ D .()5,1[1,)3-∞-6.已知函数3()22x f x =+,则111357(1)432234f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭( ) A .212B .214C .7D .1527.函数()213log 23y x x =-++的单调递增区间是( ) A .(]1,1- B .(1)∞-,C .[) 1,3D .(1)∞,+ 8.设0.34()5a =,0.254b ⎛⎫= ⎪⎝⎭,125log 4c =,则a ,b ,c 的大小关系为( ) A .b a c >> B .c a b >> C .c b a >> D .b c a >>9.若函数y a >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1B .2C .3D .410.已知2log 0.8a =,0.7log 0.6b =,0.60.7c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .b a c <<C .a c b <<D .b c a <<11.已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数D .奇函数,且在(0,10)是减函数12.已知奇函数()f x 与偶函数()g x 满足()()2x x f x g x a a -+=-+,且()g b a =,则()2f 的值为( )A .2aB .2C .154D .174二、填空题13.若函数()2log 12a a f x x x ⎛⎫=-+ ⎪⎝⎭,()0,1a a >≠没有最小值,则实数a 的取值范围是______.14.方程()()122log 44log 23xx x ++=+-的解为____;15.函数()22log 617y x x =-+的值域是__.16.函数()()()212log 24f x ax x a R =-+∈,若()f x 的值域为(],1-∞,则a 的值为______.17.给定函数y =f (x ),设集合A ={x |y =f (x )},B ={y |y =f (x )}.若对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,则称函数f (x )具有性质P .给出下列三个函数:①1y x =;②12xy ⎛⎫= ⎪⎝⎭;③y =lgx .其中,具有性质P 的函数的序号是_____. 18.已知2312a b ==,则21a b+=_______. 19.给出下列四个命题:(1)函数()log (21)1a f x x =--的图象过定点(1,0);(2)函数2log y x =与函数2xy =互为反函数;(3)若1log 12a>,则a 的取值范围是1,12⎛⎫⎪⎝⎭或(2,)+∞;(4)函数log (5)a y ax =-在区间[1-,3)上单调递减,则a 的范围是5(1,]3; 其中所有正确命题的序号是___________.20.设函数()122,12log ,1x x f x x x +⎧≤=⎨->⎩,若()()04f f x =则0x ______.三、解答题21.设函数()log (1)log (3)(0,1)a a f x x x a a =++->≠. (1)求函数()f x 的定义域(2)若(1)2f =,求函数()f x 在区间3[0,]2上的最大值. (3)解不等式:log (1)log (3)a a x x +>-.22.已知函数()x f x a =(0a >且1a ≠),满足(2)(1)6f f +=; (1)求()f x 的解析式;(2)若方程()(2),[0,1]m f x f x x =-∈有解,求m 的取值范围;(3)已知()g x 为奇函数,()h x 为偶函数,函数()()()f x g x h x =+;若存在[1,2]x ∈使得2()(2)0ag x h x +≤,求a 的取值范围.23.计算下列各式的值: (1)1100.753270.064()160.258---++;(2)53log 425log lg lg 452++-.24.已知函数()442xx f x =+;(1)若01a <<,求()()1f a f a +-的值; (2)求12320202021202120212021f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值. 25.分别计算下列数值:(1)1lg3lg94lg81lg 27+--; (2)已知()1401x xx -+=<<,求221122x x x x---+.26.化简计算: (1)160.25361.587-⎛⎫⨯-+ ⎪⎝⎭(2)lg5lg 20lg 2lg50lg 25⋅-⋅-.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据所给定义表示出9.632951010F =⨯,进而即可判断出其位数. 【详解】 根据题意,53223232lg232lg2320.30109.6320.6329521212101010101010F ⨯=+=+≈==≈==⨯,因为0.63211010<<,所以5F 的位数是10. 故选:C 【点睛】关键点睛:解答本题的关键是转化成对数运算,即3232lg 2210=.2.D解析:D 【分析】由对数函数的单调性可得[]1,16m ∈,再结合对数函数的性质即可得解. 【详解】由题意,函数2()log x f x =在(]0,1上单调递减,在[)1,+∞上单调递增, 且()116416f f ⎛⎫==⎪⎝⎭,()10f =, 结合该函数在1,16m ⎡⎤⎢⎥⎣⎦上的值域为[0,4]可得[]1,16m ∈,所以1,822m ⎡⎤∈⎢⎥⎣⎦,[]2lo 2g 0,32m m f ⎛⎫= ⎪⎝∈⎭.故选:D. 【点睛】关键点点睛:解决本题的关键是由对数函数的图象变换及单调性确定[]1,16m ∈,即可得解.3.B解析:B 【分析】令235xyzt ===,则1t >,lg lg 2t x =,lg lg 3t y =,lg lg 5tz =,利用作差法能求出结果.【详解】∵x 、y 、z 均为正数,且235x y z ==, 令235x y z t ===,则1t >,故2lg log lg 2t x t ==,3lg log lg 3t y t ==,5lg log lg 5tz t ==, ∴()3lg lg5lg 4lg 2lg 3630lg 2lg5lg 2lg5t t t x z -⎛⎫-=-=> ⎪⋅⎝⎭,即36x z >; ()2lg lg 27lg 253lg 2lg 6420lg5lg3lg3lg5t t t z y -⎛⎫-=-=> ⎪⋅⎝⎭,即64z y >, 即364x z y >>成立,故选:B. 【点睛】 关键点点睛:(1)将指数式转化为对数式; (2)利用作差法比较大小.4.D解析:D 【分析】先判断出()f x 在R 上单调递减,再利用指数对数函数的单调性求出120212020,20201log 2021, 2021log 2020的范围,即可根据单调性比较大小.【详解】210x x +->恒成立,()f x ∴定义域为R ,))()lnlnf x x x ===-,其中y x 单调递增,则()f x 单调递减,102021202020120>=,202020201log log 102021<=,2021202120210log 1log 2020log 20211=<<=,b c a ∴>>. 故选:D. 【点睛】关键点睛:本题考查利用函数的单调性比较大小,解题的关键是判断出)()ln f x x =在R 上单调递减,进而可利用单调性比较.5.A解析:A 【分析】当函数的值域为R 时,命题等价于函数()()22111y a x a x =-+++的值域必须包含区间()0+∞,得解 【详解】22()lg[(1)(1)1]f x a x a x =-+++的值域为R令()()22111y a x a x =-+++,则()()22111y a x a x =-+++的值域必须包含区间()0+∞,当210a -=时,则1a =± 当1a =时,21y x =+符合题意; 当1a =-时,1y =不符合题意;当1a ≠±时,()()222101410a a a ⎧->⎪⎨∆=+--≥⎪⎩,解得513a <≤ 513a ∴≤≤,即实数a 的取值范围是5[1,]3故选:A 【点睛】转化命题的等价命题是解题关键.6.B解析:B 【分析】先利用解析式计算3()(2)2f x f x +-=,再计算和式即可得到结果. 【详解】 因为3()22x f x =+, 所以2332(2)22224xx x f x -⋅-==+⋅+,()3323()(2)222222x x x f x f x ⋅+-=+=++. 故1113573321(1)34322342224f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++=⨯+=⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 故选:B. 【点睛】本题解题关键是通过指数式运算计算3()(2)2f x f x +-=,再配对求和即解决问题. 7.C解析:C 【分析】由不等式2230x x -++>,求得函数的定义域()1,3-,令()223g x x x =-++,得到()g x 在区间(]1,1-上单调递增,在区间[1,3)上单调递减,结合复数函数的单调性的判定方法,即可求解. 【详解】由题意,函数213()log 23y x x =-++有意义,则满足2230x x -++>, 即223(3)(1)0x x x x --=-+<,解得13x,即函数的定义域为()1,3-,令()223g x x x =-++,则函数()g x 表示开口向下,对称轴方程为1x =的抛物线, 所以函数()g x 在区间(]1,1-上单调递增,在区间[1,3)上单调递减, 又由函数13log y x =在定义上是递减函数,结合复数函数的单调性的判定方法,可得函数213()log 23y x x =-++的递增区间为[1,3).故选:C. 【点睛】函数单调性的判定方法与策略:定义法:一般步骤:设元→作差→变形→判断符号→得出结论;图象法:如果函数()f x 是以图象形式给出或函数()f x 的图象易作出,结合图象可求得函数的单调区间;导数法:先求出函数的导数,利用导数值的正负确定函数的单调区间;复合函数法:先将函数(())y f g x =分解为()y f t =和()t g x =,再讨论这两个函数的单调性,最后根据复合函数“同增异减”的规则进行判定.8.A解析:A 【分析】根据指数函数、对数函数的 性质结合中间值0和1比较. 【详解】由指数函数性质得0.34015⎛⎫<< ⎪⎝⎭,0.2514⎛⎫> ⎪⎝⎭,由对数函数性质得125log 04<, ∴b a c >>. 故选:A . 【点睛】本题考查比较幂与对数的,掌握指数函数与对数函数的性质是解题关键.解题方法是借助中间值比较大小.9.C解析:C 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y [0,1]上单调递减,值域是[0,1],所以f (0)1,f (1)=0, 所以a =2, 所log a 56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.10.C解析:C 【解析】因为22log 0.8log 10a =<=,0.70.7log 0.6log 0.71b =>=,0.6000.70.71c <=<=,所以a c b <<,故选C.11.C解析:C 【分析】先判断函数的定义域关于原点对称,再由奇偶性的定义判断奇偶性,根据复合函数的单调判断其单调性,从而可得结论. 【详解】由100100x x +>⎧⎨->⎩,得(10,10)x ∈-, 故函数()f x 的定义域为()10,10-,关于原点对称,又()()lg 10lg(10)()f x x x f x -=-++=,故函数()f x 为偶函数, 而()()2lg(10)lg(10)lg 100f x x x x=++-=-,因为函数2100y x =-在()0,10上单调递减,lg y x =在()0,∞+上单调递增, 故函数()f x 在()0,10上单调递减,故选C. 【点睛】本题主要考查函数的奇偶性与单调性,属于中档题. 判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为减函数);(2)和差法,()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) .12.C解析:C 【分析】根据奇函数()f x 与偶函数()g x ,由()()2x xf xg x a a -+=-+得到()()2﹣﹣﹣=+xx g x f x a a ,两式相加、相减并结合()g b a =求得()f x 即可.【详解】∵奇函数()f x 与偶函数()g x ,()()()(),-∴=-=f x f x g x g x .又()()2﹣+=+-x x f x g x a a ,①()()2﹣---∴+=+x x f x g x a a ,()()2﹣∴=--+x x g x f x a a .② +①②,得()24g x =,()2g x ∴=. (),2g b a a =∴=. ()22﹣-∴=x x f x . 22115(2)22444f -∴=-=-=. 故选:C. 【点睛】本题主要考查函数奇偶性的综合应用,还考查了运算求解的能力,属于中档题.二、填空题13.【分析】讨论和两种情况结合对数函数的单调性可判断求解【详解】当时在单调递减没有最大值没有最小值符合题意;当时在单调递增则可得当有解时没有最小值解得综上的取值范围为故答案为:【点睛】关键点睛:结合对数 解析:(0,1)[4,)∞⋃+【分析】讨论01a <<和1a >两种情况结合对数函数的单调性可判断求解. 【详解】当01a <<时,log ay x =在(0,)+∞单调递减,212a y x x =-+没有最大值,()2log 12a a f x x x ⎛⎫∴=-+ ⎪⎝⎭没有最小值,符合题意;当1a >时,log ay x =在(0,)+∞单调递增,则可得当2102ax x -+≤有解时,()2log 12a a f x x x ⎛⎫=-+ ⎪⎝⎭没有最小值,2402a ⎛⎫∴∆=--≥ ⎪⎝⎭,解得4a ≥,综上,a 的取值范围为(0,1)[4,)∞⋃+.故答案为:(0,1)[4,)∞⋃+. 【点睛】关键点睛:结合对数函数的单调性进行讨论求解,将题目转化为2102ax x -+≤有解进行求解.14.【分析】直接利用对数的运算法则化简求解即可【详解】解:可得即:解得(舍去)可得经检验是方程的解故答案为:【点睛】本题考查方程的解的求法对数的运算法则的应用考查计算能力 解析:2【分析】直接利用对数的运算法则化简求解即可. 【详解】 解:()()122log 44log 23x x x ++=+-()()1222log 44log log 232x x x +∴+=+-可得()()122log 44log 232x x x++=-⎡⎤⎣⎦, 即:()144232x x x++=-,()223240xx -⋅-=,解得21x =-(舍去)24x =,可得2x =.经检验2x =是方程的解. 故答案为:2. 【点睛】本题考查方程的解的求法,对数的运算法则的应用,考查计算能力.15.【分析】设转化为函数根据在上单调递增可求解【详解】设函数则函数∵在上单调递增∴当时最小值为故答案为:【点睛】本题考察了二次函数对数函数性质综合解决问题 解析:[)3,+∞【分析】设()2261738t x x x =-+=-+,转化为函数2log y t =,[)8,t ∈+∞,根据2log y t =在[)8,t ∈+∞上单调递增,可求解.【详解】设()2261738t x x x =-+=-+函数()22log 617y x x =-+,则函数2log y t =,[)8,t ∈+∞, ∵2log y t =,在[)8,t ∈+∞上单调递增, ∴当8t =时,最小值为2log 83=, 故答案为:[)3,+∞. 【点睛】本题考察了二次函数,对数函数性质,综合解决问题.16.【分析】根据对数的性质可知且最小值为即可求得的值【详解】因为的值域为所以函数的最小值为即解得故答案为:【点睛】本题考查对数函数的值域考查对数的性质合理转化是解题的关键考查了运算能力属于中档题 解析:27【分析】根据对数的性质可知2240y ax x =-+>,且最小值为1,即可求得a 的值.【详解】因为()()()212log 24f x ax x a R =-+∈的值域为(],1-∞,所以2240ax x -+>, 函数224y ax x =-+的最小值为12,即()20442142a a a >⎧⎪⎨⨯--=⎪⎩,解得27a =,故答案为:27【点睛】本题考查对数函数的值域,考查对数的性质,合理转化是解题的关键,考查了运算能力,属于中档题.17.①③【分析】A 即为函数的定义域B 即为函数的值域求出每个函数的定义域及值域直接判断即可【详解】对①A =(﹣∞0)∪(0+∞)B =(﹣∞0)∪(0+∞)显然对于∀x ∈A ∃y ∈B 使得x+y =0成立即具有性解析:①③ 【分析】A 即为函数的定义域,B 即为函数的值域,求出每个函数的定义域及值域,直接判断即可. 【详解】对①,A = (﹣∞,0)∪ (0,+∞),B = (﹣∞,0)∪ (0,+∞),显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ;对②,A =R ,B = (0,+∞),当x >0时,不存在y ∈B ,使得x +y =0成立,即不具有性质P ;对③,A = (0,+∞),B =R ,显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ; 故答案为:①③. 【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题.18.【分析】根据指对互化先计算出的结果然后计算的结果由此即可计算出的结果【详解】因为所以所以所以故答案为:【点睛】关键点点睛:解答本题的关键是利用指对互化将化为对数形式然后根据对数运算法则完成计算 解析:1【分析】根据指对互化先计算出,a b 的结果,然后计算11,a b 的结果,由此即可计算出21a b+的结果. 【详解】因为2312a b ==,所以23log 12,log 12a b ==,所以121211log 2,log 3a b==, 所以1212121212212log 2log 3log 4log 3log 121a b +=+=+==, 故答案为:1. 【点睛】关键点点睛:解答本题的关键是利用指对互化将2312a b ==化为对数形式,然后根据对数运算法则完成计算.19.(2)(4)【分析】(1)函数的图象过定点所以该命题错误;(2)函数与函数互为反函数所以该命题正确;(3)若所以的取值范围是所以该命题错误;(4)由题得解得的范围是所以该命题正确【详解】(1)当时(解析:(2)(4) 【分析】(1)函数()log (21)1a f x x =--的图象过定点(1,1)-,所以该命题错误;(2)函数2log y x =与函数2x y =互为反函数,所以该命题正确;(3)若1log 12a>,所以a 的取值范围是1(,1)2,所以该命题错误;(4)由题得1530a a >⎧⎨-⎩,解得a 的范围是5(1,]3,所以该命题正确. 【详解】(1)当1x =时,f (1)1=-恒成立,故函数()log (21)1a f x x =--的图象过定点(1,1)-,所以该命题错误;(2)函数2log y x =与函数2xy =互为反函数,所以该命题正确;(3)若1log 12a >,所以112a a >⎧⎪⎨>⎪⎩或0112a a <<⎧⎪⎨<⎪⎩,则a 的取值范围是1(,1)2,所以该命题错误;(4)函数log (5)a y ax =-在区间[1-,3)上单调递减,则1530a a >⎧⎨-⎩,解得a 的范围是5(1,]3,所以该命题正确. 故答案为:(2)(4) 【点睛】本题主要考查对数函数的定点问题和反函数,考查对数函数的单调性和解对数不等式,意在考查学生对这些知识的理解掌握水平.20.或2【分析】已知复合函数值求自变量从外层求出里层设求出对应的的值再由求出即可【详解】令则当若若当(舍去)故答案为:或【点睛】本题考查由函数值求自变量涉及到简单指数和对数方程考查分类讨论思想和数学计算解析:1-或2 【分析】已知复合函数值求自变量,从外层求出里层,设0()t f x =,求出()4f t =对应的t 的值,再由0()t f x =求出0x 即可. 【详解】令0()t f x =,则()4f t =,当11,24,1tt t +≤==,若010001,()21,1x x f x x +≤===-,若00202001,()2log 1,log 1,2x f x x x x >=-===, 当2211,()2log 4,log 2,4t f t t t t >=-==-=(舍去) 故答案为:1-或2. 【点睛】本题考查由函数值求自变量,涉及到简单指数和对数方程,考查分类讨论思想和数学计算能力,属于中档题.三、解答题21.(1)(1,3)-;(2)2;(3)答案见解析. 【分析】(1)由1030x x +>⎧⎨->⎩得解定义域(2)由(1)2f =求得2a =.化简 22()log (1)4f x x ⎡⎤=--+⎣⎦,求得函数单调性得解(3)分类1a >和01a <<讨论得解 【详解】(1)由1030x x +>⎧⎨->⎩得13x ,所以函数()f x 的定义域为(1,3)-.(2)因为(1)2f =,所以log 42(0,1)a a a =>≠,所以2a =.22222()log (1)log (3)log [(1)(3)]log (1)4f x x x x x x ⎡⎤=++-=+-=--+⎣⎦,所以当(1,1]x ∈-时,()f x 是增函数;当(1,3)x ∈时,()f x 是减函数, 故函数()f x 在(1,3)-上的最大值是2(1)log 42f ==. (3)当1a >时1330x x x +>-⎧⎨->⎩解得13x x >⎧⎨<⎩不等式解集为:{|13}x x <<当01a <<时1310x xx +<-⎧⎨+>⎩解得11x x <⎧⎨>-⎩不等式解集为:{|11}x x -<<【点睛】简单对数不等式问题的求解策略(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数a 的值有关,在研究对数函数的单调性时,要按1a >和01a <<进行分类讨论.22.(1)()2x f x =;(2)[2,0]-;(3)17,12⎛⎤-∞- ⎥⎝⎦. 【分析】(1)根据(2)(1)6f f +=求解出a 的值,即可求解出()f x 的解析式;(2)采用换元法构造函数2(),[1,2]F t t t t =-∈,将m 的取值范围与()F t 的最值联系在一起,由此求解出结果;(3)先根据函数的奇偶性求解出()(),h x g x 的解析式,然后采用分离参数法得到1222222x x x x a --⎡⎤≤--+⎢⎥-⎣⎦,采用换元法求解出1222222xx x x --⎡⎤--+⎢⎥-⎣⎦的最大值,从而求解出a 的取值范围.【详解】(1)因为(2)(1)6f f +=,所以260,2a a a +-==或3a =-(舍去),所以()2x f x =;(2)由(1)知,()2x f x =,所以()222222x x x xm =-=-,令2,[1,2]xt t =∈,令2(),[1,2]F t t t t =-∈,所以()F t 的对称轴为12t =,且()F t 为开口向下的二次函数,所以()F t 在[]1,2上单调递减,所以()()ma min x (2)2,(1)0F t F F t F -====,所以m 的取值范围为[2,0]-; (3)因为()g x 为奇函数,()h x 为偶函数,所以()(),()()g x g x h x h x -=--=.由题()()()f x g x h x =+知,2()()2()()x x g x h x g x h x -⎧=+⎨=-+-⎩,即2()()2()()x x g x h x g x h x -⎧=+⎨=-+⎩解得2222(),()22x x x xh x g x --+-==将上式代入2()(2)0ag x h x +≤,得()()221222202x xxx a ---++≤, 易知()22222212211222222222222x xx xx x xx x x x x a -------++⎡⎤≤-⋅=-⋅=--+⎢⎥---⎣⎦. 令12,[1,2]2x xt x =-∈,则315,24t ⎡⎤=⎢⎥⎣⎦,122a t t ⎛⎫≤-+ ⎪⎝⎭, 因为存在[1,2]x ∈使得2()(2)0ag x h x +≤,所以max12132173222122a t t ⎛⎫ ⎪⎡⎤⎛⎫≤-+=-+=- ⎪ ⎪⎢⎥⎝⎭⎣⎦ ⎪⎝⎭所以a 的取值范围是17,12⎛⎤-∞- ⎥⎝⎦. 【点睛】方法点睛:不等式在指定区间上有解或恒成立求解参数范围问题的处理方法: (1)分类讨论法:根据参数的临界值作分类讨论;(2)分离参数法:将自变量和参数分离开来,自变量部分构造新函数,分析新函数的最值与参数的关系. 23.(1)10 (2)0 【分析】(1)利用指数幂的运算性质求解即可; (2)利用对数的运算性质求解即可. 【详解】 解:(1)1100.753270.064()160.258---++()11333244211254-⎡⎤⎛⎫⎛⎫=-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦51182210=(2)53log 425log lg lg 4522++-34223log 2log 2lg 5lg 22lg 24=-+-+- ()331lg5lg 244=-++- 331144=-+- 0=【点睛】本题考查指数幂的运算,考查对数的运算. 24.(1)1;(2)1010. 【分析】(1)根据4()42xx f x =+的表达式,求出()(),1f a f a -的表达式,再进行分式通分运算,可得()()11f a f a +-=. (2)设12320202021202120212021S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再把S 的表达式运用加法交换律改写成20201202120212021202321S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,把两式相加利用()(1)1f x f x +-=求出S 的值. 【详解】 (1)4()42xxf x =+,x ∈R . ∴()()1f a f a +-1144444442424224aaaa a a a a --=+=+++++4214224a a a =+=++, (2)设12320202021202120212021S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则 20201202120212021202321S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相加得:12[][][]92022020220120201202120212022120211021S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭由(1)得:20202201109211,1,,221202120212021202120220101f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ∴220201010S S =⇒=.【点睛】本题考查指数幂运算,分式运算,利用函数的性质进行式子求值,考查运算求解能力. 25.(1)32;(2)-. 【分析】(1)利用对数的运算性质化简可求得所求代数式的值;(2)由已知条件可求得1x x --的值,可求得22x x -+,并求得1122x x -+的值,代入计算可求得所求代数式的值. 【详解】(1)原式11lg3lg3lg3111lg3322lg5lg 2lg1081222lg32lg 27+-=++=+=; (2)因为()()()221114x x x x x x x x -----=+-=-,所以()()2211412x xx x ---=+-=,因为01x <<,则1x x -<,所以1x x --=-22x x --=-,又因为21112226x x x x --⎛⎫+=++= ⎪⎝⎭,所以1122x x -+=所以221122x x x x---=-+【点睛】本题考查指数式与对数式的计算,考查了平方关系以及对数运算性质的应用,考查计算能力,属于基础题. 26.(1)110;(2)-1 【分析】(1)原式化简为分数指数幂,计算结果;(2)根据对数运算公式化简求值. 【详解】 (1)原式113133234432222323-⎛⎫⎛⎫=+⨯+⨯- ⎪ ⎪⎝⎭⎝⎭113322210833⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭110=(2)原式()()22lg5lg 25lg 2lg 510lg5=⨯⨯-⋅⨯-()()lg52lg2lg5lg2lg512lg5=⨯+-⋅+-()22lg 2lg5lg5lg 2lg5lg 22lg5=⋅+-⋅--()()2lg 2lg5lg5lg 2lg5lg5=⋅+-+-()lg5lg2lg51lg5=⋅+--lg51lg51=--=-【点睛】本题考查指数幂和对数运算,重点考查计算能力,转化与变形,属于基础题型.。
高一数学《指数函数与对数函数》测试题(含答案解析)
高一数学《指数函数与对数函数》测试题(含答案解析)一、选择题:1、已知(10)xf x =,则(5)f =( ))A 、510 B 、105 C 、lg10 D 、lg 5 2、对于0,1a a >¹,下列说法中,正确的是(,下列说法中,正确的是( ))①若M N =则log log aa M N =; ②若loglog aaM N =则M N =;③若22log log a a M N =则M N =; ④若M N =则22log log a aM N=。
A 、①②③④、①②③④ B 、①③、①③ C 、②④、②④ D 、②、②3、设集合2{|3,},{|1,}xS y y x R T y y x x R ==Î==-Î,则S T 是 ( )) A 、Æ B 、T C 、S D 、有限集、有限集 4、函数22log (1)y x x =+³的值域为(的值域为( ))A 、()2,+¥B 、(),2-¥C 、[)2,+¥D 、[)3,+¥5、设 1.50.90.4812314,8,2y y y -æö===ç÷èø,则(,则( ))A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >> 6、在(2)log(5)a b a -=-中,实数a 的取值范围是(的取值范围是( )) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 7、计算()()22lg 2lg52lg 2lg5++×等于(等于( ))A 、0B 、1C 、2D 、3 8、已知3log 2a =,那么33log 82log 6-用a 表示是(表示是( ))A 、52a -B 、2a -C 、23(1)a a -+ D 、231a a -- 9、若21025x=,则10x-等于(等于()) A 、15 B 、15- C 、150 D 、16251010、若函数、若函数2(55)xy a a a =-+×是指数函数,则有(是指数函数,则有( ))A 、1a =或4a =B 、1a =C 、4a =D 、0a >,且1a ¹ 11、当1a >时,在同一坐标系中, 函数xy a -=与log xa y =的图象是图中的(的图象是图中的( ))12、已知1x ¹,则与x 3log 1+x 4log 1+x5log 1相等的式子是(相等的式子是( )) A 、x 60log 1 B 、3451log log log x x x ×× C 、 60log 1x D 、34512log log log x x x ×× 1313、、若函数()l o g (01)af x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( ))A 、24B B、、22C C、、14D D、、121414、下图是指数函数(、下图是指数函数(1)x y a =,(2)x y b =,(3)x y c =x ,(4)x y d =x的图象,则的图象,则a 、b 、c 、d 与1的大小关系是(的大小关系是( ))A 、1a b c d <<<<B B、、1b a d c <<<<C 、1a b c d <<<<D D、、1a b d c <<<< 1515、若函数、若函数my x +=-|1|)21(的图象与x 轴有公共点,轴有公共点,则m 的取值范围是(的取值范围是( ))A 、1m £-B B、、10m -£<C C、、1m ³D D、、01m <£二、填空题:1616、指数式、指数式4532-ba 化为根式是化为根式是 。
(压轴题)高中数学必修一第三单元《指数函数和对数函数》测试题(答案解析)(1)
一、选择题1.下列等式成立的是( ) A .222log (35)log 3log 5+=+ B .2221log 3log 32-= C .222log 3log 5log (35)⋅=+D .231log 3log 2=2.已知函数()()2log 2xf x m =+,则满足函数()f x 的定义域和值域都是实数集R 的实数m 构成的集合为 ( ) A .{}|0m m =B .{}0|m m ≤C .{}|0m m ≥D .{}|1m m =3.若函数y =x a a - (a >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1B .2C .3D .44.已知函数()()2ln f x ax bx c =++的部分图象如图所示,则a b c -+的值是( )A .1-B .1C .5-D .55.设函数()21xf x =-,c b a <<,且()()()f c f a f b >>,则22a c +与2的大小关系是( ) A .222a c +> B .222a c +≥ C .222a c +≤ D .222a c +<6.已知函数()a f x x 满足(2)4f =,则函数()log (1)a g x x =+的图象大致为( )A .B .C .D .7.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( ) A .2,13⎛⎫⎪⎝⎭B .(0,1)C .20,3⎛⎫ ⎪⎝⎭D .[)3,+∞ 8.已知偶函数()f x 在[0,)+∞上单调递增,131(())4a f =,37(log )2b f =,13(log 5)c f =,则a ,b,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>9.已知函数()y f x =与x y e =互为反函数,函数()y g x =的图象与()y f x =的图象关于x 轴对称,若()1g a =,则实数a 的值为 A .e -B .1e-C .eD .1e10.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .311.设0.512a ⎛⎫= ⎪⎝⎭,0.50.3b =,0.3log 0.2c =,则a 、b 、c 的大小关系( ).A .b a c <<B .a b c <<C .a b c >>D .a c b <<12.函数()log 1a f x x =+(且).当(1,0)x ∈-时,恒有()0f x >,有( ).A .()f x 在(,0)-∞+上是减函数B .()f x 在(,1)-∞-上是减函数C .()f x 在(0,)+∞上是增函数D .()f x 在(,1)-∞-上是增函数二、填空题13.已知(5)3,1()log ,1a a x a x f x x x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,则a 的取值范围为_________14.已知正实数a 满足8(9)a a a a =,则log 3a =____________. 15.若3763,a b ==则21a b+的值为_______ 16.已知()(3),1log ,1aa x a x f x x x --<⎧=⎨≥⎩的值域为R ,那么实数a 的取值范围是_________.17.函数21x x +)是_________(奇、偶)函数.18.已知21()1,()log 2xf xg x x m ⎛⎫=+=+ ⎪⎝⎭,若()()1212[1,3],[1,3],x x f x g x ∀∈∃∈≥,则实数m 的取值范围是_______.19.已知0x >且1x ≠,0y >且1y ≠,方程组58log log 4log 5log 81x y x y +=⎧⎨-=⎩的解为11x x y y =⎧⎨=⎩或22x x y y =⎧⎨=⎩,则()1212lg x x y y =________. 20.方程()()22log 972log 31xx+=++的解为______.三、解答题21.已知函数()f x 是定义在()(),00,-∞⋃+∞上的偶函数,当0x >时,()232f x ax ax =-+,(a R ∈).(1)求()f x 的函数解析式:(2)当1a =时,求满足不等式()21log f x >的实数x 的取值范围. 22.已知函数()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=. (1)求函数()f x 的表达式;(2)判断函数()(2)(2)g x f x f x =++-的奇偶性,并说明理由. 23.已知函数()22x x f x k -=+. (1)若()f x 为偶函数,求实数k 的值;(2)若()4f x 在2[log x m ∈,2log (2)](m m +为大于0的常数)上恒成立,求实数k 的最小值.24.已知函数()2log 11a f x x ⎛⎫=-⎪+⎝⎭(0a >且1a ≠). (1)判断函数()f x 的奇偶性并说明理由;(2)当01a <<时,判断函数()f x 在()1,+∞上的单调性,并利用单调性的定义证明; (3)是否存在实数a ,使得当()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m ++?若存在,求出实数a 的取值范围;若不存在,请说明理由.25.求函数()log 23=-2-3y x x 的定义域、值域和单调区间. 26.设函数()log (0,1)a f x x a a =>≠. (1)解不等式(26)(5)f a f a +; (2)已知对任意的实数()23,14m f m m f ⎛⎫++ ⎪⎝⎭恒成立,是否存在实数k ,使得对任意的[1,0]x ∈-,不等式()()142240x x xf f k ++--⋅>恒成立,若存在,求出k 的范围;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据对数的运算法则和换底公式判断. 【详解】22222log 3log 5log (35)log 15log (35)+=⨯=≠+,A 错误;22221log 32log 3log 32-=-≠,B 错误;222log 3log 5log (35)⋅≠+,C 错误; 3233log 31log 3log 2log 2==,D 正确. 故选:D . 【点睛】关键点点睛:本题考查对数的运算法则.log log log ()a a a M N MN +=,log log n a a b n b =,一般log ()log log a a a M N M N +≠+.log ()log log a a a MN M N ≠⋅, 1log log n a a b b n≠. 2.A解析:A 【分析】若定义域为实数集R ,则20x m +>对于x ∈R 恒成立,可得0m ≥,若值域为实数集R ,令2x t m =+,则2log y t = 此时需满足2x t m =+的值域包括()0,∞+,可得0m ≤,再求交集即可. 【详解】若()()2log 2xf x m =+定义域为实数集R ,则20x m +>对于x ∈R 恒成立,即2x m >-对于x ∈R 恒成立, 因为20x >,所以20x -<,所以0m ≥, 令2x t m =+,则2log y t =若()()2log 2xf x m =+值域为实数集R ,则2x t m =+的值域包括()0,∞+, 因为t m >,所以0m ≤,所以0m =, 故选:A 【点睛】关键点点睛:本题的关键点是要找到定义域为R 的等价条件即20x m +>对于x ∈R 恒成立,分离参数m 求其范围,值域为R 的等价条件即2x t m =+可以取遍所有大于0的数,由t m >,所以0m ≤,再求交集.3.C解析:C 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y [0,1]上单调递减,值域是[0,1],所以f (0)1,f (1)=0, 所以a =2, 所log a 56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.4.D解析:D 【分析】由图中函数的单调性可得方程20ax bx c ++=的两根为2和4,利用根与系数的关系结合(1)0f =列式求得,,a b c 的值,则答案可求.【详解】解:由图可知,函数()f x 的减区间为(,2)-∞,增区间为(4,)+∞, ∴内层函数2t ax bx c =++的减区间为(,2)-∞,增区间为(4,)+∞, ∴方程20ax bx c ++=的两根为2和4, 又(1)0f =,68ln()0ba ca abc ⎧-=⎪⎪⎪∴=⎨⎪++=⎪⎪⎩,解得13283a b c ⎧=⎪⎪=-⎨⎪⎪=⎩. 182533a b c ∴-+=++=.故选:D. 【点睛】本题考查函数的图象与图象变换,考查复合函数的单调性,考查数学转化思想方法,是中档题.5.D解析:D 【分析】运用分段函数的形式写出()f x 的解析式,作出()21xf x =-的图象,由数形结合可得0c <且0a >,21c <且21a >,且()()0f c f a ->,去掉绝对值,化简即可得到结论.【详解】()21,02112,0x xxx f x x ⎧-≥=-=⎨-<⎩, 作出()21xf x =-的图象如图所示,由图可知,要使c b a <<且()()()f c f a f b >>成立, 则有0c <且0a >, 故必有21c <且21a >,又()()0f c f a ->,即为()12210c a--->,∴222a c +<. 故选:D . 【点睛】本题考查指数函数单调性的应用,考查用指数函数单调性确定参数的范围,本题借助函数图象来辅助研究,由图象辅助研究函数性质是函数图象的重要作用,以形助数的解题技巧必须掌握,是中档题.6.C解析:C【分析】由已知求出a ,得()g x 表达式,化简函数式后根据定义域和单调性可得正确选项. 【详解】由恬24a=,2a =,222log (1),10()log (1)log (1),0x x g x x x x -+-<<⎧=+=⎨+≥⎩,函数定义域是(1,)-+∞,在(1,0)-上递减,在(0,)+∞上递增. 故选:C . 【点睛】本题考查对数型复合函数的图象问题,解题方法是化简函数后,由定义域,单调性等判断.7.C解析:C 【分析】根据对数函数性质与复合函数的单调性求解. 【详解】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数, 由对数函数性质知230a ->,即23<a , 综上023a <<. 故选:C . 【点睛】本题考查复合函数的单调性,掌握对数函数性质是解题关键,考查逻辑思维能力和计算能力,属于常考题.8.C解析:C 【分析】偶函数()f x 在[0,)+∞上单调递增,化简1333(log 5)(log 5)(log 5)f f f =-=,利用中间量比较大小得解. 【详解】∵偶函数()f x 在[0,)+∞上单调递增1333(log 5)(log 5)(log 5)c f f f ∴==-=,∵1333170()1log log 542<<<<,133317(()(log )(log 5)42)f f f << ∴a b c <<. 故选:C 【分析】本题考查函数奇偶性、单调性及对数式大小比较,属于基础题.9.D解析:D 【分析】根据指数函数与对数函数的关系,以及函数()y g x =的图象与()y f x =的图象关于x 轴对称,求得()ln g x x =-,再由()1g a =,即可求解. 【详解】由题意,函数()y f x =与xy e =互为反函数,所以()ln f x x =,函数()y g x =的图象与()y f x =的图象关于x 轴对称,所以()ln g x x =-, 又由()1g a =,即ln 1a -=,解得 1a e= 故选D. 【点睛】本题主要考查了指数函数与对数函数的关系,其中熟记指数函数与对数函数的关系,以及函数的对称性求得函数()g x 的解析式是解答的关键,着重考查了推理与运算能力,属于基础题.10.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.11.A解析:A 【分析】利用对数函数,幂函数的单调性比较大小即可. 【详解】解:因为12y x =在[0,)+∞上单调递增,110.32>>所以0.50.50.5110.32⎛⎫> ⎪⎝⎭>,即0.50.5110.32⎛⎫>> ⎪⎝⎭因为0.30.3log 0.2log 0.31>= 所以b a c << 故选:A 【点睛】本题主要考查了利用对数函数,幂函数的单调性比较大小,是中档题.12.D解析:D 【解析】试题分析:根据题意,当(1,0)x ∈-时,1(0,1)x +∈,而此时log 10a x +>,所以有01a <<,从而能够确定函数在(,1)-∞-上是增函数,在区间(1,)-+∞上是减函数,故选D .考点:函数的单调性. 二、填空题13.【分析】根据在上单调递增列出不等式组求解即可【详解】解:在上单调递增即解得:即故答案为:【点睛】易错点点睛:在解决分段函数的单调性问题时要注意上下段端点值的问题解析:5,54⎡⎫⎪⎢⎣⎭【分析】根据()f x 在R 上单调递增,列出不等式组,求解即可. 【详解】 解:(5)3,1()log ,1aa x a x f x x x --<⎧=⎨≥⎩在R 上单调递增,即50153log 1a a a a a ->⎧⎪>⎨⎪--≤⎩, 解得:554a ≤<, 即5,54a ⎡⎫∈⎪⎢⎣⎭,故答案为:5,54⎡⎫⎪⎢⎣⎭. 【点睛】易错点点睛:在解决分段函数的单调性问题时,要注意上下段端点值的问题.14.【分析】利用已知式两边同时取以e 为底的对数化简计算再利用换底公式代入计算即可【详解】正实数a 满足两边取对数得即故解得故故答案为:【点睛】本题解题关键是对已知指数式左右两边同时取以e 为底的对数化简计算 解析:716-【分析】利用已知式两边同时取以e 为底的对数,化简计算ln a ,再利用换底公式ln 3log 3ln a a=代入计算即可. 【详解】正实数a 满足8(9)aaa a =,两边取对数得8ln ln(9)aaa a =,即ln 8ln(9)a a a a =,故()ln 8ln9ln a a =+,解得16ln ln 37a =-,故ln 3ln 37log 316ln 16ln 37a a ===--.故答案为:716-. 【点睛】本题解题关键是对已知指数式左右两边同时取以e 为底的对数,化简计算得到ln a 的值,再结合换底公式即突破难点.15.1【分析】将指数式化为对数式得代入可得根据换底公式可求值【详解】由题意可得∵故答案为:1【点睛】本题主要考查对数与指数的互化对数的换底公式的应用考查基本运算求解能力解析:1 【分析】将指数式化为对数式得3log 63a =,7log 63b =,代入可得,372121log 63log 63a b +=+,根据换底公式可求值. 【详解】由题意可得,3log 63a =,7log 63b =, ∵6363363721212log 3log 7log 631log 63log 63a b +=+=+== 故答案为:1 【点睛】本题主要考查对数与指数的互化,对数的换底公式的应用,考查基本运算求解能力. 16.【分析】分类讨论和结合已知和对数函数及一次函数的单调性得a 的不等式组求解即可【详解】解:若当时当时此时的值域不为R 不符合题意;若当时当时要使函数的值域为R 需使解得综上所述故答案为:【点睛】本题考查分 解析:31,2⎛⎤ ⎥⎝⎦【分析】分类讨论01a <<和1a >,结合已知和对数函数及一次函数的单调性,得a 的不等式组求解即可.【详解】解:若01a <<,当1≥x 时,log 0a x ≤,当1x <时,()3332a x a a a a --<--=-,此时f x ()的值域不为R ,不符合题意;若1a >,当1≥x 时,log 0a x ≥,当1x <时,要使函数f x ()的值域为R ,需使30log 13a a a a ->⎧⎨≤--⎩,解得332a a <⎧⎪⎨≤⎪⎩, 312a ∴<≤, 综上所述,312a <≤, 故答案为:31,2⎛⎤ ⎥⎝⎦. 【点睛】本题考查分段函数的值域及对数函数的性质,考查分类讨论思想与数学运算能力,是中档题. 17.奇【解析】又所以函数f(x)是奇函数点睛:判断函数的奇偶性其中包括两个必备条件:(1)定义域关于原点对称这是函数具有奇偶性的必要不充分条件所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等解析:奇【解析】210x x x x x x R +->=-≥∴∈又()()))lg lg lg10f x f x x x -+=+== 所以函数f(x) 是奇函数.点睛: 判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.18.【分析】求出函数在上的最值最后根据题意列出不等式进行求解即可【详解】当时因此;当时因此因为所以有即故答案为:【点睛】本题考查了求指数型函数和对数型函数的最小值考查了存在性和任意性的概念的理解考查了数 解析:9,8⎛⎤-∞ ⎥⎝⎦ 【分析】求出函数(),()f x g x 在[1,3]x ∈上的最值,最后根据题意列出不等式进行求解即可.【详解】当[1,3]x ∈时,11[,1]28x ⎛⎫∈ ⎪⎝⎭,因此9()[,2]8f x ∈; 当[1,3]x ∈时,22(log )[0,log 3]x ∈,因此2()[,log 3]g x m m ∈+,因为()()1212[1,3],[1,3],x x f x g x ∀∈∃∈≥,所以有min min ()()f x g x ≥, 即9988m m ≥⇒≤. 故答案为:9,8⎛⎤-∞ ⎥⎝⎦ 【点睛】本题考查了求指数型函数和对数型函数的最小值,考查了存在性和任意性的概念的理解,考查了数学运算能力.19.【分析】利用换底公式得出分别消去和可得出二次方程利用韦达定理可求出和的值进而可计算出的值【详解】由换底公式得由①得代入②并整理得由韦达定理得即则因此故答案为:【点睛】本题考查了对数的换底公式对数的运 解析:6【分析】 利用换底公式得出5858log log 4111log log x y x y +=⎧⎪⎨-=⎪⎩,分别消去5log x 和8log y ,可得出二次方程,利用韦达定理可求出12x x 和12y y 的值,进而可计算出()1212lg x x y y 的值.由换底公式得5858log log 4111log log x y x y +=⎧⎪⎨-=⎪⎩①②, 由①得58log 4log x y =-,代入②并整理得()288log 2log 40y y --=,由韦达定理得8182log log 2y y +=,即()812log 2y y =,则261282y y ==, ()51528182log log 8log log 6x x y y ∴+=-+=,6125x x ∴=,因此,()61212lg lg106x x y y ==. 故答案为:6.【点睛】本题考查了对数的换底公式,对数的运算性质,韦达定理,考查了计算能力,属于中档题.20.或【分析】由对数的运算性质化对数方程为关于的一元二次方程求得的值进一步求得值得答案【详解】由得即化为解得:或或故答案为:或【点睛】本题主要考查的是对数方程的求解将对数方程转化为指数方程是解决本题的关 解析:0x =或1x =.【分析】由对数的运算性质化对数方程为关于3x 的一元二次方程,求得3x 的值,进一步求得x 值得答案.【详解】由()()22log 972log 31x x +=++,得 ()()22log 97log 431x x +=+, 即()97431x x +=+,化为()234330x x -⋅+=, 解得:31x =或33x =,0x ∴=或1x =.故答案为:0x =或1x =.【点睛】本题主要考查的是对数方程的求解,将对数方程转化为指数方程是解决本题的关键,考查学生的计算能力,是基础题.三、解答题21.(1)()2232,032,0ax ax x f x ax ax x ⎧-+>=⎨++<⎩;(2)()()()()3,21,00,12,3---.(1)根据已知和函数的奇偶性可得0x <的解析式从而求得()f x ;(2)当1a =时,分别解每一段小于1的不等式,最后求两段的并集可得答案.【详解】(1)设0x <,0x ->,()232f x ax ax -=++,又∵()f x 为偶函数,()()f x f x -=,∴()232f x ax ax =++.综上:()2232,032,0ax ax x f x ax ax x ⎧-+>=⎨++<⎩. (2)当1a =时,可知:0x >,()2232log 1x x -<+, 原不等式等价于22320322x x x x ⎧-+>⎨-+<⎩,解得()()0,12,3x ∈, 同理可知:0x <,()2232log 1x x +<+, 原不等式等价于22320322x x x x ⎧++>⎨++<⎩,解得()()1,03,2x ∈---, 综上:实数x 的取值范围为()()()()3,21,00,12,3---.【点睛】 求分段函数的解析式,要根据函数的奇偶性、对称性、周期性等结合已知条件进行求解,要注意定义域.22.(1)2()log f x x =(2)偶函数.见解析【分析】(1)根据(4)(2)1f f -=,代入到函数的解析式中可求得2a =,可求得函数()f x 的解析式; (2)由函数()f x 的解析式,求得函数()g x 的解析式,先求得函数()g x 的定义域,再由函数的奇偶性的判断方法证得函数的奇偶性.【详解】(1)因为()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=,所以log 4log 21a a -=,即log 21a =.,解得2a =,所以2()log f x x =;(2)因为()log a f x x =,所以22()log (2)log (2)g x x x =++-,由2020x x +>⎧⎨->⎩,得22x -<<,所以()g x 的定义域为()22-,, 又因为22()log (2)log (2)()g x x x g x -=-++=,所以22()log (2)log (2)g x x x =++-为偶函数.【点睛】本题考查对数函数的函数解析式的求解,函数的奇偶性的证明,属于基础题.23.(1)1k =;(2)当02m <<时,k 的最小值为4,当2m 时,k 的最小值为24m m -+.【分析】(1)根据函数是偶函数,利用偶函数的定义求解.(2)将()4f x ,转化为2(2)42x x k -+⨯,令2[x t m =∈,2]m +,构造函数2()4g t t t =-+,利用二次函数的性质求得其最大值即可..【详解】(1)()f x 为偶函数,()()f x f x ∴=-,2?22?2x x x x k k --∴+=+,即(1)(22)0x xk ---=,对任意的x 恒成立, 1k ∴=.(2)由()4f x ,可得2?24x x k -+,即2(2)42x x k-+⨯,令2[x t m =∈,2]m +, 2()4g t t t ∴=-+,当02m <<时,对称轴2[t m =∈,2]m +,则()max g t g =(2)4244=-+⨯=,当2m 时,对称轴2t m =,则2()()4max g t g m m m ==-+,故当02m <<时,k 的最小值为4,当2m 时,k 的最小值为24m m -+.【点睛】本题主要考查函数的奇偶性的和不等式恒成立的问题,还考查了分类讨论的思想和运算求解的能力,属于中档题.24.(1)奇函数,理由见详解;(2)单调递减,过程见详解;(3)存在(0,3∈-a .【分析】(1)先由函数解析式求出定义域,再由()f x ,求出()f x -,根据函数奇偶性的概念,即可得出结果; (2)先令2()11=-+g x x ,用单调性的定义,即可判断2()11=-+g x x 的单调性,再由复合函数单调性的判定原则,即可得出结果; (3)先假设存在满足条件的实数a ,由题意得出01a <<,()1log ()1log a a f n n f m m =+⎧⎨=+⎩,推出,m n 是方程2log 11log 1⎛⎫-=+ ⎪+⎝⎭a a x x 的两根,进而得到2(1)10ax a x +-+=在()1,+∞上有两个不同解,根据一元二次方程根的分布情况,列出不等式组,即可求出结果.【详解】(1)由2101->+x 解得1x >或1x <-,即函数()f x 的定义域为(,1)(1,)-∞-+∞; 又()21log 1log 11-⎛⎫=-= ⎪++⎝⎭a a x f x x x , 所以()22121log 1log 1log log 1111-+-+⎛⎫⎛⎫-=-=-== ⎪ ⎪-+-+-+-⎝⎭⎝⎭a a a a x x f x x x x x , 因此()()log 10+-==a f x f x ,所以()()f x f x -=-,所以函数()f x 为奇函数;(2)令2()11=-+g x x ,任取121x x <<, 则12121221212222()()111111(1)(1)⎛⎫⎛⎫--=---=-= ⎪ ⎪++++++⎝⎭⎝⎭x x g x g x x x x x x x , 因为120x x -<,110x +>,210x +>,所以121221()()0(1)(1)--=<++x x g x g x x x , 即函数2()11=-+g x x 在()1,+∞上单调递增; 又01a <<,所以log a y x =单调递减,根据同增异减的原则,可得:()2log 11a f x x ⎛⎫=-⎪+⎝⎭在()1,+∞上单调递减; (3)假设存在实数a ,使得当()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m ++,由m n <,1log 1log +<+a a n m 可得01a <<;所以()1log ()1log a a f n n f m m =+⎧⎨=+⎩, 因此,m n 是方程2log 11log 1⎛⎫-=+ ⎪+⎝⎭a a x x 的两根, 即2(1)10ax a x +-+=在()1,+∞上有两个不同解,设2()(1)1=+-+h x ax a x ,则(1)01120h a a>⎧⎪-⎪->⎨⎪∆>⎪⎩,解得03a <<-.所以存在(0,3∈-a ,使得当()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m ++.【点睛】本题主要考查函数奇偶性的判定,单调性的判定,以及由函数定义域与值域求参数的问题,熟记函数单调性与奇偶性的定义即可,属于常考题型.25.定义域为(,1)(3,)-∞-+∞,函数值域为R ,减区间是(,1)-∞-,增区间是(3,)+∞.【分析】结合对数函数性质求解.【详解】由2230x x -->得1x <-或3x >,∴定义域为(,1)(3,)-∞-+∞.由2230x x -->得y R ∈,函数值域为R , 223y x x =--在(,1)-∞-上递减,在(3,)+∞上递增,∴()log 23=-2-3y x x 的减区间是(,1)-∞-,增区间是(3,)+∞.【点睛】本题考查对数型复合函数的性质,掌握对数函数的性质是解题关键.26.(1)(0,1)[2,)a ∈⋃+∞(2)实数k 不存在,详见解析【分析】(1)分类讨论,利用对数函数的单调性,将不等式具体化,解不等式即可;(2)判断函数()f x 为增函数,将不等式具体化,再分离参数求最值,即可得出结论.【详解】解:(1)当01a <<时,有2650a a +>,解得02a <≤,即(0,1)∈a ;当1a >时,有0265a a <+,解得2a ,即[2,)a ∈+∞.综上可知,(0,1)[2,)a ∈⋃+∞. (2)由于221331244m m m ⎛⎫++=++ ⎪⎝⎭, 且()2314f m m f ⎛⎫++ ⎪⎝⎭,可知()f x 为增函数. ()()142240x x x f f k ++--⋅>,即()()14224x x x f f k ++>-⋅,则有14224x x x k ++>-⋅在[1,0]-上恒成立, 即1342x x k +<⋅+在[1,0]-上恒成立,令12,12x t ⎡⎤=∈⎢⎥⎣⎦,设2()32,()g t t t g t =+在1,12⎡⎤⎢⎥⎣⎦上单调递增, 则min 17()24g t g ⎛⎫== ⎪⎝⎭,即74k <. 又由于[1,0]x ∈-时,240x k -⋅>恒成立,k ,故符合题意的实数k不存在.解得2【点睛】本题考查对数函数的单调性、恒成立问题的转化分析、指数函数与二次函数的复合函数的最值问题.。
新北师大版高中数学必修一第三单元《指数函数和对数函数》测试题(有答案解析)(2)
一、选择题1.设a ,b ,c 为正数,且3a =4b =6c ,则有( ) A .111c a b=+ B .221c a b=+ C .122c a b=+ D .212c a b=+ 2.已知函数2()log x f x =,在[116,m ]上的值域为[0,4],2m f ⎛⎫⎪⎝⎭的取值范围是( ) A .[1,2]B .[0,2]C .[1,3]D .[0,3]3.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微:数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,页常用函数的解析式来琢磨函数图象的特征,如函数()22xy xx R =-∈的大致图象是( )A .B .C .D .4.已知()f x ,()g x 分别为定义在R 上的偶函数和奇函数,且满足()()2xf xg x +=,若对于任意的[]1,2x ∈,都有()()20f x a g x a -⋅-≤⎡⎤⎡⎤⎣⎦⎣⎦恒成立,则实数a 的取值范围是( ) A .317,44⎡⎤⎢⎥⎣⎦B .155,82⎡⎤⎢⎥⎣⎦ C .15,28⎡⎤⎢⎥⎣⎦D .172,4⎡⎤⎢⎥⎣⎦5.已知定义在R 上的函数()f x 满足()()2f x f x +=,且当[)1,1x ∈-时,()2f x x =,若函数()log1a g x x =+图象与()f x 的图象恰有10个不同的公共点,则实数a 的取值范围为( ) A .()4,+∞ B .()6,+∞ C .()1,4D .()4,66.已知函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,则52f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( ) A .12-B .-1C .-5D .127.已知函数()f x 是定义在R 上的单调递增的函数,且满足对任意的实数x 都有[()3]4x f f x -=,则()()f x f x +-的最小值等于( ).A .2B .4C .8D .128.如图是指数函数①y =x a ;②y =x b ;③y =c x ;④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c9.已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数D .奇函数,且在(0,10)是减函数10.函数213()log 4f x x =-的单调减区间是( ) A .(]()2,02,-+∞ B .(]2,0-和(2,)+∞ C .(),20,2[)-∞-D .(,2)-∞-和[0,2)11.设()lg (21)fxx a =-+是奇函数,则使f(x)<0的x 的取值范围是( ).A .(-1,0)B .(0, 1)C .(-∞,0)D .(-∞,0)∪(1,+∞)12.函数()log 1a f x x =+(且).当(1,0)x ∈-时,恒有()0f x >,有( ).A .()f x 在(,0)-∞+上是减函数B .()f x 在(,1)-∞-上是减函数C .()f x 在(0,)+∞上是增函数D .()f x 在(,1)-∞-上是增函数二、填空题13.已知正实数a 满足8(9)a a a a =,则log 3a =____________.14.已知函数22()log ()f x ax x a =++的值域为R ,则实数a 的取值范围是_________ 15.函数()()cos1log sin f x x =的单调递增区间是____________.16.函数()y f x =的图象与2x y =的图象关于y 轴对称,若1()y f x -=是()y f x =的反函数,则12(2)y f x x -=-的单调递增区间是__________.17.定义在(,0)(0,)-∞+∞上的函数1,0(),0x x e x f x e m x -⎧->=⎨+<⎩是奇函数,则实数m 的值为______.18.设实数x 满足01x <<,且2log 4log 1x x -=,则x =______.19.若()34,0mnm n =≠,则4log 3=______.(用m n ,表示)20.函数22()log (2)f x x x =--的单调递增区间是_____________.三、解答题21.已知指数函数()f x 的图象经过点()1,3-,()()2()23x g x f a x f =-+在区间[]1,1-上的最小值是()h a . (1)求函数()f x 的解析式;(2)若3a ≥时,求函数()g x 的最小值()h a 的表达式;(3)是否存在m 、n ∈R 同时满足以下条件:①3m n >>;②当()h a 的定义域为[],n m 时,值域为22,n m ⎡⎤⎣⎦;若存在,求出m 、n 的值;若不存在,说明理由.22.(1)已知12x y +=,9xy =,且x y <,求11221122x y x y-+值;(2)求值:2(lg 2)lg5lg 20+⋅.23.已知函数f (x )=log a (x +1)-log a (1-x ),a >0,且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性,并予以证明; (3)当a >1时,求使f (x )>0的x 的取值范围.24.已知函数()log [(1)(1)]a f x x x =+-(其中0a >且1a ≠) (1)求函数()f x 的定义域,并判断它的奇偶性;(2)若2a =,当12x ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的值域. 25.已知函数()log (1)a f x x =+,()log (1)(0a g x x a =->,且1)a ≠. (1)求函数()()f x g x -的定义域;(2)判断函数()()f x g x -的奇偶性,并说明理由;(3)当2a =时,判断函数()()f x g x -的单调性,并给出证明. 26.已知函数1()log a f x a x ⎛⎫=-⎪⎝⎭, 其中实数0a >且1a ≠. (1)当3a =时,求不等式()0f x >的解集;(2)若()f x 在区间[1,3]上单调递增,求a 的取值范围;【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先根据指对互化求出,,a b c ,再根据换底公式表示111,,a b c,最后根据对数运算法则化简. 【详解】设3a =4b =6c =k , 则a =log 3k , b =log 4k , c =log 6k , ∴311log 3log k a k ==, 同理1log 4k b =,1log 6k c=, 而11log 2,log 3log 22k k k b c ==+, ∴1112c a b =+,即221c a b =+. 故选:B 【点睛】本题考查指对数运算,换底公式,以及对数运算的性质,关键是灵活应用对数运算公式,公式1log log a b b a=是关键. 2.D解析:D 【分析】由对数函数的单调性可得[]1,16m ∈,再结合对数函数的性质即可得解. 【详解】由题意,函数2()log x f x =在(]0,1上单调递减,在[)1,+∞上单调递增, 且()116416f f ⎛⎫==⎪⎝⎭,()10f =, 结合该函数在1,16m ⎡⎤⎢⎥⎣⎦上的值域为[0,4]可得[]1,16m ∈,所以1,822m ⎡⎤∈⎢⎥⎣⎦,[]2lo 2g 0,32m m f ⎛⎫= ⎪⎝∈⎭.故选:D. 【点睛】关键点点睛:解决本题的关键是由对数函数的图象变换及单调性确定[]1,16m ∈,即可得解.3.A解析:A 【分析】分析函数()()22xf x xx R =-∈的奇偶性,结合()01f =可得出合适的选项.【详解】令()22=-xf x x ,该函数的定义域为R ,()()()2222xxf x x x f x --=--=-=,函数()22=-xf x x 为偶函数,排除B 、D 选项;又()010f =>,排除C 选项. 故选:A. 【点睛】函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)从函数的特征点,排除不合要求的图象.4.B解析:B 【分析】利用奇偶性求出()222x x f x -+=,()222x x g x --=,讨论()22x xh x -=+和()g x 的单调性求最值可得()()h x g x >恒成立,则不等式恒成立等价于()()max min g x a h x ≤≤. 【详解】()()2x f x g x +=,()()2x f x g x --+-=∴,()f x 是偶函数,()g x 分是奇函数,()()2x f x g x -=∴-,可得()222x xf x -+=,()222x xg x --=,则不等式为()()1222202x xx x a a --⎡⎤+-⋅--≤⎢⎥⎣⎦,令()22xxh x -=+,令2x t =,由对勾函数的性质可得1y t t=+在[]2,4单调递增, 则()22xxh x -=+在[]1,2单调递增,则()()()()min max 5171,224h x h h x h ====, 对于()222x x g x --=,因为2xy =单调递增,2x y -=-单调递增,()g x ∴在[]1,2单调递增,()()()()min max 3151,248g x g g x g ∴====, ()()h x g x ∴>恒成立,则不等式()()0h x a g x a --≤⎡⎤⎡⎤⎣⎦⎣⎦,解得()()g x a h x ≤≤,()()max min g x a h x ∴≤≤,即15582a ≤≤. 故选:B. 【点睛】关键点睛:本题考查不等式的恒成立问题,解题的关键是利用奇偶性求出函数解析式,根据函数的单调性求出最值将不等式等价为()()max min g x a h x ≤≤即可求解.5.D解析:D 【分析】转化条件为函数()f x 是周期为2的周期函数,且函数()g x 、()f x 的图象均关于1x =-对称,由函数的对称性可得两图象在1x =-右侧有5个交点,画出图象后,数形结合即可得解. 【详解】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数, 又函数()log 1a g x x =+的图象可由函数log a y x =的图象向左平移一个单位可得, 所以函数()log 1a g x x =+的图象的对称轴为1x =-,当[)1,1x ∈-时,()2f x x =,所以函数()f x 的图象也关于1x =-对称,在平面直角坐标系中作出函数()y f x =与()y g x =在1x =-右侧的图象,数形结合可得,若函数()log 1a g x x =+图象与()f x 的图象恰有10个不同的公共点, 则由函数图象的对称性可得两图象在1x =-右侧有5个交点,则()()13log 415log 61a a a g g ⎧>⎪=<⎨⎪=>⎩,解得()4,6a ∈. 故选:D. 【点睛】关键点点睛:解决本题的关键是函数的周期性、对称性及数形结合思想的应用.6.A解析:A 【分析】根据分段函数解析式,依次计算255log 122f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,23log 2f ⎛⎫ ⎪⎝⎭,即可得选项.【详解】因为函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,所以2253log log 2122f ⎛⎫=<= ⎪⎝⎭,23log 2531222222f f⎡⎤⎛⎫∴=-=-=- ⎪⎢⎥⎝⎭⎣⎦. 故选:A. 【点睛】本题考查根据分段函数求解函数值,关键在于根据解析式分段求解,由内到外,准确认清自变量的所在的范围和适用的解析式.7.B解析:B 【分析】根据()3x f x -为定值,可假设()3xf x m =+,然后计算()()f x f x +-,并计算m 的值,然后使用基本不等式,可得结果. 【详解】由题可知:()3x f x -为定值故设()3xf x m -=,即()3xf x m =+又[()3]4x f f x -=,所以()341mf m m m =+=⇒= 则()31x f x =+()()3131x x f x f x -+-=+++则1()()32243x x f x f x +-=++≥= 当且仅当133xx =时,取等号 所以()()f x f x +-的最小值为:4故选:B 【点睛】本题考查基本不等式的应用,还考查镶嵌函数的应用,难点在于()3xf x -为定值,审清题意,细心计算,属中档题.8.B解析:B 【分析】根据指数函数的图象与性质可求解. 【详解】根据函数图象可知函数①y =x a ;②y =x b 为减函数,且1x =时,②y =1b <①y =1a , 所以1b a <<,根据函数图象可知函数③y =c x ;④y =d x 为增函数,且1x =时,③y =c 1>④y =d 1, 所以1c d >> 故选:B 【点睛】本题主要考查了指数函数的单调性,指数函数的图象,数形结合的思想,属于中档题.9.C解析:C 【分析】先判断函数的定义域关于原点对称,再由奇偶性的定义判断奇偶性,根据复合函数的单调判断其单调性,从而可得结论. 【详解】由100100x x +>⎧⎨->⎩,得(10,10)x ∈-, 故函数()f x 的定义域为()10,10-,关于原点对称,又()()lg 10lg(10)()f x x x f x -=-++=,故函数()f x 为偶函数, 而()()2lg(10)lg(10)lg 100f x x x x=++-=-,因为函数2100y x =-在()0,10上单调递减,lg y x =在()0,∞+上单调递增, 故函数()f x 在()0,10上单调递减,故选C. 【点睛】本题主要考查函数的奇偶性与单调性,属于中档题. 判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为减函数);(2)和差法,()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) .10.B解析:B 【分析】先分析函数的定义域,然后根据定义域以及复合函数的单调性判断方法确定出()f x 的单调递减区间. 【详解】因为240x ->,所以定义域为()()(),22,22,-∞--+∞,令()24u x x =-,13log y u =在()0,∞+上单调递减, 当(),2x ∈-∞-时,()u x 单调递减,所以()f x 单调递增; 当(]2,0x ∈-时,()u x 单调递增,所以()f x 单调递减; 当()0,2x ∈时,()u x 单调递减,所以()f x 单调递增; 当()2,x ∈+∞时,()u x 单调递增,所以()f x 单调递减; 综上可知:()f x 的单调递减区间为(]2,0-和()2,+∞. 故选:B. 【点睛】本题考查对数型复合函数的单调区间的求解,难度一般.分析复合函数的单调性,注意利用判断的口诀“同增异减”,当内外层函数单调性相同时,整个函数为增函数,当内外层函数单调性相反时,整个函数为减函数.11.A解析:A 【解析】 试题分析:由()lg (21)fxx a =-+为奇函数,则()()f xf x-=-,可得1a =-,即()lg 11f x x x =+-,又()0f x<,即lg110xx+-<,可变为0111x x <+-<,解得10x -<<.考点:函数的奇偶性,对数函数性质,分式不等式.12.D解析:D 【解析】试题分析:根据题意,当(1,0)x ∈-时,1(0,1)x +∈,而此时log 10a x +>,所以有01a <<,从而能够确定函数在(,1)-∞-上是增函数,在区间(1,)-+∞上是减函数,故选D .考点:函数的单调性. 二、填空题13.【分析】利用已知式两边同时取以e 为底的对数化简计算再利用换底公式代入计算即可【详解】正实数a 满足两边取对数得即故解得故故答案为:【点睛】本题解题关键是对已知指数式左右两边同时取以e 为底的对数化简计算 解析:716-【分析】利用已知式两边同时取以e 为底的对数,化简计算ln a ,再利用换底公式ln 3log 3ln a a=代入计算即可. 【详解】正实数a 满足8(9)aaa a =,两边取对数得8ln ln(9)aaa a =,即ln 8ln(9)a a a a =,故()ln 8ln9ln a a =+,解得16ln ln 37a =-,故ln 3ln 37log 316ln 16ln 37a a ===--.故答案为:716-. 【点睛】本题解题关键是对已知指数式左右两边同时取以e 为底的对数,化简计算得到ln a 的值,再结合换底公式即突破难点.14.【分析】设值域为根据题意对分类讨论结合根的判别式即可求解【详解】设值域为函数的值域为当时值域为满足题意;当时须解得综上实数a 的取值范围是故答案为:【点睛】本题考查对数函数的性质复合函数的性质二次函数 解析:10,2⎡⎤⎢⎥⎣⎦【分析】设2()u x ax x a =++值域为A ,根据题意(0,)A +∞⊆,对a 分类讨论,结合根的判别式,即可求解.【详解】设2()u x ax x a =++值域为A ,函数22()log ()f x ax x a =++的值域为,(0,)R A +∞⊆, 当0a =时,2()log f x x =值域为R ,满足题意;当0a ≠时,须20140a a >⎧⎨∆=-≥⎩,解得102a <≤, 综上,实数a 的取值范围是10,2⎡⎤⎢⎥⎣⎦. 故答案为:10,2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查对数函数的性质,复合函数的性质,二次函数的取值和根的判别式的关系,属于中档题.15.【分析】根据对数型复合函数单调性列不等式再根据正弦函数性质得结果【详解】单调递增区间为单调递减区间且所以故答案为:【点睛】本题考查对数型复合函数单调性以及正弦函数性质考查基本分析求解能力属基础题 解析:[2,2),()2k k k Z ππππ++∈ 【分析】根据对数型复合函数单调性列不等式,再根据正弦函数性质得结果.【详解】()()cos1cos1(0,1)log sin f x x ∈∴=单调递增区间为sin y x =单调递减区间且sin 0x >, 所以22,()2k x k k Z ππππ+≤<+∈, 故答案为:[2,2),()2k k k Z ππππ++∈【点睛】 本题考查对数型复合函数单调性以及正弦函数性质,考查基本分析求解能力,属基础题.16.(﹣∞0)【分析】函数的图象与的图象关于轴对称可得由于是的反函数可得再利用对数函数的定义域与单调性二次函数的单调性复合函数的单调性即可得出【详解】解:函数的图象与的图象关于轴对称是的反函数解得或当时 解析:(﹣∞,0)【分析】函数()y f x =的图象与2x y =的图象关于y 轴对称,可得()2-=x f x .由于1()y f x -=是()y f x =的反函数,可得112()f x log x -=. 12221122(2)(2)[(1)1]y f x x log x x log x -=-=-=--,再利用对数函数的定义域与单调性、二次函数的单调性、复合函数的单调性即可得出.【详解】 解:函数()y f x =的图象与2x y =的图象关于y 轴对称,()2x f x -∴=.1()y f x -=是()y f x =的反函数,112()f x log x -∴=.12221122(2)(2)[(1)1]y f x x log x x log x -=-=-=--,220x x ->,解得0x <或2x >.当(,0)x ∈-∞时,函数2()(1)1u x x =--单调递减,因此12(2)y f x x -=-单调递增. 12(2)y f x x -∴=-的单调递增区间是(,0)-∞.故答案为:(,0)-∞.【点睛】本题考查了反函数的求法、对数函数的定义域与单调性、二次函数的单调性、复合函数的单调性,考查了推理能力与计算能力,属于难题.17.【分析】由奇函数定义求解【详解】设则∴此时时为奇函数故答案为:【点睛】方法点睛:本题考查函数的奇偶性对于分段函数一般需要分类求解象这种由奇函数求参数可设求得参数值然后再验证这个参数值对也适用即可本题 解析:1-.【分析】由奇函数定义求解.【详解】设0x >,则()1x f x e -=-,()x f x e m --=+,∴10x x e m e --++-=,1m =-.此时,0x <时,()1,x f x e =-()1()x f x e f x -=-=-,()f x 为奇函数.故答案为:1-.【点睛】方法点睛:本题考查函数的奇偶性,对于分段函数,一般需要分类求解.象这种由奇函数求参数,可设0x >,求得参数值,然后再验证这个参数值对0x <也适用即可.本题也可以由特殊值如(1)(1)f f -=-求出参数,然后检验即可.18.【分析】利用换底公式和对数运算法则可将方程转化为解方程求得或进而结合的范围求得结果【详解】即解得:或或故答案为:【点睛】本题考查对数方程的求解问题涉及到对数运算法则和换底公式的应用;考查基础公式的应 解析:14【分析】 利用换底公式和对数运算法则可将方程转化为222log 1log x x-=,解方程求得2log 2x =-或2log 1x =,进而结合x 的范围求得结果.【详解】22log 42log 2log x x x == 2222log 4log log 1log x x x x ∴-=-= 即()222log log 20x x +-=,解得:2log 2x =-或2log 1x = 14x ∴=或2x = 01x << 14x ∴= 故答案为:14【点睛】本题考查对数方程的求解问题,涉及到对数运算法则和换底公式的应用;考查基础公式的应用能力.19.【分析】利用换底公式化简即可【详解】设则故故答案为:【点睛】本题主要考查了指对数的互化以及换底公式的运用属于中档题 解析:n m【分析】利用换底公式化简即可.【详解】设()34,0m n a m n ==≠,则34log ,log m a n a ==, 故344341log 3log log log 31log 4log log a a a a n a ma====. 故答案为:n m【点睛】本题主要考查了指对数的互化以及换底公式的运用,属于中档题.20.【分析】首先求出函数的定义域再根据复合函数同增异减求其单调减区间即可【详解】函数的定义域为:解得:或令为增函数当为增函数为增函数当为减函数为减函数所以增区间为故答案为:【点睛】本题主要考查复合函数的 解析:()2,+∞【分析】首先求出函数的定义域,再根据复合函数同增异减求其单调减区间即可.【详解】函数()f x 的定义域为:220x x -->,解得:2x >或1x <-.令22t x x =--,2log y t =为增函数.当2x >,t 为增函数,22()log (2)f x x x =--为增函数,当1x <-,t 为减函数,22()log (2)f x x x =--为减函数.所以增区间为(2,)+∞.故答案为:(2,)+∞【点睛】本题主要考查复合函数的单调性,同增异减为解题的关键,属于中档题.三、解答题21.(1)1()3xf x ⎛⎫= ⎪⎝⎭;(2)()126h a a =-;(3)不存在,理由见解析. 【分析】(1)设()x f x c =(0c >且1c ≠),由题意可得()13f -=,可求得c 的值,进而可求得函数()f x 的解析式;(2)令11,333xt ⎛⎫⎡⎤=∈ ⎪⎢⎥⎝⎭⎣⎦,设()223k t t at =-+,分析当3a ≥时,函数()k t 的单调性,进而可得出()()min h a k t =,即可得解;(3)分析出函数()h a 在区间[],n m 上单调递减,可得出22126126n m m n⎧-=⎨-=⎩,将两个等式作差可得出6m n +=,结合3m n >>判断可得出结论.【详解】(1)设()xf x c =(0c >且1c ≠), 因为指数函数()f x 的图象经过点()1,3-,()113f c -∴-==,即13c =,因此,()13xf x ⎛⎫= ⎪⎝⎭; (2)令()13x t f x ⎛⎫== ⎪⎝⎭,[]1,1x ∈-,1,33t ⎡⎤∴∈⎢⎥⎣⎦, 所以,设()223k t t at =-+,对称轴为t a =. 3a ≥,可知()k t 在1,33⎡⎤⎢⎥⎣⎦上单调递减, 当3t =时,()k t 取最小值,即()g x 取最小值()()3126h a k a ==-;(3)由(2)知3m n >>时,()126h a a =-在[],n m 上单调递减,若此时()h a 的值域为22,n m ⎡⎤⎣⎦,则22126126n m m n ⎧-=⎨-=⎩, 即()()()6m n m n m n -=-+,m n ≠,则0m n -≠,6m n ∴+=,又3m n >>,则6m n +>,故不存在满足条件的m 、n 的值.【点睛】方法点睛:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴动区间定,不论哪种类型,解决的关键就是考查对称轴于区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论;(2)二次函数的单调性主要依据二次函数图象的对称轴进行分析讨论求解.22.(1)2)1. 【分析】(1)求出x y -的值,再化简11221122x y x y -+即得解;(2)利用对数的运算法则化简求解.【详解】(1)因为222()()41249108x y x y xy -=+-=-⨯=,又x y <,所以x y -=-所以1111222221122()x yx y x y x y --====-+. (2)原式22(lg 2)lg5(1lg 2)(lg 2)lg5lg 2lg5=+⋅+=+⋅+lg2(lg2lg5)lg5lg2lg51=++=+=.【点睛】关键点点睛:解答指数对数运算题的关键是通过观察式子的特点,再熟练利用指数对数的运算法则和性质求解.23.(1){x |-1<x <1};(2)f (x )为奇函数;证明见解析;(3)(0,1).【分析】(1)根据真数大于零,列出不等式,即可求得函数定义域;(2)计算()f x -,根据其与()f x 关系,结合函数定义域,即可判断和证明; (3)利用对数函数的单调性,求解分式不等式,即可求得结果.【详解】(1)因为f (x )=log a (x +1)-log a (1-x ),所以1010x x +>⎧⎨->⎩解得-1<x <1. 故所求函数的定义域为{x |-1<x <1}.(2)f (x )为奇函数.证明如下:由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ).故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域{x |-1<x <1}上是增函数,由f (x )>0,得11x x+->1,解得0<x <1. 所以x 的取值范围是(0,1).【点睛】 本题考查对数型复合函数单调性、奇偶性以及利用函数性质解不等式,属综合中档题. 24.(1)(1,1)-,()f x 在(1,1)-内为偶函数;(2)[2,0]-.【分析】(1)由对数真数大于0可得定义域,由奇偶性定义判断奇偶性;(2)确定函数在12⎡⎤⎢⎥⎣⎦的单调性可得最大值和最小值,从而得值域. 【详解】(1)由题意知:(1)(1)0x x +->,解得11x -<<,所以函数()f x 的定义域为(1,1)-由()log [(1)(1)]()a f x x x f x -=-+=,所以函数()f x 在(1,1)-内为偶函数.(2)由2a =,有()222()log [(1)(1)]log 1f x x x x=-+=-又因为12x ⎡⎤∈⎢⎥⎣⎦,所以()f x 在⎡⎤⎢⎥⎣⎦上为增函数,在10,2⎡⎤⎢⎥⎣⎦上为减函数,所以min 21()log 224f x f ⎛=-==- ⎝⎭,max 2()(0)log 10f x f ===,所以函数()f x在12⎡⎤⎢⎥⎣⎦内值域为[2,0]-. 【点睛】本题考查对数型复合函数的定义域,奇偶性,单调性,值域.掌握对数函数的性质是解题关键.本题还需掌握复合函数的单调性的判断:同增异减.25.(1)(1,1)-;(2)是奇函数,理由见解析;(3)单调递增,证明见解析.【分析】(1)由对数有意义的条件列出不等式组1010x x +>⎧⎨->⎩,解之即可; (2)由(1)知,函数()()f x g x -的定义域关于原点对称,再根据函数奇偶性的概念进行判断即可;(3)当2a =时,函数()()f x g x -单调递增.根据用定义证明函数单调性的“五步法”:任取、作差、变形、定号、下结论,即可得证.【详解】(1)10x +>,10x ->,11x ∴-<<,∴函数()()f x g x -的定义域为(1,1)-.(2)由(1)知,函数()()f x g x -的定义域关于原点对称,()()log (1)log (1)log (1)log (1)[()()]a a a a f x g x x x x x f x g x ---=-+-+=--+=--,∴函数()()f x g x -是奇函数.(3)当2a =时,函数()()f x g x -单调递增.理由如下:当(1,1)x ∈-时,1()()log 1ax f x g x x+-=-, 设1211x x -<<<, 则2121211222112121211211111[()()][()()]log log log (?)log 11111aa a a x x x x x x x x f x g x f x g x x x x x x x x x +++-+-----=-==---+-+-, 1211x x -<<<,2121x x x x ∴->-+,21122112110x x x x x x x x ∴+-->-+->, ∴21122112111x x x x x x x x +-->-+-,即211221121log 01a x x x x x x x x +-->-+-, 2211()()()()f x g x f x g x ∴->-,故当2a =时,函数()()f x g x -单调递增.【点睛】本题考查函数的单调性与奇偶性的判断、对数的运算法则,熟练掌握用定义证明函数单调性和奇偶性的方法是解题的关键,考查学生的逻辑推理能力和运算求解能力,属于中档题.26.(1) 10,4⎛⎫ ⎪⎝⎭;(2) 103a <<【分析】 (1)代入3a =,根据对数函数的单调性求解即可.(2)先根据区间[1,3]结合定义域可求得a 的大致范围,从而确定log ay x =的单调性,再根据复合函数的单调性确定a 的取值范围即可.【详解】(1) 当3a =时, 31()log 3f x x ⎛⎫=- ⎪⎝⎭,故()0f x >即31log 30x ⎛⎫-> ⎪⎝⎭,即131x ->, 14x >,解得104x <<.故()0f x >解集为10,4⎛⎫ ⎪⎝⎭. (2)由定义域可知,10a x->,即1a x >在区间[1,3]上恒成立,故103a <<,所以log a y x =为减函数.又1y a x =-在区间[1,3]上为减函数,故1()log a f x a x ⎛⎫=- ⎪⎝⎭在区间[1,3]上为增函数.满足题意.故103a <<【点睛】本题主要考查了对数函数的不等式求解以及对数型复合函数的单调性求解参数的问题.属于中档题.。
(压轴题)高中数学必修一第三单元《指数函数和对数函数》测试卷(包含答案解析)(1)
一、选择题1.若lg 2a =,lg3b =,则5log 12等于( )A .21a b a++B .21a b a+C .21a b aD .21a b a-2.若()()22ln 1f x x x e =+≤≤(e 为自然对数的底数),则函数()()22y f x f x =+⎡⎤⎣⎦的最大值为( ) A .6B .13C .22D .33 3.设()|lg |f x x =,且0a b c <<<时,有()()()f a f c f b >>,则( ) A .(1)(1)0a c --> B .1ac > C .1ac =D .01ac <<4.已知函数)()lnf x x =,则120212020a f ⎛⎫= ⎪⎝⎭,20201log 2021b f ⎛⎫= ⎪⎝⎭,()2021log 2020c f =的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>5.已知正实数a ,b ,c 满足:21()log 2a a =,21()log 3b b =,2log c c 1=,则( ) A .a b c <<B .c b a <<C .b c a <<D .c a b <<6.若函数y a >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1B .2C .3D .47.设52a -=,5log 2b =,8log 5c =,则( ) A .a b c << B .b c a <<C .c b a <<D .c a b <<8.函数y =)A .(41)--,B .(41)-,C .(11)-,D .(11]-, 9.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .(0,1)C .20,3⎛⎫ ⎪⎝⎭D .[)3,+∞ 10.已知函数()()213log f x x ax a =--对任意两个不相等的实数1x 、21,2x ⎛⎫∈-∞- ⎪⎝⎭,都满足不等式()()21210f x f x x x ->-,则实数a 的取值范围是( ) A .[)1,-+∞B .(],1-∞-C .11,2⎡⎤-⎢⎥⎣⎦D .11,2⎡⎫-⎪⎢⎣⎭11.已知0.22a =,0.20.4b =,0.60.4c =,则( )A .a b c >>B .a c b >>C .c a b >>D .b c a >>12.物理学规定音量大小的单位是分贝(dB ),对于一个强度为I 的声波,其音量的大小η可由如下公式计算:010lgII η=(其中0I 是人耳能听到声音的最低声波强度).我们人类生活在一个充满声音的世界中,人们通过声音交换信息、交流情感,人正常谈话的音量介于40dB 与60dB 之间,则60dB 声音的声波强度1I 是40dB 声音的声波强度2I 的( ) A .32倍 B .3210倍C .100倍D .3lg2倍 二、填空题13.下列命题中所有正确的序号是_____________.①函数1()3x f x a -=+(0a >且1)a ≠的图像一定过定点(1,4)P ; ②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4); ③若1log 12a>,则a 的取值范围是112⎛⎫⎪⎝⎭,; ④若22ln ln()x y x y -->-- (0x >,0y <),则0x y +<.14.已知(5)3,1()log ,1aa x a x f x x x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,则a 的取值范围为_________15.设函数123910()lg 10x x x x x af x +++++=,其中a 为实数,如果当(,1]x ∈-∞时()f x 有意义,则a 的取值范围是________.16.函数()()()212log 24f x ax x a R =-+∈,若()f x 的值域为(],1-∞,则a 的值为______.17.对于函数()f x 定义域中任意的1x 、()212x x x ≠,有如下结论: ①()()()1212f x x f x f x +=⋅;②()()()1212f x x f x f x ⋅=+;③()()()12120x x f x f x -⋅-<⎡⎤⎣⎦;④()()121222f x f x x x f ++⎛⎫<⎪⎝⎭. 当()2xf x =时;上述结论正确的是__________.(写出所有正确的序号)18.设log c a 、log c b 是方程2530x x +-=的两个实根,则log b ac =______.19.给出下列四个命题:①函数f (x )=log a (2x ﹣1)﹣1的图象过定点(1,0);②已知函数f (x )是定义在R 上的偶函数,当x ≤0时,f (x )=x (x +1),则f (x )的解析式为f (x )=x 2﹣|x |;③若log a12<1,则a 的取值范围是(0,12)∪(2,+∞);④若2﹣x ﹣2y >ln x ﹣ln (﹣y )(x >0,y <0),则x +y <0.其中所有正确命题的序号是_____. 20.下列结论正确的是____________①1()2(0,1)x f x a a a -=+>≠的图像经过定点(1,3); ②已知28log 3,43yx ==,则2x y +的值为3; ③若3()6f x x ax =+-,且(2)6f -=,则(2)18f =; ④11()()122xf x x =--为偶函数; ⑤已知集合{}{}1,1,|1A B x mx =-==;且B A ⊆,则m 的值为1或-1.三、解答题21.已知函数()2221log 2m x f x x-=-(0m >且1m ≠) (1)求()f x 的解析式;(2)判断函数()f x 的奇偶性,并说明理由;(3)若关于x 的方程()1log m f x x =+有解,求m 的取值范围. 22.已知函数()log [(1)(1)]a f x x x =+-(其中0a >且1a ≠) (1)求函数()f x 的定义域,并判断它的奇偶性;(2)若2a =,当122x ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的值域. 23.已知函数()2log 11a f x x ⎛⎫=-⎪+⎝⎭(0a >且1a ≠). (1)判断函数()f x 的奇偶性并说明理由;(2)当01a <<时,判断函数()f x 在()1,+∞上的单调性,并利用单调性的定义证明; (3)是否存在实数a ,使得当()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m ++?若存在,求出实数a 的取值范围;若不存在,请说明理由.24.已知函数2()log (9)(0,1)a f x x ax a a =-+->≠. (1)当10a =时,求()f x 的值域和单调减区间; (2)若()f x 存在单调递增区间,求a 的取值范围. 25.求函数()log 23=-2-3y x x 的定义域、值域和单调区间. 26.已知函数()21log 1x f x x +=-, (1)求函数()y f x =的定义域; (2)证明:()y f x =是奇函数;(3)设()()()14h x f x f x =+,求函数()y h x =在[]3,7内的值域;【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用对数的换底公式可将5log 12用a 、b 表示. 【详解】根据对数的换底公式得,5lg12lg3lg 4lg32lg 22log 12lg5lg10lg 21lg 21a ba+++====---, 故选:C . 【点睛】关键点点睛:该题考查的是有关对数的运算,解答本题的关键是熟记换底公式以及对数的运算性质,利用运算性质化简、运算,其中lg5lg10lg 2=-是题目的一个难点和易错点.2.B解析:B 【分析】先依题意求函数定义域,再化简函数,进行换元后求二次函数在区间上的最大值即可. 【详解】由21x e ≤≤及()2f x知221x e ≤≤,故定义域为[]1,e ,又()()()()()222222ln 2ln ln 6ln 61y f x f x x x x x x e =+=+++=++≤≤⎡⎤⎣⎦令[]ln 0,1t x =∈,则266y t t =++,易见y 在[]0,1t ∈上单调递增, 故当1t =时,即x e =时,max 16613y =++=. 故选:B. 【点睛】易错点睛:利用换元法求函数最值时,要注意函数的定义域,否则求得的易出错.3.D解析:D 【分析】作出()f x 的图象,利用数形结合即可得到结论.【详解】∵函数()|lg |f x x =,作出()f x 的图象如图所示,∵0a b c <<<时,有()()()f a f c f b >>,∴0<a <1,c >1,即f (a )=|lga |=﹣lga ,f (c )=|lgc |=lgc ,∵f (a )>f (c ), ∴﹣lga >lgc ,则lga +lgc =lgac <0,则01ac <<. 故选:D .【点睛】关键点点睛:利用对数函数的图象和性质,根据条件确定a ,c 的取值范围.4.D解析:D 【分析】先判断出()f x 在R 上单调递减,再利用指数对数函数的单调性求出120212020,20201log 2021, 2021log 2020的范围,即可根据单调性比较大小.【详解】210x x +->恒成立,()f x ∴定义域为R ,))222()ln1ln11f x x x x x x x=+==-+++,其中21y x x +单调递增,则()f x 单调递减,102021202020120>=,202020201log log 102021<=,2021202120210log 1log 2020log 20211=<<=,b c a ∴>>. 故选:D. 【点睛】关键点睛:本题考查利用函数的单调性比较大小,解题的关键是判断出()2()ln 1f x x x =+-在R 上单调递减,进而可利用单调性比较.5.B解析:B 【分析】a 、b 、c 的值可以理解为图象交点的横坐标,则根据图象可判断a ,b ,c 大小关系.【详解】因为21()log 2a a =,21()log 3b b =,2log c c 1=, 所以a 、b 、c 为2log y x =与1()2x y =,1()3xy =,y x =-的交点的横坐标,如图所示:由图象知: c b a <<. 故选:B 【点睛】本题主要考查对数函数,指数函数的图象性质以及函数零点问题,还考查了数形结合的思想方法,属中挡题.6.C解析:C 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y x a a -[0,1]上单调递减,值域是[0,1], 所以f (0)1a -1,f (1)=0,所以a =2, 所log a 56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.7.A解析:A 【分析】由551112,2332log -<<<,8152log >,即可得出a ,b ,c 的大小关系. 【详解】52112243--<=<,11325551152532log log log =<<=,12881582log log >=,a b c ∴<<.故选:A 【点睛】本题主要考查了指数函数、对数函数的单调性,对数的运算性质,还考查了转化求解问题的能力,属于中档题.8.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C9.C解析:C 【分析】根据对数函数性质与复合函数的单调性求解. 【详解】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数, 由对数函数性质知230a ->,即23<a ,综上023a <<. 故选:C . 【点睛】本题考查复合函数的单调性,掌握对数函数性质是解题关键,考查逻辑思维能力和计算能力,属于常考题.10.C解析:C 【分析】由题意可知,函数()()213log f x x ax a =--在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递增,利用复合函数的单调性可知,内层函数2u x ax a =--在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减,且0>u 对任意的1,2x ⎛⎫∈-∞- ⎪⎝⎭恒成立,进而可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】因为()()21210f x f x x x ->-,所以()()213f x log x ax a =--在1,2⎛⎫-∞- ⎪⎝⎭上是增函数, 令2u x ax a =--,而13log y u =是减函数,所以2u x ax a =--在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,且20u x ax a =-->在1,2⎛⎫-∞- ⎪⎝⎭上恒成立,所以212211022aa a ⎧≥-⎪⎪⎨⎛⎫⎛⎫⎪----≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得112a -≤≤. 故选:C. 【点睛】本题考查利用对数型复合函数在区间上的单调性求参数,解题时还应注意真数要恒为正数,考查分析问题和解决问题的能力,属于中等题.11.A解析:A 【解析】分析:0.20.4b =, 0.60.4c =的底数相同,故可用函数()0.4xf x =在R 上为减函数,可得0.60.200.40.40.41<<=.用指数函数的性质可得0.20221a =>=,进而可得0.20.20.620.40.4>>.详解:因为函数()0.4xf x =在R 上为减函数,且0.2<0.4 所以0.60.200.40.40.41<<= 因为0.20221a =>=. 所以0.20.20.620.40.4>>. 故选A .点睛:本题考查指数大小的比较,意在考查学生的转化能力.比较指数式的大小,同底数的可利用指数函数的单调性判断大小,底数不同的找中间量1,比较和1的大小.12.C解析:C 【分析】 先根据010lg II η=得10010I I η=,再将60dB 和40dB 代入得计算12I I 即可得答案.【详解】解:因为音量大小与强度为I 的声波的关系为010lg II η=, 所以10010I I η=,所以606101001010I I I ==,404102001010I I I ==,所以6014201010010I I I I ==, 故选:C. 【点睛】本题以物理知识为背景,考查指对数的互化,运算等,是中档题.二、填空题13.①③④【分析】由指数函数的图象函数的定义域对数函数的性质判断各命题①令代入判断②利用函数的定义求出的定义域判断③由对数函数的单调性判断④引入新函数由它的单调性判断【详解】①令则即图象过点①正确;②则解析:①③④ 【分析】由指数函数的图象,函数的定义域,对数函数的性质判断各命题.①,令1x =代入判断,②利用函数的定义求出()f x 的定义域判断,③由对数函数的单调性判断,④引入新函数1()ln 2ln 2xxg x x x -⎛⎫=-=- ⎪⎝⎭,由它的单调性判断.【详解】①令1x =,则(1)4f =,即()f x 图象过点(1,4),①正确; ②13x <<,则012x <-<,∴()f x 的定义域是(0,2),②错;③1log 1log 2a a a ,∴0112a a <<⎧⎪⎨>⎪⎩,∴112a <<.③正确; ④由22ln ln()x y x y -->-- (0x >,0y <),得ln 2ln()2x y x y --<--,又1()ln 2ln 2xx g x x x -⎛⎫=-=- ⎪⎝⎭是(0,)+∞上的增函数, ∴由ln 2ln()2x y x y --<--,得x y <-,即0x y +<,④正确.故答案为:①③④ 【点睛】关键点点睛:本题考查指数函数的图象,对数函数的单调性,函数的定义域问题,定点问题:(1)指数函数(0x y a a =>且1)a ≠的图象恒过定点(0,1); (2)对数函数log (0a y x a =>且1)a ≠的图象恒过定点(1,0), 解题时注意整体思想的应用.14.【分析】根据在上单调递增列出不等式组求解即可【详解】解:在上单调递增即解得:即故答案为:【点睛】易错点点睛:在解决分段函数的单调性问题时要注意上下段端点值的问题解析:5,54⎡⎫⎪⎢⎣⎭【分析】根据()f x 在R 上单调递增,列出不等式组,求解即可. 【详解】 解:(5)3,1()log ,1aa x a x f x x x --<⎧=⎨≥⎩在R 上单调递增,即50153log 1a a a a a ->⎧⎪>⎨⎪--≤⎩, 解得:554a ≤<, 即5,54a ⎡⎫∈⎪⎢⎣⎭, 故答案为:5,54⎡⎫⎪⎢⎣⎭.【点睛】易错点点睛:在解决分段函数的单调性问题时,要注意上下段端点值的问题.15.【分析】由题意可得对任意的恒成立分离变量后利用函数的单调性求得在上的范围即可得解【详解】根据题意对任意的恒成立即恒成立则因为函数在上为增函数所以故答案为:【点睛】本题考查对数函数的定义域指数函数的单 解析:[ 4.5,)-+∞【分析】由题意可得对任意的(,1]x ∈-∞,10210x x a ⋅+⋯++>恒成立,分离变量a 后利用函数的单调性求得981()101010x x xg x ⎛⎫⎛⎫⎛⎫=---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在(,1]x ∈-∞上的范围,即可得解. 【详解】根据题意对任意的(,1]x ∈-∞,123910010x x x x x a+++++>恒成立,即10210xxa ⋅+⋯++>恒成立,则981101010x x xa ⎛⎫⎛⎫⎛⎫>---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为函数981()101010x x xg x ⎛⎫⎛⎫⎛⎫=---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在(,1]x ∈-∞上为增函数,所以111981 4.5101010a ⎛⎫⎛⎫⎛⎫---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:[ 4.5,)-+∞【点睛】本题考查对数函数的定义域,指数函数的单调性,不等式恒成立问题,属于基础题.16.【分析】根据对数的性质可知且最小值为即可求得的值【详解】因为的值域为所以函数的最小值为即解得故答案为:【点睛】本题考查对数函数的值域考查对数的性质合理转化是解题的关键考查了运算能力属于中档题 解析:27【分析】根据对数的性质可知2240y ax x =-+>,且最小值为1,即可求得a 的值.【详解】因为()()()212log 24f x ax x a R =-+∈的值域为(],1-∞,所以2240ax x -+>, 函数224y ax x =-+的最小值为12,即()20442142a a a >⎧⎪⎨⨯--=⎪⎩,解得27a =,故答案为:27【点睛】本题考查对数函数的值域,考查对数的性质,合理转化是解题的关键,考查了运算能力,属于中档题.17.①④【分析】根据指数幂的运算法则判断①;采用举例子的方法判断②;根据指数函数的单调性判断③;利用指数幂的运算并采用作差法判断④【详解】对于①:因为所以故①正确;对于②:取所以所以不恒成立故②错误;对解析:①④ 【分析】根据指数幂的运算法则判断①;采用举例子的方法判断②;根据指数函数的单调性判断③;利用指数幂的运算并采用作差法判断④. 【详解】对于①:因为()()()12121212122,222x x x x x x f x x f x f x +++=⋅=⋅=,所以()()()1212f x x f x f x +=⋅,故①正确;对于②:取121,2x x ==,所以()()()()121224,246f x x f f x f x ⋅==+=+=,所以()()()1212f x x f x f x ⋅=+不恒成立,故②错误;对于③:因为()2xf x =是R 上的增函数,所以()()()12120x x f x f x -⋅->⎡⎤⎣⎦,故③错误;对于④:因为()()121212122222,=222x x x x f x f x x x f ++++⎛⎫= ⎪⎝⎭,且121212*********22222222422220242x x x x x x x x x x x x ++++⎛⎫⎛⎫⎛⎫++⋅-⋅--==> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以()()121222f x f x x x f ++⎛⎫<⎪⎝⎭,故④正确, 所以正确的有:①④, 故答案为:①④. 【点睛】结论点睛:可直接判断函数单调性的几种变形形式: (1)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x -->或()()12120f x f x x x ->- 成立,则()f x 为单调递增函数;(2)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x --<或()()12120f x f x x x -<- 成立,则()f x 为单调递增函数.18.【分析】根据题意由韦达定理得进而得再结合换底公式得【详解】解:因为、是方程的两个实根所以由韦达定理得所以所以所以故答案为:【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算其中两个公式的转化是解析:37±【分析】根据题意由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-,进而得()2log log 37c c a b -=,再结合换底公式得1log log b acc b a==【详解】解:因为log c a 、log c b 是方程2530x x +-=的两个实根, 所以由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-, 所以()()22log log log log 4log log 37c c c c c c a b a b a b -=+-⋅=,所以log log c c b a -=所以11log log log 37log b c c acc b b a a===±-.故答案为:37± 【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算,其中()()22log log log log 4log log c c c c c c a b a b a b -=+-⋅,1log log b acc b a=两个公式的转化是核心,考查运算求解能力,是中档题.19.②④【分析】根据对数函数的图像与性质以及函数的单调性和奇偶性逐个分析判断即可得解【详解】对于①由2x ﹣1=1得x =1∴函数f (x )=loga (2x ﹣1)﹣1的图象过定点(1﹣1)故①错误;对于②函数解析:②④ 【分析】根据对数函数的图像与性质,以及函数的单调性和奇偶性,逐个分析判断即可得解. 【详解】对于①,由2x ﹣1=1,得x =1,∴函数f (x )=log a (2x ﹣1)﹣1的图象过定点(1,﹣1),故①错误;对于②,函数f (x )是定义在R 上的偶函数, 当x ≤0时,f (x )=x (x +1),设x >0,则﹣x <0, ∴f (x )=f (﹣x )=﹣x (﹣x +1)=x (x ﹣1), 则f (x )的解析式为f (x )=x 2﹣|x |,故②正确; 对于③,由log a12<1,得log a 12<log a a ,当a >1时,不等式成立, 当0<a <1时,解得012a <<. 则a 的取值范围是(0,12)∪(1,+∞),故③错误; 对于④,由2﹣x ﹣2y >ln x ﹣ln (﹣y )(x >0,y <0),得2﹣x ﹣lnx >2y ﹣ln (﹣y ),∵函数f (x )=2﹣x ﹣ln x 为定义域内的减函数, ∴x <﹣y ,即x +y <0,故④正确. 故答案为:②④. 【点睛】本题考查了对数函数的运算以及对数函数的性质,考查了函数奇偶性和单调性的应用,考查了转化思想,属于中档题.本题涉及的方法有一下几个: (1)根据奇偶性求解析式,注意范围的设定; (2)构造函数,利用函数的单调性,确定大小关系.20.①②④【分析】①根据指数函数的性质进行判断②根据对数的运算法则进行判断③根据函数的运算性质进行运算④根据偶函数的定义进行判断⑤根据集合关系利用排除法进行判断【详解】①当时(1)则函数的图象经过定点;解析:①②④ 【分析】①根据指数函数的性质进行判断,②根据对数的运算法则进行判断,③根据函数的运算性质进行运算,④根据偶函数的定义进行判断,⑤根据集合关系,利用排除法进行判断. 【详解】①当1x =时,f (1)02123a =+=+=,则函数的图象经过定点(1,3);故①正确, ②已知2log 3x =,843y=,则2823y=,282log 3y =, 则2222882log 3log log (3)log 8333x y +=+=⨯==;故②正确, ③若3()6f x x ax =+-,且(2)6f -=,则32266a ---=,即10a =-, 则f (2)32210618=-⨯-=-,故③错误;④函数的定义域为{|0}x x ≠,关于原点对称,1112()()?1222(12)xxx f x x x +=-=--, 则122112()?··()2(12)2(21)2(12)x x xx x xf x x x x f x --+++-=-=-==---, 即()f x 为偶函数,故④正确,⑤已知集合{1A =-,1},{|1}B x mx ==,且B A ⊆,当0m =时,B =∅,也满足条件,故⑤错误, 故正确的是①②④, 故答案为:①②④ 【点睛】本题主要考查命题的真假判断,涉及指数函数的性质,函数奇偶性的判断,以及对数的运算法则,综合性较强,涉及的知识点较多.三、解答题21.(1)()1log 1m x f x x+=-;(2)()f x 为奇函数,理由见解析;(3)3m ≥+. 【分析】(1)令21t x =-,采用换元法求解函数解析式;(2)先确定函数的定义域,再由函数奇偶性的定义判断即可; (3)由条件可转化为()11x m x x +=-在()0,1x ∈上有解问题即可.【详解】(1)令21t x =-,则21x t =+,则()()11log log 211m m t t f t t t++==-+-,所以()1log 1m x f x x+=-; (2)由101xx+>-得11x -<<, 又()()()11log log 11mm x xf x f x x x---===---+,所以()f x 为定义域上的奇函数;(3)由110x x -<<⎧⎨>⎩得01x <<, 又1log 1log log 1mm m x x mx x +=+=-,11x mx x+=-在()0,1x ∈上有解, ()11x m x x +=-,令()11,2u x =+∈,2132323tmu uuu==≥=+-+-⎛⎫-++⎪⎝⎭,当且仅当u=,所以3m≥+.【点睛】易错点睛:(1)判断函数的奇偶性一定不要忘记先判断定义域是否关于原点对称;(2)利用基本不等式求解范围,一定要注意满足“一正二定三相等”的条件.22.(1)(1,1)-,()f x在(1,1)-内为偶函数;(2)[2,0]-.【分析】(1)由对数真数大于0可得定义域,由奇偶性定义判断奇偶性;(2)确定函数在12⎡⎤⎢⎥⎣⎦的单调性可得最大值和最小值,从而得值域.【详解】(1)由题意知:(1)(1)0x x+->,解得11x-<<,所以函数()f x的定义域为(1,1)-由()log[(1)(1)]()af x x x f x-=-+=,所以函数()f x在(1,1)-内为偶函数.(2)由2a=,有()222()log[(1)(1)]log1f x x x x=-+=-又因为12x⎡⎤∈⎢⎥⎣⎦,所以()f x在⎡⎤⎢⎥⎣⎦上为增函数,在10,2⎡⎤⎢⎥⎣⎦上为减函数,所以min21()log24f x f⎛===-⎝⎭,max2()(0)log10f x f===,所以函数()f x在1,22⎡⎤-⎢⎥⎣⎦内值域为[2,0]-.【点睛】本题考查对数型复合函数的定义域,奇偶性,单调性,值域.掌握对数函数的性质是解题关键.本题还需掌握复合函数的单调性的判断:同增异减.23.(1)奇函数,理由见详解;(2)单调递减,过程见详解;(3)存在(0,3∈-a.【分析】(1)先由函数解析式求出定义域,再由()f x,求出()f x-,根据函数奇偶性的概念,即可得出结果;(2)先令2()11=-+g xx,用单调性的定义,即可判断2()11=-+g xx的单调性,再由复合函数单调性的判定原则,即可得出结果;(3)先假设存在满足条件的实数a ,由题意得出01a <<,()1log ()1log a a f n nf m m =+⎧⎨=+⎩,推出,m n 是方程2log 11log 1⎛⎫-=+ ⎪+⎝⎭a a x x 的两根,进而得到2(1)10ax a x +-+=在()1,+∞上有两个不同解,根据一元二次方程根的分布情况,列出不等式组,即可求出结果. 【详解】 (1)由2101->+x 解得1x >或1x <-,即函数()f x 的定义域为(,1)(1,)-∞-+∞; 又()21log 1log 11-⎛⎫=-= ⎪++⎝⎭a a x f x x x , 所以()22121log 1log 1log log 1111-+-+⎛⎫⎛⎫-=-=-== ⎪ ⎪-+-+-+-⎝⎭⎝⎭a a a a x x f x x x x x , 因此()()log 10+-==a f x f x ,所以()()f x f x -=-, 所以函数()f x 为奇函数; (2)令2()11=-+g x x ,任取121x x <<, 则12121221212222()()111111(1)(1)⎛⎫⎛⎫--=---=-= ⎪ ⎪++++++⎝⎭⎝⎭x x g x g x x x x x x x , 因为120x x -<,110x +>,210x +>,所以121221()()0(1)(1)--=<++x x g x g x x x ,即函数2()11=-+g x x 在()1,+∞上单调递增; 又01a <<,所以log ay x =单调递减,根据同增异减的原则,可得:()2log 11a f x x ⎛⎫=- ⎪+⎝⎭在()1,+∞上单调递减;(3)假设存在实数a ,使得当()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m ++,由m n <,1log 1log +<+a a n m 可得01a <<;所以()1log ()1log a a f n n f m m =+⎧⎨=+⎩,因此,m n 是方程2log 11log 1⎛⎫-=+ ⎪+⎝⎭a a x x 的两根, 即2(1)10ax a x +-+=在()1,+∞上有两个不同解,设2()(1)1=+-+h x ax a x ,则(1)01120h a a >⎧⎪-⎪->⎨⎪∆>⎪⎩,解得03a <<-.所以存在(0,3∈-a ,使得当()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m ++.【点睛】本题主要考查函数奇偶性的判定,单调性的判定,以及由函数定义域与值域求参数的问题,熟记函数单调性与奇偶性的定义即可,属于常考题型. 24.(1)(][),16;5,9lg -∞(2)6a > 【分析】(1)当10a =时,()()()(221010log 109log [516f x x x x ⎤=-+-=--+⎦,令2109t x x =-+-,求出2109t x x =-+-的单调区间与取值范围,即可得出结果;(2)若()f x 存在单调递增区间,则当1a >,则函数29t x ax =-+-存在单调递增区间即可,当01a <<,则函数29t x ax =-+-存在单调递减区间即可,根据判别式即可得出结果. 【详解】解:(1)当10a =时,()()()(221010log 109log [516f x x x x ⎤=-+-=--+⎦,设()22109516t x x x =-+-=--+,由21090x x -+->,得21090x x -+<,得19x <<,即函数的定义域为()1,9, 此时()(]25160,16t x =--+∈,则1010log log 16y t =≤,即函数的值域为(],16lg -∞,要求()f x 的单调减区间,等价为求()2516t x =--+的单调递减区间,()2516t x =--+的单调递减区间为[)5,9,()f x ∴的单调递减区间为[)5,9.(2)若()f x 存在单调递增区间,则当1a >,则函数29t x ax =-+-存在单调递增区间即可,则判别式2360a ∆=->得6a >或6a <-舍,当01a <<,则函数29t x ax =-+-存在单调递减区间即可,则判别式2360a ∆=->得6a >或6a <-,此时a 不成立,综上实数a 的取值范围是6a >. 【点睛】本题主要考查对数型复合函数的单调性、以及已知函数单调性求参数的问题,熟记对数函数以及二次函数的单调性即可,属于常考题型. 25.定义域为(,1)(3,)-∞-+∞,函数值域为R ,减区间是(,1)-∞-,增区间是(3,)+∞.【分析】结合对数函数性质求解. 【详解】由2230x x -->得1x <-或3x >,∴定义域为(,1)(3,)-∞-+∞.由2230x x -->得y R ∈,函数值域为R ,223y x x =--在(,1)-∞-上递减,在(3,)+∞上递增,∴()log 23=-2-3y x x 的减区间是(,1)-∞-,增区间是(3,)+∞. 【点睛】本题考查对数型复合函数的性质,掌握对数函数的性质是解题关键. 26.(1)见解析;(2)见解析;(3)[]4,5 【分析】 (1)由不等式101x x +>-即可求出()f x 的定义域; (2)证明()()f x f x -=-可得()f x 为奇函数;(3)先求出()f x 在[]3,7上的值域,令()t f x =,求()14h t t t=+的值域. 【详解】 (1)由101x x +>-得:1x >或1x <-, ()f x ∴的定义域为()(),11,-∞-+∞;(2)()()222111log log log 111x x x f x f x x x x -+-+-===-=---+-, ()f x ∴为奇函数;(3)()22log 11f x x ⎛⎫=+ ⎪-⎝⎭在[]3,7上单调递减,令()t f x =,则24log ,13t ⎡⎤∈⎢⎥⎣⎦, 而()14h t t t=+在10,2⎛⎤ ⎥⎝⎦单调递减,在1,12⎡⎤⎢⎥⎣⎦上单调递增,又()2411log 15,4342h h h h ⎛⎫⎛⎫⎛⎫<=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴函数()h x 在[]3,7内的值域为[]4,5.【点睛】本题主要考查了对数型函数的定义域,奇偶性,考查了复合函数的单调性,值域求解,属于中档题.。
(必考题)高中数学必修一第三单元《指数函数和对数函数》检测题(含答案解析)(5)
一、选择题1.函数()f x =的定义域是( ) A .(0,2)B .[2,)+∞C .(0,)+∞D .(,2)-∞2.专家对某地区新冠肺炎爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(50)11()t f t e --=+,当()0.1f t =时,标志着疫情将要大面积爆发,则此时t 约为( )(参考数据: 1.13e ≈) A .38 B .40C .45D .473.若x ,y ,z 是正实数,满足2x =3y =5z ,试比较3x ,4y ,6z 大小( )A .3x >4y >6zB .3x >6z >4yC .4y >6z >3xD .6z >4y >3x 4.设()|lg |f x x =,且0a b c <<<时,有()()()f a f c f b >>,则( )A .(1)(1)0a c -->B .1ac >C .1ac =D .01ac <<5.已知()f x ,()g x 分别为定义在R 上的偶函数和奇函数,且满足()()2xf xg x +=,若对于任意的[]1,2x ∈,都有()()20f x a g x a -⋅-≤⎡⎤⎡⎤⎣⎦⎣⎦恒成立,则实数a 的取值范围是( ) A .317,44⎡⎤⎢⎥⎣⎦B .155,82⎡⎤⎢⎥⎣⎦ C .15,28⎡⎤⎢⎥⎣⎦D .172,4⎡⎤⎢⎥⎣⎦6.已知函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,则52f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( ) A .12-B .-1C .-5D .127.若13log 2a =,131()2b =,2log 3c =,则,,a b c 的大小关系是( ) A .b a c << B .b c a << C .a b c << D .c b a <<8.设0.34()5a =,0.254b ⎛⎫= ⎪⎝⎭,125log 4c =,则a ,b ,c 的大小关系为( )A .b a c >>B .c a b >>C .c b a >>D .b c a >>9.已知2log 0.8a =,0.7log 0.6b =,0.60.7c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .b a c <<C .a c b <<D .b c a <<10.设函数()21xf x =-,c b a <<,且()()()f c f a f b >>,则22a c +与2的大小关系是( )A .222a c +>B .222a c +≥C .222a c +≤D .222a c +<11.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( ) A .2,13⎛⎫⎪⎝⎭B .(0,1)C .20,3⎛⎫ ⎪⎝⎭D .[)3,+∞ 12.如果函数(0,1)x y a a a =>≠的反函数是增函数,那么函数log (1)a y x =-+的图象大致是( )A .B .C .D .二、填空题13.已知常数0a >,函数()22xx f x ax =+的图象经过点65P p ⎛⎫ ⎪⎝⎭,,15Q q ⎛⎫- ⎪⎝⎭,.若236p q pq +=,则a =______.14.已知()f x 是定义在[0,)+∞的函数,满足(1)()f x f x +=-,当[0,1)x ∈时,()3x f x =,则3(log 30)f =________.15.已知函数()212log y x ax a =-+在()3,+∞上是减函数,则a 的取值范围是______. 16.若3log 14a>(0a >且1a ≠),则实数a 的取值范围为________ 17.已知0x >且1x ≠,0y >且1y ≠,方程组58log log 4log 5log 81x y x y +=⎧⎨-=⎩的解为11x x y y =⎧⎨=⎩或22x x y y =⎧⎨=⎩,则()1212lg x x y y =________. 18.已知43==m n k ,且20+=≠m n mn ,则k =______.19.给定函数y =f (x ),设集合A ={x |y =f (x )},B ={y |y =f (x )}.若对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,则称函数f (x )具有性质P .给出下列三个函数:①1y x =;②12xy ⎛⎫= ⎪⎝⎭;③y =lgx .其中,具有性质P 的函数的序号是_____.20.函数y =x 2与函数y =x ln x 在区间(0,+∞)上增长较快的一个是________ .三、解答题21.已知函数()log (31)a f x x =+,()log (13)a g x x =-(0a >且1)a ≠. (1)求()()()F x f x g x =-的定义域; (2)判断函数()F x 的奇偶性;(3)若()()0f x g x ->,求x 的取值范围. 22.计算: (1)1ln 224()9e-+; (2)()223lg 2lg5lg 20log 3log 4+⋅+⋅.23.已知函数()()()ln 1ln 1f x x k x =++-,0k ≠. (1)当()f x 分别为奇函数和偶函数时,求k 的值;(2)若()f x 为奇函数,证明:对任意的m 、()1,1n ∈-,()()1m n f m f n f mn +⎛⎫+=⎪+⎝⎭.24.设函数()()1xxf x a k a -=--,(0a >且1a ≠)是定义域为R 的奇函数,且()312f =. (1)求k ,a 的值;(2)求函数()f x 在[)1,+∞上的值域; (3)设()()222xx g x a a m f x -=+-⋅,若()g x 在[)1,+∞上的最小值为2-,求m 的值;(4)对于(3)中函数()g x ,如果()0g x >在[)1,+∞上恒成立,求m 的取值范围. 25.(1)求函数()22log 32y x x =-+的定义域;(2)求函数221y x x =-+-,[]2,2x ∈-的值域;(3)求函数223y x x =--的单调递增区间.26.已知函数210(),22,01xx ax a x f x a a x ⎧+--≤<=⎨-≤≤⎩,其中a >0且a ≠1. (1)当12a =时,求f (x )的值域; (2)函数y =f (x )能否成为定义域上的单调函数,如果能,则求出实数a 的范围;如果不能,则给出理由;(3)()2f x -在其定义域上恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据函数的形式,直接列解析式有意义的不等式,求出函数的定义域. 【详解】由题意得,函数的定义域需满足02>0x x >⎧⎨-⎩,解得:02x <<所以函数的定义域是()0,2. 故选:A . 【点睛】方法点睛:常见的具体函数求定义域:(1)偶次根号下的被开方数大于等于0;(2)分母不为0;(3)对数函数中真数大于0.2.B解析:B 【分析】 根据()0.1f t =列式求解即可得答案.【详解】 解:因为()0.1f t =,0.22(50)11()t f t e --=+,所以0.22(50)()0.111t f t e--==+,即0.22(50)011t e --=+,所以0.22(50)9t e --=,由于 1.13e ≈,故()21.12.29e e =≈,所以0.222().250t e e --=,所以()0.2250 2.2t --=,解得40t =. 故选:B. 【点睛】本题解题的关键在于根据题意得0.22(50)9t e --=,再结合已知 1.13e ≈得()21.12.29e e =≈,进而根据0.222().250t e e --=解方程即可得答案,是基础题.3.B解析:B 【分析】令235x y z t ===,则1t >,lg lg 2t x =,lg lg 3t y =,lg lg 5tz =,利用作差法能求出结果. 【详解】∵x 、y 、z 均为正数,且235x y z ==, 令235x y z t ===,则1t >, 故2lg log lg 2t x t ==,3lg log lg 3t y t ==,5lg log lg 5tz t ==, ∴()3lg lg5lg 4lg 2lg 3630lg 2lg5lg 2lg5t t t x z -⎛⎫-=-=> ⎪⋅⎝⎭,即36x z >; ()2lg lg 27lg 253lg 2lg 6420lg5lg3lg3lg5t t t z y -⎛⎫-=-=> ⎪⋅⎝⎭,即64z y >, 即364x z y >>成立,故选:B. 【点睛】 关键点点睛:(1)将指数式转化为对数式; (2)利用作差法比较大小.4.D解析:D 【分析】作出()f x 的图象,利用数形结合即可得到结论. 【详解】∵函数()|lg |f x x =,作出()f x 的图象如图所示,∵0a b c <<<时,有()()()f a f c f b >>,∴0<a <1,c >1,即f (a )=|lga |=﹣lga ,f (c )=|lgc |=lgc ,∵f (a )>f (c ), ∴﹣lga >lgc ,则lga +lgc =lgac <0,则01ac <<. 故选:D .【点睛】关键点点睛:利用对数函数的图象和性质,根据条件确定a ,c 的取值范围.5.B解析:B【分析】利用奇偶性求出()222x x f x -+=,()222x x g x --=,讨论()22x xh x -=+和()g x 的单调性求最值可得()()h x g x >恒成立,则不等式恒成立等价于()()max min g x a h x ≤≤. 【详解】()()2x f x g x +=,()()2x f x g x --+-=∴,()f x 是偶函数,()g x 分是奇函数,()()2x f x g x -=∴-,可得()222x xf x -+=,()222x xg x --=,则不等式为()()1222202x xx x a a --⎡⎤+-⋅--≤⎢⎥⎣⎦,令()22xxh x -=+,令2x t =,由对勾函数的性质可得1y t t=+在[]2,4单调递增,则()22x xh x -=+在[]1,2单调递增,则()()()()min max 5171,224h x h h x h ====, 对于()222x x g x --=,因为2xy =单调递增,2x y -=-单调递增,()g x ∴在[]1,2单调递增,()()()()min max 3151,248g x g g x g ∴====, ()()h x g x ∴>恒成立,则不等式()()0h x a g x a --≤⎡⎤⎡⎤⎣⎦⎣⎦,解得()()g x a h x ≤≤,()()max min g x a h x ∴≤≤,即15582a ≤≤. 故选:B. 【点睛】关键点睛:本题考查不等式的恒成立问题,解题的关键是利用奇偶性求出函数解析式,根据函数的单调性求出最值将不等式等价为()()max min g x a h x ≤≤即可求解.6.A解析:A 【分析】根据分段函数解析式,依次计算255log 122f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,23log 2f ⎛⎫ ⎪⎝⎭,即可得选项.【详解】因为函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,所以2253log log 2122f ⎛⎫=<= ⎪⎝⎭,23log 2531222222f f⎡⎤⎛⎫∴=-=-=- ⎪⎢⎥⎝⎭⎣⎦. 故选:A. 【点睛】本题考查根据分段函数求解函数值,关键在于根据解析式分段求解,由内到外,准确认清自变量的所在的范围和适用的解析式.7.C解析:C 【分析】由题容易看出,0a <, 01b <<,2log 31c =>,便得出,,a b c 的大小关系. 【详解】1133log 2log 10a =<=,31110122b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,22log 3log 21c =>=,因此a b c <<. 故选:C. 【点睛】本题考查指数函数和对数函数的比较大小,常与中间值0-1,1,来比较,再结合函数的单调性即可求解,属于中档题.8.A解析:A 【分析】根据指数函数、对数函数的 性质结合中间值0和1比较. 【详解】由指数函数性质得0.34015⎛⎫<< ⎪⎝⎭,0.2514⎛⎫> ⎪⎝⎭,由对数函数性质得125log 04<, ∴b a c >>. 故选:A . 【点睛】本题考查比较幂与对数的,掌握指数函数与对数函数的性质是解题关键.解题方法是借助中间值比较大小.9.C解析:C 【解析】因为22log 0.8log 10a =<=,0.70.7log 0.6log 0.71b =>=,0.6000.70.71c <=<=,所以a c b <<,故选C.10.D解析:D【分析】运用分段函数的形式写出()f x 的解析式,作出()21xf x =-的图象,由数形结合可得0c <且0a >,21c <且21a >,且()()0f c f a ->,去掉绝对值,化简即可得到结论.【详解】()21,02112,0x xxx f x x ⎧-≥=-=⎨-<⎩, 作出()21xf x =-的图象如图所示,由图可知,要使c b a <<且()()()f c f a f b >>成立, 则有0c <且0a >, 故必有21c <且21a >,又()()0f c f a ->,即为()12210c a--->,∴222a c +<. 故选:D . 【点睛】本题考查指数函数单调性的应用,考查用指数函数单调性确定参数的范围,本题借助函数图象来辅助研究,由图象辅助研究函数性质是函数图象的重要作用,以形助数的解题技巧必须掌握,是中档题.11.C解析:C 【分析】根据对数函数性质与复合函数的单调性求解. 【详解】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数, 由对数函数性质知230a ->,即23<a , 综上023a <<. 故选:C . 【点睛】本题考查复合函数的单调性,掌握对数函数性质是解题关键,考查逻辑思维能力和计算能力,属于常考题.12.C解析:C 【分析】由题意求得1a >,再结合对数函数的图象与性质,合理排除,即可求解. 【详解】因为函数(0,1)x y a a a =>≠的反函数是增函数,可得函数x y a =为增函数,所以1a >, 所以函数log (1)a y x =-+为减函数,可排除B 、D ; 又由当0x =时,log (01)0a y =-+=,排除A. 故选:C. 【点睛】本题主要考查了指数函数和对数函数的图象与性质的应用,其中解答中熟记指数函数和对数函数的图象与性质,以及指数函数与对数的关系是解答的关键,着重考查推理与运算能力.二、填空题13.6【分析】直接利用函数的关系式利用恒等变换求出相应的a 值【详解】函数f (x )=的图象经过点P (p )Q (q )则:整理得:=1解得:2p+q=a2pq 由于:2p+q=36pq 所以:a2=36由于a >0故解析:6 【分析】直接利用函数的关系式,利用恒等变换求出相应的a 值. 【详解】函数f (x )=22xx ax+的图象经过点P (p ,65),Q (q ,15-).则:226112255p q pq ap aq +=-=++, 整理得:22222222p q p q p qp qp q aq ap aq ap a pq+++++++++=1, 解得:2p+q =a 2pq , 由于:2p+q =36pq , 所以:a 2=36, 由于a >0, 故:a=6. 故答案为6 【点睛】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.14.【分析】利用对数的运算性质得出结合周期性即可得出的值【详解】且则则函数的周期为2故答案为:【点睛】本题主要考查了由抽象函数的周期求函数值涉及了对数的运算属于中档题 解析:109-【分析】利用对数的运算性质得出3310log 303log 9=+,结合周期性,即可得出3(log 30)f 的值. 【详解】33333101010log 30log 27log 27log 3log 999⎛⎫=⨯=+=+ ⎪⎝⎭,且333100log log log 9131=<<= (1)()f x f x +=-,(11)(1)()f x f x f x ∴++=-+=,则(2)()f x f x +=,则函数()f x 的周期为2310log 3333310101010(log 30)21log 1log log 39999f f f f⎛⎫⎛⎫⎛⎫∴=++=+=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为:109- 【点睛】本题主要考查了由抽象函数的周期求函数值,涉及了对数的运算,属于中档题.15.【分析】函数为复合函数且原函数为减函数根据题意需要满足一元二次函数在上是增函数且在上恒大于或等于零然后求解关于a 的不等式即可得到结果【详解】令则原函数化为此函数为定义域内的减函数要使函数在上是减函数解析:9,2⎛⎤-∞ ⎥⎝⎦【分析】函数为复合函数,且原函数为减函数,根据题意需要满足一元二次函数2x ax a -+在()3,+∞上是增函数,且在()3,+∞上恒大于或等于零,然后求解关于a 的不等式即可得到结果. 【详解】令2t x ax a =-+,则原函数化为12()log g t t =,此函数为定义域内的减函数,要使函数()212log y x ax a =-+在()3,+∞上是减函数,则函数2t x ax a =-+在()3,+∞上是增函数,且在()3,+∞上恒大于或等于零,即有232330aa a ⎧≤⎪⎨⎪-+≥⎩,解得92a ≤. 故答案为:9,2⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了复合函数的单调性,需要掌握复合函数的同增异减,本题还要注意对数函数的定义域是求解的前提,这里容易漏掉,需要掌握此类题目的解题方法.16.【分析】讨论和两种情况利用函数单调性解不等式得到答案【详解】当时满足不成立;当时综上所述:故答案为:【点睛】本题考查了利用函数单调性解不等式分类讨论是解题的关键解析:3,14⎛⎫⎪⎝⎭【分析】讨论1a >和01a <<两种情况,利用函数单调性解不等式得到答案. 【详解】3log 1log 4aa a >=,当1a >时,满足34a >,不成立;当01a <<时,34a >. 综上所述:3,14a ⎛⎫∈⎪⎝⎭. 故答案为:3,14⎛⎫⎪⎝⎭.【点睛】本题考查了利用函数单调性解不等式,分类讨论是解题的关键.17.【分析】利用换底公式得出分别消去和可得出二次方程利用韦达定理可求出和的值进而可计算出的值【详解】由换底公式得由①得代入②并整理得由韦达定理得即则因此故答案为:【点睛】本题考查了对数的换底公式对数的运 解析:6【分析】利用换底公式得出5858log log 4111log log x y x y +=⎧⎪⎨-=⎪⎩,分别消去5log x 和8log y ,可得出二次方程,利用韦达定理可求出12x x 和12y y 的值,进而可计算出()1212lg x x y y 的值. 【详解】由换底公式得5858log log 4111log log x y x y+=⎧⎪⎨-=⎪⎩①②, 由①得58log 4log x y =-,代入②并整理得()288log 2log 40y y --=,由韦达定理得8182log log 2y y +=,即()812log 2y y =,则261282y y ==,()51528182log log 8log log 6x x y y ∴+=-+=,6125x x ∴=,因此,()61212lg lg106x x y y ==.故答案为:6. 【点睛】本题考查了对数的换底公式,对数的运算性质,韦达定理,考查了计算能力,属于中档题.18.【分析】根据对数和指数的关系将指数式化成对数式再根据对数的运算计算可得【详解】解:故答案为:【点睛】本题考查对数和指数的关系对数的运算属于基础题 解析:36【分析】根据对数和指数的关系,将指数式化成对数式,再根据对数的运算计算可得. 【详解】 解:43m n k ==4log m k ∴=,3log =n k20m n mn +=≠211n m ∴+=,1log 4k m =,1log 3k n = 2log 3log 41k k ∴+= 2log 3log 41k k ∴+=()log 941k ∴⨯=36k ∴=故答案为:36 【点睛】本题考查对数和指数的关系,对数的运算,属于基础题.19.①③【分析】A 即为函数的定义域B 即为函数的值域求出每个函数的定义域及值域直接判断即可【详解】对①A =(﹣∞0)∪(0+∞)B =(﹣∞0)∪(0+∞)显然对于∀x ∈A ∃y ∈B 使得x+y =0成立即具有性解析:①③ 【分析】A 即为函数的定义域,B 即为函数的值域,求出每个函数的定义域及值域,直接判断即可. 【详解】对①,A = (﹣∞,0)∪ (0,+∞),B = (﹣∞,0)∪ (0,+∞),显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ;对②,A =R ,B = (0,+∞),当x >0时,不存在y ∈B ,使得x +y =0成立,即不具有性质P ;对③,A = (0,+∞),B =R ,显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ; 故答案为:①③. 【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题.20.【解析】由于对数函数y=lnx 在区间(0+∞)上的增长速度慢于一次函数y=x 所以函数y =x2比函数y =xlnx 在区间(0+∞)上增长较快填 解析:2yx【解析】由于对数函数y=lnx 在区间(0,+∞)上的增长速度慢于一次函数y=x ,所以函数y =x 2比函数y =x ln x 在区间(0,+∞)上增长较快,填2y x =.三、解答题21.(1)11,33⎛⎫- ⎪⎝⎭;(2)奇函数;(3)分类讨论,答案见解析. 【分析】(1)根据对数的真数大于零列不等式组,解不等式组求得()F x 的定义域. (2)通过()()F x F x -=-证得()F x 是奇函数.(3)对a 进行分类讨论,结合对数型函数的单调性求得x 的取值范围. 【详解】(1)()log (31)log (13)a a F x x x =+--,310130x x +>⎧⎨->⎩,解得:1133x -<<,所以()F x 的定义域为11,33⎛⎫- ⎪⎝⎭.(2)由(1)可知()F x 的定义域关于原点对称,又()log (13)log (31)()a a F x x x F x -=--+=-,所以()F x 是奇函数,. (3)()()0f x g x ->,即log (31)log (13)a a x x +>-,当1a >时,3101303113x x x x+>⎧⎪->⎨⎪+>-⎩,解得:103x <<,当01a <<时,3101303113x x x x+>⎧⎪->⎨⎪+<-⎩,解得:103x -<<.【点睛】判断函数的奇偶性,首先要判断函数的定义域是否关于原点对称性. 22.(1)32;(2)3. 【分析】(1)利用指对数运算对数恒等式直接得解 (2)利用对数运算及换底公式得解. 【详解】 (1)1ln 22433()22922e -++=+-=, (2)223(lg 2)lg 5lg 20log 3log 4+⋅+⋅.22(lg 2)lg 5(1lg 2)log 4(lg 2)(lg 2lg 5)lg 52=+⋅++=+++lg 2lg523=++=【点睛】解决对数运算问题的常用方法(1)将真数化为底数的指数幂的形式进行化简. (2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.(4)利用常用对数中的lg 2lg51+=23.(1)()f x 为奇函数时,1k =-,()f x 为偶函数时,1k =;(2)证明见解析. 【分析】(1)求出函数的定义域,利用函数的奇偶性的定义列等式即可求得k 的值;(2)根据函数解析式分别求得()()+f m f n ,1m n f mn +⎛⎫⎪+⎝⎭,即可证明结论. 【详解】(1)由1010x x +>⎧⎨->⎩,解得11x -<<,得函数()f x 的定义域为()1,1-,当()f x 为奇函数时,()()0f x f x +-=,即()()()()ln 1ln 1ln 1ln 10x k x x k x ++-+-++=, 整理可得()()()1ln 1ln 10k x x +-++=⎡⎤⎣⎦, 因为上式恒成立,所以10k +=,所以1k =-;当()f x 为偶函数时,()()0f x f x --=,即()()()()ln 1ln 1ln 1ln 10x k x x k x ++----+=, 整理得()()()1ln 1ln 10k x x -+--=⎡⎤⎣⎦, 因为上式恒成立,所以10k -=,所以1k =.综上,当()f x 为奇函数时,1k =-,当()f x 为偶函数时,1k =; (2)由(1)知,1k =-,()()()1ln 1ln 1ln1xf x x x x+=+--=-, ()()()()()()1111lnln ln 1111m n m nf m f n m n m n +++++=+=----, ()()()()11111ln ln ln 111111m nm n m n mn m n mn f m n mn mn m n m n mn++++++++⎛⎫+=== ⎪+++----⎝⎭-+, 所以()()1m n f m f n f mn +⎛⎫+= ⎪+⎝⎭.【点睛】方法点睛:已知函数的奇偶性求参数值一般思路是:(1)利用函数的奇偶性的定义转化为()()f x f x -=(偶函数)或()()f x f x -=-(奇函数),从而建立方程,使问题获得解决;(2)取一对互为相反数的自变量的函数值,建立等式求出参数的值,但同时要对此时函数的奇偶性进行验证.24.(1)2a =,2k =;(2)3,2⎡⎫+∞⎪⎢⎣⎭;(3)2m =;(4)17,12⎛⎫-∞ ⎪⎝⎭. 【分析】(1)由奇函数性质求得k ,由3(1)2f =可求得a ; (2)利用函数的单调性得值域;(3)换元,设22x x t -=-,则3,2t ⎡⎫∈+∞⎪⎢⎣⎭,()g x 转化为()222k t t mt =-+,3,2t ⎡⎫∈+∞⎪⎢⎣⎭,由二次函数的性质求得最小值,再由最小值为2-可得m , (4)在(3)基础上,由()k t 的最小值大于0可得m 的取值范围.【详解】解:(1)∵函数()()1xxf x a k a -=--,(0a >且1a ≠)是定义域为R 的奇函数,∴()00f =,即()110k --=,2k =,∵()312f =.∴132a a -=,2a =, ∴2a =,2k =, (2)1()2222xxx x f x -=-=-是增函数,∴1≥x 时,13()222f x ≥-=,即值域中3,2⎡⎫+∞⎪⎢⎣⎭; (3)()()2222222xx x x g x m --=+--,设22x x t -=-,[)1,x ∈+∞,3,2t ⎡⎫∈+∞⎪⎢⎣⎭,∴()222k t t mt =-+,3,2t ⎡⎫∈+∞⎪⎢⎣⎭,∵若()g x 在[)1,+∞上的最小值为2-,∴()222k t t mt =-+,3,2t ⎡⎫∈+∞⎪⎢⎣⎭的最小值为2-,∴23222m m ⎧≥⎪⎨⎪-+=-⎩或3293224m m ⎧<⎪⎪⎨⎪-+=-⎪⎩ 即2m =,或2512m =(舍去), 故2m =;(4)()222k t t mt =-+,3,2t ⎡⎫∈+∞⎪⎢⎣⎭,∵()0g x >在[)1,+∞上恒成立, ∴()0k t >在3,2t ⎡⎫∈+∞⎪⎢⎣⎭上恒成立,∴23220m m ⎧≥⎪⎨⎪-+>⎩或3293204m m ⎧<⎪⎪⎨⎪-+>⎪⎩, 解不等式得出x ∈∅或1712m <, ∴m 的取值范围为17,12⎛⎫-∞ ⎪⎝⎭. 【点睛】方法点睛:本题考查指数函数的性质,考查奇偶性,由奇偶性同函数解析式,由单调性是函数的值域,在求函数()g x 的最值问题,不等式恒成立问题时,解题方法是换元法,即设22x x t -=-,把指数函数转化为二次函数,然后利用二次函数性质求解.25.(1)()(),12,-∞⋃+∞;(2)[]9,0-;(3)[]1,1-,[)3,+∞. 【分析】(1)解不等式2320x x -+>可求得函数()22log 32y x x =-+的定义域;(2)利用二次函数的基本性质可求得函数221y x x =-+-,[]2,2x ∈-的值域;(3)将函数223y x x =--的解析式表示为分段函数,利用二次函数的基本性质可求得原函数的单调递增区间. 【详解】(1)对于函数()22log 32y x x =-+,有2320x x -+>,解得1x <或2x >. 因此,函数()22log 32y x x =-+的定义域为()(),12,-∞⋃+∞;(2)当[]2,2x ∈-时,()[]222119,0y x x x =-+-=--∈-,因此,函数221y x x =-+-,[]2,2x ∈-的值域为[]9,0-;(3)解不等式2230x x -->,解得1x <-或3x >,所以,222223,12323,1323,3x x x y x x x x x x x x ⎧--<-⎪=--=-++-≤≤⎨⎪-->⎩.二次函数223y x x =--的图象开口向上,对称轴为直线1x =. 当1x <-时,函数223y x x =--单调递减;当13x -≤≤时,函数2y x 2x 3=-++在区间[]1,1-上单调递增,在区间[]1,3上单调递减;当3x >时,函数223y x x =--单调递增.综上所述,函数223y x x =--的单调递增区间为[]1,1-,[)3,+∞.【点睛】本题考查与二次函数相关问题的求解,考查了对数型复合函数的定义域、二次函数的值域以及含绝对值的二次函数单调区间的求解,考查计算能力,属于中等题. 26.(1)()f x 的值域为9[16-,1];(2)能,a 的取值集合为{2};(3)232a -. 【分析】(1)由二次函数和指数函数的值域求法,可得()f x 的值域;(2)讨论1a >,01a <<,结合指数函数的单调性和二次函数的单调性,即可得到所求范围;(3)讨论x 的范围和a 的范围,结合参数分离和对勾函数的单调性、指数函数的单调性,计算可得所求范围. 【详解】(1)当10x -<时,21122y x x =+-,对称轴为1[14x =-∈-,0), 可得y 的最小值为916-,y 的最大值为0; 当01x 时,12?()1[02xy =-∈,1]; 综上()f x 的值域为9[16-,1]; (2)当1a >时,函数22xy a a =-在[0,1]递增,故二次函数2y x ax a =+-在[1-,0]也要递增,1222aa a⎧--⎪⎨⎪--⎩,故只有2a =符合要求; 当01a <<时,函数22xy a a =-在[0,1]递减, 故二次函数2y x ax a =+-在[1-,0]也要递减,0222aa a⎧-⎪⎨⎪--⎩,无解. 综上,a 的取值集合为{2};(3)①当[1x ∈-,0]时,22x ax a +--恒成立,即有2(1)2a x x ---,即221x a x+-,由221x y x+=-,令1t x =-,[1t ∈,2],可得32232y t t=+--,当且仅当t =时,取得等号, 可得232a -;②当[0x ∈,1]时,①当1a >时,22x y a a =-,222x a a --,即有222a -,求得2a ,故12a <; ②当01a <<时,成立, 综上可得a 的范围为232a -. 【点睛】本题考查分段函数的值域和单调性的判断和运用,考查分类讨论思想方法和化简运算能力,以及不等式恒成立问题解法,属于中档题.。
新北师大版高中数学必修一第三单元《指数函数和对数函数》测试(含答案解析)(3)
一、选择题1.设a ,b ,c 为正数,且3a =4b =6c ,则有( ) A .111c a b=+ B .221c a b=+ C .122c a b=+ D .212c a b=+ 2.已知函数()()2log 2xf x m =+,则满足函数()f x 的定义域和值域都是实数集R 的实数m 构成的集合为 ( ) A .{}|0m m =B .{}0|m m ≤C .{}|0m m ≥D .{}|1m m =3.已知函数)()lnf x x =,则120212020a f ⎛⎫= ⎪⎝⎭,20201log 2021b f ⎛⎫= ⎪⎝⎭,()2021log 2020c f =的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>4.设log a m 和log b m 是方程2420x x -+=的两个根,则log a bm 的值为( )ABC.D.±5.已知:23log 2a =,42log 3b =,232c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .c b a <<D .c a b <<6.已知实数1212a ⎛⎫= ⎪⎝⎭,2log 3b =,4log 7c =,则a 、b 、c 的大小关系是( )A .c b a <<B .c a b <<C .b a c <<D .a c b <<7.已知函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点分别为,,a b c ,则,,a b c 的大小顺序为( )A .a b c >>B .c a b >>C .b c a >>D .b a c >>8.已知2log 0.8a =,0.7log 0.6b =,0.60.7c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .b a c <<C .a c b <<D .b c a <<9.已知函数()sin 2f x x x =-,且()0.3231ln ,log ,223a f b f c f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则以下结论正确的是A .c a b >>B .a c b >>C .a b c >>D .b a c >>10.函数2()ln(43)f x x x =+-的单调递减区间是( )A .32⎛⎤-∞ ⎥⎝⎦,B .3,42⎡⎫⎪⎢⎣⎭C .3,2⎡⎫+∞⎪⎢⎣⎭D .31,2⎛⎤- ⎥⎝⎦11.已知1()44x f x x -=+-e ,若正实数a 满足3(log )14a f <,则a 的取值范围为( )A .34a >B .304a <<或43a >C .304a <<或1a > D .1a >12.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是A .B .C .D .二、填空题13.已知函数()f x 的定义域是[1,1]-,则函数(21)()ln(1)f xg x x -=-的定义域是________.14.函数()()12log 13y x x =-+的递增区间为______.15.关于x 的不等式()()222log 1log 2x x ->-的解集为______.16.设函数()f x 的定义域为D ,若存在0x D ∈,使得00(1)()(1)f x f x f +=+,则称0x 为函数()f x 的“可拆点”.若函数22()log 1af x x =+在(0,)+∞上存在“可拆点”,则正实数a 的取值范围为____________.17.已知函数f (x )=[log a (x +2)]+3的图象恒过定点(m ,n ),且函数g (x )=mx 2﹣2bx +n 在[1,+∞)上单调递减,则实数b 的取值范围是________. 18.已知2336m n ==,则11m n+=______. 19.函数()212log 2y x x =-的定义域是______,单调递减区间是______.20.设函数()f x 满足()22221xf xax a =-+-,且()f x 在21222,2a aa --+⎡⎤⎣⎦上的值域为[]1,0-,则实数a 的取值范围为______.三、解答题21.计算下列各式的值: (1)3224031168()281π-⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭; (2)()2log 1483log 3log 3log 22+⨯+.22.已知函数()x f x a =(0a >且1a ≠),满足(2)(1)6f f +=; (1)求()f x 的解析式;(2)若方程()(2),[0,1]m f x f x x =-∈有解,求m 的取值范围;(3)已知()g x 为奇函数,()h x 为偶函数,函数()()()f x g x h x =+;若存在[1,2]x ∈使得2()(2)0ag x h x +≤,求a 的取值范围.23.计算:(1)011327(0.064)0.258-⎛⎫--+ ⎪⎝⎭; (2)22lg25lg8lg5lg20(lg2)3++⋅+. 24.已知函数()442xx f x =+;(1)若01a <<,求()()1f a f a +-的值; (2)求12320202021202120212021f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值. 25.已知函数11()ln 12f x x x ⎛⎫=+ ⎪-⎝⎭. (1)先求1(2)2f f ⎛⎫-⎪⎝⎭的值,再求[]1111(11)(12)(29)(66)11122966f f f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++-+++⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦的值; (2)求()f x 的定义域,并证明()f x 在定义域上恒正.26.已知命题:p 关于x 的不等式()10,1xa a a >>≠的解集是{}0x x <,命题:q 函数()2lg 1y ax =+的定义域为R ,如果“p q ∨”为真命题,“p q ∧”为假命题.求实数a的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【分析】首先根据指对互化求出,,a b c ,再根据换底公式表示111,,a b c,最后根据对数运算法则化简. 【详解】设3a =4b =6c =k , 则a =log 3k , b =log 4k , c =log 6k , ∴311log 3log k a k ==, 同理1log 4k b =,1log 6k c=, 而11log 2,log 3log 22k k k b c ==+, ∴1112c a b =+,即221c a b =+. 故选:B 【点睛】本题考查指对数运算,换底公式,以及对数运算的性质,关键是灵活应用对数运算公式,公式1log log a b b a=是关键. 2.A解析:A 【分析】若定义域为实数集R ,则20x m +>对于x ∈R 恒成立,可得0m ≥,若值域为实数集R ,令2x t m =+,则2log y t = 此时需满足2x t m =+的值域包括()0,∞+,可得0m ≤,再求交集即可. 【详解】若()()2log 2xf x m =+定义域为实数集R ,则20x m +>对于x ∈R 恒成立,即2x m >-对于x ∈R 恒成立, 因为20x >,所以20x -<,所以0m ≥, 令2x t m =+,则2log y t =若()()2log 2xf x m =+值域为实数集R ,则2x t m =+的值域包括()0,∞+, 因为t m >,所以0m ≤, 所以0m =, 故选:A 【点睛】关键点点睛:本题的关键点是要找到定义域为R 的等价条件即20x m +>对于x ∈R 恒成立,分离参数m 求其范围,值域为R 的等价条件即2x t m =+可以取遍所有大于0的数,由t m >,所以0m ≤,再求交集.3.D【分析】先判断出()f x 在R 上单调递减,再利用指数对数函数的单调性求出120212020,20201log 2021, 2021log 2020的范围,即可根据单调性比较大小.【详解】210x x +->恒成立,()f x ∴定义域为R ,))()lnlnf x x x ===-,其中y x 单调递增,则()f x 单调递减,102021202020120>=,202020201log log 102021<=,2021202120210log 1log 2020log 20211=<<=,b c a ∴>>.故选:D. 【点睛】关键点睛:本题考查利用函数的单调性比较大小,解题的关键是判断出)()ln f x x =在R 上单调递减,进而可利用单调性比较.4.D解析:D 【分析】利用换底公式先求解出+log log m m a b 、log log m m a b ⋅的结果,然后利用换底公式将log a bm 变形为1log log m m a b-,根据+log log m m a b 、log log m m a b ⋅的结果求解出log log m m a b -的结果,则log a bm 的值可求.【详解】因为log log 4log log 2a ba b m m m m +=⎧⎨⋅=⎩,所以114log log 112log log m m m m a b a b⎧+=⎪⎪⎨⎪⋅=⎪⎩ ,所以log +log 4log log 1log log 2m m m m m m a b a b a b ⎧=⎪⋅⎪⎨⎪⋅=⎪⎩,所以log +log 21log log 2m m m m a b a b =⎧⎪⎨⋅=⎪⎩,又因为11log log log log a m m bmm a a b b==-,且()()22log log =log log lo +42g log m m m m m m a b a b b a -⋅=-,所以log log m m a b -=所以log 2a bm ==±,故选:D. 【点睛】关键点点睛:解答本题的关键是在于换底公式的运用,将log a bm 变形为1log log m m a b-,再根据方程根之间的关系求解出结果.5.A解析:A 【分析】由换底公式和对数函数的性质可得112b a <<<,再由指数函数的性质可得102c <<,即可得解. 【详解】23ln3ln12log =02ln 2ln 2a ==>,4212ln ln 2ln1323log =03ln 4ln 2ln 2b ====<, a b ∴>22223231log log 410,239222a c -⎛⎫⎛⎫<===< ⎪ ⎪⎭=⎝>⎭=⎝,b c a ∴<<,故选:A 【点睛】方法点睛:本题考查了对数式、指数式的大小比较,比较大小的常用方法为同底的对数式和指数式利用其单调性进行比较,也可以借助于中间值0和1进行比较,考查了运算求解能力与逻辑推理能力,属于常考题.6.D解析:D 【分析】本题首先可根据2log 3b =以及2log c =得出b c >,然后根据1a <以及1c >得出c a >,即可得出结果.【详解】因为2log 3b =,42log 7log 7c ,函数2log y x =在()0,∞+上是增函数,所以b c >,因为01211122a <⎛⎫⎛⎫= ⎪ ⎪⎝⎝⎭=⎭,44log 7log 41c , 所以c a >, 综上所述,a c b <<, 故选:D. 【点睛】指数、对数的大小比较,可通过寻找合适的单调函数来构建大小关系,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,考查计算能力,是中档题.7.B解析:B 【分析】将函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点,转化为函数y x =的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标,利用数形结合法求解. 【详解】函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点, 即为函数y x =的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标, 如图所示:由图象可得:c a b >>, 故选:B 【点睛】本题主要考查函数的零点以及指数函数,对数函数和幂函数的图象的应用,还考查了数形结合的思想方法,属于中档题.8.C解析:C 【解析】因为22log 0.8log 10a =<=,0.70.7log 0.6log 0.71b =>=,0.6000.70.71c <=<=,所以a c b <<,故选C.9.D解析:D 【解析】因为()cos 20f x x '=-<,所以函数()sin 2f x x x =-的单调递减函数,又因为0.3213log 0,ln ln 1,12232e <<=<<,即0.3213log ln 232<<,所以由函数的单调性可得:0.3213(log )(ln )(2)32f f f >>,应选答案D .10.B解析:B 【分析】先求函数的定义域,再利用复合函数的单调性同增异减,即可求解. 【详解】由2430x x +->得2340x x --<,解得:14x -<<,2()ln(43)f x x x =+-由ln y t =和234t x x =-++复合而成,ln y t =在定义域内单调递增,234t x x =-++对称轴为32x =,开口向下, 所以 234t x x =-++在31,2⎛⎫- ⎪⎝⎭ 单调递增,在3,42⎡⎫⎪⎢⎣⎭单调递减, 所以2()ln(43)f x x x =+-的单调减区间为3,42⎡⎫⎪⎢⎣⎭,故选:B 【点睛】本题主要考查了利用同增异减求复合函数的单调区间,注意先求定义域,属于中档题11.C解析:C 【分析】 先判断1()44x f x x -=+-e 是R 上的增函数,原不等式等价于3log 14a <,分类讨论,利用对数函数的单调性求解即可. 【详解】 因为1x y e -=与44y x =-都是R 上的增函数,所以1()44x f x x -=+-e 是R 上的增函数,又因为11(1)441f e -=+-=所以()3(log )114af f <=等价于3log 14a <, 由1log a a =,知3log log 4aa a <, 当01a <<时,log a y x =在()0,∞+上单调递减,故34a <,从而304a <<; 当1a >时,log ay x =在()0,∞+上单调递增,故34a >,从而1a >, 综上所述, a 的取值范围是304a <<或1a >,故选C. 【点睛】解决抽象不等式()()f a f b <时,切勿将自变量代入函数解析式进行求解,首先应该注意考查函数()f x 的单调性.若函数()f x 为增函数,则a b <;若函数()f x 为减函数,则a b >.12.B解析:B【分析】利用对数函数的图象,以及函数的奇偶性和图象的变换,即可求解,得到答案. 【详解】由题意,由函数()log a f x x =是增函数知,1a >, 当0x ≥时,函数(1)log (1)a y f x x =+=+,将函数1()log ,()a f x a x >=的图象向左平移1个单位,得到函数log (1)a y x =+的图象, 又由函数(1)y f x =+满足(1)(1)f x f x -+=+,所以函数(1)y f x =+为偶函数, 且图象关于y 轴对称, 故选B. 【点睛】本题主要考查了对数函数的图象与性质,以及函数的图象变换的应用,其中解答中熟记对数函数的图象与性质和函数的图象变换是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题13.【分析】由函数的定义域是即结合函数的解析式列出不等式组即可求解【详解】由题意函数的定义域是即则函数有意义则满足解得解得即函数的定义域是故答案为:【点睛】本题主要考查了抽象函数定义域的求解以及对数函数 解析:(0,1)【分析】由函数()f x 的定义域是[1,1]-,即11x -≤≤,结合函数的解析式(21)()ln(1)f xg x x -=-,列出不等式组12111011x x x -≤-≤⎧⎪->⎨⎪-≠⎩,即可求解. 【详解】由题意,函数()f x 的定义域是[1,1]-,即11x -≤≤,则函数(21)()ln(1)f x g x x -=-有意义,则满足12111011x x x -≤-≤⎧⎪->⎨⎪-≠⎩ ,解得0110x x x ≤≤⎧⎪<⎨⎪≠⎩,解得01x <<,即函数(21)()ln(1)f xg x x -=-的定义域是(0,1).故答案为:(0,1). 【点睛】本题主要考查了抽象函数定义域的求解,以及对数函数的性质的应用,其中解答中熟记抽象函数的定义域的求解方法,以及对数函数的性质是解答的关键,着重考查推理与运算能力.14.【分析】首先求出函数的定义域再根据复合函数的单调性计算可得【详解】解:则解得即函数的定义域为令则因为在上单调递增在上单调递减;在定义域上单调递减根据复合函数的单调性同增异减可知函数在上单调递增故答案 解析:()1,1-【分析】首先求出函数的定义域,再根据复合函数的单调性计算可得. 【详解】 解:()()12log 13y x x =-+则()()130x x -+>解得31x -<<即函数的定义域为()3,1- 令()()()()21314t x x x x =-+=-++,()3,1x ∈-,则12logy t =因为()t x 在()3,1--上单调递增,在()1,1-上单调递减;12log y t =在定义域上单调递减根据复合函数的单调性“同增异减”可知函数()()12log 13y x x =-+在()1,1-上单调递增故答案为:()1,1- 【点睛】本题考查复合函数的单调区间的计算,属于基础题.15.【分析】由对数函数的性质化对数不等式为一元二次不等式组求解【详解】由得解得∴不等式的解集为故答案为:【点睛】本题考查对数不等式的解法考查了对数函数的性质是基础题解析:(,1-∞-. 【分析】由对数函数的性质化对数不等式为一元二次不等式组求解. 【详解】由()()222log 1log 2x x ->-,得21220x xx ⎧->-⎨->⎩,解得1x <--∴不等式()()222log 1log 2x x ->-的解集为(,1-∞-.故答案为:(,1-∞-. 【点睛】本题考查对数不等式的解法,考查了对数函数的性质,是基础题.16.【分析】首先根据定义列出的等式转化为再根据分离常数和换元法求的取值范围【详解】函数为可分拆函数存在实数使得且设当时等号成立即故答案为:【点睛】思路点睛:本题是一道以新定义为背景的函数性质的综合应用题解析:[3【分析】首先根据定义,列出()()()0011f x f x f +=+的等式,转化为()()20202111x a x +=++,再根据分离常数和换元法,求a 的取值范围. 【详解】 函数()22log 1af x x=+为“可分拆函数”,∴存在实数00x >,使得()2222200log log log 1211aa a x x =++++且0a >,()()222002111a a x x ∴=+++,()()()2220000002222000000021*********222222211x x x x x x a x x x x x x x +++--++∴====-++++++++, 设0422x t +=>,024t x -∴=, 2161622204204t a t t t t∴=-=-++++ ,20444t t ++≥=,当t =即32a ≤<. 故答案为:)32⎡⎣ 【点睛】思路点睛:本题是一道以新定义为背景的函数性质的综合应用题型,首先正确利用新定义,并正确表示()()20202111x a x +=++,利用01x >,转化为求函数的值域,即求a 的取值范围.17.【分析】先求出m=-1n=3再利用二次函数的图像和性质分析得解【详解】因为函数f (x )=loga (x+2)+3的图象恒过定点所以m=-1n=3所以g (x )=-x2﹣2bx+3因为g (x )=-x2﹣2 解析:[)1,-+∞【分析】先求出m =-1,n =3.再利用二次函数的图像和性质分析得解. 【详解】因为函数f (x )=[log a (x +2)]+3的图象恒过定点(1,3)-, 所以m =-1,n =3,所以g (x )=-x 2﹣2bx +3,因为g (x )=-x 2﹣2bx +3在[1,+∞)上单调递减, 所以对称轴1x b =-≤, 解得1b ≥-, 故答案为:[)1,-+∞ 【点睛】关键点点睛:本题考查了对数型函数过定点,可求出,m n 的值,利用了二次函数的单调性与对称轴的关系求出b 的范围.18.【分析】根据对数的定义和运算法则即可求解【详解】由可得所以所以故答案为:【点睛】本题主要考查对数的运算法则的应用考查了学生的计算能力属于中档题 解析:12【分析】根据对数的定义和运算法则即可求解. 【详解】由2336m n ==可得23log 36,log 36m n == 所以361log 2m =,361log 3n=, 所以363636111log 2log 3log 62m n +=+==, 故答案为:12【点睛】本题主要考查对数的运算法则的应用,考查了学生的计算能力,属于中档题.19.【分析】由表达式可知解出对应即可求解定义域再结合复合函数同增异减性质可求函数单调减区间【详解】由题可知可看作在定义域内为减函数根据复合函数增减性当内层函数为增函数则在对应区间为减函数故函数的定义域是解析:()(),02,-∞+∞ ()2,+∞【分析】由表达式可知220x x ->,解出对应x ,即可求解定义域,再结合复合函数同增异减性质可求函数单调减区间 【详解】由题可知,()()220,02,x x x ->⇒∈-∞+∞,()212log 2y x x =-可看作12log y t =,22t x x =-,12log y t =在定义域内为减函数,根据复合函数增减性,当()2,x ∈+∞,内层函数为增函数,则()212log 2y x x =-在对应区间为减函数,故函数()212log 2y x x =-的定义域是()(),02,-∞+∞,单调递减区间是()2,+∞故答案为:()(),02,-∞+∞;()2,+∞【点睛】本题考查对数型函数具体定义域和对应增减区间,属于基础题20.【分析】利用换元法可得然后采用等价转换的方法可得在的值域为最后根据二次函数的性质可得结果【详解】由令所以则令由在上的值域为等价为在的值域为的对称轴为且所以可得或所以故答案为:【点睛】本题主要考查函数解析:332,22⎡⎤⎡-+⋃⎢⎥⎢⎣⎦⎣⎦【分析】利用换元法,可得()2221g x x ax a =-+-,然后采用等价转换的方法,可得()g x 在21,22a a a ⎡⎤--+⎣⎦的值域为[]1,0-,最后根据二次函数的性质,可得结果.【详解】 由()22221xf xax a =-+-令22,log xt x t ==,所以()()2222log 2log 1f t t a t a =-+- 则令()2221g x x ax a =-+-由()f x 在21222,2a aa --+⎡⎤⎣⎦上的值域为[]1,0-等价为()g x 在21,22a a a ⎡⎤--+⎣⎦的值域为[]1,0-()g x 的对称轴为x a =,且()()1,10g a g a =--= 所以()()22122222a a a a a a -+-+≤≤-+可得312a ≤≤或322a +≤≤所以332,22a ⎡⎤⎡∈⋃⎢⎥⎢⎣⎦⎣⎦故答案为:332,22⎡⎤⎡-⋃⎢⎥⎢⎣⎦⎣⎦【点睛】本题主要考查函数值域的应用,难点在于使用等价转换思想,使问题化繁为简,属中档题.三、解答题21.(1)1927-;(2)116. 【分析】(1)利用指数的运算法则化简求解; (2)利用对数的运算法则化简求解. 【详解】 (1)()3224031168281π-⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭()324343224()13⎡⎤⎡⎤=-+-⎢⎥⎣⎦⎣⎦8194412727=-+-=-. (2)()2log 1483log 3log 3log 22++22311log 3log 3log 2123⎛⎫=++ ⎪⎝⎭235511log 3log 211666⎛⎫=+=+= ⎪⎝⎭.【点睛】方法点睛:指数对数的运算化简,一般先观察指数对数的形式,再利用合适的运算法则化简求解.22.(1)()2x f x =;(2)[2,0]-;(3)17,12⎛⎤-∞- ⎥⎝⎦. 【分析】(1)根据(2)(1)6f f +=求解出a 的值,即可求解出()f x 的解析式;(2)采用换元法构造函数2(),[1,2]F t t t t =-∈,将m 的取值范围与()F t 的最值联系在一起,由此求解出结果;(3)先根据函数的奇偶性求解出()(),h x g x 的解析式,然后采用分离参数法得到1222222x x x x a --⎡⎤≤--+⎢⎥-⎣⎦,采用换元法求解出1222222xx x x --⎡⎤--+⎢⎥-⎣⎦的最大值,从而求解出a 的取值范围.【详解】(1)因为(2)(1)6f f +=,所以260,2a a a +-==或3a =-(舍去),所以()2x f x =;(2)由(1)知,()2x f x =,所以()222222x x x xm =-=-,令2,[1,2]xt t =∈,令2(),[1,2]F t t t t =-∈,所以()F t 的对称轴为12t =,且()F t 为开口向下的二次函数,所以()F t 在[]1,2上单调递减,所以()()ma min x (2)2,(1)0F t F F t F -====,所以m 的取值范围为[2,0]-; (3)因为()g x 为奇函数,()h x 为偶函数,所以()(),()()g x g x h x h x -=--=.由题()()()f x g x h x =+知,2()()2()()x x g x h x g x h x -⎧=+⎨=-+-⎩,即2()()2()()x x g x h x g x h x -⎧=+⎨=-+⎩解得2222(),()22x x x xh x g x --+-==将上式代入2()(2)0ag x h x +≤,得()()221222202x xxx a ---++≤,易知()22222212211222222222222xx xxx x x x x x x x a -------++⎡⎤≤-⋅=-⋅=--+⎢⎥---⎣⎦. 令12,[1,2]2x xt x =-∈,则315,24t ⎡⎤=⎢⎥⎣⎦,122a t t ⎛⎫≤-+ ⎪⎝⎭, 因为存在[1,2]x ∈使得2()(2)0ag x h x +≤,所以max12132173222122a t t ⎛⎫ ⎪⎡⎤⎛⎫≤-+=-+=- ⎪ ⎪⎢⎥⎝⎭⎣⎦ ⎪⎝⎭所以a 的取值范围是17,12⎛⎤-∞- ⎥⎝⎦. 【点睛】方法点睛:不等式在指定区间上有解或恒成立求解参数范围问题的处理方法: (1)分类讨论法:根据参数的临界值作分类讨论;(2)分离参数法:将自变量和参数分离开来,自变量部分构造新函数,分析新函数的最值与参数的关系. 23.(1)10;(2)3. 【分析】(1)根据根式定义化根式为分数指数幂,再由幂的运算法则计算; (2)由对数运算法则计算. 【详解】 (1)解:原式()()1323120.410.5-=-+1321511218105222-⎛⎫=-++=-++= ⎪⎝⎭.(2)解:原式2322lg5lg2lg5(2lg2lg5)(lg2)3=++++ 222lg52lg 22lg5lg 2(lg5)(lg 2)=++++ 22(lg5lg 2)(lg5lg 2)213=+++=+=.【点睛】本题考查根式与分数指数幂的互化,考查幂和对数的运算法则,掌握幂与对数运算法则是解题关键.24.(1)1;(2)1010. 【分析】(1)根据4()42xx f x =+的表达式,求出()(),1f a f a -的表达式,再进行分式通分运算,可得()()11f a f a +-=. (2)设12320202021202120212021S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再把S 的表达式运用加法交换律改写成20201202120212021202321S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,把两式相加利用()(1)1f x f x +-=求出S 的值.【详解】 (1)4()42xxf x =+,x ∈R . ∴()()1f a f a +-1144444442424224aaaa a a a a--=+=+++++4214224a a a=+=++,(2)设12320202021202120212021S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则 20201202120212021202321S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 两式相加得:12[][][]92022020220120201202120212022120211021S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭由(1)得:20202201109211,1,,221202120212021202120220101f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ∴220201010S S =⇒=.【点睛】本题考查指数幂运算,分式运算,利用函数的性质进行式子求值,考查运算求解能力.25.(1)0;0,(2)定义域是(0,1)(1,)⋃+∞,见解析 【分析】(1)先求出1(2)02f f ⎛⎫-=⎪⎝⎭,再证明1()0f x f x ⎛⎫-= ⎪⎝⎭,即得解;(2)先求出函数()f x 的定义域是(0,1)(1,)⋃+∞,再分类讨论证明()f x 在定义域上恒正.【详解】 (1)1(2)02f f ⎛⎫-= ⎪⎝⎭. 对任意(0,1)(1,)x ∈+∞,111111()ln ln 11221f x f x x x xx ⎛⎫ ⎪⎛⎫⎛⎫-=+-+ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪-⎝⎭1111111ln ln ln 1ln 121212121x x x x x x x x x x x x -⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++=+ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭0=.所以[]1111(11)(12)(29)(66)11122966f f f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++-+++⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 1111(11)(12)(29)(66)011122966f f f f f f f f ⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-= ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦. (2)由题得0x >且1x ≠,所以函数()f x 的定义域是(0,1)(1,)⋃+∞,1()ln 2(1)x f x x x +=-.当(0,1)x ∈时,10x -<,ln 0x <,10x +>,所以()0f x >; 当(1,)x ∈+∞时,10x ->,ln 0x >,10x +>,所以()0f x >. 综上,()f x 在定义域上恒正. 【点睛】本题主要考查函数定义域的求法,考查函数值的求法,考查函数值域的求法,意在考查学生对这些知识的理解掌握水平.26.[)10,1,2⎛⎤+∞ ⎥⎝⎦【分析】先根据命题p 、q 为真命题时求出对应的实数a 的取值范围,再由题中复合命题的真假判断出p 、q 中一真一假,然后分“p 真q 假”和“p 假q 真”两种情况讨论,进而可求得实数a 的取值范围. 【详解】由题知:p 关于x 的不等式1x a >(0a >且1a ≠)的解集是{}0x x <,所以:01a <<.:q函数()2lg 1y ax =+的定义域为R ,等价于x R ∀∈,210ax +>.(i )当0a =时,不等式10+>在R 上不恒成立;(ii )当0a ≠时,0240a a >⎧⎨∆=-<⎩,解得12a >.即1:2q a >.如果p q ∨为真命题,p q ∧为假命题,则p 真q 假,或p 假q 真,若p 真q 假,则0112a a <<⎧⎪⎨≤⎪⎩,可得102a <≤;若p 假q 真,则0112a a a ≤≥⎧⎪⎨>⎪⎩或,可得1a ≥. 解得102a <≤或1a ≥. 所以,实数a 的取值范围是[)10,1,2⎛⎤⋃+∞ ⎥⎝⎦.【点睛】本题考查根据复合命题的真假求参数,考查指数函数的单调性以及对数型复合函数的定义域问题,考查运算求解能力,属于中等题.。
(压轴题)高中数学必修一第三单元《指数函数和对数函数》测试卷(有答案解析)(4)
一、选择题1.设log a m 和log b m 是方程2420x x -+=的两个根,则log a bm 的值为( )AB .2C .D .2±2.已知:23log 2a =,42log 3b =,232c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .c b a <<D .c a b <<3.函数()212()log 4f x x =-的单调递增区间为( ).A .(0,+∞)B .(-,0)C .(2,+∞)D .(-,-2)4.函数()213log 23y x x =-++的单调递增区间是( )A .(]1,1-B .(1)∞-,C .[) 1,3D .(1)∞,+ 5.已知实数1212a ⎛⎫= ⎪⎝⎭,2log 3b =,4log 7c =,则a 、b 、c 的大小关系是( )A .c b a <<B .c a b <<C .b a c <<D .a c b <<6.已知235log log log 0x y z ==<,则2x 、3y 、5z的大小排序为 A .235x y z <<B .325y x z<<C .523z x y <<D .532z y x<<7.已知函数()sin 2f x x x =-,且()0.3231ln ,log ,223a f b f c f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则以下结论正确的是 A .c a b >>B .a c b >>C .a b c >>D .b a c >>8.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( ) A .2,13⎛⎫⎪⎝⎭B .(0,1)C .20,3⎛⎫ ⎪⎝⎭D .[)3,+∞ 9.函数2()ln(43)f x x x =+-的单调递减区间是( )A .32⎛⎤-∞ ⎥⎝⎦,B .3,42⎡⎫⎪⎢⎣⎭C .3,2⎡⎫+∞⎪⎢⎣⎭D .31,2⎛⎤- ⎥⎝⎦10.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b11.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是A .B .C .D .12.实数,a b 满足2510a b ==,则下列关系正确的是( ) A .212a b+= B .111a b+= C .122a b+= D .1212a b += 二、填空题13.测量地震级别的里氏震级M 的计算公式为:0lg lg M A A =-,其中A 是测震仪记录的地震曲线的最大振幅,常数A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,而此次地震的里氏震级恰好为6级,那么里氏9级地震的最大的振幅是里氏5级地震最大振幅的______倍.14.已知()(3),1log ,1aa x a x f x x x --<⎧=⎨≥⎩的值域为R ,那么实数a 的取值范围是_________.15.已知()()2log 1f x x =-,若()()f a f b =(ab ),则2a b +的最小值为________.16.已知43==m n k ,且20+=≠m n mn ,则k =______. 17.已知函数1(2)1,2(),2x a x x f x a x --+<⎧=⎨≥⎩,在R 上单调递增,则实数a 的取值范围是_______.18.函数()213log 253y x x =--的单调递增区间为_______. 19.已知2336m n ==,则11m n+=______. 20.已知函数()()log 21101a y x a a =-+>≠,的图象过定点A ,若点A 也在函数()2x f x b =+的图象上,则()2log 3f =________. 三、解答题21.设函数()()22()log 4log 2f x x x =⋅的定义域为1,44⎡⎤⎢⎥⎣⎦.(1)求()y f x =的最大值和最小值,并求出最值时对应的x 值; (2)解不等式()60f x ->.22.已知函数f (x )=log a (x +1)-log a (1-x ),a >0,且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性,并予以证明; (3)当a >1时,求使f (x )>0的x 的取值范围.23.已知集合(){}2log 33A x x =+≤,{}213B x m x m =-<≤+. (1)若2m =-,求AB ;(2)若A B A ⋃=,求实数m 的取值范围.24.已知函数()()21log 01+=>-axf x a x 是奇函数 (1)求a 的值与函数()f x 的定义域;(2)若()232log g x x =-对于任意[]1,4x ∈都有()22log>⋅g x gk x ,求k 的取值范围.25.已知函数()f x ()()4log 41xkx k R =++∈的图象关于y 轴对称.(1)求实数k 的值(2)设函数()g x 12421f x xx m +=+⋅-(),[]20log 3x ∈,,是否存在实数m , 使得()g x 的最小值为0?若存在, 求出m 的值,若不存在说明理由. 26.设函数()log (1)a f x ax =-,其中01a << (1)证明()f x 是1(,)a-∞上的增函数; (2)解不等式()1f x >.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用换底公式先求解出+log log m m a b 、log log m m a b ⋅的结果,然后利用换底公式将log a bm 变形为1log log m m a b-,根据+log log m m a b 、log log m m a b ⋅的结果求解出log log m m a b -的结果,则log a bm 的值可求.【详解】因为log log 4log log 2a b a b m m m m +=⎧⎨⋅=⎩,所以114log log 112log log m mm m a b a b⎧+=⎪⎪⎨⎪⋅=⎪⎩ ,所以log +log 4log log 1log log 2m m m m m m a b a b a b ⎧=⎪⋅⎪⎨⎪⋅=⎪⎩,所以log +log 21log log 2m m m m a b a b =⎧⎪⎨⋅=⎪⎩, 又因为11log log log log a m m bmm aa b b==-,且()()22log log =log log lo +42g log m m m m m m a b a b b a -⋅=-,所以log log m m a b -=所以log 2a bm ==±,故选:D. 【点睛】关键点点睛:解答本题的关键是在于换底公式的运用,将log a bm 变形为1log log m m a b-,再根据方程根之间的关系求解出结果.2.A解析:A 【分析】由换底公式和对数函数的性质可得112b a <<<,再由指数函数的性质可得102c <<,即可得解. 【详解】23ln3ln12log =02ln 2ln 2a ==>,4212ln ln 2ln1323log =03ln 4ln 2ln 2b ====<, a b ∴>22223231log log 410,239222a c -⎛⎫⎛⎫<===< ⎪ ⎪⎭=⎝>⎭=⎝,b c a ∴<<,故选:A【点睛】方法点睛:本题考查了对数式、指数式的大小比较,比较大小的常用方法为同底的对数式和指数式利用其单调性进行比较,也可以借助于中间值0和1进行比较,考查了运算求解能力与逻辑推理能力,属于常考题.3.D解析:D 【分析】求出函数的定义域,根据对数型复合函数的单调性可得结果. 【详解】函数()212()log 4f x x =-的定义域为()(),22,-∞-+∞,因为函数()f x 是由12log y u =和24u x =-复合而成,而12log y u =在定义域内单调递减,24u x =-在(),2-∞-内单调递减,所以函数()212()log 4f x x =-的单调递增区间为(),2-∞-, 故选:D. 【点睛】易错点点睛:对于对数型复合函数务必注意函数的定义域.4.C解析:C 【分析】由不等式2230x x -++>,求得函数的定义域()1,3-,令()223g x x x =-++,得到()g x 在区间(]1,1-上单调递增,在区间[1,3)上单调递减,结合复数函数的单调性的判定方法,即可求解. 【详解】由题意,函数213()log 23y x x =-++有意义,则满足2230x x -++>,即223(3)(1)0x x x x --=-+<,解得13x,即函数的定义域为()1,3-,令()223g x x x =-++,则函数()g x 表示开口向下,对称轴方程为1x =的抛物线, 所以函数()g x 在区间(]1,1-上单调递增,在区间[1,3)上单调递减, 又由函数13log y x =在定义上是递减函数,结合复数函数的单调性的判定方法,可得函数213()log 23y x x =-++的递增区间为[1,3). 故选:C. 【点睛】函数单调性的判定方法与策略:定义法:一般步骤:设元→作差→变形→判断符号→得出结论;图象法:如果函数()f x 是以图象形式给出或函数()f x 的图象易作出,结合图象可求得函数的单调区间;导数法:先求出函数的导数,利用导数值的正负确定函数的单调区间;复合函数法:先将函数(())y f g x =分解为()y f t =和()t g x =,再讨论这两个函数的单调性,最后根据复合函数“同增异减”的规则进行判定.5.D解析:D 【分析】本题首先可根据2log 3b =以及2log c =得出b c >,然后根据1a <以及1c >得出c a >,即可得出结果.【详解】 因为2log 3b =,42log 7log 7c ,函数2log y x =在()0,∞+上是增函数,所以b c >,因为01211122a <⎛⎫⎛⎫= ⎪ ⎪⎝⎝⎭=⎭,44log 7log 41c , 所以c a >, 综上所述,a c b <<, 故选:D. 【点睛】指数、对数的大小比较,可通过寻找合适的单调函数来构建大小关系,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,考查计算能力,是中档题.6.A解析:A 【解析】x y z ,, 为正实数,且235log log log 0x y z ==<,111235235k k k x y z ---∴===,,,可得:1112352131,51k kk x y z ---=>=>=>,. 即10k -> 因为函数1kf x x -=() 单调递增,∴235x y z<<.故选A.7.D解析:D 【解析】因为()cos 20f x x '=-<,所以函数()sin 2f x x x =-的单调递减函数,又因为0.3213log 0,ln ln 1,12232e <<=<<,即0.3213log ln 232<<,所以由函数的单调性可得:0.3213(log )(ln )(2)32f f f >>,应选答案D .8.C解析:C 【分析】根据对数函数性质与复合函数的单调性求解. 【详解】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数, 由对数函数性质知230a ->,即23<a , 综上023a <<. 故选:C . 【点睛】本题考查复合函数的单调性,掌握对数函数性质是解题关键,考查逻辑思维能力和计算能力,属于常考题.9.B解析:B 【分析】先求函数的定义域,再利用复合函数的单调性同增异减,即可求解. 【详解】由2430x x +->得2340x x --<,解得:14x -<<,2()ln(43)f x x x =+-由ln y t =和234t x x =-++复合而成,ln y t =在定义域内单调递增,234t x x =-++对称轴为32x =,开口向下, 所以 234t x x =-++在31,2⎛⎫- ⎪⎝⎭ 单调递增,在3,42⎡⎫⎪⎢⎣⎭单调递减, 所以2()ln(43)f x x x =+-的单调减区间为3,42⎡⎫⎪⎢⎣⎭,故选:B本题主要考查了利用同增异减求复合函数的单调区间,注意先求定义域,属于中档题10.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.11.B解析:B 【分析】利用对数函数的图象,以及函数的奇偶性和图象的变换,即可求解,得到答案. 【详解】由题意,由函数()log a f x x =是增函数知,1a >, 当0x ≥时,函数(1)log (1)a y f x x =+=+,将函数1()log ,()a f x a x >=的图象向左平移1个单位,得到函数log (1)a y x =+的图象, 又由函数(1)y f x =+满足(1)(1)f x f x -+=+,所以函数(1)y f x =+为偶函数, 且图象关于y 轴对称, 故选B. 【点睛】本题主要考查了对数函数的图象与性质,以及函数的图象变换的应用,其中解答中熟记对数函数的图象与性质和函数的图象变换是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.12.B解析:B 【分析】根据指数式与对数的互化公式,求得11lg2,lg5a b==,再结合对数的运算公式,即可求解.因为2510a b ==,可得25log 10,log 10a b ==,所以11lg2,lg5a b==, 则11lg 2lg5lg101a b +=+==. 故选:B. 【点睛】本题主要考查指数式与对数的互化,以及对数的运算公式的化简、求值,其中解答中熟记指数式与对数的互化公式,以及对数的运算公式,准确运算是解答的关键,着重考查运算与求解能力.二、填空题13.10000【分析】根据条件先计算出的值然后分别计算出里氏9级地震的最大的振幅和里氏5级地震最大振幅由此可求解出最终结果【详解】由条件可知:所以设里氏9级地震的最大的振幅为里氏5级地震最大振幅为所以所解析:10000 【分析】根据条件先计算出0A 的值,然后分别计算出里氏9级地震的最大的振幅和里氏5级地震最大振幅,由此可求解出最终结果. 【详解】由条件可知:06lg1000lg A =-,所以3010A -=,设里氏9级地震的最大的振幅为1A ,里氏5级地震最大振幅为2A ,所以31329lg lg105lg lg10A A --⎧=-⎨=-⎩,所以621210,10A A ==,所以1210000A A =, 故答案为:10000. 【点睛】关键点点睛:解答本题的关键在于理解公式0lg lg M A A =-中各个量的含义并先求解出0A 的值,由此继续分析.14.【分析】分类讨论和结合已知和对数函数及一次函数的单调性得a 的不等式组求解即可【详解】解:若当时当时此时的值域不为R 不符合题意;若当时当时要使函数的值域为R 需使解得综上所述故答案为:【点睛】本题考查分解析:31,2⎛⎤⎥⎝⎦【分析】分类讨论01a <<和1a >,结合已知和对数函数及一次函数的单调性,得a 的不等式组求解即可.解:若01a <<, 当1≥x 时,log 0a x ≤,当1x <时,()3332a x a a a a --<--=-,此时f x ()的值域不为R ,不符合题意;若1a >,当1≥x 时,log 0a x ≥,当1x <时,要使函数f x ()的值域为R ,需使30log 13a a a a ->⎧⎨≤--⎩,解得332a a <⎧⎪⎨≤⎪⎩,312a ∴<≤, 综上所述,312a <≤, 故答案为:31,2⎛⎤ ⎥⎝⎦.【点睛】本题考查分段函数的值域及对数函数的性质,考查分类讨论思想与数学运算能力,是中档题.15.【分析】根据求得之间的等量关系再利用均值不等式求得的最小值【详解】因为且不妨设则一定有且即即可得解得因为故可得当且仅当且即时取得最小值故的最小值为故答案为:【点睛】本题考查对数函数的性质以及对数运算解析:3【分析】根据()()f a f b =,求得,a b 之间的等量关系,再利用均值不等式求得2a b +的最小值. 【详解】因为()()2log 1f x x =-,且()()f a f b = 不妨设a b <,则一定有12a b <<<, 且()()22log 1log 1a b -=- 即()()22log 1log 1a b --=-, 即可得()()2log 110a b --=, 解得()()111a b --=. 因为10,10a b ->->故可得()()22113a b a b +=-+-+3≥3=当且仅当()211a b -=-,且()()111a b --=,即11a b =+=+.故2a b +的最小值为3.故答案为:3.【点睛】本题考查对数函数的性质,以及对数运算,涉及均值不等式求最值的问题,属综合性困难题.16.【分析】根据对数和指数的关系将指数式化成对数式再根据对数的运算计算可得【详解】解:故答案为:【点睛】本题考查对数和指数的关系对数的运算属于基础题解析:36【分析】根据对数和指数的关系,将指数式化成对数式,再根据对数的运算计算可得.【详解】解:43m n k ==4log m k ∴=,3log =n k20m n mn +=≠211n m ∴+=,1log 4k m =,1log 3k n= 2log 3log 41k k ∴+=2log 3log 41k k ∴+=()log 941k ∴⨯=36k ∴=故答案为:36【点睛】本题考查对数和指数的关系,对数的运算,属于基础题.17.【分析】根据分段函数单调性列出各段为增函数的条件并注意两段分界处的关系即可求解【详解】函数在R 上单调递增则需满足(1)当时函数单调递增;则(2)当时函数单调递增;则(3)函数在两段分界处满足即所以满 解析:23a <≤【分析】根据分段函数单调性,列出各段为增函数的条件,并注意两段分界处的关系,即可求解.【详解】函数1(2)1,2(),2x a x x f x a x --+<⎧=⎨≥⎩,在R 上单调递增 则需满足(1)当2x <时,函数()f x 单调递增;则2a >(2)当2x ≥时,函数()f x 单调递增;则1a >(3)函数()f x 在两段分界处2x =,满足()21221a a --⨯+≤,即3a ≤所以满足条件的实数a 的范围是23a <≤故答案为:23a <≤【点睛】关键点睛:本题考查由函数的单调性求参数范围,解答本题的关键是分段函数在上单调递增,从图象上分析可得从左到右函数图象呈上升趋势,即函数()f x 在[)2+∞,上的最小值大于等于函数在(),2-∞上的最大值.则()21221a a--⨯+≤,这是容易忽略的地方,属于中档题. 18.【分析】先由求得函数的定义域然后令由复合函数的单调性求解【详解】由解得或所以函数的定义域为或因为在上递减在递减所以函数的单调递增区间为故答案为:【点睛】方法点睛:复合函数的单调性的求法:对于复合函数 解析:1,2⎛⎫-∞- ⎪⎝⎭ 【分析】先由22530x x -->,求得函数的定义域,然后令2253t x x =--,由复合函数的单调性求解.【详解】由22530x x -->,解得 12x <-或 3x >, 所以函数()213log 253y x x =--的定义域为{1|2x x <-或 }3x >, 因为2253t x x =--在1,2⎛⎫-∞- ⎪⎝⎭上递减,13log y t =在()0,∞+递减, 所以函数()213log 253y x x =--的单调递增区间为1,2⎛⎫-∞- ⎪⎝⎭. 故答案为:1,2⎛⎫-∞- ⎪⎝⎭ 【点睛】方法点睛:复合函数的单调性的求法:对于复合函数y =f [g (x )],先求定义域,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数;若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.19.【分析】根据对数的定义和运算法则即可求解【详解】由可得所以所以故答案为:【点睛】本题主要考查对数的运算法则的应用考查了学生的计算能力属于中档题 解析:12【分析】根据对数的定义和运算法则即可求解.【详解】由2336m n ==可得23log 36,log 36m n == 所以361log 2m =,361log 3n =, 所以363636111log 2log 3log 62m n +=+==, 故答案为:12【点睛】 本题主要考查对数的运算法则的应用,考查了学生的计算能力,属于中档题. 20.2【分析】先利用函数的解析式得出其图象必过哪一个定点再将该定点的坐标代入函数中求出最后即可求出相应的函数值得到结果【详解】因为函数的图象恒过定点将代入得所以所以则故答案为:【点睛】该题考查的是有关函 解析:2【分析】先利用函数log (21)1(0,1)a y x a a =-+>≠的解析式得出其图象必过哪一个定点,再将该定点的坐标代入函数()2x f x b =+中求出b ,最后即可求出相应的函数值2(log 3)f ,得到结果.【详解】因为函数log (21)1(0,1)a y x a a =-+>≠的图象恒过定点(1,1),将1,1x y ==代入()2xf x b =+,得121b +=,所以1b =-, 所以()21x f x =-,则2log 32(log 3)21312f =-=-=,故答案为:2.【点睛】该题考查的是有关函数值的求解问题,涉及到的知识点有对数型函数图象过定点问题,点在函数图象上的条件,已知函数解析式求函数值,属于简单题目.三、解答题21.(1)当4x =时,()f x 取得最小值14-;当4x =时,()f x 取得最大值12;(2){}24x x <≤【分析】(1)令2log t x =,可得[]2,2t ∈-,从而()()22log 4log 2x x ⋅232t t =++,结合二次函数的性质,可求出最大值和最小值,及取得最值时对应的x 值;(2)由(1)知,2()32f x t t =++,[]2,2t ∈-,则不等式可化为2340t t +->,可求出t 的范围,结合2log t x =,可求出x 的范围.【详解】(1)由题意,()()()()222222log 4log 2log 4log log 2log x x x x ⋅=+⋅+=()()222log 1log x x +⋅+, 令2log t x =,∵1,44x ⎡∈⎤⎢⎥⎣⎦,∴[]2log 2,2t x =∈- 则()()22132y t t t t =++=++,根据二次函数的性质,可得当32t =-,即322x -==232y t t =++取得最小值,最小值为233132224⎛⎫⎛⎫-+-+=- ⎪ ⎪⎝⎭⎝⎭; 当2t =时,即224x ==时,232y t t =++取得最大值,最大值为2232212+⨯+=.(2)由(1)知,2()32f x t t =++,[]2,2t ∈-, 则()60f x ->可化为2340t t +->,解得1t >或4t <-,因为[]2,2t ∈-,所以12t <≤,则222log 2log log 4x <≤,即24x <≤,故不等式()60f x ->的解集为{}24x x <≤.【点睛】关键点点睛:本题考查求复合函数的最值,及函数不等式的解.解决本题的关键是利用换元法,令2log t x =,可将()f x 转化为关于t 的二次函数232y t t =++,进而可求出最值,并解不等式即可,注意不要漏掉[]2,2t ∈-.考查学生的逻辑推理能力,计算求解能力,属于中档题.22.(1){x |-1<x <1};(2)f (x )为奇函数;证明见解析;(3)(0,1).【分析】(1)根据真数大于零,列出不等式,即可求得函数定义域;(2)计算()f x -,根据其与()f x 关系,结合函数定义域,即可判断和证明; (3)利用对数函数的单调性,求解分式不等式,即可求得结果.【详解】(1)因为f (x )=log a (x +1)-log a (1-x ),所以1010x x +>⎧⎨->⎩解得-1<x <1. 故所求函数的定义域为{x |-1<x <1}.(2)f (x )为奇函数.证明如下:由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ).故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域{x |-1<x <1}上是增函数,由f (x )>0,得11x x+->1,解得0<x <1. 所以x 的取值范围是(0,1).【点睛】 本题考查对数型复合函数单调性、奇偶性以及利用函数性质解不等式,属综合中档题. 23.(1){}31A B x x ⋂=-<≤;(2)[][)1,24,m ∈-+∞ 【分析】(1)计算{}35A x x =-<≤,{}51B x x =-<≤,再计算交集得到答案.(2)A B A ⋃=,故B A ⊆,讨论B =∅和B ≠∅,计算得到答案.【详解】(1)(){}{}2log 3335A x x x x =+≤=-<≤,{}51B x x =-<≤, 故{}31A B x x ⋂=-<≤.(2){}35A x x =-<≤,A B A ⋃=,故B A ⊆, 当B =∅时,213m m -≥+,解得4m ≥;当B ≠∅时,4m <,故21335m m -≥-⎧⎨+≤⎩,解得12m -≤≤. 综上所述:[][)1,24,m ∈-+∞. 【点睛】本题考查交集运算,根据集合的包含关系求参数,意在考查学生的计算能力和综合应用能力.24.(1)1a =,定义域为()(),11,-∞-+∞;(2)(),3-∞-.【分析】(1)由奇函数的定义可解得a 值;真数大于零解不等式可得定义域;(2)换元转换成二次不等式讨论,变量分离,再用基本不等式.【详解】()21log 1ax f x x +=-是奇函数,∴()()f x f x -=-,∴2211log log 11ax ax x x -+=---- ∴2211log log 11--=-++ax x x ax ,∴1111--=++ax x x ax , ∴22211a x x -=-又0a >∴1a = ∴()21log 1x f x x +=-,要使()f x 有意义,则101x x +>-,即1x <-或1x >, ∴()f x 的定义域为()(),11,-∞-+∞.(2)由()22log ⋅>⋅g x g k x 得()()22234log 3log log x x k x -->⋅.令2log t x =∵[]1,4x ∈,∴[]2log 0,2t x =∈∴()()343-->t t kt ,对一切[]0,2t ∈恒成立,①当0t =时,k ∈R ;②当(]0,2t ∈时,()()343t t k t --<恒成立;即9415k t t <+-,∵9412t t +≥, 当且仅当94t t =,即32t =时等号成立.∴9415t t+-的最小值为3-,所以3k <- 综上,实数k 的取值范围为(),3-∞-.【点睛】本题考查函数的奇偶性及不等式的恒成立问题,换元转化为二次不等式在特定区间上恒成立是解决问题的关键.25.(1)12-;(2)1-. 【分析】(1)根据()()()4log 41x f x kx k R =++∈的图象关于y 轴对称.得到()()f x f x -=,再利用待定系数法法求解.(2)由(1)知()42=+⋅x x g x m ,[]20log 3x ∈,,令2x t =,[]13t ∈,得到2=+⋅y t m t ,然后利用二次函数的图象和性质求解.【详解】(1)()()()4log 41x f x kx k R =++∈的图象关于y 轴对称.∴函数()f x 是偶函数.()()f x f x ∴-=,即()()44log 41log 41x x kx kx -+-=++, 即()()()44log 411log 41x x k x kx +-+=++, 即210k +=,12k ∴=-; (2)()1242142()+=+⋅-=+⋅f x x x x x g x m m ,[]20log 3x ∈,,设2x t =,则[]13t ∈,, 2∴=+⋅y t m t 在[]13t ∈,上最小值为0, 又22()24m m y t =+-,[]13t ∈,, 当12m -≤ 即2m ≥-时,1t =时10min y m =+=, 1m ∴=-,符合,当132m -<-< 即62m -<<-时,2m t =-时,204min m y =-=, 0m ∴= 不符合, 当32m -≥ 即6m ≤-时,3t =时,930min y m =+=, 3m ∴=-,不符合,综上所述m 的值为1-.【点睛】本题主要考查偶函数的应用,对数运算以及二次函数的图象和性质的应用,还考查了分类讨论的思想和运算求解的能力,属于中档题.26.(1)见解析;(2)11{|}a x x a a-<< 【分析】(1)根据函数单调性的定义及对数函数的性质,即可证出结果;(2)根据函数()f x 的单调性,可将不等式()1f x >转化为一元一次不等式,即可得到原不等式的解集.【详解】(1)由10ax ->,01a <<得1x a<,所以()f x 的定义域为1(,)a -∞, 设1x ,2x 为区间1(,)a -∞的任意两个值,且211x x a<<,则 211ax ax ->->-,所以21110ax ax ->->,又01a <<,所以21log (1)log (1)a a ax ax -<-,即21()()f x f x <,所以()f x 是1(,)a -∞上的增函数.(2)由()1f x >得log (1)1log a a ax a ->=,又01a <<,所以01ax a <-<,所以11ax a -<-<-,所以11a x a a -<<, 所以不等式()1f x >的解集为11{|}a x x a a -<<. 【点睛】本题主要考查对数型复合函数单调性的证明及对数不等式的解法,属于中档题.。
高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析
高一数学必修1第三章《指数函数、对数函数和幂函数》测练题(满分:150分;考试时间:100分钟)一、选择题(本大题共10小题. 每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的) 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) A .23 B .32C .2D .3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg a a b b=-;③b ab a lg )lg(212= ;④1lg()log 10ab ab =.其中正确命题的个数为 ( )A .0B .1C .2D .36.已知2log 0.3a =,0.32b =,0.20.3c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2}C .{3}D .{4} 8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a <b <1<d<cB. 0<b<a <1<c<dC. 0<d<c<1<a<bD. 0<c<d <1<a<bx9.函数y= | lg (x-1)| 的图象是 ( )10.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=x ;⑤f (x )=1x .其中满足条件f 12()2x x + >12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题5分,共20分) 11.函数21()log (2)f x x =-的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.函数)x 2x (log y 221-=的单调递减区间是_________________.14.关于函数21()lg (0,R)||x f x x x x +=≠∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区 间(,0)-∞上,函数()y f x =是减函数;③函数()y f x =的最小值为lg 2;④在区间(1,)+∞上,函 数()y f x =是增函数.其中正确命题序号为_______________. 三、解答题(6小题,共80分)15.(本小题满分12分)4160.2503432162322428200549-⨯+--⨯--()()()()16. (本小题满分12分)设函数421()log 1x x f x x x -⎧<=⎨>⎩,求满足()f x =41的x 的值.C17.(本小题满分14分)已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.18.(本小题满分14分)若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值.19.(本小题满分14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈20.(本小题满分14分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(1)求b 的值;(2)判断函数()f x 的单调性;(3)若对任意的R t ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.高一数学必修1第三章《指数函数、对数函数和幂函数》测练题参考答案及解析一、选择题1.D 解析:由a 2=16且a >0得a =42.C 解析:原式a ab ba9990653121612132-=-=-=-+-+3.C 解析:根据反比例函数的性质4.A 解析:因log 89=22232log 32log 3log 23=,故原式=23 5.B 解析:ab >0,故a 、b 同号;当a 、b 同小于0时,①②不成立;当ab =1时,④不成立,故只有③对。
(压轴题)高中数学必修一第三单元《指数函数和对数函数》检测题(包含答案解析)
一、选择题1.下列各组函数中,表示同一个函数的是( )A .211x y x -=-与1y x =+B .y x =与log xa y a =(0a >且1a ≠)C.y =1y x =-D .lg y x =与21lg 2y x =2.2017年5月,世界排名第一的围棋选手柯洁0:3败给了人工智能“阿法狗”.为什么人类的顶尖智慧战胜不了电脑呢?这是因为围棋本身也是一个数学游戏,而且复杂度非常高.围棋棋盘横竖各有19条线,共有1919361⨯=个落子点.每个落子点都有落白子、落黑子和空白三种可能,因此围棋空间复杂度的上限3613M ≈.科学家们研究发现,可观测宇宙中普通物质的原子总数8010N ≈.则下列各数中与MN最接近的是( )(参考数据:lg30.48≈) A .3310B .5310C .7310D .93103.已知0.20.33log 0.2,3,0.2a b c ===,则( )A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.已知函数||()2x f x =,记131(())4a f =,37(log )2b f =,13(log 5)c f =,则a ,b,c 的大小关系为( )A .c b a >>B .b a c >>C .a b c >>D .c a b >>5.已知函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,则52f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( ) A .12-B .-1C .-5D .126.已知函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点分别为,,a b c ,则,,a b c 的大小顺序为( )A .a b c >>B .c a b >>C .b c a >>D .b a c >>7.已知函数 ()lg 2x xe ef x --=,则f (x )是( )A .非奇非偶函数,且在(0,+∞)上单调递增B .奇函数,且在R 上单调递增C .非奇非偶函数,且在(0,+∞)上单调递减D .偶函数,且在R 上单调递减8.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数2y x =,x ∈[1,2]与函数.2y x =,[]2,1x ∈--即为同族函数,下面函数解析式中也能够被用来构造“同族函数”的是( )A .y =xB .1y x x=+ C . 22x x y -=- D .y =log 0.5x 9.如图是指数函数①y =x a ;②y =x b ;③y =c x ;④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c10.已知3log 2a =,那么33log 82log 6-用a 表示是( ) A .52a - B .2a -C .23(1)a a -+D .231a a --11.函数()22x xxf x -=+的大致图象为( ) A . B .C .D .12.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .3二、填空题13.函数12()log (2)f x x =-的定义域为______.14.已知()f x 是定义在R 上的奇函数,且当0x 时,2log (1),01,()31,1,x x f x x x +<⎧=⎨--⎩则方程1()2f x =的所有实根之和为________. 15.已知函数log (3)a y ax =-在(1,2)上单调递减,则实数a 的取值范围为___________. 16.已知函数22()log ()f x ax x a =++的值域为R ,则实数a 的取值范围是_________ 17.若函数11x y a+=+()0,1a a >≠恒过点(,)P m n ,则函数()11142x xf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在[],m n 上的最小值是_____.18.函数()()212log 56f x x x =-+的单调递增区...间是__________. 19.设函数()f x =,则()()()()()()543456f f f f f f -+-+-++++=_____.20.已知奇函数()()y f x x R =∈满足:对一切x ∈R ,()()11f x f x +=-且[]0,1x ∈时,()1xf x e =-,则()2019f f =⎡⎤⎣⎦__________.三、解答题21.已知函数2()46f x ax x =-+.(1)若函数2log ()y f x =的值域为R ,求实数a 的取值范围;(2)若函数log ()a y f x =在区间(1,3)上单调递增,求实数a 的取值范围. 22.设131()log 1axf x x -=-为奇函数,a 为常数. (1)求a 的值.(2)若[2,4]x ∀∈,不等式1()3xf x x m ⎛⎫+>+ ⎪⎝⎭恒成立,求实数m 的取值范围.23.设函数()()1xxf x a k a -=--,(0a >且1a ≠)是定义域为R 的奇函数,且()312f =. (1)求k ,a 的值;(2)求函数()f x 在[)1,+∞上的值域; (3)设()()222xx g x a a m f x -=+-⋅,若()g x 在[)1,+∞上的最小值为2-,求m 的值;(4)对于(3)中函数()g x ,如果()0g x >在[)1,+∞上恒成立,求m 的取值范围. 24.(1)已知12x y +=,9xy =,且x y <,求11221122x y x y-+值;(2)求值:2(lg 2)lg5lg 20+⋅.25.已知函数()442xx f x =+;(1)若01a <<,求()()1f a f a +-的值; (2)求12320202021202120212021f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值. 26.已知函数()21log 1x f x x +=-, (1)求函数()y f x =的定义域; (2)证明:()y f x =是奇函数; (3)设()()()14h x f x f x =+,求函数()y h x =在[]3,7内的值域;【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析各个选项中每组函数的定义域和对应关系,若定义域和对应关系均相同则为同一个函数,由此判断出正确选项. 【详解】A .211x y x -=-的定义域为{}1x x ≠,1y x =+的定义域为R ,所以不是同一个函数;B .y x =与log xa y a =的定义域均为R ,且log xa y a =即为y x =,所以是同一个函数;C .y =(][),11,-∞-+∞,1y x =-的定义域为R ,所以不是同一个函数;D .lg y x =的定义域为()0,∞+,21lg 2y x =的定义域为{}0x x ≠,所以不是同一个函数, 故选:B. 【点睛】思路点睛:同一函数的判断步骤:(1)先判断函数定义域,若定义域不相同,则不是同一函数;若定义域相同,再判断对应关系;(2)若对应关系不相同,则不是同一函数;若对应关系相同,则是同一函数.2.D解析:D 【分析】设36180310M x N ==,两边取对数,结合对数的运算性质进行整理,即可求出M N . 【详解】解:设36180310M x N ==,两边取对数36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,故选:D . 【点睛】 关键点睛:本题考查了对数的运算,关键是结合方程的思想令36180310x =,两边取对数后进行化简整理.3.B解析:B 【分析】根据指数函数的单调性以及对数函数的单调性分别判断出,,a b c 的取值范围,从而可得结果 【详解】因为33log 0.2log 10<=,0.20331>=,...030002021<<=,a cb ∴<<. 故选:B . 【点睛】比较大小问题,常见思路有两个:一是利用中间变量;二是利用函数的单调性直接解答4.A解析:A 【分析】首先判断函数()f x 的性质,再比较133317,log ,log 542⎛⎫ ⎪⎝⎭的大小关系,从而利用单调性比较a ,b ,c 的大小关系. 【详解】()2xf x =是偶函数,并且当0x >时,2x y =是增函数,()133log 5log 5c f f ⎛⎫== ⎪⎝⎭,因为1310()14<<,3371log log 52<<,即1333170log log 542⎛⎫<<< ⎪⎝⎭ 又因为()y f x =在()0,∞+是增函数,所以a b c <<. 故选:A. 【点睛】关键点点睛:本题考查利用函数的单调性和奇偶性比较函数值的大小,本题的关键是判断函数()2xf x =的性质,后面的问题迎刃而解.5.A解析:A 【分析】根据分段函数解析式,依次计算255log 122f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,23log 2f ⎛⎫ ⎪⎝⎭,即可得选项.【详解】因为函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,所以2253log log 2122f ⎛⎫=<= ⎪⎝⎭,23log 2531222222f f⎡⎤⎛⎫∴=-=-=- ⎪⎢⎥⎝⎭⎣⎦. 故选:A. 【点睛】本题考查根据分段函数求解函数值,关键在于根据解析式分段求解,由内到外,准确认清自变量的所在的范围和适用的解析式.6.B解析:B 【分析】将函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点,转化为函数y x =的图象分别与函数3131(),log ,(0)2xy y x y x x ===>的图象交点的横坐标,利用数形结合法求解. 【详解】函数3131()(),()log ,()(0)2x f x x g x x x h x x x x =-=-=->的零点,即为函数y x =的图象分别与函数3131(),log ,(0)2xy y x y x x ===>的图象交点的横坐标, 如图所示:由图象可得:c a b >>, 故选:B 【点睛】本题主要考查函数的零点以及指数函数,对数函数和幂函数的图象的应用,还考查了数形结合的思想方法,属于中档题.7.A解析:A 【分析】本题考查函数的奇偶性和和单调性的概念及简单复合函数单调性的判定. 【详解】要使函数有意义,需使0,2x x e e -->即21,1,x xx e e e >∴>解得0;x >所以函数()f x 的为(0,);+∞定义域不关于原点对称,所以函数()f x 是非奇非偶函数;因为1,xxx y e y ee-==-=-是增函数,所以2x xe e y --=是增函数,又lg y x =是增函数,所以函数()lg 2x xe ef x --=在定义域(0,)+∞上单调递增.故选:A 【点睛】本题考查对数型复合函数的奇偶性和单调性,属于中档题.8.B解析:B 【分析】由题意,能够被用来构造“同族函数”的函数必须满足在其定义域上不单调,由此判断各个函数在其定义域上的单调性即可.【详解】对A :y x =在定义域R 上单调递增,不能构造“同族函数”,故A 选项不正确;对B :1y x x=+在(),1-∞-递增,在()1,0-递减,在()0,1递减,在()1,+∞递增,能构造“同族函数”,故B 选项正确; 对C :22xxy -=-在定义域上递增,不能构造“同族函数”,故C 选项不正确; 对D :0.5log y x =在定义域上递减,不能构造“同族函数”,故D 选项不正确. 故选:B. 【点睛】本题给出“同族函数”的定义,要求我们判断几个函数能否被用来构造“同族函数”,考查基本初等函数的单调性的知识点,属于基础题.9.B解析:B 【分析】根据指数函数的图象与性质可求解. 【详解】根据函数图象可知函数①y =x a ;②y =x b 为减函数,且1x =时,②y =1b <①y =1a , 所以1b a <<,根据函数图象可知函数③y =c x ;④y =d x 为增函数,且1x =时,③y =c 1>④y =d 1, 所以1c d >> 故选:B 【点睛】本题主要考查了指数函数的单调性,指数函数的图象,数形结合的思想,属于中档题.10.B解析:B 【解析】试题分析:33333333log 82log 6log 22log 233log 22(log 2log 3)-=-⨯=-+3log 222a =-=-,所以答案选B .考点:指数对数的计算11.B解析:B 【分析】根据函数为奇函数排除C ,取特殊值排除AD 得到答案. 【详解】 当()22x xx f x -=+,()()22x x xf x f x ---==-+,函数为奇函数,排除C ; 2221(2)22242f -=<=+,排除A ;3324(3)22536f -==+,4464(4)224257f -==+,故()()34f f >,排除D. 故选:B. 【点睛】 本题考查了函数图象的识别,意在考查学生的计算能力和识图能力,取特殊值排除是解题的关键.12.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.二、填空题13.【分析】根据二次根式和对数式有意义的条件得到不等式组求解函数的定义域即可得结果【详解】根据题意可得:解得所以函数的定义域为故答案为:【点睛】该题考查的是有关求函数的问题涉及到的知识点有求给定函数的定 解析:(2,3]【分析】根据二次根式和对数式有意义的条件,得到不等式组求解函数的定义域即可得结果. 【详解】根据题意可得:1220log (2)0x x ->⎧⎪⎨-≥⎪⎩,解得23x <≤,所以函数()f x =(2,3],故答案为:(2,3]. 【点睛】该题考查的是有关求函数的问题,涉及到的知识点有求给定函数的定义域,在解题的过程中,注意二次根式和对数式需要满足的条件即可得结果.14.【分析】画出分段函数的图像根据图像结合解析式进行求解【详解】根据分段函数的解析式以及函数为奇函数作图如下:由图容易知因为在区间上关于对称且在区间上关于对称故其与直线的所有交点的横坐标之和为0故所有根解析:21-【分析】画出分段函数的图像,根据图像,结合解析式,进行求解. 【详解】根据分段函数的解析式,以及函数为奇函数,作图如下:由图容易知,因为31y x =--在区间[)1,+∞上,关于3x =对称, 且31y x =---+在区间(],1-∞上,关于3x =-对称, 故其与直线12y =的所有交点的横坐标之和为0. 故1()2f x =所有根之和,即为当()0,1x ∈时的根, 此时()21log 12x +=,解得21x =. 21. 【点睛】本题考查函数图像的交点,涉及函数图像的绘制,函数奇偶性的应用,属函数综合题.15.【分析】由复合函数的单调性:同增异减由于递减因此必须递增即有还要考虑函数定义域即在时恒成立【详解】∵∴是减函数又在上是减函数所以且∴故答案为:【点睛】本题考查对数型复合函数的单调性掌握复合函数单调性 解析:3(1,]2【分析】由复合函数的单调性:同增异减,由于3u ax =-递减,因此log a y u =必须递增,即有1a >,还要考虑函数定义域,即在(1,2)x ∈时,30ax ->恒成立.【详解】∵0a >,∴3u ax =-是减函数,又log (3)a y ax =-在(1,2)上是减函数,所以1a >, 且320a -≥,∴312a <≤. 故答案为:3(1,]2.【点睛】本题考查对数型复合函数的单调性,掌握复合函数单调性是解题关键,同时要考虑函数的定义域.16.【分析】设值域为根据题意对分类讨论结合根的判别式即可求解【详解】设值域为函数的值域为当时值域为满足题意;当时须解得综上实数a 的取值范围是故答案为:【点睛】本题考查对数函数的性质复合函数的性质二次函数 解析:10,2⎡⎤⎢⎥⎣⎦【分析】设2()u x ax x a =++值域为A ,根据题意(0,)A +∞⊆,对a 分类讨论,结合根的判别式,即可求解. 【详解】设2()u x ax x a =++值域为A ,函数22()log ()f x ax x a =++的值域为,(0,)R A +∞⊆,当0a =时,2()log f x x =值域为R ,满足题意;当0a ≠时,须20140a a >⎧⎨∆=-≥⎩,解得102a <≤, 综上,实数a 的取值范围是10,2⎡⎤⎢⎥⎣⎦.故答案为:10,2⎡⎤⎢⎥⎣⎦.【点睛】本题考查对数函数的性质,复合函数的性质,二次函数的取值和根的判别式的关系,属于中档题.17.【分析】先利用指数型函数恒过定点问题求定点得到换元令利用二次函数的单调性即可求解【详解】函数恒过点则区间变为由函数令则利用二次函数的单调性当时则函数在上的最小值是故答案为:【点睛】关键点睛:把指数型解析:34【分析】先利用指数型函数恒过定点问题求定点,得到1,2m n =-=,换元,令11,224xt t ⎛⎫=≤≤ ⎪⎝⎭,利用二次函数的单调性,即可求解. 【详解】 函数11x y a+=+()0,1a a >≠恒过点()1,2-,则1,2m n =-=,区间[],x m n ∈变为[]1,2x ∈-,由函数()11142x xf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭, 令11,224xt t ⎛⎫=≤≤ ⎪⎝⎭, 则()2213124f t t t t ⎛⎫=-+=-+ ⎪⎝⎭, 利用二次函数的单调性,当12t =时,()min 34f t =,则函数()11142xxf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在[],m n 上的最小值是34.故答案为:34. 【点睛】关键点睛:把指数型复合函数求最值问题转化为二次函数求最值问题是解决本题的关键.18.【分析】求出函数的定义域利用复合函数法可求得函数的单调递增区间【详解】对于函数有解得或所以函数的定义域为内层函数在区间上单调递减在区间上单调递增外层函数为减函数所以函数的单调递增区间为故答案为:【点 解析:(),2-∞【分析】求出函数()f x 的定义域,利用复合函数法可求得函数()()212log 56f x x x =-+的单调递增区间. 【详解】对于函数()()212log 56f x x x =-+,有2560x x -+>,解得2x <或3x >.所以,函数()()212log 56f x x x =-+的定义域为()(),23,-∞+∞,内层函数256u x x =-+在区间(),2-∞上单调递减,在区间()3,+∞上单调递增, 外层函数12log y u =为减函数,所以,函数()f x 的单调递增区间为(),2-∞.故答案为:(),2-∞. 【点睛】复合函数()y f g x ⎡⎤=⎣⎦的单调性规律是“同则增,异则减”,即()y f u =与()u g x =.若具有相同的单调性,则()y f g x ⎡⎤=⎣⎦为增函数,若具有不同的单调性,则()y f g x ⎡⎤=⎣⎦必为减函数.19.【分析】根据指数的运算律计算出的值由此可计算出所求代数式的值【详解】因此故答案为【点睛】本题考查指数幂的化简计算解题的关键在于观察代数式结构并计算出为定值考查计算能力属于中等题解析:【分析】根据指数的运算律计算出()()1f x f x +-=的值,由此可计算出所求代数式的值. 【详解】()f x =()1122xx f x ∴-====, ()()12x x x f x f x ∴+-=+===,因此,()()()()()()5434566f f f f f f -+-+-++++==.故答案为 【点睛】本题考查指数幂的化简计算,解题的关键在于观察代数式结构并计算出()()1f x f x +-为定值,考查计算能力,属于中等题.20.【分析】根据题意求得的周期性则可求再结合函数解析式求得函数值即可【详解】由题可知:因为对一切故关于对称;又因为是奇函数则可得故可得故函数是周期为的函数则又当故则故答案为:【点睛】本题考查利用函数周期 解析:31e e --【分析】根据题意,求得()f x 的周期性,则()2019f 可求,再结合函数解析式,求得函数值即可. 【详解】由题可知:因为对一切x R ∈,()()11f x f x +=-, 故()f x 关于1x =对称; 又因为()f x 是奇函数,则可得()()()()()21111f x f x f x f x f x +=++=--=-=-, 故可得()()()()4222f x f x f x f x +=++=-+=, 故函数()f x 是周期为4的函数. 则()()()201911f f f =-=-,又当[]0,1x ∈,()1x f x e =-,故()()201911f f e =-=-,则()()()()()320191131eff f e f e f e e-=-=--=--=-.故答案为:31e e --. 【点睛】本题考查利用函数周期性求函数值,属综合中档题;难点在于求得函数的周期.三、解答题21.(1)20,3⎡⎤⎢⎥⎣⎦;(2)[)2,+∞.【分析】(1)根据条件分析出2()46f x ax x =-+的值域包含()0,∞+,由此根据a 与0的关系分类讨论,求解出结果;(2)根据1,01a a ><<两种情况结合复合函数单调性的判断方法进行分类讨论,然后求解出a 的取值范围. 【详解】(1)因为()22log 46y ax x =-+的值域为R ,所以246y ax x =-+的值域包含()0,∞+,当0a =时,246y ax x =-+即46y x =-+,此时46y x =-+的值域为R ,满足; 当0a ≠时,则有016240a a >⎧⎨∆=-≥⎩,所以203a <≤,综上可知:20,3a ⎡⎤∈⎢⎥⎣⎦;(2)当1a >时,log a y x =在()0+∞,上单调递增,所以2()46f x ax x =-+在()1,3上递增,所以()2110a f ⎧≤⎪⎨⎪>⎩,所以2a ≥,当01a <<时,log a y x =在()0+∞,上单调递减,所以2()46f x ax x =-+在()1,3上递减,所以()2330a f ⎧≥⎪⎨⎪>⎩,此时a 无解,综上可知:[)2,a ∈+∞. 【点睛】思路点睛:形如()()()2lg 0f x ax bx ca =++≠的函数,若函数的定义域为R ,则有0a >⎧⎨∆<⎩; 若函数的值域为R ,则有0a >⎧⎨∆≥⎩. 22.(1)1a =-;(2)89m <. 【分析】(1)由奇函数的性质()()0f x f x ,代入运算后可得1a =±,代入验证即可得解;(2)转化条件为131log 113xx x m x +<⎛⎫- ⎝+⎪⎭-对于[2,4]x ∀∈恒成立,令()[]131log ,2,4113xx g x x x x ⎛⎫-+=+⎝⎭∈- ⎪,结合函数的单调性求得()min g x 即可得解.【详解】(1)因为131()log 1axf x x -=-为奇函数, 则1113331111()()log log log 1111ax ax ax ax f x f x x x x x +-⎡+-⎤⎛⎫⎛⎫-+=+= ⎪⎪⎢⎥------⎝⎭⎝⎭⎣⎦ ()21231log 01ax x-==-, 则()22111ax x -=-,所以21a =即1a =±, 当1a =时,()11331()log log 11xf x x -==--,不合题意; 当1a =-时,131()log 1x f x x +=-,由101xx +>-可得1x >或1x <-,满足题意; 故1a =-;(2)由1()3xf x x m ⎛⎫+>+ ⎪⎝⎭可得131log 113xx x m x ⎛⎫>+ +⎪⎭+⎝-,则131log 113xx x m x +<⎛⎫- ⎝+⎪⎭-对于[2,4]x ∀∈恒成立,令()[]131log ,2,4113xx g x x x x ⎛⎫-+=+⎝⎭∈- ⎪,因为函数12111x y x x +==+--在[2,4]上单调递减,所以函数131log 1xy x +=-在[2,4]上单调递增, 所以()g x 在[2,4]上单调递增,所以()()1min 32log 182993g x g -===+, 所以89m <. 【点睛】关键点点睛:解决本题的关键是将恒成立问题转化为求函数的最值. 23.(1)2a =,2k =;(2)3,2⎡⎫+∞⎪⎢⎣⎭;(3)2m =;(4)17,12⎛⎫-∞ ⎪⎝⎭. 【分析】(1)由奇函数性质求得k ,由3(1)2f =可求得a ; (2)利用函数的单调性得值域;(3)换元,设22x x t -=-,则3,2t ⎡⎫∈+∞⎪⎢⎣⎭,()g x 转化为()222k t t mt =-+,3,2t ⎡⎫∈+∞⎪⎢⎣⎭,由二次函数的性质求得最小值,再由最小值为2-可得m , (4)在(3)基础上,由()k t 的最小值大于0可得m 的取值范围.【详解】解:(1)∵函数()()1xxf x a k a -=--,(0a >且1a ≠)是定义域为R 的奇函数,∴()00f =,即()110k --=,2k =, ∵()312f =.∴132a a -=,2a =, ∴2a =,2k =, (2)1()2222xxx x f x -=-=-是增函数,∴1≥x 时,13()222f x ≥-=,即值域中3,2⎡⎫+∞⎪⎢⎣⎭; (3)()()2222222xx x x g x m --=+--,设22xxt -=-,[)1,x ∈+∞,3,2t ⎡⎫∈+∞⎪⎢⎣⎭, ∴()222k t t mt =-+,3,2t ⎡⎫∈+∞⎪⎢⎣⎭,∵若()g x 在[)1,+∞上的最小值为2-,∴()222k t t mt =-+,3,2t ⎡⎫∈+∞⎪⎢⎣⎭的最小值为2-,∴23222m m ⎧≥⎪⎨⎪-+=-⎩或3293224m m ⎧<⎪⎪⎨⎪-+=-⎪⎩ 即2m =,或2512m =(舍去), 故2m =;(4)()222k t t mt =-+,3,2t ⎡⎫∈+∞⎪⎢⎣⎭, ∵()0g x >在[)1,+∞上恒成立, ∴()0k t >在3,2t ⎡⎫∈+∞⎪⎢⎣⎭上恒成立,∴23220m m ⎧≥⎪⎨⎪-+>⎩或3293204m m ⎧<⎪⎪⎨⎪-+>⎪⎩, 解不等式得出x ∈∅或1712m <, ∴m 的取值范围为17,12⎛⎫-∞ ⎪⎝⎭.【点睛】方法点睛:本题考查指数函数的性质,考查奇偶性,由奇偶性同函数解析式,由单调性是函数的值域,在求函数()g x 的最值问题,不等式恒成立问题时,解题方法是换元法,即设22x x t -=-,把指数函数转化为二次函数,然后利用二次函数性质求解.24.(1)2)1. 【分析】(1)求出x y -的值,再化简11221122x y x y-+即得解;(2)利用对数的运算法则化简求解. 【详解】(1)因为222()()41249108x y x y xy -=+-=-⨯=,又x y <,所以x y -=-所以1111222221122()3x y x yx yx y--====--+.(2)原式22(lg2)lg5(1lg2)(lg2)lg5lg2lg5=+⋅+=+⋅+lg2(lg2lg5)lg5lg2lg51=++=+=.【点睛】关键点点睛:解答指数对数运算题的关键是通过观察式子的特点,再熟练利用指数对数的运算法则和性质求解.25.(1)1;(2)1010.【分析】(1)根据4()42xxf x=+的表达式,求出()(),1f a f a-的表达式,再进行分式通分运算,可得()()11f a f a+-=.(2)设12320202021202120212021S f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再把S的表达式运用加法交换律改写成20201202120212021202321S f f f f⎛⎫⎛⎫⎛⎫⎛⎫=++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,把两式相加利用()(1)1f x f x+-=求出S的值.【详解】(1)4()42xxf x=+,x∈R.∴()()1f a f a+-1144444442424224a a a aa a aa--=+=+++++4214224aa a=+=++,(2)设12320202021202120212021S f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则20201202120212021202321S f f f f⎛⎫⎛⎫⎛⎫⎛⎫=++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相加得:12[][][]92022020220120201202120212022120211021S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭由(1)得:202022011 09211,1,,221202120212021202120220101f f f f f f⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+=+=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,∴220201010S S=⇒=.【点睛】本题考查指数幂运算,分式运算,利用函数的性质进行式子求值,考查运算求解能力. 26.(1)见解析;(2)见解析;(3)[]4,5 【分析】 (1)由不等式101x x +>-即可求出()f x 的定义域; (2)证明()()f x f x -=-可得()f x 为奇函数;(3)先求出()f x 在[]3,7上的值域,令()t f x =,求()14h t t t=+的值域. 【详解】 (1)由101x x +>-得:1x >或1x <-, ()f x ∴的定义域为()(),11,-∞-+∞;(2)()()222111log log log 111x x x f x f x x x x -+-+-===-=---+-, ()f x ∴为奇函数;(3)()22log 11f x x ⎛⎫=+ ⎪-⎝⎭在[]3,7上单调递减,令()t f x =,则24log ,13t ⎡⎤∈⎢⎥⎣⎦, 而()14h t t t=+在10,2⎛⎤ ⎥⎝⎦单调递减,在1,12⎡⎤⎢⎥⎣⎦上单调递增,又()2411log 15,4342h h h h ⎛⎫⎛⎫⎛⎫<=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴函数()h x 在[]3,7内的值域为[]4,5.【点睛】本题主要考查了对数型函数的定义域,奇偶性,考查了复合函数的单调性,值域求解,属于中档题.。
(必考题)高中数学必修一第三单元《指数函数和对数函数》测试题(含答案解析)
一、选择题1.下列各组函数中,表示同一个函数的是( )A .211x y x -=-与1y x =+B .y x =与log xa y a =(0a >且1a ≠)C .21y x =-与1y x =-D .lg y x =与21lg 2y x =2.函数12xy ⎛⎫= ⎪⎝⎭的大致图象是( ). A . B .C .D .3.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微:数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,页常用函数的解析式来琢磨函数图象的特征,如函数()22xy xx R =-∈的大致图象是( )A .B .C .D .4.已知函数()()3,<1log ,1a a x a x f x x x ⎧--=⎨≥⎩的值域..是R ,那么实数a 的取值范围是( ) A .31,2⎛⎤ ⎥⎝⎦B .()1,+∞C .()()0,11,3D .3,32⎡⎫⎪⎢⎣⎭5.已知函数22()lg[(1)(1)1]f x a x a x =-+++的值域为R .则实数a 的取值范围是( ) A .5[1,]3B .5(1,]3C .(]5,1(,)3-∞-⋃+∞D .()5,1[1,)3-∞-6.已知:23log 2a =,42log 3b =,232c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .c b a <<D .c a b <<7.函数()212()log 4f x x =-的单调递增区间为( ). A .(0,+∞)B .(-,0)C .(2,+∞)D .(-,-2)8.已知函数()f x 是定义在R 上的单调递增的函数,且满足对任意的实数x 都有[()3]4x f f x -=,则()()f x f x +-的最小值等于( ).A .2B .4C .8D .129.函数1()1x f x a +=-恒过定点( )A .(1,1)B .(1,1)-C .(1,0)-D .(1,1)--10.如图是指数函数①y =x a ;②y =x b ;③y =c x ;④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c11.函数2()ln(43)f x x x =+-的单调递减区间是( )A .32⎛⎤-∞ ⎥⎝⎦,B .3,42⎡⎫⎪⎢⎣⎭C .3,2⎡⎫+∞⎪⎢⎣⎭D .31,2⎛⎤- ⎥⎝⎦12.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .3二、填空题13.下列命题中所有正确的序号是_____________.①函数1()3x f x a -=+(0a >且1)a ≠的图像一定过定点(1,4)P ; ②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4); ③若1log 12a>,则a 的取值范围是112⎛⎫⎪⎝⎭,; ④若22ln ln()x y x y -->-- (0x >,0y <),则0x y +<.14.函数()log 31a y x =+-.(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny ++=上(其中m ,0n >),则12m n+的最小值等于__________. 15.设函数2()ln(1)f x x x =+,若()23(21)0f a f a +-<,则实数a 的取值范围为_____.16.函数()()cos1log sin f x x =的单调递增区间是____________. 17.函数()()212log 56f x x x =-+的单调递增区...间是__________. 18.已知奇函数()()y f x x R =∈满足:对一切x ∈R ,()()11f x f x +=-且[]0,1x ∈时,()1xf x e =-,则()2019f f =⎡⎤⎣⎦__________.19.设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩,则满足()2f x ≤的x 的取值范围是_______________.20.如果()231log 2log 9log 64x x x f x =-+-,则使()0f x <的x 的取值范围是______.三、解答题21.已知函数()log (1)log (1)a a f x x x =+--,(0a >且1a ≠) (1)求()f x 的定义域;(2)判断()f x 的奇偶性,并予以证明; (3)求使()0f x >的x 取值范围. 22.已知函数122()log 2xf x x-=+. (1)求函数()f x 的定义域,并判断其奇偶性;(2)判断()f x 在其定义域上的单调性,并用单调性定义证明. 23.已知函数()421()x x f x a a R =-+⋅-∈. (1)当1a =时,求()f x 的值域; (2)若()f x 在区间[]1,0-的最大值为14-,求实数a 的值. 24.已知函数35()log 5xf x x-=+. (1)求函数()f x 的定义域;(2)判断函数()f x 奇偶性,并证明你的结论.25.已知集合(){}2log 33A x x =+≤,{}213B x m x m =-<≤+. (1)若2m =-,求AB ;(2)若A B A ⋃=,求实数m 的取值范围.26.已知函数()f x 是定义在R 上的奇函数,当0x 时,()121xaf x =++. (1)求实数a 的值及()f x 的解析式; (2)求方程4|(1)|5f x -=的解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析各个选项中每组函数的定义域和对应关系,若定义域和对应关系均相同则为同一个函数,由此判断出正确选项. 【详解】A .211x y x -=-的定义域为{}1x x ≠,1y x =+的定义域为R ,所以不是同一个函数;B .y x =与log xa y a =的定义域均为R ,且log xa y a =即为y x =,所以是同一个函数; C.y =(][),11,-∞-+∞,1y x =-的定义域为R ,所以不是同一个函数;D .lg y x =的定义域为()0,∞+,21lg 2y x =的定义域为{}0x x ≠,所以不是同一个函数, 故选:B. 【点睛】思路点睛:同一函数的判断步骤:(1)先判断函数定义域,若定义域不相同,则不是同一函数;若定义域相同,再判断对应关系;(2)若对应关系不相同,则不是同一函数;若对应关系相同,则是同一函数.2.A解析:A 【分析】去绝对值符号后根据指数函数的图象与性质判断. 【详解】由函数解析式可得:1,022,0xx x y x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩可得值域为:01y <≤,由指数函数的性质知:在(),0-∞上单调递增;在()0,∞+上单调递减. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.A解析:A 【分析】分析函数()()22xf x xx R =-∈的奇偶性,结合()01f =可得出合适的选项.【详解】令()22=-xf x x ,该函数的定义域为R ,()()()2222xxf x x x f x --=--=-=,函数()22=-xf x x 为偶函数,排除B 、D 选项;又()010f =>,排除C 选项. 故选:A. 【点睛】函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)从函数的特征点,排除不合要求的图象.4.A解析:A 【分析】当0<a <1时,当1≥x 时,log 0a y x =≤,则当1x <时,()3y a x a =--的值域必须要包含()0,+∞,,当1a >时,当1≥x 时,[)log 0a y x =∈+∞,,则当1x <时,()3y a x a =--的值域必须要包含()0-∞,,从而可得答案. 【详解】由题意,()f x 的值域为R ,当0<a <1时,当1≥x 时,log 0a y x =≤,所以当1x <时,()3y a x a =--的值域必须要包含()0,+∞,当1x <时,()3y a x a =--单调递增,()332y a x a a =--<- 所以不满足()f x 的值域为R .当1a >时,当1≥x 时,[)log 0a y x =∈+∞,, 所以当1x <时,()3y a x a =--的值域必须要包含()0-∞,, 若3a =时,当1x <时,3y a =-=-,不满足()f x 的值域为R .若3a >时,当1x <时,()3y a x a =--单调递减,()332y a x a a =-->- 所以不满足()f x 的值域为R .若13a <<时,当1x <时,()3y a x a =--单调递增,()332y a x a a =--<- 要使得()f x 的值域为R ,则320a -≥,即32a ≤ 所以满足条件的a 的取值范围是:312a <≤, 故选:A .【点睛】关键点睛:本题考查根据函数的值域求参数的范围,解答本题的关键是当0<a <1时,当1≥x 时,log 0a y x =≤,则当1x <时,()3y a x a =--的值域必须要包含()0,+∞,,当1a >时,当1≥x 时,[)log 0a y x =∈+∞,,则当1x <时,()3y a x a =--的值域必须要包含()0-∞,,属于中档题. 5.A解析:A 【分析】当函数的值域为R 时,命题等价于函数()()22111y a x a x =-+++的值域必须包含区间()0+∞,得解 【详解】22()lg[(1)(1)1]f x a x a x =-+++的值域为R令()()22111y a x a x =-+++,则()()22111y a x a x =-+++的值域必须包含区间()0+∞,当210a -=时,则1a =± 当1a =时,21y x =+符合题意; 当1a =-时,1y =不符合题意;当1a ≠±时,()()222101410a a a ⎧->⎪⎨∆=+--≥⎪⎩,解得513a <≤ 513a ∴≤≤,即实数a 的取值范围是5[1,]3故选:A 【点睛】转化命题的等价命题是解题关键.6.A解析:A 【分析】由换底公式和对数函数的性质可得112b a <<<,再由指数函数的性质可得102c <<,即可得解. 【详解】23ln3ln12log =02ln 2ln 2a ==>,4212ln ln 2ln1323log =03ln 4ln 2ln 2b ====<, a b ∴>22223231log log 410,239222a c -⎛⎫⎛⎫<===< ⎪ ⎪⎭=⎝>⎭=⎝,b c a ∴<<, 故选:A 【点睛】方法点睛:本题考查了对数式、指数式的大小比较,比较大小的常用方法为同底的对数式和指数式利用其单调性进行比较,也可以借助于中间值0和1进行比较,考查了运算求解能力与逻辑推理能力,属于常考题.7.D解析:D 【分析】求出函数的定义域,根据对数型复合函数的单调性可得结果. 【详解】函数()212()log 4f x x =-的定义域为()(),22,-∞-+∞,因为函数()f x 是由12log y u =和24u x =-复合而成,而12log y u =在定义域内单调递减,24u x =-在(),2-∞-内单调递减,所以函数()212()log 4f x x =-的单调递增区间为(),2-∞-, 故选:D. 【点睛】易错点点睛:对于对数型复合函数务必注意函数的定义域.8.B解析:B 【分析】根据()3x f x -为定值,可假设()3xf x m =+,然后计算()()f x f x +-,并计算m 的值,然后使用基本不等式,可得结果. 【详解】由题可知:()3xf x -为定值故设()3xf x m -=,即()3xf x m =+又[()3]4xf f x -=,所以()341mf m m m =+=⇒= 则()31xf x =+()()3131x x f x f x -+-=+++则1()()32243x x f x f x +-=++≥= 当且仅当133xx =时,取等号 所以()()f x f x +-的最小值为:4故选:B 【点睛】本题考查基本不等式的应用,还考查镶嵌函数的应用,难点在于()3xf x -为定值,审清题意,细心计算,属中档题.9.C解析:C 【分析】根据指数函数性质求定点. 【详解】因为01a =,所以()011f a -=-=0,因此过定点()1,0-,选C.【点睛】本题考查指数函数性质以及定点问题,考查基本分析求解能力,属于基础题.10.B解析:B 【分析】根据指数函数的图象与性质可求解. 【详解】根据函数图象可知函数①y =x a ;②y =x b 为减函数,且1x =时,②y =1b <①y =1a , 所以1b a <<,根据函数图象可知函数③y =c x ;④y =d x 为增函数,且1x =时,③y =c 1>④y =d 1, 所以1c d >> 故选:B 【点睛】本题主要考查了指数函数的单调性,指数函数的图象,数形结合的思想,属于中档题.11.B解析:B 【分析】先求函数的定义域,再利用复合函数的单调性同增异减,即可求解. 【详解】由2430x x +->得2340x x --<,解得:14x -<<,2()ln(43)f x x x =+-由ln y t =和234t x x =-++复合而成,ln y t =在定义域内单调递增,234t x x =-++对称轴为32x =,开口向下, 所以 234t x x =-++在31,2⎛⎫- ⎪⎝⎭ 单调递增,在3,42⎡⎫⎪⎢⎣⎭单调递减, 所以2()ln(43)f x x x =+-的单调减区间为3,42⎡⎫⎪⎢⎣⎭,故选:B 【点睛】本题主要考查了利用同增异减求复合函数的单调区间,注意先求定义域,属于中档题12.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.二、填空题13.①③④【分析】由指数函数的图象函数的定义域对数函数的性质判断各命题①令代入判断②利用函数的定义求出的定义域判断③由对数函数的单调性判断④引入新函数由它的单调性判断【详解】①令则即图象过点①正确;②则解析:①③④ 【分析】由指数函数的图象,函数的定义域,对数函数的性质判断各命题.①,令1x =代入判断,②利用函数的定义求出()f x 的定义域判断,③由对数函数的单调性判断,④引入新函数1()ln 2ln 2xxg x x x -⎛⎫=-=- ⎪⎝⎭,由它的单调性判断.【详解】①令1x =,则(1)4f =,即()f x 图象过点(1,4),①正确; ②13x <<,则012x <-<,∴()f x 的定义域是(0,2),②错;③1log 1log 2a a a ,∴0112a a <<⎧⎪⎨>⎪⎩,∴112a <<.③正确;④由22ln ln()x y x y -->-- (0x >,0y <),得ln 2ln()2x y x y --<--, 又1()ln 2ln 2xx g x x x -⎛⎫=-=- ⎪⎝⎭是(0,)+∞上的增函数, ∴由ln 2ln()2x y x y --<--,得x y <-,即0x y +<,④正确. 故答案为:①③④【点睛】关键点点睛:本题考查指数函数的图象,对数函数的单调性,函数的定义域问题,定点问题:(1)指数函数(0x y a a =>且1)a ≠的图象恒过定点(0,1);(2)对数函数log (0a y x a =>且1)a ≠的图象恒过定点(1,0),解题时注意整体思想的应用.14.8【分析】根据函数平移法则求出点得再结合基本不等式即可求解【详解】由题可知恒过定点又点在直线上故当且仅当时取到等号故的最小值等于8故答案为:8【点睛】本题考查函数平移法则的使用基本不等式中1的妙用属 解析:8【分析】根据函数平移法则求出点A ()2,1--,得21m n +=,再结合基本不等式即可求解【详解】由题可知,()log 31a y x =+-恒过定点()2,1--,又点A 在直线 10mx ny ++=上,故21m n +=,()121242448n m m n m n m n m n ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当122n m ==时取到等号,故12m n+的最小值等于8 故答案为:8【点睛】本题考查函数平移法则的使用,基本不等式中“1”的妙用,属于中档题15.【分析】根据已知可得为奇函数且在上单调递增不等式化为转化为关于自变量的不等式即可求解【详解】的定义域为是奇函数设为增函数在为增函数在为增函数在处连续的所以在上单调递增化为等价于即所以实数的取值范围为 解析:1(1,)3- 【分析】根据已知可得()f x 为奇函数且在R 上单调递增,不等式化为()23(12)f a f a <-,转化为关于自变量的不等式,即可求解.【详解】()f x 的定义域为R ,()()))ln10f x f x x x +-=+==,()f x ∴是奇函数,设,[0,)()x u x x =∈+∞为增函数,()f x 在[0,)+∞为增函数,()f x 在(,0)-∞为增函数,()f x 在0x =处连续的,所以()f x 在R 上单调递增,()23(21)0f a f a +-<,化为()23(12)f a f a <-,等价于2312a a <-,即213210,13a a a +-<-<<, 所以实数a 的取值范围为1(1,)3-.故答案为: 1(1,)3-【点睛】本题考查利用函数的单调性和奇偶性解不等式,熟练掌握函数的性质是解题的关键,属于中档题. 16.【分析】根据对数型复合函数单调性列不等式再根据正弦函数性质得结果【详解】单调递增区间为单调递减区间且所以故答案为:【点睛】本题考查对数型复合函数单调性以及正弦函数性质考查基本分析求解能力属基础题 解析:[2,2),()2k k k Z ππππ++∈ 【分析】根据对数型复合函数单调性列不等式,再根据正弦函数性质得结果.【详解】()()cos1cos1(0,1)log sin f x x ∈∴=单调递增区间为sin y x =单调递减区间且sin 0x >, 所以22,()2k x k k Z ππππ+≤<+∈, 故答案为:[2,2),()2k k k Z ππππ++∈【点睛】 本题考查对数型复合函数单调性以及正弦函数性质,考查基本分析求解能力,属基础题. 17.【分析】求出函数的定义域利用复合函数法可求得函数的单调递增区间【详解】对于函数有解得或所以函数的定义域为内层函数在区间上单调递减在区间上单调递增外层函数为减函数所以函数的单调递增区间为故答案为:【点 解析:(),2-∞【分析】求出函数()f x 的定义域,利用复合函数法可求得函数()()212log 56f x x x =-+的单调递增区间.【详解】对于函数()()212log 56f x x x =-+,有2560x x -+>,解得2x <或3x >. 所以,函数()()212log 56f x x x =-+的定义域为()(),23,-∞+∞,内层函数256u x x =-+在区间(),2-∞上单调递减,在区间()3,+∞上单调递增, 外层函数12log y u =为减函数,所以,函数()f x 的单调递增区间为(),2-∞. 故答案为:(),2-∞.【点睛】复合函数()y f g x ⎡⎤=⎣⎦的单调性规律是“同则增,异则减”,即()y f u =与()u g x =.若具有相同的单调性,则()y f g x ⎡⎤=⎣⎦为增函数,若具有不同的单调性,则()y f g x ⎡⎤=⎣⎦必为减函数.18.【分析】根据题意求得的周期性则可求再结合函数解析式求得函数值即可【详解】由题可知:因为对一切故关于对称;又因为是奇函数则可得故可得故函数是周期为的函数则又当故则故答案为:【点睛】本题考查利用函数周期 解析:31e e --【分析】根据题意,求得()f x 的周期性,则()2019f 可求,再结合函数解析式,求得函数值即可.【详解】由题可知:因为对一切x R ∈,()()11f x f x +=-,故()f x 关于1x =对称;又因为()f x 是奇函数,则可得()()()()()21111f x f x f x f x f x +=++=--=-=-,故可得()()()()4222f x f x f x f x +=++=-+=,故函数()f x 是周期为4的函数.则()()()201911f f f =-=-,又当[]0,1x ∈,()1x f x e =-,故()()201911f f e =-=-, 则()()()()()320191131e f f f e f e f e e -=-=--=--=-.故答案为:31e e --.【点睛】本题考查利用函数周期性求函数值,属综合中档题;难点在于求得函数的周期. 19.【分析】根据分段函数分段解不等式最后求并集【详解】当时因为解得:∴当时解得:所以综上原不等式的解集为故答案为:【点睛】本题主要考查了解分段函数不等式涉及指数与对数运算属于基础题解析:[0,)+∞【分析】根据分段函数,分段解不等式,最后求并集.【详解】当1x ≤时,1()2x f x -=,因为11x -≤,解得:0x ≥,∴01x ≤≤ ,当1x >时,2()1log 2f x x =-≤,2log 1x ≥-,解得:12x ≥,所以1x >, 综上,原不等式的解集为[)0,+∞.故答案为:[)0,+∞.【点睛】 本题主要考查了解分段函数不等式,涉及指数与对数运算,属于基础题.20.【分析】可结合对数化简式将化简为再解对数不等式即可【详解】由由得即当时故;当时无解综上所述故答案为:【点睛】本题考查对数化简公式的应用分类讨论求解对数型不等式属于中档题 解析:81,3⎛⎫ ⎪⎝⎭【分析】可结合对数化简式将()f x 化简为()1log 2log 3log 4x x x f x =-+-,再解对数不等式即可【详解】由()2323231log 2log 9log 641log 2log 3log 4x x x x x x f x =-+-=-+- 31log 2log 3log 41log 8x x x x =-+-=+,由()0f x <得81log 03x -<, 即8log log 3x x x >, 当1x >时,83x <,故81,3x ⎛⎫∈ ⎪⎝⎭;当()0,1x ∈时,83x >,无解 综上所述,81,3x ⎛⎫∈ ⎪⎝⎭ 故答案为:81,3⎛⎫ ⎪⎝⎭【点睛】本题考查对数化简公式的应用,分类讨论求解对数型不等式,属于中档题三、解答题21.(1){|11}x x -<<;(2)函数()f x 是奇函数,证明见解析;(3)当1a >时,01x <<;当01a <<时,10x -<<【分析】(1)根据对数的真数为正数列式可解得结果;(2)函数()f x 是奇函数,根据奇函数的定义证明即可;(3)不等式化为log (1)log (1)a a x x +>-后,分类讨论底数a ,根据对数函数的单调性可解得结果.【详解】(1)要使函数数()f x 有意义,则必有1010x x +>⎧⎨->⎩,解得11x -<<, 所以函数()f x 的定义域是{|11}x x -<< .(2)函数()f x 是奇函数,证明如下:∵(1,1)x ∈-,(1,1)x -∈-,()log (1)log (1)a a f x x x -=--+[]log (1)log (1)a a x x =-+--()f x =-,∴函数()f x 是奇函数(3)使()0f x >,即log (1)log (1)a a x x +>-当1a >时,有111010x x x x +>-⎧⎪->⎨⎪+>⎩,解得01x <<,当01a <<时,有111010x x x x +<-⎧⎪->⎨⎪+>⎩,解得10x -<<.综上所述:当1a >时,01x <<;当01a <<时,10x -<<.【点睛】方法点睛:已知函数解析式,求函数定义域的方法:有分式时:分母不为0;有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0;有指数时:当指数为0时,底数一定不能为0;有根号与分式结合时,根号开偶次方在分母上时:根号下大于0;有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1.22.(1)定义域为(2,2)-,奇函数(2)函数()f x 在(2,2)-上为增函数,证明见解析【分析】(1)根据真数大于0可得定义域,根据奇函数的定义可得函数为奇函数;(2)设1222x x -<<<,根据对数函数的单调性可得12()()f x f x <,再根据定义可证函数()f x 在(2,2)-上为增函数.【详解】(1)由函数有意义得202x x->+,解得22x -<<, 所以函数的定义域为(2,2)-, 因为1112222()log log ()22x x f x f x x x -+-⎛⎫-===- ⎪-+⎝⎭, 所以函数为奇函数.(2)因为124()log 12f x x ⎛⎫=-+⎪+⎝⎭,所以函数()f x 在(2,2)-上为增函数, 证明:设1222x x -<<<,则120224x x <+<+<,则1244122x x >>++,则124411022x x -+>-+>++, 因为1012<<,所以12()()f x f x <,所以函数()f x 在(2,2)-上为增函数, 【点睛】思路点睛:判断函数的奇偶性的思路:①求出定义域,并判断其是否关于原点对称;②若定义域不关于原点对称,则函数为非奇非偶函数,若定义域关于原点对称,再判断()f x -与()f x 的关系,若()()f x f x -=-,则函数为奇函数;若()()f x f x -=,则函数为偶函数.23.(1)3,4⎛⎤-∞- ⎥⎝⎦;(2)a =【分析】(1)令()20,xt =∈+∞,可得21y t t =-+-,利用二次函数的性质可求出; (2)令12,12x t ⎡⎤=∈⎢⎥⎣⎦,可得21y t at =-+-,讨论对称轴2a t =的取值范围结合二次函数的性质即可求出.【详解】(1)()2()421221x x x x f x a a =-+⋅-=-+⋅-.令()20,xt =∈+∞,21y t at =-+-,1a =时,2213124y t t t ⎛⎫=-+-=--- ⎪⎝⎭在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减. ∴当12t =时,max 34y =-,∴3,4y ⎛⎤∈-∞- ⎥⎝⎦, 所以()f x 的值域为3,4⎛⎤-∞- ⎥⎝⎦. (2)令12,12x t ⎡⎤=∈⎢⎥⎣⎦,22211124a y t at t a ⎛⎫=-+-=---+ ⎪⎝⎭, 其图象的对称轴为2a t =. ①当122a ≤,即1a ≤时,函数y 在区间1,12⎡⎤⎢⎥⎣⎦上单调递减, 当12t =时,max 1111424y a =-+-=-,解得2a =,与1a ≤矛盾; ②当12a ≥,即2a ≥时,函数y 在区间1,12⎡⎤⎢⎥⎣⎦上单调递增, 当1t =时,max 1114y a =-+-=-,解得74a =,与2a ≥矛盾, ③当1122a <<,即12a <<时,函数y 在1,22a ⎡⎤⎢⎥⎣⎦上单调递增,在,12a ⎡⎤⎢⎥⎣⎦上单调递减.当2a t =时,2max 11144y a =-=-,解得a =,舍去a =综上,a =【点睛】思路点睛:求二次函数在闭区间[],a b 的最值的思路;(1)二次函数开口向上时,求函数的最大值,讨论对称轴和2a b +的大小求解; (2)二次函数开口向上时,求函数的最小值,讨论对称轴在(]()[),,,,,a a b b -∞+∞三个区间的范围求解.24.(1)(5,5)- (2)奇函数,见解析【分析】(1)若()f x 有意义,则需满足505x x->+,进而求解即可; (2)由(1),先判断定义域是否关于原点对称,再判断()f x -与()f x 的关系即可.【详解】(1)由题,则505x x->+,解得55x -<<,故定义域为()5,5-(2)奇函数,证明:由(1),()f x 的定义域关于原点对称,因为()()33355log log log 1055x x f x f x x x +--+=+==-+,即()()f x f x -=-, 所以()f x 是奇函数【点睛】本题考查具体函数的定义域,考查函数的奇偶性的证明.25.(1){}31A B x x ⋂=-<≤;(2)[][)1,24,m ∈-+∞ 【分析】(1)计算{}35A x x =-<≤,{}51B x x =-<≤,再计算交集得到答案.(2)A B A ⋃=,故B A ⊆,讨论B =∅和B ≠∅,计算得到答案.【详解】(1)(){}{}2log 3335A x x x x =+≤=-<≤,{}51B x x =-<≤, 故{}31A B x x ⋂=-<≤.(2){}35A x x =-<≤,A B A ⋃=,故B A ⊆, 当B =∅时,213m m -≥+,解得4m ≥;当B ≠∅时,4m <,故21335m m -≥-⎧⎨+≤⎩,解得12m -≤≤. 综上所述:[][)1,24,m ∈-+∞.【点睛】本题考查交集运算,根据集合的包含关系求参数,意在考查学生的计算能力和综合应用能力. 26.(1) 2a =-,()2121x x f x -=+;(2) 212log 3x =+或212log 3x =- 【分析】(1)根据奇函数(0)0f =求解a ,再根据奇函数的性质求解()f x 的解析式即可.(2)根据(1)可得()2121x x f x -=+为奇函数,可先求解4|()|5f t =的根,再求解4|(1)|5f x -=即可. 【详解】(1)因为()f x 是定义在R 上的奇函数,且当0x ≥时,()121x a f x =++,故0(0)1021a f =+=+,即102a +=,解得2a =-.故当0x ≥时,()22112121x x x f x -=-=++. 所以当0x < 时, ()()211221211221x x x x x x f x f x -----=--=-=-=+++.故()2121x x f x -=+ (2) 先求解4|()|5f t =,此时()214215t t f t -==±+. 当()()214421521215t t t t -=⇒+=-+,即29t =解得22log 92log 3t ==. 因为()2121x x f x -=+为奇函数,故当214215t t -=-+时, 22log 3t =-. 故4|(1)|5f x -=的解为212log 3x -=或212log 3x -=-, 解得212log 3x =+或212log 3x =-【点睛】本题主要考查了根据奇函数求解参数的值以及解析式的方法,同时也考查了根据函数性质求解绝对值方程的问题,属于中档题.。
(压轴题)高中数学必修一第三单元《指数函数和对数函数》检测题(包含答案解析)(3)
一、选择题1.函数12xy ⎛⎫= ⎪⎝⎭的大致图象是( ). A . B .C .D .2.已知函数()()2log 2xf x m =+,则满足函数()f x 的定义域和值域都是实数集R 的实数m 构成的集合为 ( ) A .{}|0m m = B .{}0|m m ≤C .{}|0m m ≥D .{}|1m m =3.函数()2f x x=-的定义域是( ) A .(0,2)B .[2,)+∞C .(0,)+∞D .(,2)-∞4.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:35]4[--.=,[]2.12=,已知函数21()12x xe f x e =++,()[()]g x f x =,则下列叙述正确的是( ) A .()g x 是偶函数 B .()f x 在R 上是增函数 C .()f x 的值域是1,2⎛⎫-+∞ ⎪⎝⎭ D .()g x 的值域是{1,0,1}-5.已知函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点分别为,,a b c ,则,,a b c 的大小顺序为( )A .a b c >>B .c a b >>C .b c a >>D .b a c >>6.已知函数()()2ln f x ax bx c =++的部分图象如图所示,则a b c -+的值是( )A .1-B .1C .5-D .57.已知2log 0.8a =,0.7log 0.6b =,0.60.7c =,则a ,b ,c 的大小关系是( )A .a b c <<B .b a c <<C .a c b <<D .b c a <<8.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数2y x =,x ∈[1,2]与函数.2y x =,[]2,1x ∈--即为同族函数,下面函数解析式中也能够被用来构造“同族函数”的是( ) A .y =xB .1y x x=+ C . 22x x y -=- D .y =log 0.5x 9.已知235log log log 0x y z ==<,则2x 、3y 、5z的大小排序为 A .235x y z<< B .325y x z << C .523z x y<< D .532z y x<< 10.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .311.若函数()()212log 45f x x x =-++在区间()32,2m m -+内单调递增,则实数m 的取值范围为( ) A .4,33⎡⎤⎢⎥⎣⎦B .4,23⎡⎤⎢⎥⎣⎦C .4,23⎡⎫⎪⎢⎣⎭D .4,3⎡⎫+∞⎪⎢⎣⎭12.若1a b >>,lg lg P a b ⋅,1(lg lg )2Q a b =+,lg()2a b R +=,则( ) A .R P Q <<B .P Q R <<C .Q P R <<D .P R Q <<二、填空题13.已知0a >,函数()y f x =,其中21()log f x a x ⎛⎫=+⎪⎝⎭,若对任意1,12t ⎡⎤∈⎢⎥⎣⎦,函数()y f x =在区间[,1]t t +上的最大值与最小值的差不超过1,则a 的取值范围为_______.14.已知函数log (3)a y ax =-在(1,2)上单调递减,则实数a 的取值范围为___________. 15.方程()()122log 44log 23xx x ++=+-的解为____;16.给定函数y =f (x ),设集合A ={x |y =f (x )},B ={y |y =f (x )}.若对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,则称函数f (x )具有性质P .给出下列三个函数:①1y x =;②12xy ⎛⎫= ⎪⎝⎭;③y =lgx .其中,具有性质P 的函数的序号是_____. 17.若函数11x y a+=+()0,1a a >≠恒过点(,)P m n ,则函数()11142x xf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在[],m n 上的最小值是_____.18.下列五个命题中:①函数log (21)2015(0a y x a =-+>且1)a ≠的图象过定点()1,2015; ②若定义域为R 函数()f x 满足:对任意互不相等的1x 、2x 都有()()()12120x x f x f x -->⎡⎤⎣⎦,则()f x 是减函数;③2(1)1f x x +=-,则2()2f x x x =-;④若函数22()21x xa a f x ⋅+-=+是奇函数,则实数1a =-; ⑤若log 8(0,1)log 2c c a c c =>≠,则实数3a =. 其中正确的命题是________.(填上相应的序号). 19.若幂函数()2()57m f x m m x =-+在R 上为增函数则1log2log 2lg5lg4mm m+-=_____.20.若函数1log 12a y x ⎛⎫=+⎪⎝⎭在区间3,62⎡⎤-⎢⎥⎣⎦有最小值-2,则实数a =_______.三、解答题21.已知函数()log (1)log (1)a a f x x x =+--,(0a >且1a ≠) (1)求()f x 的定义域;(2)判断()f x 的奇偶性,并予以证明; (3)求使()0f x >的x 取值范围. 22.(1)已知函数()()()2110x g x a a -=++>的图像恒过定点A ,且点A 又在函数()()f x x a =+的图像上,求不等式()3g x >的解集;(2)已知121log 1x -≤≤,求函数1114242x xy -⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭的最大值和最小值. 23.已知函数f (x )=log a (x +1)-log a (1-x ),a >0,且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性,并予以证明; (3)当a >1时,求使f (x )>0的x 的取值范围.24.已知函数()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=. (1)求函数()f x 的表达式;(2)判断函数()(2)(2)g x f x f x =++-的奇偶性,并说明理由. 25.分别计算下列数值:(1)1lg3lg94lg81lg 27+--; (2)已知()1401x xx -+=<<,求221122x x x x---+.26.化简计算: (1)160.25361.587-⎛⎫⨯-+ ⎪⎝⎭(2)lg5lg 20lg 2lg50lg 25⋅-⋅-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】去绝对值符号后根据指数函数的图象与性质判断. 【详解】由函数解析式可得:1,022,0xx x y x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩可得值域为:01y <≤,由指数函数的性质知:在(),0-∞上单调递增;在()0,∞+上单调递减. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.2.A解析:A【分析】若定义域为实数集R ,则20x m +>对于x ∈R 恒成立,可得0m ≥,若值域为实数集R ,令2x t m =+,则2log y t = 此时需满足2x t m =+的值域包括()0,∞+,可得0m ≤,再求交集即可. 【详解】若()()2log 2xf x m =+定义域为实数集R ,则20x m +>对于x ∈R 恒成立,即2x m >-对于x ∈R 恒成立, 因为20x >,所以20x -<,所以0m ≥, 令2x t m =+,则2log y t =若()()2log 2xf x m =+值域为实数集R ,则2x t m =+的值域包括()0,∞+, 因为t m >,所以0m ≤, 所以0m =, 故选:A 【点睛】关键点点睛:本题的关键点是要找到定义域为R 的等价条件即20x m +>对于x ∈R 恒成立,分离参数m 求其范围,值域为R 的等价条件即2x t m =+可以取遍所有大于0的数,由t m >,所以0m ≤,再求交集.3.A解析:A 【分析】根据函数的形式,直接列解析式有意义的不等式,求出函数的定义域. 【详解】由题意得,函数的定义域需满足02>0x x >⎧⎨-⎩,解得:02x <<所以函数的定义域是()0,2. 故选:A . 【点睛】方法点睛:常见的具体函数求定义域:(1)偶次根号下的被开方数大于等于0;(2)分母不为0;(3)对数函数中真数大于0.4.B解析:B 【分析】计算(2),(2)g g -得出()()22g g ≠-判断选项A 不正确;通过分离常数结合复合函数的单调性,可得出()f x 在R 上是增函数,判断选项B 正确;由xy e =的范围,利用不等式的关系,可求出15()22f x <<,进而判断选项CD 不正确,即可求得结果. 【详解】对于A ,根据题意知,2152()1221x x xe f x e e=+=-++. ∵252(2)[(2)]221g f e ⎡⎤==-=⎢⎥+⎣⎦, 2222121(2)[(2)]01212e g f e e --⎡⎤⎡⎤-=-=+=+=⎢⎥⎢⎥++⎣⎦⎣⎦, (2)(2)g g ∴≠-,∴函数()g x 不是偶函数,故A 错误;对于B ,1x y e =+在R 上是增函数,则21xy e=+在R 上是减函数,则52()21x f x e=-+在R 上是增函数,故B 正确; 对于C ,0x e >,11x e ∴+>,2202,20,11x x e e <<-<-<++ 15()22f x ∴<<,即()f x 的值域是15,22⎛⎫⎪⎝⎭,故C 错误; 对于D ,()f x 的值域是15,22⎛⎫⎪⎝⎭,则()g x 的值域是{0,1,2},故D 错误. 故选:B. 【点睛】本题要注意对函数的新定义的理解,研究函数的单调性和值域常用分离常数,属于较难题.5.B解析:B 【分析】将函数3131()(),()log ,()(0)2x f x x g x x x h x x x x =-=-=->的零点,转化为函数y x=的图象分别与函数3131(),log ,(0)2xy y x y x x ===>的图象交点的横坐标,利用数形结合法求解. 【详解】函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点, 即为函数y x =的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标,由图象可得:c a b >>, 故选:B 【点睛】本题主要考查函数的零点以及指数函数,对数函数和幂函数的图象的应用,还考查了数形结合的思想方法,属于中档题.6.D解析:D 【分析】由图中函数的单调性可得方程20ax bx c ++=的两根为2和4,利用根与系数的关系结合(1)0f =列式求得,,a b c 的值,则答案可求.【详解】解:由图可知,函数()f x 的减区间为(,2)-∞,增区间为(4,)+∞, ∴内层函数2t ax bx c =++的减区间为(,2)-∞,增区间为(4,)+∞, ∴方程20ax bx c ++=的两根为2和4, 又(1)0f =,68ln()0ba ca abc ⎧-=⎪⎪⎪∴=⎨⎪++=⎪⎪⎩,解得13283a b c ⎧=⎪⎪=-⎨⎪⎪=⎩.182533a b c ∴-+=++=.【点睛】本题考查函数的图象与图象变换,考查复合函数的单调性,考查数学转化思想方法,是中档题.7.C解析:C 【解析】因为22log 0.8log 10a =<=,0.70.7log 0.6log 0.71b =>=,0.6000.70.71c <=<=,所以a c b <<,故选C.8.B解析:B 【分析】由题意,能够被用来构造“同族函数”的函数必须满足在其定义域上不单调,由此判断各个函数在其定义域上的单调性即可. 【详解】对A :y x =在定义域R 上单调递增,不能构造“同族函数”,故A 选项不正确;对B :1y x x=+在(),1-∞-递增,在()1,0-递减,在()0,1递减,在()1,+∞递增,能构造“同族函数”,故B 选项正确; 对C :22x xy -=-在定义域上递增,不能构造“同族函数”,故C 选项不正确;对D :0.5log y x =在定义域上递减,不能构造“同族函数”,故D 选项不正确. 故选:B. 【点睛】本题给出“同族函数”的定义,要求我们判断几个函数能否被用来构造“同族函数”,考查基本初等函数的单调性的知识点,属于基础题.9.A解析:A 【解析】x y z ,, 为正实数,且235log log log 0x y z ==<,111235235k k k x y z ---∴===,,,可得:1112352131,51k k k x y z---=>=>=>,. 即10k -> 因为函数1kf x x -=() 单调递增,∴235x y z<<.故选A.10.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.11.C解析:C 【分析】求得函数()y f x =的定义域,利用复合函数法求得函数()y f x =的单调递增区间,根据题意可得出区间的包含关系,由此可求得实数m 的取值范围. 【详解】解不等式2450x x -++>,即2450x x --<,解得15x -<<,内层函数245u x x =-++在区间()1,2-上单调递增,在区间()2,5上单调递减, 而外层函数12log y u =在定义域上为减函数,由复合函数法可知,函数()()212log 45f x x x =-++的单调递增区间为()2,5,由于函数()()212log 45f x x x =-++在区间()32,2m m -+上单调递增,所以,32232225m m m m -≥⎧⎪-<+⎨⎪+≤⎩,解得423m ≤<.因此,实数m 的取值范围是4,23⎡⎫⎪⎢⎣⎭. 故选:C. 【点睛】本题考查利用对数型复合函数在区间上的单调性求参数,考查计算能力,属于中等题.12.B解析:B 【分析】利用对数函数lg y x =,结合基本不等式即可确定P 、Q 、R 的大小关系 【详解】由于函数lg y x =在(0,)+∞上是增函数1a b >>,则lg lg 0a b >>由基本不等式可得11(lg lg )lg()lg 222a bP a b ab R +=<+==<=因此,P Q R <<故选:B 【点睛】本题考查了利用对数函数的单调性比较大小,应用函数思想构造对数函数,并利用其单调性和基本不等式比较大小二、填空题13.【分析】由函数单调性可得在区间上的最大值最小值则可得对任意恒成立利用二次函数的性质即可求出【详解】因为在区间内单调递减所以函数在区间上的最大值与最小值分别为则得整理得对任意恒成立令则的图象是开口向上解析:23⎡⎫+∞⎪⎢⎣⎭, 【分析】由函数单调性可得()f x 在区间[1]t t ,+上的最大值()f t ,最小值(1)f t +,则可得2(1)10at a t ++-≥对任意1,12t ⎡⎤∈⎢⎥⎣⎦恒成立,利用二次函数的性质即可求出. 【详解】因为()f x 在区间[1]t t ,+内单调递减, 所以函数()f x 在区间[1]t t ,+上的最大值与最小值分别为()f t ,(1)f t +, 则2211()(1)log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪⎪+⎝⎭⎝⎭, 得1121a a t t ⎛⎫+≤+ ⎪+⎝⎭,整理得2(1)10at a t ++-≥对任意1,12t ⎡⎤∈⎢⎥⎣⎦恒成立. 令2()(1)1h t at a t =++-,则()h t 的图象是开口向上,对称轴为11022t a=--<的抛物线,所以()h t 在1,12t ⎡⎤∈⎢⎥⎣⎦上是增函数,2(1)10at a t ++-≥等价于102h ⎛⎫≥ ⎪⎝⎭, 即211(1)1022a a ⎛⎫⨯++⨯-≥ ⎪⎝⎭,解得23a ≥,所以a 的取值范围为23⎡⎫+∞⎪⎢⎣⎭,. 故答案为:23⎡⎫+∞⎪⎢⎣⎭,. 【点睛】关键点睛:由单调性判断出最大值和最小值,从而转化为2(1)10at a t ++-≥对任意1,12t ⎡⎤∈⎢⎥⎣⎦恒成立,根据二次函数性质求解. 14.【分析】由复合函数的单调性:同增异减由于递减因此必须递增即有还要考虑函数定义域即在时恒成立【详解】∵∴是减函数又在上是减函数所以且∴故答案为:【点睛】本题考查对数型复合函数的单调性掌握复合函数单调性 解析:3(1,]2【分析】由复合函数的单调性:同增异减,由于3u ax =-递减,因此log a y u =必须递增,即有1a >,还要考虑函数定义域,即在(1,2)x ∈时,30ax ->恒成立.【详解】∵0a >,∴3u ax =-是减函数,又log (3)a y ax =-在(1,2)上是减函数,所以1a >, 且320a -≥,∴312a <≤. 故答案为:3(1,]2. 【点睛】本题考查对数型复合函数的单调性,掌握复合函数单调性是解题关键,同时要考虑函数的定义域.15.【分析】直接利用对数的运算法则化简求解即可【详解】解:可得即:解得(舍去)可得经检验是方程的解故答案为:【点睛】本题考查方程的解的求法对数的运算法则的应用考查计算能力解析:2【分析】直接利用对数的运算法则化简求解即可.【详解】解:()()122log 44log 23x x x ++=+-()()1222log 44log log 232x x x +∴+=+-可得()()122log 44log 232x x x ++=-⎡⎤⎣⎦, 即:()144232x x x ++=-, ()223240x x -⋅-=,解得21x =-(舍去)24x =,可得2x =.经检验2x =是方程的解.故答案为:2.【点睛】本题考查方程的解的求法,对数的运算法则的应用,考查计算能力.16.①③【分析】A 即为函数的定义域B 即为函数的值域求出每个函数的定义域及值域直接判断即可【详解】对①A =(﹣∞0)∪(0+∞)B =(﹣∞0)∪(0+∞)显然对于∀x ∈A ∃y ∈B 使得x+y =0成立即具有性解析:①③【分析】A 即为函数的定义域,B 即为函数的值域,求出每个函数的定义域及值域,直接判断即可.【详解】对①,A = (﹣∞,0)∪ (0,+∞),B = (﹣∞,0)∪ (0,+∞),显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ;对②,A =R ,B = (0,+∞),当x >0时,不存在y ∈B ,使得x +y =0成立,即不具有性质P ;对③,A = (0,+∞),B =R ,显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ; 故答案为:①③.【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题.17.【分析】先利用指数型函数恒过定点问题求定点得到换元令利用二次函数的单调性即可求解【详解】函数恒过点则区间变为由函数令则利用二次函数的单调性当时则函数在上的最小值是故答案为:【点睛】关键点睛:把指数型 解析:34【分析】先利用指数型函数恒过定点问题求定点,得到1,2m n =-=,换元,令11,224x t t ⎛⎫=≤≤ ⎪⎝⎭,利用二次函数的单调性,即可求解. 【详解】函数11x y a +=+()0,1a a >≠恒过点()1,2-,则1,2m n =-=,区间[],x m n ∈变为[]1,2x ∈-,由函数()11142x xf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭, 令11,224xt t ⎛⎫=≤≤ ⎪⎝⎭, 则()2213124f t t t t ⎛⎫=-+=-+ ⎪⎝⎭,利用二次函数的单调性, 当12t =时,()min 34f t =, 则函数()11142x x f x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在[],m n 上的最小值是34. 故答案为:34. 【点睛】关键点睛:把指数型复合函数求最值问题转化为二次函数求最值问题是解决本题的关键. 18.①③⑤【分析】对①由对数函数恒过即可判断;对②由函数单调性的定义即可判断函数的单调性;对③利用换元法即可求得函数的解析式;对④由奇函数的定义即可判断;对⑤由换底公式即可求得的值【详解】解:对①令解得解析:①③⑤【分析】对①,由对数函数恒过(1,0),即可判断;对②,由函数单调性的定义即可判断函数的单调性;对③,利用换元法即可求得函数()f x 的解析式;对④,由奇函数的定义即可判断;对⑤,由换底公式即可求得a 的值.【详解】解:对①,令211x -=,解得:1x =,则(1)2015f =,()f x ∴的图象过定点()1,2015,故①正确;对②,()()()12120x x f x f x -->⎡⎤⎣⎦,当12x x <时,()()12f x f x <;当12x x >时,()()12f x f x >;()f x ∴是R 上的增函数,故②错误;对③,令1t x =+,则1x t =-;2()2f t t t ∴=-,即2()2f x x x =-,故③正确;对④,由题意知()f x 的定义域为R ,又()f x 为奇函数,(0)0f ∴=,解得:1a =,故④不正确;对⑤,log 8lg83lg 2=3log 2lg 2lg 2c c a ===,故⑤正确. 故答案为:①③⑤.【点睛】方法点睛:求函数解析式常用方法:(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法;(2)换元法:已知复合函数(())f g x 的解析式,可用换元法,此时要注意新元的取值范围;(3)方程法:已知关于()f x 与1f x ⎛⎫ ⎪⎝⎭或()f x -的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).19.3【分析】利用幂函数的定义与性质求得将代入利用对数的运算法则化简得解【详解】在上为增函数解得(舍去)故答案为:3【点睛】正确理解幂函数的定义求得的值和熟练运用对数恒等式是关键解析:3【分析】利用幂函数的定义与性质求得3m =,将3m =代入,利用对数的运算法则化简得解.【详解】()()257m f x m m x =-+在R 上为增函数, 25710m m m ⎧-+=∴⎨>⎩,解得3,2m m ==(舍去), 1log2log 2lg 5lg 4m m m∴+-=31log 23l l og 3g1003+=故答案为:3.【点睛】正确理解幂函数的定义求得m 的值和熟练运用对数恒等式是关键. 20.或2【分析】根据复合函数的单调性及对数的性质即可求出的值【详解】当时在为增函数求得即;当时在为减函数求得即故答案为:或【点睛】本题考查复合函数单调性对数方程的解法难度一般 解析:12或2 【分析】 根据复合函数的单调性及对数的性质即可求出a 的值.【详解】当1a >时, 1log 12a y x ⎛⎫=+⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为增函数,min 33log 1-224a y f ⎛⎫⎛⎫=-=-+= ⎪ ⎪⎝⎭⎝⎭,求得-214a =,即=2a ;当01a <<时, 1log 12a y x ⎛⎫=+ ⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为减函数,()()min 6log 31-2a y f ==+=,求得-24a =,即1=2a . 故答案为:12或2. 【点睛】本题考查复合函数单调性,对数方程的解法,难度一般. 三、解答题21.(1){|11}x x -<<;(2)函数()f x 是奇函数,证明见解析;(3)当1a >时,01x <<;当01a <<时,10x -<<【分析】(1)根据对数的真数为正数列式可解得结果;(2)函数()f x 是奇函数,根据奇函数的定义证明即可;(3)不等式化为log (1)log (1)a a x x +>-后,分类讨论底数a ,根据对数函数的单调性可解得结果.【详解】(1)要使函数数()f x 有意义,则必有1010x x +>⎧⎨->⎩,解得11x -<<, 所以函数()f x 的定义域是{|11}x x -<< .(2)函数()f x 是奇函数,证明如下:∵(1,1)x ∈-,(1,1)x -∈-,()log (1)log (1)a a f x x x -=--+[]log (1)log (1)a a x x =-+--()f x =-,∴函数()f x 是奇函数(3)使()0f x >,即log (1)log (1)a a x x +>-当1a >时,有111010x x x x +>-⎧⎪->⎨⎪+>⎩,解得01x <<,当01a <<时,有111010x x x x +<-⎧⎪->⎨⎪+>⎩,解得10x -<<.综上所述:当1a >时,01x <<;当01a <<时,10x -<<.【点睛】方法点睛:已知函数解析式,求函数定义域的方法:有分式时:分母不为0;有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0;有指数时:当指数为0时,底数一定不能为0;有根号与分式结合时,根号开偶次方在分母上时:根号下大于0;有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1.22.(1)()3,+∞;(2)min 1y =,max 54y =. 【分析】(1)结合指数函数性质首先求a 的值,再解指数不等式;(2)通过换元,设12x t ⎛⎫= ⎪⎝⎭,并且求变量的取值范围,转化为二次函数在定义域内的最大值和最小值.【详解】(1)由题意知定点A 的坐标为()2,2, ∴)22a =+解得1a =.∴()221x g x -=+.∴由()3g x >得,2213x -+>.∴222x ->.∴21x ->.∴3x >.∴不等式()3g x >的解集为()3,+∞.(2)由121log 1x -≤≤得122x ≤≤令12xt ⎛⎫= ⎪⎝⎭,则142t ≤≤, 221442412y t t t ⎛⎫=-+=-+ ⎪⎝⎭. ∴当12t =,即1122x ⎛⎫= ⎪⎝⎭,1x =时,min 1y =, 当14t =,即1124x⎛⎫= ⎪⎝⎭,2x =时,max 54y =. 【点睛】本题考查指数函数与对数函数的图象与性质,考查求对数型函数的值域,求值域的方法是用换元法把函数转化为二次函数,然后求解.23.(1){x |-1<x <1};(2)f (x )为奇函数;证明见解析;(3)(0,1).【分析】(1)根据真数大于零,列出不等式,即可求得函数定义域;(2)计算()f x -,根据其与()f x 关系,结合函数定义域,即可判断和证明; (3)利用对数函数的单调性,求解分式不等式,即可求得结果.【详解】(1)因为f (x )=log a (x +1)-log a (1-x ),所以1010x x +>⎧⎨->⎩解得-1<x <1. 故所求函数的定义域为{x |-1<x <1}.(2)f (x )为奇函数.证明如下:由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ).故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域{x |-1<x <1}上是增函数,由f (x )>0,得11x x+->1,解得0<x <1. 所以x 的取值范围是(0,1).【点睛】 本题考查对数型复合函数单调性、奇偶性以及利用函数性质解不等式,属综合中档题. 24.(1)2()log f x x =(2)偶函数.见解析【分析】(1)根据(4)(2)1f f -=,代入到函数的解析式中可求得2a =,可求得函数()f x 的解析式; (2)由函数()f x 的解析式,求得函数()g x 的解析式,先求得函数()g x 的定义域,再由函数的奇偶性的判断方法证得函数的奇偶性.【详解】(1)因为()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=,所以log 4log 21a a -=,即log 21a =.,解得2a =,所以2()log f x x =;(2)因为()log a f x x =,所以22()log (2)log (2)g x x x =++-,由2020x x +>⎧⎨->⎩,得22x -<<,所以()g x 的定义域为()22-,, 又因为22()log (2)log (2)()g x x x g x -=-++=,所以22()log (2)log (2)g x x x =++-为偶函数.【点睛】本题考查对数函数的函数解析式的求解,函数的奇偶性的证明,属于基础题.25.(1)32;(2)-. 【分析】(1)利用对数的运算性质化简可求得所求代数式的值;(2)由已知条件可求得1x x --的值,可求得22x x -+,并求得1122x x -+的值,代入计算可求得所求代数式的值.【详解】 (1)原式11lg3lg3lg3111lg3322lg5lg 2lg1081222lg32lg 27+-=++=+=; (2)因为()()()221114x xx x x x x x -----=+-=-, 所以()()2211412x x x x ---=+-=, 因为01x <<,则1x x -<,所以1x x --=-22x x --=-, 又因为21112226x x x x --⎛⎫+=++= ⎪⎝⎭,所以1122x x -+=所以221122x x x x ---=-+【点睛】本题考查指数式与对数式的计算,考查了平方关系以及对数运算性质的应用,考查计算能力,属于基础题.26.(1)110;(2)-1【分析】(1)原式化简为分数指数幂,计算结果;(2)根据对数运算公式化简求值.【详解】(1)原式113133234432222323-⎛⎫⎛⎫=+⨯+⨯- ⎪ ⎪⎝⎭⎝⎭ 1133********⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭110=(2)原式()()22lg5lg 25lg 2lg 510lg5=⨯⨯-⋅⨯- ()()lg52lg2lg5lg2lg512lg5=⨯+-⋅+-()22lg 2lg5lg5lg 2lg5lg 22lg5=⋅+-⋅--()()2lg 2lg5lg5lg 2lg5lg5=⋅+-+- ()lg5lg2lg51lg5=⋅+--lg51lg51=--=-【点睛】本题考查指数幂和对数运算,重点考查计算能力,转化与变形,属于基础题型.。
(压轴题)高中数学必修一第三单元《指数函数和对数函数》检测卷(含答案解析)(4)
一、选择题1.设a ,b ,c 为正数,且3a =4b =6c ,则有( ) A .111c a b=+ B .221c a b=+ C .122c a b=+ D .212c a b=+ 2.设0.60.6a =, 1.20.6b =,0.61.2c =中,则a ,b ,c 的大小关系是( ) A . a b c <<B .a c b <<C .b a c <<D .b c a <<3.若函数()()23log 5f x x ax a =+++,()f x 在区间(),1-∞上是递减函数,则实数a的取值范围为( ) A .[]3,2-- B .[)3,2--C .(],2-∞-D .(),2-∞-4.集合{}1002,xx x x R =∈的真子集的个数为( )A .2B .4C .6D .75.已知函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点分别为,,a b c ,则,,a b c 的大小顺序为( )A .a b c >>B .c a b >>C .b c a >>D .b a c >>6.若函数()()20.3log 54f x x x =+-在区间()1,1a a -+上单调递减,且lg0.3=b ,0.32c =,则A .b a c <<B .b c a <<C .a b c <<D .c b a <<7.设函数()21xf x =-,c b a <<,且()()()f c f a f b >>,则22a c +与2的大小关系是( ) A .222a c +> B .222a c +≥ C .222a c +≤D .222a c +<8.已知函数()sin 2f x x x =-,且()0.3231ln ,log ,223a f b f c f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则以下结论正确的是 A .c a b >> B .a c b >>C .a b c >>D .b a c >>9.已知函数()a f x x 满足(2)4f =,则函数()log (1)a g x x =+的图象大致为( )A .B .C .D .10.已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数D .奇函数,且在(0,10)是减函数11.函数2()ln(43)f x x x =+-的单调递减区间是( ) A .32⎛⎤-∞ ⎥⎝⎦,B .3,42⎡⎫⎪⎢⎣⎭C .3,2⎡⎫+∞⎪⎢⎣⎭D .31,2⎛⎤- ⎥⎝⎦12.已知函数()y f x =与x y e =互为反函数,函数()y g x =的图象与()y f x =的图象关于x 轴对称,若()1g a =,则实数a 的值为 A .e -B .1e-C .eD .1e二、填空题13.下列命题中所有正确的序号是_____________.①函数1()3x f x a -=+(0a >且1)a ≠的图像一定过定点(1,4)P ; ②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4); ③若1log 12a>,则a 的取值范围是112⎛⎫⎪⎝⎭,; ④若22ln ln()x y x y -->-- (0x >,0y <),则0x y +<. 14.若函数()2log 12a a f x x x ⎛⎫=-+ ⎪⎝⎭,()0,1a a >≠没有最小值,则实数a 的取值范围是______.15.已知函数()212log y x ax a =-+在()3,+∞上是减函数,则a 的取值范围是______. 16.函数()()cos1log sin f x x =的单调递增区间是____________.17.已知函数1(2)1,2(),2x a x x f x a x --+<⎧=⎨≥⎩,在R 上单调递增,则实数a 的取值范围是_______.18.已知函数2,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥恒成立,则a 的取值范围是________.19.设函数()f x 的定义域为D ,若存在0x D ∈,使得00(1)()(1)f x f x f +=+,则称0x 为函数()f x 的“可拆点”.若函数22()log 1af x x=+在(0,)+∞上存在“可拆点”,则正实数a 的取值范围为____________.20.设函数()f x 满足()22221x f x ax a =-+-,且()f x 在21222,2a aa --+⎡⎤⎣⎦上的值域为[]1,0-,则实数a 的取值范围为______.三、解答题21.设函数()log (1)log (3)(0,1)a a f x x x a a =++->≠. (1)求函数()f x 的定义域(2)若(1)2f =,求函数()f x 在区间3[0,]2上的最大值. (3)解不等式:log (1)log (3)a a x x +>-.22.已知函数()13xf x ⎛⎫= ⎪⎝⎭,函数()13log g x x =.(1)若函数()22y g mx mx =++的定义域为R ,求实数m 的取值范围;(2)是否存在非负实数,m n ,使得函数()2y g f x ⎡⎤=⎣⎦的定义域为[],m n ,值域为[]2,2m n ,若存在,求出,m n 的值;若不存在,则说明理由;(3)当[]1,1x ∈-时,求函数()()223y f x af x =-+⎡⎤⎣⎦的最小值()h a . 23.设函数()()22()log 4log 2f x x x =⋅的定义域为1,44⎡⎤⎢⎥⎣⎦. (1)求()y f x =的最大值和最小值,并求出最值时对应的x 值; (2)解不等式()60f x ->.24.已知函数f (x )=log a (x +1)-log a (1-x ),a >0,且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性,并予以证明; (3)当a >1时,求使f (x )>0的x 的取值范围. 25.已知函数()22x x f x k -=+. (1)若()f x 为偶函数,求实数k 的值;(2)若()4f x 在2[log x m ∈,2log (2)](m m +为大于0的常数)上恒成立,求实数k 的最小值.26.分别计算下列数值:(1)1lg3lg94lg81lg 27+-- (2)已知()1401x xx -+=<<,求221122x x x x---+.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先根据指对互化求出,,a b c ,再根据换底公式表示111,,a b c,最后根据对数运算法则化简. 【详解】设3a =4b =6c =k , 则a =log 3k , b =log 4k , c =log 6k ,∴311log 3log k a k ==, 同理1log 4k b =,1log 6k c=, 而11log 2,log 3log 22k k k b c ==+, ∴1112c a b =+,即221c a b=+. 故选:B 【点睛】本题考查指对数运算,换底公式,以及对数运算的性质,关键是灵活应用对数运算公式,公式1log log a b b a=是关键. 2.C解析:C 【分析】根据指数函数,幂函数的单调性即可判断. 【详解】因为指数函数0.6x y =是单调减函数,0.6 1.2<,所以0.6 1.20.60.6>,即a b >; 因为幂函数0.6y x =在()0,∞+上是增函数,0.6 1.2<,所以0.60.61.20.6>,即c a >. 综上,b a c <<. 故选:C . 【点睛】熟练掌握指数函数,幂函数的单调性是解题关键.3.A解析:A 【分析】判断复合函数的单调性,首先要分清楚内外层函数,根据复合函数“同增异减”原则,同时内层函数的值域要满足外层函数的定义域要求即可. 【详解】由题意知,()f x 在区间(),1-∞上是递减函数, 由()()23log 5f x x ax a =+++可知,此复合函数外层函数为:()3log f x x =,在定义域上为增函数, 内层函数为()25h x x ax a =+++,要使()f x 在区间(),1-∞上是递减函数, 根据复合函数“同增异减”原则,内层函数为()h x 在区间(),1-∞上必须是递减函数, 同时须保证最大值()10h ≥,所以()1210a h ⎧-≥⎪⎨⎪≥⎩,解得32a --≤≤. 故选:A. 【点睛】易错点睛:判断复合函数的单调性,根据复合函数“同增异减”原则,同时内层函数的值域要满足外层函数的定义域要求.4.D解析:D 【分析】分析指数函数2x y =与幂函数100y x =的图像增长趋势,当0x <时,有1个交点;当0x >时,有2个交点;即集合{}1002,x x x x R =∈有3个元素,所以真子集个数为3217-=【详解】分析指数函数2x y =与幂函数100y x =的图像增长趋势, 当0x <时,显然有一个交点;当0x >时,当1x =时,110021>;当2x =时,210022<;故()1,2x ∈时,有一个交点;分析数据发现,当x 较小时,100y x =比2x y =增长的快;当x 较大时,2x y =比100y x =增长的快,即2x y =是爆炸式增长,所以还有一个交点.即2x y =与100y x =的图像有三个交点,即集合{}1002,x x x x R =∈有3个元素,所以真子集个数为3217-= 故选:D. 【点睛】结论点睛:本题考查集合的子集个数,集合A 中含有n 个元素,则集合A 的子集有2n 个,真子集有()21n -个,非空真子集有()22n-个.5.B解析:B 【分析】将函数3131()(),()log ,()(0)2x f x x g x x x h x x x x =-=-=->的零点,转化为函数y x=的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标,利用数形结合法求解. 【详解】函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点, 即为函数y x =的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标, 如图所示:由图象可得:c a b >>, 故选:B 【点睛】本题主要考查函数的零点以及指数函数,对数函数和幂函数的图象的应用,还考查了数形结合的思想方法,属于中档题.6.A解析:A【分析】求出原函数的定义域,再求出内函数二次函数的增区间,由题意列关于a 的不等式组,求得a 的范围,结合b=1g0.3<0,c=20.3>1得答案. 【详解】由5+4x-x 2>0,可得-1<x <5, 函数t=5+4x-x 2的增区间为(-1,2),要使f(x)=log 0.3(5+4x−x 2)在区间(a-1,a+1)上单调递减, 则1112a a -≥-⎧⎨+≤⎩,即0≤a≤1.而b=1g0.3<0,c=20.3>1, ∴b <a <c . 故选A . 【点睛】本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是中档题.7.D解析:D 【分析】运用分段函数的形式写出()f x 的解析式,作出()21xf x =-的图象,由数形结合可得0c <且0a >,21c <且21a >,且()()0f c f a ->,去掉绝对值,化简即可得到结论.【详解】()21,02112,0x xxx f x x ⎧-≥=-=⎨-<⎩, 作出()21xf x =-的图象如图所示,由图可知,要使c b a <<且()()()f c f a f b >>成立, 则有0c <且0a >, 故必有21c <且21a >,又()()0f c f a ->,即为()12210c a--->,∴222a c +<. 故选:D . 【点睛】本题考查指数函数单调性的应用,考查用指数函数单调性确定参数的范围,本题借助函数图象来辅助研究,由图象辅助研究函数性质是函数图象的重要作用,以形助数的解题技巧必须掌握,是中档题.8.D解析:D 【解析】因为()cos 20f x x '=-<,所以函数()sin 2f x x x =-的单调递减函数,又因为0.3213log 0,ln ln 1,12232e <<=<<,即0.3213log ln 232<<,所以由函数的单调性可得:0.3213(log )(ln )(2)32f f f >>,应选答案D .9.C解析:C 【分析】由已知求出a ,得()g x 表达式,化简函数式后根据定义域和单调性可得正确选项. 【详解】由恬24a =,2a =,222log (1),10()log (1)log (1),0x x g x x x x -+-<<⎧=+=⎨+≥⎩,函数定义域是(1,)-+∞,在(1,0)-上递减,在(0,)+∞上递增. 故选:C . 【点睛】本题考查对数型复合函数的图象问题,解题方法是化简函数后,由定义域,单调性等判断.10.C解析:C 【分析】先判断函数的定义域关于原点对称,再由奇偶性的定义判断奇偶性,根据复合函数的单调判断其单调性,从而可得结论. 【详解】由100100x x +>⎧⎨->⎩,得(10,10)x ∈-, 故函数()f x 的定义域为()10,10-,关于原点对称,又()()lg 10lg(10)()f x x x f x -=-++=,故函数()f x 为偶函数,而()()2lg(10)lg(10)lg 100f x x x x =++-=-,因为函数2100y x =-在()0,10上单调递减,lg y x =在()0,∞+上单调递增, 故函数()f x 在()0,10上单调递减,故选C.【点睛】本题主要考查函数的奇偶性与单调性,属于中档题. 判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为减函数);(2)和差法,()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) .11.B解析:B 【分析】先求函数的定义域,再利用复合函数的单调性同增异减,即可求解. 【详解】由2430x x +->得2340x x --<,解得:14x -<<,2()ln(43)f x x x =+-由ln y t =和234t x x =-++复合而成,ln y t =在定义域内单调递增,234t x x =-++对称轴为32x =,开口向下, 所以 234t x x =-++在31,2⎛⎫- ⎪⎝⎭ 单调递增,在3,42⎡⎫⎪⎢⎣⎭单调递减, 所以2()ln(43)f x x x =+-的单调减区间为3,42⎡⎫⎪⎢⎣⎭, 故选:B 【点睛】本题主要考查了利用同增异减求复合函数的单调区间,注意先求定义域,属于中档题12.D解析:D 【分析】根据指数函数与对数函数的关系,以及函数()y g x =的图象与()y f x =的图象关于x 轴对称,求得()ln g x x =-,再由()1g a =,即可求解. 【详解】由题意,函数()y f x =与x y e =互为反函数,所以()ln f x x =,函数()y g x =的图象与()y f x =的图象关于x 轴对称,所以()ln g x x =-, 又由()1g a =,即ln 1a -=,解得 1a e= 故选D. 【点睛】本题主要考查了指数函数与对数函数的关系,其中熟记指数函数与对数函数的关系,以及函数的对称性求得函数()g x 的解析式是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题13.①③④【分析】由指数函数的图象函数的定义域对数函数的性质判断各命题①令代入判断②利用函数的定义求出的定义域判断③由对数函数的单调性判断④引入新函数由它的单调性判断【详解】①令则即图象过点①正确;②则解析:①③④ 【分析】由指数函数的图象,函数的定义域,对数函数的性质判断各命题.①,令1x =代入判断,②利用函数的定义求出()f x 的定义域判断,③由对数函数的单调性判断,④引入新函数1()ln 2ln 2xx g x x x -⎛⎫=-=- ⎪⎝⎭,由它的单调性判断. 【详解】①令1x =,则(1)4f =,即()f x 图象过点(1,4),①正确; ②13x <<,则012x <-<,∴()f x 的定义域是(0,2),②错;③1log 1log 2a a a ,∴0112a a <<⎧⎪⎨>⎪⎩,∴112a <<.③正确; ④由22ln ln()x y x y -->-- (0x >,0y <),得ln 2ln()2x y x y --<--,又1()ln 2ln 2xxg x x x -⎛⎫=-=- ⎪⎝⎭是(0,)+∞上的增函数,∴由ln 2ln()2x y x y --<--,得x y <-,即0x y +<,④正确.故答案为:①③④ 【点睛】关键点点睛:本题考查指数函数的图象,对数函数的单调性,函数的定义域问题,定点问题:(1)指数函数(0x y a a =>且1)a ≠的图象恒过定点(0,1); (2)对数函数log (0a y x a =>且1)a ≠的图象恒过定点(1,0), 解题时注意整体思想的应用.14.【分析】讨论和两种情况结合对数函数的单调性可判断求解【详解】当时在单调递减没有最大值没有最小值符合题意;当时在单调递增则可得当有解时没有最小值解得综上的取值范围为故答案为:【点睛】关键点睛:结合对数 解析:(0,1)[4,)∞⋃+【分析】讨论01a <<和1a >两种情况结合对数函数的单调性可判断求解. 【详解】当01a <<时,log ay x =在(0,)+∞单调递减,212a y x x =-+没有最大值,()2log 12a a f x x x ⎛⎫∴=-+ ⎪⎝⎭没有最小值,符合题意;当1a >时,log ay x =在(0,)+∞单调递增,则可得当2102ax x -+≤有解时,()2log 12a a f x x x ⎛⎫=-+ ⎪⎝⎭没有最小值,2402a ⎛⎫∴∆=--≥ ⎪⎝⎭,解得4a ≥,综上,a 的取值范围为(0,1)[4,)∞⋃+.故答案为:(0,1)[4,)∞⋃+. 【点睛】关键点睛:结合对数函数的单调性进行讨论求解,将题目转化为2102ax x -+≤有解进行求解.15.【分析】函数为复合函数且原函数为减函数根据题意需要满足一元二次函数在上是增函数且在上恒大于或等于零然后求解关于a 的不等式即可得到结果【详解】令则原函数化为此函数为定义域内的减函数要使函数在上是减函数解析:9,2⎛⎤-∞ ⎥⎝⎦【分析】函数为复合函数,且原函数为减函数,根据题意需要满足一元二次函数2x ax a -+在()3,+∞上是增函数,且在()3,+∞上恒大于或等于零,然后求解关于a 的不等式即可得到结果. 【详解】令2t x ax a =-+,则原函数化为12()log g t t =,此函数为定义域内的减函数,要使函数()212log y x ax a =-+在()3,+∞上是减函数,则函数2t x ax a =-+在()3,+∞上是增函数,且在()3,+∞上恒大于或等于零,即有232330aa a ⎧≤⎪⎨⎪-+≥⎩,解得92a ≤. 故答案为:9,2⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了复合函数的单调性,需要掌握复合函数的同增异减,本题还要注意对数函数的定义域是求解的前提,这里容易漏掉,需要掌握此类题目的解题方法.16.【分析】根据对数型复合函数单调性列不等式再根据正弦函数性质得结果【详解】单调递增区间为单调递减区间且所以故答案为:【点睛】本题考查对数型复合函数单调性以及正弦函数性质考查基本分析求解能力属基础题解析:[2,2),()2k k k Z ππππ++∈【分析】根据对数型复合函数单调性列不等式,再根据正弦函数性质得结果. 【详解】()()cos1cos1(0,1)log sin f x x ∈∴=单调递增区间为sin y x =单调递减区间且sin 0x >,所以22,()2k x k k Z ππππ+≤<+∈,故答案为:[2,2),()2k k k Z ππππ++∈【点睛】本题考查对数型复合函数单调性以及正弦函数性质,考查基本分析求解能力,属基础题.17.【分析】根据分段函数单调性列出各段为增函数的条件并注意两段分界处的关系即可求解【详解】函数在R 上单调递增则需满足(1)当时函数单调递增;则(2)当时函数单调递增;则(3)函数在两段分界处满足即所以满 解析:23a <≤【分析】根据分段函数单调性,列出各段为增函数的条件,并注意两段分界处的关系,即可求解. 【详解】 函数1(2)1,2(),2x a x x f x a x --+<⎧=⎨≥⎩,在R 上单调递增 则需满足(1)当2x <时,函数()f x 单调递增;则2a > (2)当2x ≥时,函数()f x 单调递增;则1a >(3)函数()f x 在两段分界处2x =,满足()21221a a --⨯+≤,即3a ≤所以满足条件的实数a 的范围是23a <≤ 故答案为:23a <≤ 【点睛】关键点睛:本题考查由函数的单调性求参数范围,解答本题的关键是分段函数在上单调递增,从图象上分析可得从左到右函数图象呈上升趋势,即函数()f x 在[)2+∞,上的最小值大于等于函数在(),2-∞上的最大值.则()21221a a--⨯+≤,这是容易忽略的地方,属于中档题.18.【分析】分两种情况讨论当时结合图象可知;当时再分两种情况讨论分离参数后化为函数的最值可解得结果【详解】当时则恒成立等价于恒成立函数的图象如图:由图可知;当时所以恒成立等价于恒成立若则若则恒成立所以综 解析:10a -≤≤【分析】分0x >,0x ≤两种情况讨论,当0x >时,结合图象可知0a ≤;当0x ≤时,再分0x =,0x <两种情况讨论,分离参数后化为函数的最值可解得结果.【详解】当0x >时,()ln(1)0f x x =+>,则|()|f x ax ≥恒成立等价于ln(1)x ax +≥恒成立, 函数ln(1)y x =+的图象如图:由图可知0a ≤;当0x ≤时,2()0f x x x =-+≤,所以|()|f x ax ≥恒成立等价于2x x ax -≥恒成立, 若0x =,则a R ∈,若0x <,则1a x ≥-恒成立,所以1a ≥-, 综上所述:10a -≤≤. 故答案为:10a -≤≤ 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;19.【分析】首先根据定义列出的等式转化为再根据分离常数和换元法求的取值范围【详解】函数为可分拆函数存在实数使得且设当时等号成立即故答案为:【点睛】思路点睛:本题是一道以新定义为背景的函数性质的综合应用题 解析:[35,2)【分析】首先根据定义,列出()()()0011f x f x f +=+的等式,转化为()()20202111x a x +=++,再根据分离常数和换元法,求a 的取值范围. 【详解】 函数()22log 1af x x =+为“可分拆函数”,∴存在实数00x >,使得()2222200log log log 1211aa a x x =++++且0a >,()()222002111a a x x ∴=+++,()()()2220000002222000000021222422242222222211x x x x x x a x x x x x x x +++--++∴====-++++++++, 设0422x t +=>,024t x -∴=, 2161622204204t a t t t t∴=-=-++++ ,20444t t ++≥=,当t =即32a <. 故答案为:)32⎡⎣ 【点睛】思路点睛:本题是一道以新定义为背景的函数性质的综合应用题型,首先正确利用新定义,并正确表示()()20202111x a x +=++,利用01x >,转化为求函数的值域,即求a 的取值范围.20.【分析】利用换元法可得然后采用等价转换的方法可得在的值域为最后根据二次函数的性质可得结果【详解】由令所以则令由在上的值域为等价为在的值域为的对称轴为且所以可得或所以故答案为:【点睛】本题主要考查函数解析:⎤⎡⋃⎥⎢⎣⎦⎣⎦【分析】利用换元法,可得()2221g x x ax a =-+-,然后采用等价转换的方法,可得()g x 在21,22a a a ⎡⎤--+⎣⎦的值域为[]1,0-,最后根据二次函数的性质,可得结果.【详解】由()22221x f x ax a =-+-令22,log xt x t ==,所以()()2222log 2log 1f t t a t a =-+-则令()2221g x x ax a =-+-由()f x 在21222,2a aa --+⎡⎤⎣⎦上的值域为[]1,0-等价为()g x 在21,22a a a ⎡⎤--+⎣⎦的值域为[]1,0-()g x 的对称轴为x a =,且()()1,10g a g a =--= 所以()()22122222a a a a a a -+-+≤≤-+1a ≤≤或2a ≤≤所以a ⎤⎡∈⋃⎥⎢⎣⎦⎣⎦故答案为:⎤⎡⋃⎥⎢⎣⎦⎣⎦【点睛】本题主要考查函数值域的应用,难点在于使用等价转换思想,使问题化繁为简,属中档题.三、解答题21.(1)(1,3)-;(2)2;(3)答案见解析. 【分析】 (1)由1030x x +>⎧⎨->⎩得解定义域(2)由(1)2f =求得2a =.化简 22()log (1)4f x x ⎡⎤=--+⎣⎦,求得函数单调性得解(3)分类1a >和01a <<讨论得解 【详解】 (1)由1030x x +>⎧⎨->⎩得13x ,所以函数()f x 的定义域为(1,3)-.(2)因为(1)2f =,所以log 42(0,1)a a a =>≠,所以2a =.22222()log (1)log (3)log [(1)(3)]log (1)4f x x x x x x ⎡⎤=++-=+-=--+⎣⎦,所以当(1,1]x ∈-时,()f x 是增函数;当(1,3)x ∈时,()f x 是减函数, 故函数()f x 在(1,3)-上的最大值是2(1)log 42f ==. (3)当1a >时1330x x x +>-⎧⎨->⎩解得13x x >⎧⎨<⎩不等式解集为:{|13}x x <<当01a <<时1310x xx +<-⎧⎨+>⎩解得11x x <⎧⎨>-⎩不等式解集为:{|11}x x -<<【点睛】简单对数不等式问题的求解策略(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数a 的值有关,在研究对数函数的单调性时,要按1a >和01a <<进行分类讨论.22.(1)08m ≤<;(2)存在,0,2m n ==;(3)答案不唯一,见解析. 【分析】(1)根据函数定义域为R ,转化为220mx mx ++>恒成立,分类讨论求解;(2)根据二次函数单调性可得2222m mn n ⎧=⎨=⎩,求解即可;(3)换元,令11,333xt ⎛⎫⎡⎤=∈ ⎪⎢⎥⎝⎭⎣⎦,分类讨论求二次函数的最小值即可. 【详解】(1)∵定义域为R ,即220mx mx ++>恒成立 ∴0m =, 或0m >⎧⎨∆<⎩得08m << 综上得08m ≤< (2)2yx 的定义域为[],m n ,值域为[]2,2m n∴222(0)2m mm n n n ⎧=≤<⎨=⎩ ,解得0,2m n ==. (3)令11,333xt ⎛⎫⎡⎤=∈ ⎪⎢⎥⎝⎭⎣⎦,则223y t at =-+ 若13a ≤,则228()39a h a =-+;若133a <<,则2()3h a a =-; 若3a ≥,则()612h a a =-+; 【点睛】关键点点睛:涉及指数型复合函数的单调性最值问题,多采用换元法,能够使问题简捷,突出问题本质,大多转化为二次函数,利用二次函数的图象和性质,体现转化思想,属于中档题. 23.(1)当x =时,()f x 取得最小值14-;当4x =时,()f x 取得最大值12;(2){}24x x <≤【分析】(1)令2log t x =,可得[]2,2t ∈-,从而()()22log 4log 2x x ⋅232t t =++,结合二次函数的性质,可求出最大值和最小值,及取得最值时对应的x 值;(2)由(1)知,2()32f x t t =++,[]2,2t ∈-,则不等式可化为2340t t +->,可求出t 的范围,结合2log t x =,可求出x 的范围. 【详解】 (1)由题意,()()()()222222log 4log 2log 4log log 2log x x x x ⋅=+⋅+=()()222log 1log x x +⋅+,令2log t x =,∵1,44x ⎡∈⎤⎢⎥⎣⎦,∴[]2log 2,2t x =∈-则()()22132y t t t t =++=++,根据二次函数的性质,可得当32t =-,即3224x -==时,232y t t =++取得最小值,最小值为233132224⎛⎫⎛⎫-+-+=- ⎪ ⎪⎝⎭⎝⎭; 当2t =时,即224x ==时,232y t t =++取得最大值,最大值为2232212+⨯+=. (2)由(1)知,2()32f x t t =++,[]2,2t ∈-, 则()60f x ->可化为2340t t +->,解得1t >或4t <-, 因为[]2,2t ∈-,所以12t <≤, 则222log 2log log 4x <≤,即24x <≤, 故不等式()60f x ->的解集为{}24x x <≤. 【点睛】关键点点睛:本题考查求复合函数的最值,及函数不等式的解.解决本题的关键是利用换元法,令2log t x =,可将()f x 转化为关于t 的二次函数232y t t =++,进而可求出最值,并解不等式即可,注意不要漏掉[]2,2t ∈-.考查学生的逻辑推理能力,计算求解能力,属于中档题.24.(1){x |-1<x <1};(2)f (x )为奇函数;证明见解析;(3)(0,1). 【分析】(1)根据真数大于零,列出不等式,即可求得函数定义域;(2)计算()f x -,根据其与()f x 关系,结合函数定义域,即可判断和证明; (3)利用对数函数的单调性,求解分式不等式,即可求得结果. 【详解】(1)因为f (x )=log a (x +1)-log a (1-x ), 所以1010x x +>⎧⎨->⎩解得-1<x <1.故所求函数的定义域为{x |-1<x <1}. (2)f (x )为奇函数.证明如下:由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ). 故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域{x |-1<x <1}上是增函数, 由f (x )>0,得11x x+->1,解得0<x <1. 所以x 的取值范围是(0,1). 【点睛】本题考查对数型复合函数单调性、奇偶性以及利用函数性质解不等式,属综合中档题. 25.(1)1k =;(2)当02m <<时,k 的最小值为4,当2m 时,k 的最小值为24m m -+. 【分析】(1)根据函数是偶函数,利用偶函数的定义求解.(2)将()4f x ,转化为2(2)42x x k -+⨯,令2[x t m =∈,2]m +,构造函数2()4g t t t =-+,利用二次函数的性质求得其最大值即可..【详解】 (1)()f x 为偶函数,()()f x f x ∴=-, 2?22?2x x x x k k --∴+=+,即(1)(22)0x x k ---=,对任意的x 恒成立,1k ∴=.(2)由()4f x ,可得2?24x x k -+,即2(2)42x x k -+⨯, 令2[x t m =∈,2]m +,2()4g t t t ∴=-+,当02m <<时,对称轴2[t m =∈,2]m +, 则()max g t g =(2)4244=-+⨯=, 当2m 时,对称轴2t m =, 则2()()4max g t g m m m ==-+,故当02m <<时,k 的最小值为4,当2m 时,k 的最小值为24m m -+. 【点睛】本题主要考查函数的奇偶性的和不等式恒成立的问题,还考查了分类讨论的思想和运算求解的能力,属于中档题. 26.(1)32;(2)- 【分析】(1)利用对数的运算性质化简可求得所求代数式的值;(2)由已知条件可求得1x x --的值,可求得22x x -+,并求得1122x x -+的值,代入计算可求得所求代数式的值. 【详解】(1)原式11lg3lg3lg3111lg3322lg5lg 2lg1081222lg32lg 27+-=++=+=; (2)因为()()()221114x x x x x x x x -----=+-=-,所以()()2211412x xx x ---=+-=,因为01x <<,则1x x -<,所以1x x --=-,所以22x x --=-又因为21112226x x x x --⎛⎫+=++= ⎪⎝⎭,所以1122x x -+=所以221122x x x x---=-+【点睛】本题考查指数式与对数式的计算,考查了平方关系以及对数运算性质的应用,考查计算能力,属于基础题.。
北师大版高中数学必修一第三单元《指数函数和对数函数》检测题(有答案解析)(1)
一、选择题1.定义:若函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,点对(),A B 与(),B A 看作同一对“镜像点对”,已知函数()23,02,0x x f x x x x ⎧-<⎪=⎨-≥⎪⎩,则该函数的“镜像点对”有( )对.A .1B .2C .3D .42.形如221n+(n 是非负整数)的数称为费马数,记为F n 数学家费马根据F 0,F 1,F 2,F 3,F 4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F 5不是质数,请你估算F 5是( )位数(参考数据:lg2≈0.3010). A .8B .9C .10D .113.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:35]4[--.=,[]2.12=,已知函数21()12x xe f x e =++,()[()]g x f x =,则下列叙述正确的是( ) A .()g x 是偶函数 B .()f x 在R 上是增函数 C .()f x 的值域是1,2⎛⎫-+∞ ⎪⎝⎭D .()g x 的值域是{1,0,1}-4.设函数()ln |31|ln |31|f x x x =+--,则()f x ( ) A .是偶函数,且在11(,)33-单调递增 B .是偶函数,且在1(,)3-∞-单调递增 C .是奇函数,且在11(,)33-单调递减 D .是奇函数,且在1(,)3-∞-单调递减5.已知正实数a ,b ,c 满足:21()log 2a a =,21()log 3b b =,2log c c 1=,则( ) A .a b c << B .c b a << C .b c a << D .c a b <<6.已知函数()()2ln f x ax bx c =++的部分图象如图所示,则a b c -+的值是( )A .1-B .1C .5-D .57.函数2y 34x x =--+的定义域为( )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 8.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( ) A .2,13⎛⎫⎪⎝⎭B .(0,1)C .20,3⎛⎫ ⎪⎝⎭D .[)3,+∞ 9.若函数112xy m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是( )A .1m ≤-B .10m -≤<C .m 1≥D .01m <≤10.函数()22x xxf x -=+的大致图象为( ) A . B .C .D .11.设()lg (21)fx x a =-+是奇函数,则使f(x)<0的x 的取值范围是( ).A .(-1,0)B .(0, 1)C .(-∞,0)D .(-∞,0)∪(1,+∞)12.计算log 916·log 881的值为( )A .18B .118C .83D .38二、填空题13.已知(5)3,1()log ,1a a x a x f x x x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,则a 的取值范围为_________14.若函数()2log 12a a f x x x ⎛⎫=-+ ⎪⎝⎭,()0,1a a >≠没有最小值,则实数a 的取值范围是______.15.测量地震级别的里氏震级M 的计算公式为:0lg lg M A A =-,其中A 是测震仪记录的地震曲线的最大振幅,常数A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,而此次地震的里氏震级恰好为6级,那么里氏9级地震的最大的振幅是里氏5级地震最大振幅的______倍.16.已知()f x 是定义在[0,)+∞的函数,满足(1)()f x f x +=-,当[0,1)x ∈时,()3x f x =,则3(log 30)f =________.17.已知0x >且1x ≠,0y >且1y ≠,方程组58log log 4log 5log 81x y x y +=⎧⎨-=⎩的解为11x x y y =⎧⎨=⎩或22x x y y =⎧⎨=⎩,则()1212lg x x y y =________. 18.设函数()f x =,则()()()()()()543456f f f f f f -+-+-++++=_____.19.函数()212log 2y x x =-的定义域是______,单调递减区间是______. 20.已知函数()()log 21101a y x a a =-+>≠,的图象过定点A ,若点A 也在函数()2x f x b =+的图象上,则()2log 3f =________. 三、解答题21.已知函数1()22xx f x =-,()(4ln )ln ().g x x x b b R =-⋅+∈ (1)若()0f x >,求实数x 的取值范围;(2)当[1,)x ∈+∞时,设函数(),()f x g x 的值域分别为,A B ,若A B ⋂≠∅,求实数b 的取值范围.22.设函数()()22()log 4log 2f x x x =⋅的定义域为1,44⎡⎤⎢⎥⎣⎦.(1)求()y f x =的最大值和最小值,并求出最值时对应的x 值;(2)解不等式()60f x ->. 23.(1)已知函数()()()2110x g x a a -=++>的图像恒过定点A ,且点A 又在函数()()f x x a =+的图像上,求不等式()3g x >的解集;(2)已知121log 1x -≤≤,求函数1114242x xy -⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭的最大值和最小值. 24.计算:(1)()210.2513110.02781369-︒--⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭;. (2)()2lg32lg25lg8lg5lg20lg2103+++- 25.若函数()()()331xf x k a b a =++->是指数函数 (1)求k ,b 的值;(2)求解不等式()()2743f x f x ->-26.求函数()log 23=-2-3y x x 的定义域、值域和单调区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由新定义可知探究y 轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数即得结果. 【详解】由题意可知,函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,因为()23,02,0x x f x x x x ⎧-<⎪=⎨-≥⎪⎩,由y 轴左侧部分()3,0xy x =-<图像关于原点中心对称的图像3x y --=-,即3xy -=,()0x >,作函数3xy -=,()0x >和()22,0y x x x =-≥的图象如下:由图像可知两图象有三个公共点,即该函数有3对“镜像点对”. 故选:C. 【点睛】本题解题关键是理解新定义,寻找对称点对,探究y 轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数,通过数形结合,即突破难点.2.C解析:C 【分析】根据所给定义表示出9.632951010F =⨯,进而即可判断出其位数. 【详解】 根据题意,53223232lg232lg2320.30109.6320.6329521212101010101010F ⨯=+=+≈==≈==⨯,因为0.63211010<<,所以5F 的位数是10. 故选:C 【点睛】关键点睛:解答本题的关键是转化成对数运算,即3232lg 2210=.3.B解析:B 【分析】计算(2),(2)g g -得出()()22g g ≠-判断选项A 不正确;通过分离常数结合复合函数的单调性,可得出()f x 在R 上是增函数,判断选项B 正确;由xy e =的范围,利用不等式的关系,可求出15()22f x <<,进而判断选项CD 不正确,即可求得结果. 【详解】对于A ,根据题意知,2152()1221x x xe f x e e=+=-++.∵252(2)[(2)]221g f e ⎡⎤==-=⎢⎥+⎣⎦, 2222121(2)[(2)]01212e g f ee --⎡⎤⎡⎤-=-=+=+=⎢⎥⎢⎥++⎣⎦⎣⎦, (2)(2)g g ∴≠-,∴函数()g x 不是偶函数,故A 错误;对于B ,1x y e =+在R 上是增函数,则21xy e=+在R 上是减函数,则52()21xf x e =-+在R 上是增函数,故B 正确; 对于C ,0x e >,11x e ∴+>,2202,20,11x x e e <<-<-<++ 15()22f x ∴<<,即()f x 的值域是15,22⎛⎫⎪⎝⎭,故C 错误; 对于D ,()f x 的值域是15,22⎛⎫⎪⎝⎭,则()g x 的值域是{0,1,2},故D 错误. 故选:B. 【点睛】本题要注意对函数的新定义的理解,研究函数的单调性和值域常用分离常数,属于较难题.4.D解析:D 【分析】根据奇偶性定义判断奇偶性,然后判断单调性,排除错误选项得正确结论. 【详解】函数定义域是1{|}3x x ≠±,()ln 31ln 31ln 31ln 31()f x x x x x f x -=-+---=--+=-,()f x 是奇函数,排除AB ,312()lnln 13131x f x x x +==+--,11,33x ⎛⎫∈- ⎪⎝⎭时,2310x -<-<,2231x <--,即21031x +<-,而131u x =-是减函数,∴2131v x =+-是增函数,∴()f x 在11,33⎛⎫- ⎪⎝⎭上是增函数,排除C .只有D 可选. 故选:D . 【点睛】结论点睛:本题考查函数的单调性与奇偶性,判断函数的奇偶性与单调性后用排除法确定正确选项,掌握复合函数的单调性是解题关键.()y f x =与()y f x =-的单调性相反,在()f x 恒为正或恒为负时,()y f x =与1()y f x =的单调性相反,若()0f x <,则()y f x =与()y f x =的单调性相反.0a >时,()y af x =与()y f x =的单调性相同.5.B解析:B 【分析】a 、b 、c 的值可以理解为图象交点的横坐标,则根据图象可判断a ,b ,c 大小关系.【详解】因为21()log 2a a =,21()log 3b b =,2log c c 1=, 所以a 、b 、c 为2log y x =与1()2x y =,1()3xy =,y x =-的交点的横坐标,如图所示:由图象知: c b a <<. 故选:B 【点睛】本题主要考查对数函数,指数函数的图象性质以及函数零点问题,还考查了数形结合的思想方法,属中挡题.6.D解析:D 【分析】由图中函数的单调性可得方程20ax bx c ++=的两根为2和4,利用根与系数的关系结合(1)0f =列式求得,,a b c 的值,则答案可求.【详解】解:由图可知,函数()f x 的减区间为(,2)-∞,增区间为(4,)+∞,∴内层函数2t ax bx c =++的减区间为(,2)-∞,增区间为(4,)+∞, ∴方程20ax bx c ++=的两根为2和4, 又(1)0f =,68ln()0ba ca abc ⎧-=⎪⎪⎪∴=⎨⎪++=⎪⎪⎩,解得13283a b c ⎧=⎪⎪=-⎨⎪⎪=⎩.182533a b c ∴-+=++=.故选:D. 【点睛】本题考查函数的图象与图象变换,考查复合函数的单调性,考查数学转化思想方法,是中档题.7.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C8.C解析:C 【分析】根据对数函数性质与复合函数的单调性求解. 【详解】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数, 由对数函数性质知230a ->,即23<a , 综上023a <<. 故选:C . 【点睛】本题考查复合函数的单调性,掌握对数函数性质是解题关键,考查逻辑思维能力和计算能力,属于常考题.9.B解析:B 【分析】11()+2x y m -=与x 有公共点,转化为11()2xy -=与y m =-有公共点,结合函数图象,可得结果. 【详解】11()+2x y m -=与x 有公共点,即11()2x y -=与y m =-有公共点,11()2xy -=图象如图可知0110m m <-≤⇒-≤< 故选:B 【点睛】本题考查了函数的交点问题,考查了运算求解能力和数形结合思想,属于基础题目.10.B解析:B 【分析】根据函数为奇函数排除C ,取特殊值排除AD 得到答案. 【详解】当()22x xx f x -=+,()()22x x xf x f x ---==-+,函数为奇函数,排除C ; 2221(2)22242f -=<=+,排除A ;3324(3)22536f -==+,4464(4)224257f -==+,故()()34f f >,排除D.故选:B. 【点睛】本题考查了函数图象的识别,意在考查学生的计算能力和识图能力,取特殊值排除是解题的关键.11.A解析:A 【解析】 试题分析:由()lg (21)fxx a=-+为奇函数,则()()f xf x -=-,可得1a =-,即()lg11f xxx=+-,又()0f x <,即lg110xx +-<,可变为0111x x <+-<,解得10x -<<.考点:函数的奇偶性,对数函数性质,分式不等式.12.C解析:C 【分析】根据对数的运算性质,换底公式以及其推论即可求出. 【详解】原式=23443232448log 2log 3log 2log 3233⋅=⋅=. 故选:C . 【点睛】本题主要考查对数的运算性质,换底公式以及其推论的应用,属于基础题.二、填空题13.【分析】根据在上单调递增列出不等式组求解即可【详解】解:在上单调递增即解得:即故答案为:【点睛】易错点点睛:在解决分段函数的单调性问题时要注意上下段端点值的问题解析:5,54⎡⎫⎪⎢⎣⎭【分析】根据()f x 在R 上单调递增,列出不等式组,求解即可. 【详解】 解:(5)3,1()log ,1aa x a x f x x x --<⎧=⎨≥⎩在R 上单调递增,即50153log 1a a a a a ->⎧⎪>⎨⎪--≤⎩, 解得:554a ≤<, 即5,54a ⎡⎫∈⎪⎢⎣⎭, 故答案为:5,54⎡⎫⎪⎢⎣⎭. 【点睛】易错点点睛:在解决分段函数的单调性问题时,要注意上下段端点值的问题.14.【分析】讨论和两种情况结合对数函数的单调性可判断求解【详解】当时在单调递减没有最大值没有最小值符合题意;当时在单调递增则可得当有解时没有最小值解得综上的取值范围为故答案为:【点睛】关键点睛:结合对数 解析:(0,1)[4,)∞⋃+【分析】讨论01a <<和1a >两种情况结合对数函数的单调性可判断求解. 【详解】当01a <<时,log ay x =在(0,)+∞单调递减,212a y x x =-+没有最大值,()2log 12a a f x x x ⎛⎫∴=-+ ⎪⎝⎭没有最小值,符合题意;当1a >时,log ay x =在(0,)+∞单调递增,则可得当2102ax x -+≤有解时,()2log 12a a f x x x ⎛⎫=-+ ⎪⎝⎭没有最小值,2402a ⎛⎫∴∆=--≥ ⎪⎝⎭,解得4a ≥,综上,a 的取值范围为(0,1)[4,)∞⋃+.故答案为:(0,1)[4,)∞⋃+. 【点睛】关键点睛:结合对数函数的单调性进行讨论求解,将题目转化为2102ax x -+≤有解进行求解.15.10000【分析】根据条件先计算出的值然后分别计算出里氏9级地震的最大的振幅和里氏5级地震最大振幅由此可求解出最终结果【详解】由条件可知:所以设里氏9级地震的最大的振幅为里氏5级地震最大振幅为所以所解析:10000 【分析】根据条件先计算出0A 的值,然后分别计算出里氏9级地震的最大的振幅和里氏5级地震最大振幅,由此可求解出最终结果. 【详解】由条件可知:06lg1000lg A =-,所以3010A -=,设里氏9级地震的最大的振幅为1A ,里氏5级地震最大振幅为2A ,所以31329lg lg105lg lg10A A --⎧=-⎨=-⎩,所以621210,10A A ==,所以1210000A A =, 故答案为:10000. 【点睛】关键点点睛:解答本题的关键在于理解公式0lg lg M A A =-中各个量的含义并先求解出0A 的值,由此继续分析.16.【分析】利用对数的运算性质得出结合周期性即可得出的值【详解】且则则函数的周期为2故答案为:【点睛】本题主要考查了由抽象函数的周期求函数值涉及了对数的运算属于中档题 解析:109-【分析】利用对数的运算性质得出3310log 303log 9=+,结合周期性,即可得出3(log 30)f 的值. 【详解】33333101010log 30log 27log 27log 3log 999⎛⎫=⨯=+=+ ⎪⎝⎭,且333100log log log 9131=<<= (1)()f x f x +=-,(11)(1)()f x f x f x ∴++=-+=,则(2)()f x f x +=,则函数()f x 的周期为2310log 3333310101010(log 30)21log 1log log 39999f f f f⎛⎫⎛⎫⎛⎫∴=++=+=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故答案为:109- 【点睛】本题主要考查了由抽象函数的周期求函数值,涉及了对数的运算,属于中档题.17.【分析】利用换底公式得出分别消去和可得出二次方程利用韦达定理可求出和的值进而可计算出的值【详解】由换底公式得由①得代入②并整理得由韦达定理得即则因此故答案为:【点睛】本题考查了对数的换底公式对数的运 解析:6【分析】利用换底公式得出5858log log 4111log log x y x y+=⎧⎪⎨-=⎪⎩,分别消去5log x 和8log y ,可得出二次方程,利用韦达定理可求出12x x 和12y y 的值,进而可计算出()1212lg x x y y 的值. 【详解】由换底公式得5858log log 4111log log x y x y+=⎧⎪⎨-=⎪⎩①②, 由①得58log 4log x y =-,代入②并整理得()288log 2log 40y y --=,由韦达定理得8182log log 2y y +=,即()812log 2y y =,则261282y y ==,()51528182log log 8log log 6x x y y ∴+=-+=,6125x x ∴=,因此,()61212lg lg106x x y y ==.故答案为:6. 【点睛】本题考查了对数的换底公式,对数的运算性质,韦达定理,考查了计算能力,属于中档题.18.【分析】根据指数的运算律计算出的值由此可计算出所求代数式的值【详解】因此故答案为【点睛】本题考查指数幂的化简计算解题的关键在于观察代数式结构并计算出为定值考查计算能力属于中等题解析:【分析】根据指数的运算律计算出()()1f x f x +-=的值,由此可计算出所求代数式的值. 【详解】()f x =()1122xx f x ∴-====, ()()12x x x f x f x ∴+-=+===,因此,()()()()()()5434566f f f f f f -+-+-++++==.故答案为 【点睛】本题考查指数幂的化简计算,解题的关键在于观察代数式结构并计算出()()1f x f x +-为定值,考查计算能力,属于中等题.19.【分析】由表达式可知解出对应即可求解定义域再结合复合函数同增异减性质可求函数单调减区间【详解】由题可知可看作在定义域内为减函数根据复合函数增减性当内层函数为增函数则在对应区间为减函数故函数的定义域是解析:()(),02,-∞+∞ ()2,+∞【分析】由表达式可知220x x ->,解出对应x ,即可求解定义域,再结合复合函数同增异减性质可求函数单调减区间 【详解】由题可知,()()220,02,x x x ->⇒∈-∞+∞,()212log 2y xx =-可看作12log y t =,22t x x =-,12log y t =在定义域内为减函数,根据复合函数增减性,当()2,x ∈+∞,内层函数为增函数,则()212log 2y x x =-在对应区间为减函数,故函数()212log 2y x x =-的定义域是()(),02,-∞+∞,单调递减区间是()2,+∞故答案为:()(),02,-∞+∞;()2,+∞【点睛】本题考查对数型函数具体定义域和对应增减区间,属于基础题20.2【分析】先利用函数的解析式得出其图象必过哪一个定点再将该定点的坐标代入函数中求出最后即可求出相应的函数值得到结果【详解】因为函数的图象恒过定点将代入得所以所以则故答案为:【点睛】该题考查的是有关函解析:2 【分析】先利用函数log (21)1(0,1)a y x a a =-+>≠的解析式得出其图象必过哪一个定点,再将该定点的坐标代入函数()2xf x b =+中求出b ,最后即可求出相应的函数值2(log 3)f ,得到结果. 【详解】因为函数log (21)1(0,1)a y x a a =-+>≠的图象恒过定点(1,1), 将1,1x y ==代入()2xf x b =+,得121b +=,所以1b =-,所以()21xf x =-, 则2log 32(log 3)21312f =-=-=,故答案为:2. 【点睛】该题考查的是有关函数值的求解问题,涉及到的知识点有对数型函数图象过定点问题,点在函数图象上的条件,已知函数解析式求函数值,属于简单题目.三、解答题21.(1)(0,)+∞(2)52b ≥- 【分析】(1)化为指数不等式21x >可解得结果;(2)由()f x 的单调性求出集合A ,换元后,利用二次函数知识求出集合B ,根据A B ⋂≠∅列式可解得结果. 【详解】(1)()0f x >即1202xx ->,所以()221x >,所以21x >,所以0x >, 所以实数x 的取值范围是(0,)+∞.(2)因为()f x 122xx=-在[1,)+∞上递增,所以当1x =时,()f x 取得最小值32,无最大值,所以3[,)2A =+∞,设ln t x =,因为1≥x ,所以0t ≥,所以2()()4h t g x t t b ==-++(0)t ≥,因为2()(2)4h t t b =--++在[0,2)上递增,在(2,)+∞上递减,所以2t =是,()h t 取得最大值(2)4h b =+,无最小值,所以(,4]B b =-∞+, 因为A B ⋂≠∅,所以342b +≥,得52b ≥-.【点睛】关键点点睛:利用换元法将函数()g x 化为二次函数求值域是解题关键.22.(1)当4x =时,()f x 取得最小值14-;当4x =时,()f x 取得最大值12;(2){}24x x <≤【分析】(1)令2log t x =,可得[]2,2t ∈-,从而()()22log 4log 2x x ⋅232t t =++,结合二次函数的性质,可求出最大值和最小值,及取得最值时对应的x 值;(2)由(1)知,2()32f x t t =++,[]2,2t ∈-,则不等式可化为2340t t +->,可求出t 的范围,结合2log t x =,可求出x 的范围. 【详解】(1)由题意,()()()()222222log 4log 2log 4log log 2log x x x x ⋅=+⋅+=()()222log 1log x x +⋅+,令2log t x =,∵1,44x ⎡∈⎤⎢⎥⎣⎦,∴[]2log 2,2t x =∈-则()()22132y t t t t =++=++,根据二次函数的性质,可得当32t =-,即322x -==232y t t =++取得最小值,最小值为233132224⎛⎫⎛⎫-+-+=- ⎪ ⎪⎝⎭⎝⎭; 当2t =时,即224x ==时,232y t t =++取得最大值,最大值为2232212+⨯+=.(2)由(1)知,2()32f x t t =++,[]2,2t ∈-,则()60f x ->可化为2340t t +->,解得1t >或4t <-, 因为[]2,2t ∈-,所以12t <≤, 则222log 2log log 4x <≤,即24x <≤, 故不等式()60f x ->的解集为{}24x x <≤. 【点睛】关键点点睛:本题考查求复合函数的最值,及函数不等式的解.解决本题的关键是利用换元法,令2log t x =,可将()f x 转化为关于t 的二次函数232y t t =++,进而可求出最值,并解不等式即可,注意不要漏掉[]2,2t ∈-.考查学生的逻辑推理能力,计算求解能力,属于中档题.23.(1)()3,+∞;(2)min 1y =,max 54y =. 【分析】(1)结合指数函数性质首先求a 的值,再解指数不等式;(2)通过换元,设12xt ⎛⎫= ⎪⎝⎭,并且求变量的取值范围,转化为二次函数在定义域内的最大值和最小值. 【详解】(1)由题意知定点A 的坐标为()2,2, ∴)22a =+解得1a =.∴()221x g x -=+.∴由()3g x >得,2213x -+>. ∴222x ->.∴21x ->. ∴3x >.∴不等式()3g x >的解集为()3,+∞.(2)由121log 1x -≤≤得122x ≤≤令12xt ⎛⎫= ⎪⎝⎭,则142t ≤≤, 221442412y t t t ⎛⎫=-+=-+ ⎪⎝⎭.∴当12t =,即1122x⎛⎫= ⎪⎝⎭,1x =时,min 1y =, 当14t =,即1124x⎛⎫= ⎪⎝⎭,2x =时,max 54y =. 【点睛】本题考查指数函数与对数函数的图象与性质,考查求对数型函数的值域,求值域的方法是用换元法把函数转化为二次函数,然后求解. 24.(1)29-;(2)0 【分析】(1)由幂的运算法则计算; (2)根据对数运算法则计算. 【详解】(1)原式1240.253271101()6(3)13631291000333-=-++-=-++-=-(2)原式2lg32lg52lg 2lg5(1lg 2)(lg 2)10=++++-2lg5lg 2(lg 2lg5)3330=+++-=-= 【点睛】本题考查幂的运算和对数的运算,掌握幂的运算法则和对数运算法则是解题基础. 25.(1)2,3k b =-=;(2){}2x x <-. 【分析】(1)根据指数函数的定义列出方程,求解即可; (2)根据指数函数的单调性解不等式即可; 【详解】解:(1)∵函数()()()331xf x k a b a =++->是指数函数∴31,30k b +=-= ∴2,3k b =-= (2)由(1)得()()1xf x aa =>,则函数()f x 在R 上单调递增()()2743f x f x ->-2743x x ∴->-,解得2x <- 即不等式解集为{}2x x <-; 【点睛】本题主要考查了根据函数为指数函数求参数的值以及根据指数函数的单调性解不等式,属于中档题.26.定义域为(,1)(3,)-∞-+∞,函数值域为R ,减区间是(,1)-∞-,增区间是(3,)+∞.【分析】结合对数函数性质求解. 【详解】由2230x x -->得1x <-或3x >,∴定义域为(,1)(3,)-∞-+∞.由2230x x -->得y R ∈,函数值域为R ,223y x x =--在(,1)-∞-上递减,在(3,)+∞上递增,∴()log 23=-2-3y x x 的减区间是(,1)-∞-,增区间是(3,)+∞. 【点睛】本题考查对数型复合函数的性质,掌握对数函数的性质是解题关键.。
新北师大版高中数学必修一第三单元《指数函数和对数函数》检测题(包含答案解析)
一、选择题1.已知函数()()2log 2xf x m =+,则满足函数()f x 的定义域和值域都是实数集R 的实数m 构成的集合为 ( ) A .{}|0m m =B .{}0|m m ≤C .{}|0m m ≥D .{}|1m m =2.已知函数)()lnf x x =,则120212020a f ⎛⎫= ⎪⎝⎭,20201log 2021b f ⎛⎫= ⎪⎝⎭,()2021log 2020c f =的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>3.已知()f x ,()g x 分别为定义在R 上的偶函数和奇函数,且满足()()2xf xg x +=,若对于任意的[]1,2x ∈,都有()()20f x a g x a -⋅-≤⎡⎤⎡⎤⎣⎦⎣⎦恒成立,则实数a 的取值范围是( ) A .317,44⎡⎤⎢⎥⎣⎦B .155,82⎡⎤⎢⎥⎣⎦ C .15,28⎡⎤⎢⎥⎣⎦D .172,4⎡⎤⎢⎥⎣⎦4.已知定义在R 上的函数()f x 满足(3)()f x f x +=,且当(1x ∈,3]时,4()log f x x =,则(2021)f =( )A .12B .0C .4log 3D .15.已知函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,则52f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( ) A .12-B .-1C .-5D .126.若函数ya >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1 B .2 C .3D .47.函数y =)A .(41)--,B .(41)-,C .(11)-,D .(11]-, 8.已知奇函数()f x 与偶函数()g x 满足()()2x x f x g x a a -+=-+,且()g b a =,则()2f 的值为( )A .2aB .2C .154D .1749.若函数()()212log 45f x x x =-++在区间()32,2m m -+内单调递增,则实数m 的取值范围为( )A .4,33⎡⎤⎢⎥⎣⎦B .4,23⎡⎤⎢⎥⎣⎦C .4,23⎡⎫⎪⎢⎣⎭D .4,3⎡⎫+∞⎪⎢⎣⎭10.设()lg (21)fx x a =-+是奇函数,则使f(x)<0的x 的取值范围是( ).A .(-1,0)B .(0, 1)C .(-∞,0)D .(-∞,0)∪(1,+∞)11.函数()log (3)a f x ax =-在[]13,上单调递增,则a 的取值范围是( ) A .()1+∞, B .()01,C .103⎛⎫ ⎪⎝⎭,D .()3+∞, 12.函数()log 1a f x x =+(且).当(1,0)x ∈-时,恒有()0f x >,有( ).A .()f x 在(,0)-∞+上是减函数B .()f x 在(,1)-∞-上是减函数C .()f x 在(0,)+∞上是增函数D .()f x 在(,1)-∞-上是增函数二、填空题13.下列命题中所有正确的序号是___________. ①函数()13x f x a-=+()1a > 在R 上是增函数;②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4); ③已知()f x =538x ax bx ++-,且()28f -=,则(2)8f =-;④11()122x f x =--为奇函数. 14.已知()f x 是定义在[0,)+∞的函数,满足(1)()f x f x +=-,当[0,1)x ∈时,()3x f x =,则3(log 30)f =________.15.函数12()log (2)f x x =-的定义域为______.16.已知()f x 是定义在R 上的奇函数,且当0x 时,2log (1),01,()31,1,x x f x x x +<⎧=⎨--⎩则方程1()2f x =的所有实根之和为________. 17.方程()()22log 972log 31xx+=++的解为______. 18.方程()()122log 44log 23xx x ++=+-的解为____;19.若函数11x y a+=+()0,1a a >≠恒过点(,)P m n ,则函数()11142x xf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在[],m n 上的最小值是_____.20.已知函数(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩的值域为R ,则实数a 的取值范围是________. 三、解答题21.已知函数()2()log 41xf x kx =++是偶函数. (1)求k 的值;(2)若函数()y f x =的图像与直线y x a =+没有交点,求实数a 的取值范围;(3)设函数()()221f x xx g x m +=+⋅-,[]20,log 3x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值;否则,说明理由.22.已知函数()2221log 2m x f x x-=-(0m >且1m ≠) (1)求()f x 的解析式;(2)判断函数()f x 的奇偶性,并说明理由;(3)若关于x 的方程()1log m f x x =+有解,求m 的取值范围. 23.已知函数()log (1)log (1)a a f x x x =+--,(0a >且1a ≠) (1)求()f x 的定义域;(2)判断()f x 的奇偶性,并予以证明; (3)求使()0f x >的x 取值范围.24.已知函数22()log (23).f x x x =-++(1)求函数()f x 的定义域和值域;(2)写出函数()f x 的单调增区间和减区间(不要求证明). 25.计算下列各式的值: (1)1100.753270.064()160.258---++;(2)53log 425log lg lg 4522++-.26.设函数()log (0,1)a f x x a a =>≠. (1)解不等式(26)(5)f a f a +; (2)已知对任意的实数()23,14m f m m f ⎛⎫++ ⎪⎝⎭恒成立,是否存在实数k ,使得对任意的[1,0]x ∈-,不等式()()142240x x xf f k ++--⋅>恒成立,若存在,求出k 的范围;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】若定义域为实数集R ,则20x m +>对于x ∈R 恒成立,可得0m ≥,若值域为实数集R ,令2x t m =+,则2log y t = 此时需满足2x t m =+的值域包括()0,∞+,可得0m ≤,再求交集即可. 【详解】若()()2log 2xf x m =+定义域为实数集R ,则20x m +>对于x ∈R 恒成立,即2x m >-对于x ∈R 恒成立, 因为20x >,所以20x -<,所以0m ≥, 令2x t m =+,则2log y t =若()()2log 2xf x m =+值域为实数集R ,则2x t m =+的值域包括()0,∞+, 因为t m >,所以0m ≤, 所以0m =, 故选:A 【点睛】关键点点睛:本题的关键点是要找到定义域为R 的等价条件即20x m +>对于x ∈R 恒成立,分离参数m 求其范围,值域为R 的等价条件即2x t m =+可以取遍所有大于0的数,由t m >,所以0m ≤,再求交集.2.D解析:D 【分析】先判断出()f x 在R 上单调递减,再利用指数对数函数的单调性求出120212020,20201log 2021, 2021log 2020的范围,即可根据单调性比较大小.【详解】210x x +->恒成立,()f x ∴定义域为R ,))()lnlnf x x x ===-,其中y x 单调递增,则()f x 单调递减,102021202020120>=,202020201log log 102021<=,2021202120210log 1log 2020log 20211=<<=,b c a ∴>>. 故选:D. 【点睛】关键点睛:本题考查利用函数的单调性比较大小,解题的关键是判断出)()ln f x x =在R 上单调递减,进而可利用单调性比较.3.B解析:B 【分析】利用奇偶性求出()222x x f x -+=,()222x x g x --=,讨论()22x xh x -=+和()g x 的单调性求最值可得()()h x g x >恒成立,则不等式恒成立等价于()()max min g x a h x ≤≤. 【详解】()()2x f x g x +=,()()2x f x g x --+-=∴,()f x 是偶函数,()g x 分是奇函数,()()2x f x g x -=∴-,可得()222x xf x -+=,()222x xg x --=,则不等式为()()1222202x xx x a a --⎡⎤+-⋅--≤⎢⎥⎣⎦,令()22xxh x -=+,令2x t =,由对勾函数的性质可得1y t t=+在[]2,4单调递增,则()22x xh x -=+在[]1,2单调递增,则()()()()min max 5171,224h x h h x h ====, 对于()222x x g x --=,因为2xy =单调递增,2x y -=-单调递增,()g x ∴在[]1,2单调递增,()()()()min max 3151,248g x g g x g ∴====, ()()h x g x ∴>恒成立,则不等式()()0h x a g x a --≤⎡⎤⎡⎤⎣⎦⎣⎦,解得()()g x a h x ≤≤,()()max min g x a h x ∴≤≤,即15582a ≤≤. 故选:B. 【点睛】关键点睛:本题考查不等式的恒成立问题,解题的关键是利用奇偶性求出函数解析式,根据函数的单调性求出最值将不等式等价为()()max min g x a h x ≤≤即可求解.4.A解析:A 【分析】根据题意,由(3)()f x f x +=可得()f x 是周期为3的周期函数,则有(2021)f f =(2),结合函数的解析式计算可得答案. 【详解】根据题意,定义在R 上的函数()f x 满足(3)()f x f x +=,则()f x 是周期为3的周期函数,则(2021)(23673)(2)f f f =+⨯=,又由当(1x ∈,3]时,4()log f x x =,则f (2)41log 22==, 故1(2021)2f =, 故选:A. 【点睛】关键点点睛:根据函数的周期性将(2021)f 化为(2)f ,再利用函数解析式求值是解题关键.5.A解析:A 【分析】根据分段函数解析式,依次计算255log 122f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,23log 2f ⎛⎫ ⎪⎝⎭,即可得选项.【详解】因为函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,所以2253log log 2122f ⎛⎫=<= ⎪⎝⎭,23log 2531222222f f⎡⎤⎛⎫∴=-=-=- ⎪⎢⎥⎝⎭⎣⎦. 故选:A. 【点睛】本题考查根据分段函数求解函数值,关键在于根据解析式分段求解,由内到外,准确认清自变量的所在的范围和适用的解析式.6.C解析:C 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y [0,1]上单调递减,值域是[0,1],所以f (0)1,f (1)=0, 所以a =2, 所log a 56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.7.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C8.C解析:C 【分析】根据奇函数()f x 与偶函数()g x ,由()()2x xf xg x a a -+=-+得到()()2﹣﹣﹣=+xx g x f x a a ,两式相加、相减并结合()g b a =求得()f x 即可.【详解】∵奇函数()f x 与偶函数()g x ,()()()(),-∴=-=f x f x g x g x .又()()2﹣+=+-x x f x g x a a ,①()()2﹣---∴+=+x x f x g x a a ,()()2﹣∴=--+x x g x f x a a .② +①②,得()24g x =,()2g x ∴=.(),2g b a a =∴=. ()22﹣-∴=x x f x . 22115(2)22444f -∴=-=-=. 故选:C. 【点睛】本题主要考查函数奇偶性的综合应用,还考查了运算求解的能力,属于中档题.9.C解析:C 【分析】求得函数()y f x =的定义域,利用复合函数法求得函数()y f x =的单调递增区间,根据题意可得出区间的包含关系,由此可求得实数m 的取值范围. 【详解】解不等式2450x x -++>,即2450x x --<,解得15x -<<,内层函数245u x x =-++在区间()1,2-上单调递增,在区间()2,5上单调递减, 而外层函数12log y u =在定义域上为减函数,由复合函数法可知,函数()()212log 45f x x x =-++的单调递增区间为()2,5,由于函数()()212log 45f x x x =-++在区间()32,2m m -+上单调递增,所以,32232225m m m m -≥⎧⎪-<+⎨⎪+≤⎩,解得423m ≤<.因此,实数m 的取值范围是4,23⎡⎫⎪⎢⎣⎭. 故选:C. 【点睛】本题考查利用对数型复合函数在区间上的单调性求参数,考查计算能力,属于中等题.10.A解析:A 【解析】 试题分析:由()lg (21)fxx a=-+为奇函数,则()()f xf x -=-,可得1a =-,即()lg11f xxx=+-,又()0f x <,即lg 110x x +-<,可变为0111x x <+-<,解得10x -<<.考点:函数的奇偶性,对数函数性质,分式不等式.11.D解析:D 【分析】由题意可得可得1a >,且30a ->,由此求得a 的范围. 【详解】 解:函数()log (3)a f x ax =-在[]13,上单调递增,而函数()3t x ax =-在[]13,上单调递增,根据复合函数的单调性可得1a >,且30a ->,解得3a >,即()3a ∈+∞,故选:D . 【点睛】本题主要考查对数函数的定义域、单调性,复合函数的单调性,属于基础题.12.D解析:D 【解析】试题分析:根据题意,当(1,0)x ∈-时,1(0,1)x +∈,而此时log 10a x +>,所以有01a <<,从而能够确定函数在(,1)-∞-上是增函数,在区间(1,)-+∞上是减函数,故选D .考点:函数的单调性.二、填空题13.①④【分析】根据指数的运算性质且恒成立求出函数图象所过的定点可判断①;根据抽象函数的定义域的求法可判断②;根据奇函数的图象和性质求出可判断③;根据奇函数的定义及判定方法可判断④【详解】解:当时且恒成解析:①④ 【分析】根据指数的运算性质01(0a a =>且1)a ≠恒成立,求出函数图象所过的定点,可判断①;根据抽象函数的定义域的求法,可判断②;根据奇函数的图象和性质,求出()2f ,可判断③;根据奇函数的定义及判定方法,可判断④ 【详解】解:当1x =时,101(0x a a a -==>且1)a ≠恒成立,故f (1)4=恒成立,故函数1()3(0x f x a a -=+>且1)a ≠的图象一定过定点(1,4)P ,故①正确;函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(0,2),故②错误;已知53()8f x x ax bx =++-,且(2)8f -=,则()224f =-,故③错误;11()122xf x =--的定义域为{|0}x x ≠, 且112111()()122212212x x x xf x f x ---=-=-=-=----,故()f x 为奇函数,故④正确; 故答案为:①④ 【点睛】本题以命题的真假判断为载体,考查了指数函数的图象和性质,函数的定义域,函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.14.【分析】利用对数的运算性质得出结合周期性即可得出的值【详解】且则则函数的周期为2故答案为:【点睛】本题主要考查了由抽象函数的周期求函数值涉及了对数的运算属于中档题 解析:109-【分析】利用对数的运算性质得出3310log 303log 9=+,结合周期性,即可得出3(log 30)f 的值. 【详解】33333101010log 30log 27log 27log 3log 999⎛⎫=⨯=+=+ ⎪⎝⎭,且333100log log log 9131=<<= (1)()f x f x +=-,(11)(1)()f x f x f x ∴++=-+=,则(2)()f x f x +=,则函数()f x 的周期为2310log 3333310101010(log 30)21log 1log log 39999f f f f⎛⎫⎛⎫⎛⎫∴=++=+=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为:109- 【点睛】本题主要考查了由抽象函数的周期求函数值,涉及了对数的运算,属于中档题.15.【分析】根据二次根式和对数式有意义的条件得到不等式组求解函数的定义域即可得结果【详解】根据题意可得:解得所以函数的定义域为故答案为:【点睛】该题考查的是有关求函数的问题涉及到的知识点有求给定函数的定 解析:(2,3]【分析】根据二次根式和对数式有意义的条件,得到不等式组求解函数的定义域即可得结果.【详解】 根据题意可得:1220log (2)0x x ->⎧⎪⎨-≥⎪⎩, 解得23x <≤,所以函数12()log (2)f x x =-的定义域为(2,3],故答案为:(2,3].【点睛】该题考查的是有关求函数的问题,涉及到的知识点有求给定函数的定义域,在解题的过程中,注意二次根式和对数式需要满足的条件即可得结果.16.【分析】画出分段函数的图像根据图像结合解析式进行求解【详解】根据分段函数的解析式以及函数为奇函数作图如下:由图容易知因为在区间上关于对称且在区间上关于对称故其与直线的所有交点的横坐标之和为0故所有根 解析:21-【分析】画出分段函数的图像,根据图像,结合解析式,进行求解.【详解】根据分段函数的解析式,以及函数为奇函数,作图如下:由图容易知,因为31y x =--在区间[)1,+∞上,关于3x =对称,且31y x =---+在区间(],1-∞上,关于3x =-对称,故其与直线12y =的所有交点的横坐标之和为0. 故1()2f x =所有根之和,即为当()0,1x ∈时的根, 此时()21log 12x +=,解得21x =. 21.【点睛】本题考查函数图像的交点,涉及函数图像的绘制,函数奇偶性的应用,属函数综合题.17.或【分析】由对数的运算性质化对数方程为关于的一元二次方程求得的值进一步求得值得答案【详解】由得即化为解得:或或故答案为:或【点睛】本题主要考查的是对数方程的求解将对数方程转化为指数方程是解决本题的关 解析:0x =或1x =.【分析】由对数的运算性质化对数方程为关于3x 的一元二次方程,求得3x 的值,进一步求得x 值得答案.【详解】由()()22log 972log 31x x +=++,得 ()()22log 97log 431x x +=+, 即()97431x x +=+,化为()234330x x -⋅+=, 解得:31x =或33x =,0x ∴=或1x =.故答案为:0x =或1x =.【点睛】本题主要考查的是对数方程的求解,将对数方程转化为指数方程是解决本题的关键,考查学生的计算能力,是基础题.18.【分析】直接利用对数的运算法则化简求解即可【详解】解:可得即:解得(舍去)可得经检验是方程的解故答案为:【点睛】本题考查方程的解的求法对数的运算法则的应用考查计算能力解析:2【分析】直接利用对数的运算法则化简求解即可.【详解】解:()()122log 44log 23x x x ++=+-()()1222log 44log log 232x x x +∴+=+-可得()()122log 44log 232x x x ++=-⎡⎤⎣⎦, 即:()144232x x x ++=-, ()223240x x -⋅-=,解得21x =-(舍去)24x =,可得2x =.经检验2x =是方程的解.故答案为:2.【点睛】本题考查方程的解的求法,对数的运算法则的应用,考查计算能力.19.【分析】先利用指数型函数恒过定点问题求定点得到换元令利用二次函数的单调性即可求解【详解】函数恒过点则区间变为由函数令则利用二次函数的单调性当时则函数在上的最小值是故答案为:【点睛】关键点睛:把指数型 解析:34【分析】先利用指数型函数恒过定点问题求定点,得到1,2m n =-=,换元,令11,224x t t ⎛⎫=≤≤ ⎪⎝⎭,利用二次函数的单调性,即可求解. 【详解】函数11x y a +=+()0,1a a >≠恒过点()1,2-,则1,2m n =-=,区间[],x m n ∈变为[]1,2x ∈-,由函数()11142x xf x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭, 令11,224x t t ⎛⎫=≤≤ ⎪⎝⎭, 则()2213124f t t t t ⎛⎫=-+=-+ ⎪⎝⎭, 利用二次函数的单调性, 当12t =时,()min 34f t =, 则函数()11142x x f x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在[],m n 上的最小值是34. 故答案为:34. 【点睛】关键点睛:把指数型复合函数求最值问题转化为二次函数求最值问题是解决本题的关键. 20.【分析】根据的值域为可知需在单调递增且即可【详解】由题意知的值域为故要使的值域为则必有为增函数且所以且解得故答案为:【点睛】本题主要考查了已知分段函数值域求参数范围属于中档题 解析:112⎡⎫-⎪⎢⎣⎭, 【分析】根据()ln (1)f x x x =≥的值域为[0,)+∞,可知()(12)3(1)f x a x a x =-+<需在(,1)-∞单调递增且(1)0f ≥即可.【详解】由题意知()ln (1)f x x x =≥的值域为[0,)+∞,故要使()f x 的值域为R ,则必有()(12)3f x a x a =-+为增函数,且1230a a -+≥,所以120a ->,且1a ≥-,解得112a -≤<. 故答案为:112⎡⎫-⎪⎢⎣⎭, 【点睛】本题主要考查了已知分段函数值域求参数范围,属于中档题.三、解答题21.(1)1-;(2)0a ≤;(3)存在,1m =-.【分析】(1)由(1)(1)f f -=得1k =-,再验证此时()f x 为偶函数;(2)化简()g x ,换元,令2x t =化为关于t 的二次函数,分类讨论对称轴,求出最小值,结合已知最小值可解得结果.【详解】(1)因为函数()2()log 41xf x kx =++是偶函数, 所以(1)(1)f f -=,即()()122log 41log 41k k -+-=++,即2252log log 54k =-2=-, 解得1k =-;当1k =-时,()2()log 41x f x x =+-,()2()log 41x f x x --=++, ()()22()()log 41log 412x x f x f x x ---=+-+-241log 241x x x -+=-+2log 42x x =-220x x =-=,所以()()f x f x -=,所以()f x 为偶函数,所以1k =-符合题题.(2)因为函数()y f x =的图像与直线y x a =+没有交点,所以()2241()()log 412log 4x xx f x x a x a a ⎛⎫+-+=+--=- ⎪⎝⎭21log 104x a ⎛⎫=+-= ⎪⎝⎭无解,而21log 104x ⎛⎫+> ⎪⎝⎭,故0a ≤. (3)()()221f x x x g x m +=+⋅-2log (41)221x x x x m +-+=+⋅-()241214222x x x x x x m m m =++⋅-=+⋅=+⋅22(2)24xm m =+-, 令2x t =,因为[]20,log 3x ∈,所以[1,3]t ∈, 令22()24m m y t =+-,[1,3]t ∈, 当12m -≤,即2m ≥-时,22()24m m y t =+-单调递增,所以y 的最小值为10m +=,解得1m =-; 当32m -≥,即6m ≤-时,22()24m m y t =+-单调递减,所以y 的最小值为2330m +=,解得3m =-(舍); 当132m <-<,即62m -<<-时,y 的最小值为204m -=,解得0m =(舍). 综上所述:1m =-.【点睛】关键点点睛:化简()g x ,换元,令2x t =化为关于t 的二次函数,利用二次函数知识求解是解题关键.22.(1)()1log 1mx f x x +=-;(2)()f x 为奇函数,理由见解析;(3)3m ≥+. 【分析】(1)令21t x =-,采用换元法求解函数解析式;(2)先确定函数的定义域,再由函数奇偶性的定义判断即可;(3)由条件可转化为()11x m x x +=-在()0,1x ∈上有解问题即可. 【详解】(1)令21t x =-,则21x t =+,则()()11log log 211mm t t f t t t ++==-+-, 所以()1log 1mx f x x +=-; (2)由101x x+>-得11x -<<, 又()()()11log log 11m m x x f x f x x x---===---+,所以()f x 为定义域上的奇函数; (3)由110x x -<<⎧⎨>⎩得01x <<, 又1log 1log log 1m m m x x mx x +=+=-,11x mx x+=-在()0,1x ∈上有解,()11x m x x +=-,令()11,2u x =+∈,2132323t m u u u u ==≥=+-+-⎛⎫-++ ⎪⎝⎭,当且仅当u =,所以3m ≥+.【点睛】易错点睛: (1)判断函数的奇偶性一定不要忘记先判断定义域是否关于原点对称;(2)利用基本不等式求解范围,一定要注意满足“一正二定三相等”的条件.23.(1){|11}x x -<<;(2)函数()f x 是奇函数,证明见解析;(3)当1a >时,01x <<;当01a <<时,10x -<<【分析】(1)根据对数的真数为正数列式可解得结果;(2)函数()f x 是奇函数,根据奇函数的定义证明即可;(3)不等式化为log (1)log (1)a a x x +>-后,分类讨论底数a ,根据对数函数的单调性可解得结果.【详解】(1)要使函数数()f x 有意义,则必有1010x x +>⎧⎨->⎩,解得11x -<<, 所以函数()f x 的定义域是{|11}x x -<< .(2)函数()f x 是奇函数,证明如下:∵(1,1)x ∈-,(1,1)x -∈-,()log (1)log (1)a a f x x x -=--+[]log (1)log (1)a a x x =-+--()f x =-,∴函数()f x 是奇函数(3)使()0f x >,即log (1)log (1)a a x x +>-当1a >时,有111010x x x x +>-⎧⎪->⎨⎪+>⎩,解得01x <<,当01a <<时,有111010x x x x +<-⎧⎪->⎨⎪+>⎩,解得10x -<<.综上所述:当1a >时,01x <<;当01a <<时,10x -<<.【点睛】方法点睛:已知函数解析式,求函数定义域的方法:有分式时:分母不为0;有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0; 有指数时:当指数为0时,底数一定不能为0;有根号与分式结合时,根号开偶次方在分母上时:根号下大于0;有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1. 24.(1)定义域为(1,3)-,值域为(,2]-∞(2)递增区间为(1,1)-,递减区间为[1,3)【分析】(1)由2230x x -++>解得结果可得定义域,根据二次函数知识求出真数的值域,根据对数函数的单调性可求得()f x 的值域;(2)在定义域内求出真数的单调区间,根据底数大于1可得函数()f x 的单调区间.【详解】(1)由函数有意义可得2230x x -++>,即2230x x --<,解得13x,所以函数()f x 的定义域为(1,3)-, 因为13x ,所以2223(1)4x x x -++=--+(0,4]∈,所以()(,2]f x ∈-∞,即函数()f x 的值域为(,2]-∞.(2)因为函数()f x 的定义域为(1,3)-,且函数2y x 2x 3=-++在(1,1)-上递增,在(1,3)上递减,又对数函数的底数为21>,所以函数()f x 的递增区间为(1,1)-,递减区间为[1,3).【点睛】方法点睛:已知函数解析式,求函数定义域的方法:有分式时:分母不为0;有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0; 有指数时:当指数为0时,底数一定不能为0;有根号与分式结合时,根号开偶次方在分母上时:根号下大于0;有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1. 25.(1)10 (2)0【分析】(1)利用指数幂的运算性质求解即可;(2)利用对数的运算性质求解即可.【详解】解:(1)1100.753270.064()160.258---++()11333244211254-⎡⎤⎛⎫⎛⎫=-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 51182210=(2)53log 425log lg lg 4522++- 34223log 2log 2lg 5lg 22lg 24=-+-+-()331lg5lg 244=-++- 331144=-+- 0=【点睛】本题考查指数幂的运算,考查对数的运算.26.(1)(0,1)[2,)a ∈⋃+∞(2)实数k 不存在,详见解析【分析】(1)分类讨论,利用对数函数的单调性,将不等式具体化,解不等式即可;(2)判断函数()f x 为增函数,将不等式具体化,再分离参数求最值,即可得出结论.【详解】解:(1)当01a <<时,有2650a a +>,解得02a <≤,即(0,1)∈a ;当1a >时,有0265a a <+,解得2a ,即[2,)a ∈+∞.综上可知,(0,1)[2,)a ∈⋃+∞.(2)由于221331244m m m ⎛⎫++=++ ⎪⎝⎭, 且()2314f m m f ⎛⎫++ ⎪⎝⎭,可知()f x 为增函数. ()()142240x x x f f k ++--⋅>,即()()14224x x x f f k ++>-⋅,则有14224x x x k ++>-⋅在[1,0]-上恒成立, 即1342x x k +<⋅+在[1,0]-上恒成立,令12,12x t ⎡⎤=∈⎢⎥⎣⎦,设2()32,()g t t t g t =+在1,12⎡⎤⎢⎥⎣⎦上单调递增,则min 17()24g t g ⎛⎫== ⎪⎝⎭,即74k <. 又由于[1,0]x ∈-时,240x k -⋅>恒成立,解得2k >,故符合题意的实数k 不存在.【点睛】本题考查对数函数的单调性、恒成立问题的转化分析、指数函数与二次函数的复合函数的最值问题.。
(压轴题)高中数学必修一第三单元《指数函数和对数函数》测试题(包含答案解析)(3)
一、选择题1.设a ,b ,c 为正数,且3a =4b =6c ,则有( )A .111c a b =+ B .221c a b =+ C .122c a b =+ D .212c a b =+ 2.设()|lg |f x x =,且0a b c <<<时,有()()()f a f c f b >>,则( )A .(1)(1)0a c -->B .1ac >C .1ac =D .01ac <<3.已知1311531log ,log ,363a b c π-===,则,,a b c 的大小关系是( )A .b a c <<B .a c b <<C .c b a <<D .b c a <<4.函数()212()log 4f x x =-的单调递增区间为( ). A .(0,+∞)B .(-,0)C .(2,+∞)D .(-,-2)5.一种放射性元素最初的质量为500g ,按每年10%衰减.则这种放射性元素的半衰期为( )年.(注:剩余质量为最初质量的一半,所需的时间叫做半衰期),(结果精确到0.1,已知lg 20.3010=,lg30.4771=)A .5.2B .6.6C .7.1D .8.36.若函数ya >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1B .2C .3D .47.设52a -=,5log 2b =,8log 5c =,则( ) A .a b c <<B .b c a <<C .c b a <<D .c a b <<8.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier ,1550-1617年).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现. 比如,计算64×256的值,就可以先查第一行的对应数字:64对应6,256对应8,然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384,按照这样的方法计算:16384×32768=( )A .134217728B .268435356C .536870912D .5137658029.已知()243,1log 2,1a x ax x f x x a x ⎧-+<=⎨+≥⎩满足对任意12x x ≠,都有()()12120f x f x x x -<-成立,那么a 的取值范围是( )A .10,2⎛⎤ ⎥⎝⎦B .1,12⎡⎫⎪⎢⎣⎭C .12,23⎡⎤⎢⎥⎣⎦D .2,13⎡⎫⎪⎢⎣⎭10.函数()22x xxf x -=+的大致图象为( ) A . B .C .D .11.如果函数(0,1)x y a a a =>≠的反函数是增函数,那么函数log (1)a y x =-+的图象大致是( )A .B .C .D .12.实数,a b 满足2510a b ==,则下列关系正确的是( ) A .212a b+= B .111a b+= C .122a b+= D .1212a b += 二、填空题13.设函数123910()lg 10x x x x x af x +++++=,其中a 为实数,如果当(,1]x ∈-∞时()f x 有意义,则a 的取值范围是________.14.定义{},,max ,,x x y x y y x y≥⎧=⎨<⎩,设{}()max ,log xa f x a a x=--(),1x R a +∈>.则不等式()2f x ≥的解集是_____________.15.若函数()()20.2log 1f x kx kx =-+的定义域是R ,则实数k 的取值范围是______.16.设log c a 、log c b 是方程2530x x +-=的两个实根,则log b ac =______.17.若幂函数()2()57m f x m m x =-+在R上为增函数则1log 2log 2lg5lg4mm m+-=_____.18.设实数x 满足01x <<,且2log 4log 1x x -=,则x =______.19.设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩,则满足()2f x ≤的x 的取值范围是_______________.20.设函数()122,12log ,1x x f x x x +⎧≤=⎨->⎩,若()()04f f x =则0x ______.三、解答题21.已知函数()x x f x a k a -=-⋅(0a >且1a ≠)是定义域为R 的奇.函数,且3(1)2f =. (1)求k 的值,并判断()f x 的单调性(不要求证明); (2)是否存在实数()2,3mm m >≠,使函数()()22(2)log 1x xm g x a a mf x --⎡⎤=+-+⎣⎦在[]1,2上的最大值为0?如果存在,求出实数m 所有的值;如果不存在,请说明理由.22.已知函数22()log (23).f x x x =-++(1)求函数()f x 的定义域和值域;(2)写出函数()f x 的单调增区间和减区间(不要求证明). 23.已知函数()()()ln 1ln 1f x x k x =++-,0k ≠. (1)当()f x 分别为奇函数和偶函数时,求k 的值;(2)若()f x 为奇函数,证明:对任意的m 、()1,1n ∈-,()()1m n f m f n f mn +⎛⎫+=⎪+⎝⎭.24.(1)已知12x y +=,9xy =,且x y <,求11221122x y x y-+值;(2)求值:2(lg 2)lg5lg 20+⋅.25.已知函数()2()log log 2(0,1)a a f x x x a a =-->≠.(1)当2a =时,求(2)f ; (2)求解关于x 的不等式()0f x >;(3)若[2,4],()4x f x ∀∈≥恒成立,求实数a 的取值范围.26.已知函数()442xx f x =+;(1)若01a <<,求()()1f a f a +-的值; (2)求12320202021202120212021f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先根据指对互化求出,,a b c ,再根据换底公式表示111,,a b c,最后根据对数运算法则化简. 【详解】设3a =4b =6c =k , 则a =log 3k , b =log 4k , c =log 6k , ∴311log 3log k a k ==, 同理1log 4k b =,1log 6k c=, 而11log 2,log 3log 22k k k b c ==+, ∴1112c a b =+,即221c a b =+. 故选:B 【点睛】本题考查指对数运算,换底公式,以及对数运算的性质,关键是灵活应用对数运算公式,公式1log log a b b a=是关键. 2.D解析:D 【分析】作出()f x 的图象,利用数形结合即可得到结论. 【详解】∵函数()|lg |f x x =,作出()f x 的图象如图所示,∵0a b c <<<时,有()()()f a f c f b >>,∴0<a <1,c >1,即f (a )=|lga |=﹣lga ,f (c )=|lgc |=lgc ,∵f (a )>f (c ),∴﹣lga >lgc ,则lga +lgc =lgac <0,则01ac <<. 故选:D .【点睛】关键点点睛:利用对数函数的图象和性质,根据条件确定a ,c 的取值范围.3.D解析:D 【分析】根据指数函数和对数函数性质,借助0和1进行比较. 【详解】由对数函数性质知151log 16>,13log 03π<,由指数函数性质知13031-<<,∴b c a <<. 故选:D . 【点睛】方法点睛:本题考查指数式、对数式的大小比较,比较指数式大小时,常常化为同底数的幂,利用指数函数性质比较,或化为同指数的幂,利用幂函数性质比较,比较对数式大小,常常化为同底数的对数,利用对数函数性质比较,如果不能化为同底数或同指数,或不同类型的数常常借助中间值如0或1比较大小.4.D解析:D 【分析】求出函数的定义域,根据对数型复合函数的单调性可得结果. 【详解】函数()212()log 4f x x =-的定义域为()(),22,-∞-+∞,因为函数()f x 是由12log y u =和24u x =-复合而成,而12log y u =在定义域内单调递减,24u x =-在(),2-∞-内单调递减,所以函数()212()log 4f x x =-的单调递增区间为(),2-∞-,故选:D. 【点睛】易错点点睛:对于对数型复合函数务必注意函数的定义域.5.B解析:B 【分析】先根据题意列出关于时间的方程,然后利用指对互化以及对数换底公式并结合所给数据可计算出半衰期. 【详解】设放射性元素的半衰期为x 年,所以()500110%250x-=, 所以()1110%2x-=,所以0.91log 2x =,所以109log 2x =, 所以lg 2lg10lg9x =-,所以lg 212lg 3x =-,所以0.3010120.4771x =-⨯,所以 6.6x ≈,故选:B. 【点睛】思路点睛:求解和对数有关的实际问题的思路: (1)根据题设条件列出符合的关于待求量的等式;(2)利用指对互化、对数运算法则以及对数运算性质、对数换底公式求解出待求量的值.6.C解析:C 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y [0,1]上单调递减,值域是[0,1],所以f (0)1,f (1)=0, 所以a =2, 所log a 56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.7.A【分析】由551112,2332log -<<<,8152log >,即可得出a ,b ,c 的大小关系. 【详解】52112243--<=<,11325551152532log log log =<<=,12881582log log >=,a b c ∴<<.故选:A 【点睛】本题主要考查了指数函数、对数函数的单调性,对数的运算性质,还考查了转化求解问题的能力,属于中档题.8.C解析:C 【分析】先找到16384与32768在第一行中的对应数字,进行相加运算,再找和对应第二行中的数字即可. 【详解】由已知可知,要计算16384×32768,先查第一行的对应数字: 16384对应14,32768对应15,然后再把第一行中的对应数字加起来:14+15=29,对应第二行中的536870912, 所以有:16384×32768=536870912, 故选C. 【点睛】本题考查了指数运算的另外一种算法,关键是认真审题,理解题意,属于简单题.9.C解析:C 【分析】判断函数的单调性.利用分段函数解析式,结合单调性列出不等式组求解即可. 【详解】解:243,1log 2,1a x ax x f x x a x ⎧-+<=⎨+≥⎩()满足对任意12x x ≠,都有()()12120f x f x x x --<成立, 所以分段函数是减函数,所以:0121442a a a a<<⎧⎪≥⎨⎪-≥⎩,解得12,23a ⎡⎤∈⎢⎥⎣⎦.故选C . 【点睛】本题考查分段函数的单调性的应用,函数的单调性的定义的理解,考查转化思想以及计算10.B解析:B 【分析】根据函数为奇函数排除C ,取特殊值排除AD 得到答案. 【详解】当()22x xx f x -=+,()()22x x xf x f x ---==-+,函数为奇函数,排除C ; 2221(2)22242f -=<=+,排除A ;3324(3)22536f -==+,4464(4)224257f -==+,故()()34f f >,排除D.故选:B. 【点睛】本题考查了函数图象的识别,意在考查学生的计算能力和识图能力,取特殊值排除是解题的关键.11.C解析:C 【分析】由题意求得1a >,再结合对数函数的图象与性质,合理排除,即可求解. 【详解】因为函数(0,1)xy a a a =>≠的反函数是增函数,可得函数xy a =为增函数,所以1a >, 所以函数log (1)a y x =-+为减函数,可排除B 、D ; 又由当0x =时,log (01)0a y =-+=,排除A. 故选:C. 【点睛】本题主要考查了指数函数和对数函数的图象与性质的应用,其中解答中熟记指数函数和对数函数的图象与性质,以及指数函数与对数的关系是解答的关键,着重考查推理与运算能力.12.B解析:B 【分析】根据指数式与对数的互化公式,求得11lg2,lg5a b==,再结合对数的运算公式,即可求解. 【详解】因为2510a b ==,可得25log 10,log 10a b ==,所以11lg2,lg5a b==,则11lg 2lg5lg101a b +=+==. 故选:B. 【点睛】本题主要考查指数式与对数的互化,以及对数的运算公式的化简、求值,其中解答中熟记指数式与对数的互化公式,以及对数的运算公式,准确运算是解答的关键,着重考查运算与求解能力.二、填空题13.【分析】由题意可得对任意的恒成立分离变量后利用函数的单调性求得在上的范围即可得解【详解】根据题意对任意的恒成立即恒成立则因为函数在上为增函数所以故答案为:【点睛】本题考查对数函数的定义域指数函数的单 解析:[ 4.5,)-+∞【分析】由题意可得对任意的(,1]x ∈-∞,10210x x a ⋅+⋯++>恒成立,分离变量a 后利用函数的单调性求得981()101010x x xg x ⎛⎫⎛⎫⎛⎫=---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在(,1]x ∈-∞上的范围,即可得解. 【详解】根据题意对任意的(,1]x ∈-∞,123910010x x x x x a+++++>恒成立,即10210x x a ⋅+⋯++>恒成立,则981101010x x xa ⎛⎫⎛⎫⎛⎫>---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为函数981()101010xxxg x ⎛⎫⎛⎫⎛⎫=---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在(,1]x ∈-∞上为增函数,所以111981 4.5101010a ⎛⎫⎛⎫⎛⎫---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:[ 4.5,)-+∞【点睛】本题考查对数函数的定义域,指数函数的单调性,不等式恒成立问题,属于基础题.14.【分析】利用分段函数列出不等式求解即可【详解】解:在上为单调递增函数又当时当时不等式或解得或故答案为:【点睛】本题考查分段函数的应用函数值的求法考查转化思想以及计算能力 解析:21(0,][log (2),)a a a++∞ 【分析】利用分段函数列出不等式求解即可.【详解】解:()log log xxa a a a x a a x ---=-+,1a >,()log xa g x a a x =-+在()0,∞+上为单调递增函数,又1(1)log 10a g a a =-+=, 当()0,1x ∈时,log 0xa a a x -+<,当()1,x ∈+∞时,log 0xa a a x -+>,,1()log ,01x a a a x f x x x ⎧->∴=⎨-<<⎩不等式()2f x ≥,21x a a x ⎧-≥∴⎨>⎩或log 201a x x -≥⎧⎨<<⎩,解得log (2)a x a ≥+或210x a <≤, 故答案为:21(0,][log (2),)a a a ++∞. 【点睛】本题考查分段函数的应用,函数值的求法,考查转化思想以及计算能力.15.【分析】由题可知恒成立再分情况讨论即可【详解】由题可知恒成立当时成立当时当时不等式不恒成立故实数k 的取值范围是故答案为:【点睛】本题主要考查了对数的定义域以及二次函数恒成立问题属于中等题型 解析:[)0,4【分析】由题可知210kx kx -+>恒成立.再分情况讨论即可. 【详解】由题可知210kx kx -+>恒成立.当0k =时成立.当0k >时,24004k k k ∆=-<⇒<<. 当k 0<时,不等式不恒成立. 故实数k 的取值范围是[)0,4. 故答案为:[)0,4 【点睛】本题主要考查了对数的定义域以及二次函数恒成立问题.属于中等题型.16.【分析】根据题意由韦达定理得进而得再结合换底公式得【详解】解:因为、是方程的两个实根所以由韦达定理得所以所以所以故答案为:【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算其中两个公式的转化是解析:37±【分析】根据题意由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-,进而得()2log log 37c c a b -=,再结合换底公式得1log log b acc b a==【详解】解:因为log c a 、log c b 是方程2530x x +-=的两个实根, 所以由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-, 所以()()22log log log log 4log log 37c c c c c c a b a b a b -=+-⋅=,所以log log c c b a -=所以11log log log log b c c acc b b a a===-故答案为: 【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算,其中()()22log log log log 4log log c c c c c c a b a b a b -=+-⋅,1log log b acc b a=两个公式的转化是核心,考查运算求解能力,是中档题.17.3【分析】利用幂函数的定义与性质求得将代入利用对数的运算法则化简得解【详解】在上为增函数解得(舍去)故答案为:3【点睛】正确理解幂函数的定义求得的值和熟练运用对数恒等式是关键解析:3 【分析】利用幂函数的定义与性质求得3m =,将3m =代入,利用对数的运算法则化简得解. 【详解】()()257m f x m m x =-+在R 上为增函数,25710m m m ⎧-+=∴⎨>⎩,解得3,2m m ==(舍去),1log 2log 2lg 5lg 4mm m∴+-=31log 23l l og 3g1003+=故答案为:3.【点睛】正确理解幂函数的定义求得m 的值和熟练运用对数恒等式是关键.18.【分析】利用换底公式和对数运算法则可将方程转化为解方程求得或进而结合的范围求得结果【详解】即解得:或或故答案为:【点睛】本题考查对数方程的求解问题涉及到对数运算法则和换底公式的应用;考查基础公式的应解析:14【分析】利用换底公式和对数运算法则可将方程转化为222log 1log x x-=,解方程求得2log 2x =-或2log 1x =,进而结合x 的范围求得结果.【详解】22log 42log 2log x x x ==2222log 4log log 1log x x x x∴-=-= 即()222log log 20x x +-=,解得:2log 2x =-或2log 1x = 14x ∴=或2x = 01x << 14x ∴=故答案为:14【点睛】本题考查对数方程的求解问题,涉及到对数运算法则和换底公式的应用;考查基础公式的应用能力.19.【分析】根据分段函数分段解不等式最后求并集【详解】当时因为解得:∴当时解得:所以综上原不等式的解集为故答案为:【点睛】本题主要考查了解分段函数不等式涉及指数与对数运算属于基础题 解析:[0,)+∞【分析】根据分段函数,分段解不等式,最后求并集. 【详解】当1x ≤时,1()2xf x -=,因为11x -≤,解得:0x ≥,∴01x ≤≤ ,当1x >时,2()1log 2f x x =-≤,2log 1x ≥-,解得:12x ≥,所以1x >, 综上,原不等式的解集为[)0,+∞. 故答案为:[)0,+∞. 【点睛】本题主要考查了解分段函数不等式,涉及指数与对数运算,属于基础题.20.或2【分析】已知复合函数值求自变量从外层求出里层设求出对应的的值再由求出即可【详解】令则当若若当(舍去)故答案为:或【点睛】本题考查由函数值求自变量涉及到简单指数和对数方程考查分类讨论思想和数学计算解析:1-或2 【分析】已知复合函数值求自变量,从外层求出里层,设0()t f x =,求出()4f t =对应的t 的值,再由0()t f x =求出0x 即可. 【详解】令0()t f x =,则()4f t =,当11,24,1tt t +≤==,若010001,()21,1x x f x x +≤===-,若00202001,()2log 1,log 1,2x f x x x x >=-===, 当2211,()2log 4,log 2,4t f t t t t >=-==-=(舍去) 故答案为:1-或2. 【点睛】本题考查由函数值求自变量,涉及到简单指数和对数方程,考查分类讨论思想和数学计算能力,属于中档题.三、解答题21.(1)1k =;()f x 为R 上的增函数;(2)存在,176m =. 【分析】(1)根据奇函数的性质和()312f =,代入求函数的解析式,并判断单调性;(2)由(1)可知()()2(2)2log 22221xx x x m g x m ---=+--+⎡⎤⎣⎦,并通过换元22x x t -=-,转化为()()()22log 3m g t t mt -=-+,讨论底数21m ->,和021m <-<两种情况,并讨论内层函数的对称轴和定义域的关系,结合外层函数的单调性,确定内层函数的最值,最后确定函数的最大值求m . 【详解】(1)∵函数()x xf x a k a -=-⋅(0a >且1a ≠)是定义域为R 的奇函数,0R ∈,∴(0)0f =,10k -=,∴1k =. 因为3(1)2f =,∴132a a -=,22320a a --=,2a =或12a =-, ∵0a >,∴2a =,()22x x f x -=-,因为2x 为增函数,2x -为减函数,所以()f x 为R 上的增函数.(Ⅱ)()()22(2)log 1xx m g x aa mf x --⎡⎤=+-+⎣⎦()22(2)log 22221x x x x m m ---=+--+⎡⎤⎣⎦()()2(2)log 22223x x x x m m ---⎡⎤=---+⎢⎥⎣⎦, 设22x x t -=-,则()()22222233x x x x m t mt -----+=-+,∵[]1,2x ∈,∴315,24⎡⎤∈⎢⎥⎣⎦t ,记()23h t t mt =-+, (1)当021m <-<,即23m <<时,要使()g x 最大值为0,则要min ()1h t =,∵22()()(3)24m m h t t =-+-,312m <<,315,24⎡⎤∈⎢⎥⎣⎦t ,∴()h t 在315,24⎡⎤⎢⎥⎣⎦上单调递增,∴min 3213()()242h t h m ==-,由min ()1h t =,得176m =,因17(2,3)6∈,所以176m =满足题意. (2)当21m ->,即3m >时,要使()g x 最大值为0,则要max ()1h t =,且min ()0h t >. ∵322m >, ①若321228m <≤ ,则max 1522515()()314164h t h m ==-+=,25760m =,又2min ()()3024m m h t h ==->,∴3m <<25760>∴25760m =不合题意. ②若2128m > ,即214m >,则max 32132132121()()02424248h t h m ==-<-⨯=-<,max ()1h t ≠,综上所述,只存在176m =满足题意. 【点睛】关键点点睛:本题考查对数型复合函数根据最值,求参数的取值范围,属于中档题型,本题的第一个关键点是换元化简函数,设22x x t -=-,则()()22222233x x x x m t mt -----+=-+,第二个关键点是需分析外层函数的单调性,并讨论内层函数的对称轴和定义域的关系.22.(1)定义域为(1,3)-,值域为(,2]-∞(2)递增区间为(1,1)-,递减区间为[1,3) 【分析】(1)由2230x x -++>解得结果可得定义域,根据二次函数知识求出真数的值域,根据对数函数的单调性可求得()f x 的值域;(2)在定义域内求出真数的单调区间,根据底数大于1可得函数()f x 的单调区间.【详解】(1)由函数有意义可得2230x x -++>,即2230x x --<, 解得13x ,所以函数()f x 的定义域为(1,3)-, 因为13x,所以2223(1)4x x x -++=--+(0,4]∈,所以()(,2]f x ∈-∞,即函数()f x 的值域为(,2]-∞.(2)因为函数()f x 的定义域为(1,3)-,且函数2y x 2x 3=-++在(1,1)-上递增,在(1,3)上递减,又对数函数的底数为21>,所以函数()f x 的递增区间为(1,1)-,递减区间为[1,3). 【点睛】方法点睛:已知函数解析式,求函数定义域的方法: 有分式时:分母不为0;有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0; 有指数时:当指数为0时,底数一定不能为0;有根号与分式结合时,根号开偶次方在分母上时:根号下大于0; 有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1. 23.(1)()f x 为奇函数时,1k =-,()f x 为偶函数时,1k =;(2)证明见解析. 【分析】(1)求出函数的定义域,利用函数的奇偶性的定义列等式即可求得k 的值; (2)根据函数解析式分别求得()()+f m f n ,1m n f mn +⎛⎫⎪+⎝⎭,即可证明结论.【详解】(1)由1010x x +>⎧⎨->⎩,解得11x -<<,得函数()f x 的定义域为()1,1-,当()f x 为奇函数时,()()0f x f x +-=,即()()()()ln 1ln 1ln 1ln 10x k x x k x ++-+-++=, 整理可得()()()1ln 1ln 10k x x +-++=⎡⎤⎣⎦, 因为上式恒成立,所以10k +=,所以1k =-; 当()f x 为偶函数时,()()0f x f x --=,即()()()()ln 1ln 1ln 1ln 10x k x x k x ++----+=, 整理得()()()1ln 1ln 10k x x -+--=⎡⎤⎣⎦, 因为上式恒成立,所以10k -=,所以1k =.综上,当()f x 为奇函数时,1k =-,当()f x 为偶函数时,1k =;(2)由(1)知,1k =-,()()()1ln 1ln 1ln1xf x x x x+=+--=-, ()()()()()()1111ln ln ln 1111m n m nf m f n m n m n +++++=+=----,()()()()11111ln ln ln 111111m nm n m n mn m n mn f m n mn mn m n m n mn++++++++⎛⎫+=== ⎪+++----⎝⎭-+, 所以()()1m n f m f n f mn +⎛⎫+= ⎪+⎝⎭.【点睛】方法点睛:已知函数的奇偶性求参数值一般思路是:(1)利用函数的奇偶性的定义转化为()()f x f x -=(偶函数)或()()f x f x -=-(奇函数),从而建立方程,使问题获得解决;(2)取一对互为相反数的自变量的函数值,建立等式求出参数的值,但同时要对此时函数的奇偶性进行验证. 24.(1)3-2)1. 【分析】(1)求出x y -的值,再化简11221122x y x y-+即得解;(2)利用对数的运算法则化简求解. 【详解】(1)因为222()()41249108x y x y xy -=+-=-⨯=,又x y <,所以x y -=-所以1111222221122()3x y x y x y x y--====--+. (2)原式22(lg 2)lg5(1lg 2)(lg 2)lg5lg 2lg5=+⋅+=+⋅+lg2(lg2lg5)lg5lg2lg51=++=+=.【点睛】关键点点睛:解答指数对数运算题的关键是通过观察式子的特点,再熟练利用指数对数的运算法则和性质求解.25.(1)2-;(2)当1a >时,()0f x >的解集为()210,,a a ⎛⎫+∞ ⎪⎝⎭,当01a <<时;()210,,a a ⎛⎫+∞ ⎪⎝⎭(3)(31,2⎫⎤⎪⎦⎪⎣⎭.【分析】(1)将2a =直接代入解析式计算即可.(2)将()2()log log 20a a f x x x =-->整理为()()log 2log 10a a x x -+>,解得log 1<-a x 或log 2a x >,再对a 讨论即可解不等式.(3)将问题转化为min ()4f x ≥,分别分1a >和01a <<讨论,求()f x 最小值,令其大于4,即可求解.【详解】(1)当2a =时,()()222log log 2f x x x =--()21122f ∴=--=-(2)由()0f x >得:()()()2log log 2log 2log 10a a a a x x x x --=-+>log 1a x ∴<-或log 2a x >当1a >时,解不等式可得:10x a<<或2x a > 当01a <<时,解不等式可得:1x a>或20x a << 综上所述:当1a >时,()0f x >的解集为()210,,a a ⎛⎫+∞ ⎪⎝⎭;当01a <<时,()0f x >的解集为()210,,aa ⎛⎫+∞ ⎪⎝⎭(3)由()4f x ≥得:()()()2log log 6log 3log 20a a a a x x x x --=-+≥log 2a x ∴≤-或log 3a x ≥①当1a >时,()max log log 4a a x =,()min log log 2a a x =2log 42log a a a -∴≤-=或3log 23log a a a ≥=,解得:1a <≤②当01a <<时,()max log log 2a a x =,()min log log 4a a x =2log 22log a a a -∴≤-=或3log 43log a a a ≥=1a ≤<综上所述:a 的取值范围为(3,11,22⎫⎤⎪⎦⎪⎣⎭【点睛】本题主要考查了复合函数的单调性、考查函数的最值和恒成立问题、考查分类讨论的思想,属于中档题. 26.(1)1;(2)1010. 【分析】(1)根据4()42xx f x =+的表达式,求出()(),1f a f a -的表达式,再进行分式通分运算,可得()()11f a f a +-=. (2)设12320202021202120212021S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再把S 的表达式运用加法交换律改写成20201202120212021202321S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,把两式相加利用()(1)1f x f x +-=求出S 的值.【详解】 (1)4()42xxf x =+,x ∈R . ∴()()1f a f a +-1144444442424224aaaa a a a a--=+=+++++4214224a a a=+=++,(2)设12320202021202120212021S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则 20201202120212021202321S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 两式相加得:12[][][]92022020220120201202120212022120211021S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭由(1)得:20202201109211,1,,221202120212021202120220101f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ∴220201010S S =⇒=.【点睛】本题考查指数幂运算,分式运算,利用函数的性质进行式子求值,考查运算求解能力.。
(常考题)北师大版高中数学必修一第三单元《指数函数和对数函数》检测题(含答案解析)
一、选择题1.下列等式成立的是( ) A .222log (35)log 3log 5+=+ B .2221log 3log 32-= C .222log 3log 5log (35)⋅=+D .231log 3log 2=2.形如221n+(n 是非负整数)的数称为费马数,记为F n 数学家费马根据F 0,F 1,F 2,F 3,F 4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F 5不是质数,请你估算F 5是( )位数(参考数据:lg2≈0.3010). A .8B .9C .10D .113.若函数()()23log 5f x x ax a =+++,()f x 在区间(),1-∞上是递减函数,则实数a的取值范围为( ) A .[]3,2--B .[)3,2--C .(],2-∞-D .(),2-∞-4.已知0.20.33log 0.2,3,0.2a b c ===,则( )A .a b c <<B .a c b <<C .c a b <<D .b c a <<5.已知:23log 2a =,42log 3b =,232c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .c b a <<D .c a b <<6.已知函数()()()2331log 6log 1y x a a x x =--++在[]0,1x ∈内恒为正值,则实数a 的取值范围是( ) A.13a <<B.a >C.13a <<D.a >7.已知函数()f x 是定义在R 上的单调递增的函数,且满足对任意的实数x 都有[()3]4x f f x -=,则()()f x f x +-的最小值等于( ).A .2B .4C .8D .128.函数1()1x f x a +=-恒过定点( )A .(1,1)B .(1,1)-C .(1,0)-D .(1,1)--9.已知函数()f x 满足()()11f x f x -=+,当(],1-∞时,函数()f x 单调递减,设()41331=log ,log 3,92a f b f c f log ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<10.已知235log log log 0x y z ==<,则2x 、3y 、5z的大小排序为A .235x y z <<B .325y x z <<C .523z x y <<D .532z y x<<11.已知函数()y f x =与x y e =互为反函数,函数()y g x =的图象与()y f x =的图象关于x 轴对称,若()1g a =,则实数a 的值为 A .e - B .1e-C .eD .1e12.设()lg (21)fx xa=-+是奇函数,则使f(x)<0的x 的取值范围是( ).A .(-1,0)B .(0, 1)C .(-∞,0)D .(-∞,0)∪(1,+∞)二、填空题13.若3763,a b ==则21a b+的值为_______ 14.已知()f x 是定义在[0,)+∞的函数,满足(1)()f x f x +=-,当[0,1)x ∈时,()3x f x =,则3(log 30)f =________.15.若()2lg 2lg lg x y x y -=+,则2x y=______.16.函数1()a x f x x a -=+(0a >,且1a ≠)的图像恒过定点,其坐标为_____________.17.函数()213log 253y x x =--的单调递增区间为_______. 18.函数y =x 2与函数y =x ln x 在区间(0,+∞)上增长较快的一个是________ .19.已知3(1)4,1()1,1a a x a x f x og x x -+<⎧=⎨≥⎩是R 上的减函数,那么a 的取值范围是__________. 20.如果()231log 2log 9log 64x x x f x =-+-,则使()0f x <的x 的取值范围是______.三、解答题21.已知函数()log (1)log (1)a a f x x x =+--,(0a >且1a ≠) (1)求()f x 的定义域;(2)判断()f x 的奇偶性,并予以证明; (3)求使()0f x >的x 取值范围. 22.已知函数122()log 2xf x x-=+. (1)求函数()f x 的定义域,并判断其奇偶性;(2)判断()f x 在其定义域上的单调性,并用单调性定义证明. 23.已知函数()x f x a =(0a >且1a ≠),满足(2)(1)6f f +=; (1)求()f x 的解析式;(2)若方程()(2),[0,1]m f x f x x =-∈有解,求m 的取值范围;(3)已知()g x 为奇函数,()h x 为偶函数,函数()()()f x g x h x =+;若存在[1,2]x ∈使得2()(2)0ag x h x +≤,求a 的取值范围.24.计算下列各式的值:(1)0113410.027167-⎛⎫-+ ⎪⎝⎭(2)3ln 2145log 2lg 4lg 82e +++ 25.(Ⅰ))2321812-⎛⎫-+ ⎪⎝⎭;(Ⅱ)解关于x 的不等式:12aa x >--. 26.设函数()log (0,1)a f x x a a =>≠. (1)解不等式(26)(5)f a f a +; (2)已知对任意的实数()23,14m f m m f ⎛⎫++ ⎪⎝⎭恒成立,是否存在实数k ,使得对任意的[1,0]x ∈-,不等式()()142240x x xf f k ++--⋅>恒成立,若存在,求出k 的范围;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据对数的运算法则和换底公式判断. 【详解】22222log 3log 5log (35)log 15log (35)+=⨯=≠+,A 错误;22221log 32log 3log 32-=-≠,B 错误;222log 3log 5log (35)⋅≠+,C 错误; 3233log 31log 3log 2log 2==,D 正确. 故选:D .关键点点睛:本题考查对数的运算法则.log log log ()a a a M N MN +=,log log n a a b n b =,一般log ()log log a a a M N M N +≠+.log ()log log a a a MN M N ≠⋅, 1log log n a a b b n≠. 2.C解析:C 【分析】根据所给定义表示出9.632951010F =⨯,进而即可判断出其位数. 【详解】 根据题意,53223232lg232lg2320.30109.6320.6329521212101010101010F ⨯=+=+≈==≈==⨯,因为0.63211010<<,所以5F 的位数是10. 故选:C 【点睛】关键点睛:解答本题的关键是转化成对数运算,即3232lg 2210=.3.A解析:A 【分析】判断复合函数的单调性,首先要分清楚内外层函数,根据复合函数“同增异减”原则,同时内层函数的值域要满足外层函数的定义域要求即可. 【详解】由题意知,()f x 在区间(),1-∞上是递减函数, 由()()23log 5f x x ax a =+++可知,此复合函数外层函数为:()3log f x x =,在定义域上为增函数, 内层函数为()25h x x ax a =+++,要使()f x 在区间(),1-∞上是递减函数, 根据复合函数“同增异减”原则,内层函数为()h x 在区间(),1-∞上必须是递减函数, 同时须保证最大值()10h ≥,所以()1210a h ⎧-≥⎪⎨⎪≥⎩,解得32a --≤≤.【点睛】易错点睛:判断复合函数的单调性,根据复合函数“同增异减”原则,同时内层函数的值域要满足外层函数的定义域要求.4.B解析:B 【分析】根据指数函数的单调性以及对数函数的单调性分别判断出,,a b c 的取值范围,从而可得结果 【详解】因为33log 0.2log 10<=,0.20331>=,...030002021<<=,a cb ∴<<. 故选:B . 【点睛】比较大小问题,常见思路有两个:一是利用中间变量;二是利用函数的单调性直接解答5.A解析:A 【分析】由换底公式和对数函数的性质可得112b a <<<,再由指数函数的性质可得102c <<,即可得解. 【详解】23ln3ln12log =02ln 2ln 2a ==>,4212ln ln 2ln1323log =03ln 4ln 2ln 2b ====<, a b ∴>22223231log log 410,239222a c -⎛⎫⎛⎫<===< ⎪ ⎪⎭=⎝>⎭=⎝,b c a ∴<<,故选:A 【点睛】方法点睛:本题考查了对数式、指数式的大小比较,比较大小的常用方法为同底的对数式和指数式利用其单调性进行比较,也可以借助于中间值0和1进行比较,考查了运算求解能力与逻辑推理能力,属于常考题.6.C解析:C 【分析】令()()()22333log 6log 11log g x a a x a ⎡⎤=-++-⎣⎦,由题意得出()()0010g g ⎧>⎪⎨>⎪⎩,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】令()()()22333log 6log 11log g x a a x a ⎡⎤=-++-⎣⎦,由题意可得()()()()23301log 0126log 0g a g a ⎧=->⎪⎨=->⎪⎩,可得311log 3a -<<,解得13a <<故选:C. 【点睛】思路点睛:求解一次函数不等式在区间上恒成立,一般限制一次函数在区间上的端点函数值符号即可,即可得出关于参数的不等式,求解即可.7.B解析:B 【分析】根据()3x f x -为定值,可假设()3xf x m =+,然后计算()()f x f x +-,并计算m 的值,然后使用基本不等式,可得结果. 【详解】由题可知:()3xf x -为定值故设()3xf x m -=,即()3xf x m =+又[()3]4xf f x -=,所以()341mf m m m =+=⇒= 则()31xf x =+()()3131x x f x f x -+-=+++则1()()32243x x f x f x +-=++≥= 当且仅当133xx=时,取等号 所以()()f x f x +-的最小值为:4故选:B 【点睛】本题考查基本不等式的应用,还考查镶嵌函数的应用,难点在于()3xf x -为定值,审清题意,细心计算,属中档题.8.C解析:C 【分析】根据指数函数性质求定点. 【详解】因为01a =,所以()011f a -=-=0,因此过定点()1,0-,选C.【点睛】本题考查指数函数性质以及定点问题,考查基本分析求解能力,属于基础题.9.B解析:B 【分析】由()()11f x f x -=+可得函数()f x 关于直线1x =对称,根据对数的运算法则,结合函数的对称性,变形41log 2、13log 3、39log 到区间[)1,+∞内,由函数()f x 在[)1,+∞上单调递增,即可得结果. 【详解】根据题意,函数()f x 满足()()11f x f x -=+, 则函数()f x 关于直线1x =对称,又由当(],1-∞时,函数()f x 单调递减,则函数在[)1,+∞上单调递增, 又由()44115log log 2222a f f f f ⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()()13log 313b f f f ⎛⎫==-= ⎪⎝⎭,()()3log 92c f f ==,则有c a b <<,故选B.【点睛】在比较()1f x ,()2f x ,,()n f x 的大小时,首先应该根据函数()f x 的奇偶性(对称性)与周期性将()1f x ,()2f x ,,()n f x 通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.10.A解析:A 【解析】x y z ,, 为正实数,且235log log log 0x y z ==<,111235235k k k x y z ---∴===,,,可得:1112352131,51k k k x y z---=>=>=>,. 即10k ->因为函数1kf x x -=() 单调递增,∴235x y z<<. 故选A.11.D解析:D 【分析】根据指数函数与对数函数的关系,以及函数()y g x =的图象与()y f x =的图象关于x 轴对称,求得()ln g x x =-,再由()1g a =,即可求解. 【详解】由题意,函数()y f x =与xy e =互为反函数,所以()ln f x x =,函数()y g x =的图象与()y f x =的图象关于x 轴对称,所以()ln g x x =-, 又由()1g a =,即ln 1a -=,解得 1a e= 故选D. 【点睛】本题主要考查了指数函数与对数函数的关系,其中熟记指数函数与对数函数的关系,以及函数的对称性求得函数()g x 的解析式是解答的关键,着重考查了推理与运算能力,属于基础题.12.A解析:A 【解析】 试题分析:由()lg (21)fxx a =-+为奇函数,则()()f xf x-=-,可得1a =-,即()lg 11f x x x =+-,又()0f x<,即lg110xx+-<,可变为0111x x <+-<,解得10x -<<.考点:函数的奇偶性,对数函数性质,分式不等式.二、填空题13.1【分析】将指数式化为对数式得代入可得根据换底公式可求值【详解】由题意可得∵故答案为:1【点睛】本题主要考查对数与指数的互化对数的换底公式的应用考查基本运算求解能力解析:1【分析】将指数式化为对数式得3log 63a =,7log 63b =,代入可得,372121log 63log 63a b +=+,根据换底公式可求值. 【详解】由题意可得,3log 63a =,7log 63b =, ∵6363363721212log 3log 7log 631log 63log 63a b +=+=+== 故答案为:1 【点睛】本题主要考查对数与指数的互化,对数的换底公式的应用,考查基本运算求解能力.14.【分析】利用对数的运算性质得出结合周期性即可得出的值【详解】且则则函数的周期为2故答案为:【点睛】本题主要考查了由抽象函数的周期求函数值涉及了对数的运算属于中档题 解析:109-【分析】利用对数的运算性质得出3310log 303log 9=+,结合周期性,即可得出3(log 30)f 的值. 【详解】33333101010log 30log 27log 27log 3log 999⎛⎫=⨯=+=+ ⎪⎝⎭,且333100log log log 9131=<<= (1)()f x f x +=-,(11)(1)()f x f x f x ∴++=-+=,则(2)()f x f x +=,则函数()f x 的周期为2310log 3333310101010(log 30)21log 1log log 39999f f f f⎛⎫⎛⎫⎛⎫∴=++=+=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为:109- 【点睛】本题主要考查了由抽象函数的周期求函数值,涉及了对数的运算,属于中档题.15.16【分析】由通过对数运算得出由此再求的值要注意定义域【详解】∵∴解得∴故答案为:16【点睛】本题主要考查对数的运算还考查了运算求解能力属于基础题解析:16 【分析】由()2lg 2lg lg x y x y -=+,通过对数运算得出4x y =,由此再求2x y的值.要注意定义域. 【详解】∵()2lg 2lg lg x y x y -=+,∴2(2)2000x y xy x y x y ⎧-=⎪->⎪⎨>⎪⎪>⎩, 解得4x y =,∴42216x y==.故答案为:16 【点睛】本题主要考查对数的运算,还考查了运算求解能力,属于基础题.16.(12)【分析】根据幂函数以及指数函数性质直接缺定点坐标【详解】因为所以当时即恒过定点(12)故答案为:(12)【点睛】本题考查根据幂函数以及指数函数性质求定点考查基本分析求解能力属基础题解析:(1,2) 【分析】根据幂函数以及指数函数性质,直接缺定点坐标. 【详解】因为0=111=a a ,,所以当1x =时(1)2f =,即()f x 恒过定点(1,2) 故答案为:(1,2) 【点睛】本题考查根据幂函数以及指数函数性质求定点,考查基本分析求解能力,属基础题.17.【分析】先由求得函数的定义域然后令由复合函数的单调性求解【详解】由解得或所以函数的定义域为或因为在上递减在递减所以函数的单调递增区间为故答案为:【点睛】方法点睛:复合函数的单调性的求法:对于复合函数解析:1,2⎛⎫-∞- ⎪⎝⎭【分析】先由22530x x -->,求得函数的定义域,然后令2253t x x =--,由复合函数的单调性求解. 【详解】由22530x x -->,解得 12x <-或 3x >,所以函数()213log 253y x x =--的定义域为{1|2x x <-或 }3x >, 因为2253t x x =--在1,2⎛⎫-∞- ⎪⎝⎭上递减,13log y t =在()0,∞+递减, 所以函数()213log 253y x x =--的单调递增区间为1,2⎛⎫-∞- ⎪⎝⎭. 故答案为:1,2⎛⎫-∞-⎪⎝⎭【点睛】 方法点睛:复合函数的单调性的求法:对于复合函数y =f [g (x )],先求定义域,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数;若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.18.【解析】由于对数函数y=lnx 在区间(0+∞)上的增长速度慢于一次函数y=x 所以函数y =x2比函数y =xlnx 在区间(0+∞)上增长较快填解析:2y x【解析】由于对数函数y=lnx 在区间(0,+∞)上的增长速度慢于一次函数y=x ,所以函数y =x 2比函数y =x ln x 在区间(0,+∞)上增长较快,填2y x =. 19.【分析】由在R 上单调减确定a3a-1的范围再根据单调减确定在分界点x=1处两个值的大小从而解决问题【详解】因为是上的减函数所以解得故答案为:【点睛】本题考查分段函数单调性问题关键根据单调性确定在分段 解析:3,17⎡⎫⎪⎢⎣⎭【分析】由()f x 在R 上单调减,确定a , 3a -1的范围,再根据单调减确定在分界点x =1处两个值的大小,从而解决问题.【详解】因为3(1)4,1()1,1a a x a x f x og x x -+<⎧=⎨≥⎩是R 上的减函数, 所以10013(1)4log 10a a a a a -<⎧⎪<<⎨⎪-+≥=⎩, 解得317a ≤<,故答案为:3,17⎡⎫⎪⎢⎣⎭【点睛】本题考查分段函数单调性问题,关键根据单调性确定在分段点处两个值的大小,属于中档题. 20.【分析】可结合对数化简式将化简为再解对数不等式即可【详解】由由得即当时故;当时无解综上所述故答案为:【点睛】本题考查对数化简公式的应用分类讨论求解对数型不等式属于中档题 解析:81,3⎛⎫ ⎪⎝⎭【分析】可结合对数化简式将()f x 化简为()1log 2log 3log 4x x x f x =-+-,再解对数不等式即可【详解】由()2323231log 2log 9log 641log 2log 3log 4x x x x x x f x =-+-=-+- 31log 2log 3log 41log 8x x x x =-+-=+,由()0f x <得81log 03x -<, 即8log log 3x x x >, 当1x >时,83x <,故81,3x ⎛⎫∈ ⎪⎝⎭;当()0,1x ∈时,83x >,无解 综上所述,81,3x ⎛⎫∈ ⎪⎝⎭ 故答案为:81,3⎛⎫ ⎪⎝⎭【点睛】本题考查对数化简公式的应用,分类讨论求解对数型不等式,属于中档题 三、解答题21.(1){|11}x x -<<;(2)函数()f x 是奇函数,证明见解析;(3)当1a >时,01x <<;当01a <<时,10x -<<【分析】(1)根据对数的真数为正数列式可解得结果;(2)函数()f x 是奇函数,根据奇函数的定义证明即可;(3)不等式化为log (1)log (1)a a x x +>-后,分类讨论底数a ,根据对数函数的单调性可解得结果.【详解】(1)要使函数数()f x 有意义,则必有1010x x +>⎧⎨->⎩,解得11x -<<, 所以函数()f x 的定义域是{|11}x x -<< .(2)函数()f x 是奇函数,证明如下:∵(1,1)x ∈-,(1,1)x -∈-,()log (1)log (1)a a f x x x -=--+[]log (1)log (1)a a x x =-+--()f x =-,∴函数()f x 是奇函数(3)使()0f x >,即log (1)log (1)a a x x +>-当1a >时,有111010x x x x +>-⎧⎪->⎨⎪+>⎩,解得01x <<,当01a <<时,有111010x x x x +<-⎧⎪->⎨⎪+>⎩,解得10x -<<.综上所述:当1a >时,01x <<;当01a <<时,10x -<<.【点睛】方法点睛:已知函数解析式,求函数定义域的方法:有分式时:分母不为0;有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0;有指数时:当指数为0时,底数一定不能为0;有根号与分式结合时,根号开偶次方在分母上时:根号下大于0;有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1.22.(1)定义域为(2,2)-,奇函数(2)函数()f x 在(2,2)-上为增函数,证明见解析【分析】(1)根据真数大于0可得定义域,根据奇函数的定义可得函数为奇函数;(2)设1222x x -<<<,根据对数函数的单调性可得12()()f x f x <,再根据定义可证函数()f x 在(2,2)-上为增函数.【详解】(1)由函数有意义得202x x->+,解得22x -<<, 所以函数的定义域为(2,2)-,因为1112222()log log ()22x x f x f x x x -+-⎛⎫-===- ⎪-+⎝⎭,所以函数为奇函数.(2)因为124()log 12f x x ⎛⎫=-+⎪+⎝⎭,所以函数()f x 在(2,2)-上为增函数, 证明:设1222x x -<<<,则120224x x <+<+<,则1244122x x >>++,则124411022x x -+>-+>++, 因为1012<<,所以12()()f x f x <,所以函数()f x 在(2,2)-上为增函数, 【点睛】思路点睛:判断函数的奇偶性的思路:①求出定义域,并判断其是否关于原点对称;②若定义域不关于原点对称,则函数为非奇非偶函数,若定义域关于原点对称,再判断()f x -与()f x 的关系,若()()f x f x -=-,则函数为奇函数;若()()f x f x -=,则函数为偶函数.23.(1)()2x f x =;(2)[2,0]-;(3)17,12⎛⎤-∞-⎥⎝⎦. 【分析】(1)根据(2)(1)6f f +=求解出a 的值,即可求解出()f x 的解析式;(2)采用换元法构造函数2(),[1,2]F t t t t =-∈,将m 的取值范围与()F t 的最值联系在一起,由此求解出结果;(3)先根据函数的奇偶性求解出()(),h x g x 的解析式,然后采用分离参数法得到1222222x x x x a --⎡⎤≤--+⎢⎥-⎣⎦,采用换元法求解出1222222x x x x --⎡⎤--+⎢⎥-⎣⎦的最大值,从而求解出a 的取值范围.【详解】(1)因为(2)(1)6f f +=,所以260,2a a a +-==或3a =-(舍去),所以()2x f x =;(2)由(1)知,()2x f x =,所以()222222x x x xm =-=-,令2,[1,2]x t t =∈, 令2(),[1,2]F t t t t =-∈,所以()F t 的对称轴为12t =,且()F t 为开口向下的二次函数,所以()F t 在[]1,2上单调递减,所以()()ma min x (2)2,(1)0F t F F t F -====,所以m 的取值范围为[2,0]-; (3)因为()g x 为奇函数,()h x 为偶函数,所以()(),()()g x g x h x h x -=--=.由题()()()f x g x h x =+知,2()()2()()x x g x h x g x h x -⎧=+⎨=-+-⎩,即2()()2()()x x g x h x g x h x -⎧=+⎨=-+⎩ 解得2222(),()22x x x xh x g x --+-== 将上式代入2()(2)0ag x h x +≤,得()()221222202x x x x a ---++≤, 易知()22222212211222222222222x x x x x x x x x x x x a -------++⎡⎤≤-⋅=-⋅=--+⎢⎥---⎣⎦. 令12,[1,2]2x x t x =-∈,则315,24t ⎡⎤=⎢⎥⎣⎦,122a t t ⎛⎫≤-+ ⎪⎝⎭, 因为存在[1,2]x ∈使得2()(2)0ag x h x +≤, 所以max12132173222122a t t ⎛⎫ ⎪⎡⎤⎛⎫≤-+=-+=- ⎪ ⎪⎢⎥⎝⎭⎣⎦ ⎪⎝⎭ 所以a 的取值范围是17,12⎛⎤-∞-⎥⎝⎦. 【点睛】方法点睛:不等式在指定区间上有解或恒成立求解参数范围问题的处理方法: (1)分类讨论法:根据参数的临界值作分类讨论;(2)分离参数法:将自变量和参数分离开来,自变量部分构造新函数,分析新函数的最值与参数的关系.24.(1)53-;(2)172. 【分析】(1)直接利用根式与分数指数幂的运算法则求解即可,化简过程注意避免出现符号错误;(2)直接利用对数的运算法则求解即可,解答过程注意避免出现计算错误.【详解】(1)原式()()1134340.321-⎡⎤=-+⎣⎦150.32143-=-+-=-. (2)原式32ln 2322log 2515lg 4lg lg 1621828log 4e ⎛⎫=+++=-+⨯+ ⎪⎝⎭ 172=. 【点晴】本题主要考查函数的定义域、指数幂的运算,属于中档题. 指数幂运算的四个原则:(1)有括号的先算括号里的,无括号的先做指数运算;(2)先乘除后加减,负指数幂化成正指数幂的倒数;(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数;(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答(化简过程中一定要注意等价性,特别注意开偶次方根时函数的定义域)25.(Ⅰ)2;(Ⅱ)答案见解析.【分析】(Ⅰ)利用指数幂的运算性质,即可得出结果.(Ⅱ)将分式不等式化简转化为()()()122020a x a x x ⎧⎡⎤-+-->⎪⎣⎦⎨-≠⎪⎩,分类讨论1a -,解一元二次不等式即可得出结果.【详解】解:(Ⅰ)原式)23201812-⎛⎫=-+ ⎪⎝⎭()()2332431ππ=-+--+443π1π2=-+--+=. (Ⅱ)12a a x >--,则()102a a x -->-, 即()()1202a x a x -+->-,即()()()122020a x a x x ⎧⎡⎤-+-->⎪⎣⎦⎨-≠⎪⎩, ①当10a -=,即1a =时,不等式为20x ->,解集为()2,+∞;②当10a ->,即1a >时,原不等式与()2201a x x a ⎡-⎤⎛⎫--> ⎪⎢⎥-⎝⎭⎣⎦同解, 当221a a -≥-,即01a ≤<时,与1a >矛盾,故此情况不存在; 当221a a -<-,即0a <或1a >时,即1a >时,不等式的解集为()2,2,1a a -⎛⎫-∞⋃+∞ ⎪-⎝⎭; ③当10a -<,即1a <时,原不等式与()2201a x x a ⎡-⎤⎛⎫--> ⎪⎢⎥-⎝⎭⎣⎦同解, 当221a a ->-,即01a <<时,不等式的解集为22,1a a -⎛⎫ ⎪-⎝⎭; 当221a a -=-,即0a =时,不等式无解,即解集为∅; 当221a a -<-,即0a <或1a >时,即0a <时,不等式的解集为2,21a a -⎛⎫ ⎪-⎝⎭;所以,综上所述:当1a >时,解集为()2,2,1a a -⎛⎫-∞⋃+∞ ⎪-⎝⎭, 当1a =时,解集为()2,+∞,当01a <<时解集为22,1a a -⎛⎫ ⎪-⎝⎭, 当0a =时,解集为∅,当0a <时,解集为2,21a a -⎛⎫⎪-⎝⎭. 【点睛】本题考查利用指数幂的运算性质进行化简求值,考查含参数的分式不等式的解法和一元二次不等式的解法,考查分类讨论思想和计算能力.26.(1)(0,1)[2,)a ∈⋃+∞(2)实数k 不存在,详见解析【分析】(1)分类讨论,利用对数函数的单调性,将不等式具体化,解不等式即可;(2)判断函数()f x 为增函数,将不等式具体化,再分离参数求最值,即可得出结论.【详解】解:(1)当01a <<时,有2650a a +>,解得02a <≤,即(0,1)∈a ;当1a >时,有0265a a <+,解得2a ,即[2,)a ∈+∞.综上可知,(0,1)[2,)a ∈⋃+∞. (2)由于221331244m m m ⎛⎫++=++ ⎪⎝⎭, 且()2314f m m f ⎛⎫++ ⎪⎝⎭,可知()f x 为增函数. ()()142240x x x f f k ++--⋅>,即()()14224x x x f f k ++>-⋅,则有14224x x x k ++>-⋅在[1,0]-上恒成立, 即1342x x k +<⋅+在[1,0]-上恒成立,令12,12x t ⎡⎤=∈⎢⎥⎣⎦,设2()32,()g t t t g t =+在1,12⎡⎤⎢⎥⎣⎦上单调递增, 则min 17()24g t g ⎛⎫== ⎪⎝⎭,即74k <. 又由于[1,0]x ∈-时,240x k -⋅>恒成立,解得2k >,故符合题意的实数k 不存在.【点睛】本题考查对数函数的单调性、恒成立问题的转化分析、指数函数与二次函数的复合函数的最值问题.。
北师大版高中数学必修一第三单元《指数函数和对数函数》检测卷(包含答案解析)
一、选择题1.2017年5月,世界排名第一的围棋选手柯洁0:3败给了人工智能“阿法狗”.为什么人类的顶尖智慧战胜不了电脑呢?这是因为围棋本身也是一个数学游戏,而且复杂度非常高.围棋棋盘横竖各有19条线,共有1919361⨯=个落子点.每个落子点都有落白子、落黑子和空白三种可能,因此围棋空间复杂度的上限3613M ≈.科学家们研究发现,可观测宇宙中普通物质的原子总数8010N ≈.则下列各数中与MN最接近的是( )(参考数据:lg30.48≈) A .3310B .5310C .7310D .93102.若lg 2a =,lg3b =,则5log 12等于( )A .21a b a++B .21a b a+C .21a b aD .21a b a-3.形如221n+(n 是非负整数)的数称为费马数,记为F n 数学家费马根据F 0,F 1,F 2,F 3,F 4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F 5不是质数,请你估算F 5是( )位数(参考数据:lg2≈0.3010). A .8B .9C .10D .114.若实数a ,b ,c 满足232log log ab c k ===,其中()1,2k ∈,则下列结论正确的是( ) A .b c a b >B .log log a b b c >C .log b a c >D .b a c b >5.若()()22ln 1f x x x e =+≤≤(e 为自然对数的底数),则函数()()22y f x f x =+⎡⎤⎣⎦的最大值为( ) A .6B .13C .22D .336.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微:数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,页常用函数的解析式来琢磨函数图象的特征,如函数()22xy xx R =-∈的大致图象是( )A .B .C .D .7.已知1311531log ,log ,363a b c π-===,则,,a b c 的大小关系是( )A .b a c <<B .a c b <<C .c b a <<D .b c a <<8.已知函数()()2ln f x ax bx c =++的部分图象如图所示,则a b c -+的值是( )A .1-B .1C .5-D .59.已知函数 ()lg 2x xe ef x --=,则f (x )是( )A .非奇非偶函数,且在(0,+∞)上单调递增B .奇函数,且在R 上单调递增C .非奇非偶函数,且在(0,+∞)上单调递减D .偶函数,且在R 上单调递减 10.已知函数()f x 满足()()11f x f x -=+,当(],1-∞时,函数()f x 单调递减,设()41331=log ,log 3,92a f b f c f log ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<11.已知偶函数()f x 在[0,)+∞上单调递增,131(())4a f =,37(log )2b f =,13(log 5)c f =,则a ,b,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>12.若函数()()212log 45f x x x =-++在区间()32,2m m -+内单调递增,则实数m 的取值范围为( ) A .4,33⎡⎤⎢⎥⎣⎦B .4,23⎡⎤⎢⎥⎣⎦C .4,23⎡⎫⎪⎢⎣⎭D .4,3⎡⎫+∞⎪⎢⎣⎭二、填空题13.测量地震级别的里氏震级M 的计算公式为:0lg lg M A A =-,其中A 是测震仪记录的地震曲线的最大振幅,常数A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,而此次地震的里氏震级恰好为6级,那么里氏9级地震的最大的振幅是里氏5级地震最大振幅的______倍.14.()()2lg 45f x x x =--+的单调递增区间为______.15.已知函数f (x )=3x +x ,g(x )=log 3x +2,h (x )=log 3x +x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系是________.16.已知()()2log 1f x x =-,若()()f a f b =(ab ),则2a b +的最小值为________.17.函数()()12log 13y x x =-+的递增区间为______.18.设log c a 、log c b 是方程2530x x +-=的两个实根,则log b ac =______.19.若函数1log 12a y x ⎛⎫=+⎪⎝⎭在区间3,62⎡⎤-⎢⎥⎣⎦有最小值-2,则实数a =_______.20.函数22()log (2)f x x x =--的单调递增区间是_____________.三、解答题21.已知函数()2log f x x =,()241g x ax x =-+.(1)若函数()()y f g x =的值域为R ,求实数a 的取值范围;(2)函数22()()()h x f x f x =-,若对于任意的1,22x ⎡∈⎤⎢⎥⎣⎦,都存在[]1,1t ∈-使得不等式()22th x k >⋅-成立,求实数k 的取值范围.22.已知函数()2221log 2m x f x x-=-(0m >且1m ≠) (1)求()f x 的解析式;(2)判断函数()f x 的奇偶性,并说明理由;(3)若关于x 的方程()1log m f x x =+有解,求m 的取值范围. 23.已知函数()log (31)a f x x =+,()log (13)a g x x =-(0a >且1)a ≠. (1)求()()()F x f x g x =-的定义域; (2)判断函数()F x 的奇偶性;(3)若()()0f x g x ->,求x 的取值范围.24.已知函数()x x f x a k a -=-⋅(0a >且1a ≠)是定义域为R 的奇.函数,且3(1)2f =. (1)求k 的值,并判断()f x 的单调性(不要求证明);(2)是否存在实数()2,3mm m >≠,使函数()()22(2)log 1x x m g x a a mf x --⎡⎤=+-+⎣⎦在[]1,2上的最大值为0?如果存在,求出实数m 所有的值;如果不存在,请说明理由. 25.已知函数()()()ln 1ln 1f x x x =+--. (1)判断并证明函数()f x 的奇偶性; (2)用定义法证明()f x 在定义域上是增函数; (3)求不等式()()2520f x f x -+-<的解集.26.已知函数()23x x f x a b =⋅+⋅,其中常数,a b 满足0ab ≠. (1)若0ab >,判断函数()f x 的单调性; (2)若0ab <,求(1)()f x f x +>时x 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设36180310M x N ==,两边取对数,结合对数的运算性质进行整理,即可求出M N . 【详解】解:设36180310M x N ==,两边取对数36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,故选:D . 【点睛】 关键点睛:本题考查了对数的运算,关键是结合方程的思想令36180310x =,两边取对数后进行化简整理.2.C解析:C 【分析】利用对数的换底公式可将5log 12用a 、b 表示. 【详解】根据对数的换底公式得,5lg12lg3lg 4lg32lg 22log 12lg5lg10lg 21lg 21a ba+++====---, 故选:C . 【点睛】关键点点睛:该题考查的是有关对数的运算,解答本题的关键是熟记换底公式以及对数的运算性质,利用运算性质化简、运算,其中lg5lg10lg 2=-是题目的一个难点和易错点.3.C解析:C 【分析】根据所给定义表示出9.632951010F =⨯,进而即可判断出其位数. 【详解】 根据题意,53223232lg232lg2320.30109.6320.6329521212101010101010F ⨯=+=+≈==≈==⨯,因为0.63211010<<,所以5F 的位数是10.故选:C 【点睛】关键点睛:解答本题的关键是转化成对数运算,即3232lg 2210=.4.D解析:D 【分析】首先确定a ,b ,c 的取值范围,再根据指对互化得到2k b =,3k c =,再代入选项,比较大小. 【详解】由题意可知a ∈(0,1),b ∈(2,4),c ∈(3,9),且23k k b c ==,,对于A 选项,01b a <<,1c b >可得到b c a b <,故选项A 错误;对于B 选项,log log 2log 20k a a a b k ==<,log log 3log 30k b b b c k ==>,所以log log a b b c <,故B 选项错误;对于C 选项,22log log 3log 31k kb c a ==>>,故C 选项错误;对于D 选项,1a b b b <=,1b c c c >=,而c >b ,所以b a c b >,故D 选项正确. 故选:D . 【点睛】关键点点睛:本题考查指对数比较大小,本题的关键是首先确定,,a b c 的大小,并结合指对数运算化简选项中的对数式,再和中间值0或1比较大小,本题属于中档题型.5.B解析:B 【分析】先依题意求函数定义域,再化简函数,进行换元后求二次函数在区间上的最大值即可.【详解】由21x e ≤≤及()2f x知221x e ≤≤,故定义域为[]1,e ,又()()()()()222222ln 2ln ln 6ln 61y f x f x x x x x x e =+=+++=++≤≤⎡⎤⎣⎦令[]ln 0,1t x =∈,则266y t t =++,易见y 在[]0,1t ∈上单调递增, 故当1t =时,即x e =时,max 16613y =++=. 故选:B. 【点睛】易错点睛:利用换元法求函数最值时,要注意函数的定义域,否则求得的易出错.6.A解析:A 【分析】分析函数()()22xf x xx R =-∈的奇偶性,结合()01f =可得出合适的选项.【详解】令()22=-xf x x ,该函数的定义域为R ,()()()2222xxf x x x f x --=--=-=,函数()22=-xf x x 为偶函数,排除B 、D 选项;又()010f =>,排除C 选项. 故选:A. 【点睛】函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)从函数的特征点,排除不合要求的图象.7.D解析:D 【分析】根据指数函数和对数函数性质,借助0和1进行比较. 【详解】由对数函数性质知151log 16>,13log 03π<,由指数函数性质知13031-<<,∴b c a <<. 故选:D . 【点睛】方法点睛:本题考查指数式、对数式的大小比较,比较指数式大小时,常常化为同底数的幂,利用指数函数性质比较,或化为同指数的幂,利用幂函数性质比较,比较对数式大小,常常化为同底数的对数,利用对数函数性质比较,如果不能化为同底数或同指数,或不同类型的数常常借助中间值如0或1比较大小.8.D解析:D 【分析】由图中函数的单调性可得方程20ax bx c ++=的两根为2和4,利用根与系数的关系结合(1)0f =列式求得,,a b c 的值,则答案可求.【详解】解:由图可知,函数()f x 的减区间为(,2)-∞,增区间为(4,)+∞, ∴内层函数2t ax bx c =++的减区间为(,2)-∞,增区间为(4,)+∞, ∴方程20ax bx c ++=的两根为2和4, 又(1)0f =,68ln()0ba ca abc ⎧-=⎪⎪⎪∴=⎨⎪++=⎪⎪⎩,解得13283a b c ⎧=⎪⎪=-⎨⎪⎪=⎩.182533a b c ∴-+=++=.故选:D. 【点睛】本题考查函数的图象与图象变换,考查复合函数的单调性,考查数学转化思想方法,是中档题.9.A解析:A 【分析】本题考查函数的奇偶性和和单调性的概念及简单复合函数单调性的判定. 【详解】要使函数有意义,需使0,2x x e e -->即21,1,x xxe e e >∴>解得0;x > 所以函数()f x 的为(0,);+∞定义域不关于原点对称,所以函数()f x 是非奇非偶函数;因为1,xxx y e y ee-==-=-是增函数,所以2x xe e y --=是增函数,又lg y x =是增函数,所以函数()lg 2x xe ef x --=在定义域(0,)+∞上单调递增.故选:A【点睛】本题考查对数型复合函数的奇偶性和单调性,属于中档题.10.B解析:B 【分析】由()()11f x f x -=+可得函数()f x 关于直线1x =对称,根据对数的运算法则,结合函数的对称性,变形41log 2、13log 3、39log 到区间[)1,+∞内,由函数()f x 在[)1,+∞上单调递增,即可得结果. 【详解】根据题意,函数()f x 满足()()11f x f x -=+, 则函数()f x 关于直线1x =对称,又由当(],1-∞时,函数()f x 单调递减,则函数在[)1,+∞上单调递增, 又由()44115log log 2222a f f f f ⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()()13log 313b f f f ⎛⎫==-= ⎪⎝⎭,()()3log 92c f f ==,则有c a b <<,故选B.【点睛】在比较()1f x ,()2f x ,,()n f x 的大小时,首先应该根据函数()f x 的奇偶性(对称性)与周期性将()1f x ,()2f x ,,()n f x 通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.11.C解析:C 【分析】偶函数()f x 在[0,)+∞上单调递增,化简1333(log 5)(log 5)(log 5)f f f =-=,利用中间量比较大小得解. 【详解】∵偶函数()f x 在[0,)+∞上单调递增1333(log 5)(log 5)(log 5)c f f f ∴==-=,∵1333170()1log log 542<<<<,133317(()(log )(log 5)42)f f f <<∴a b c <<. 故选:C 【分析】本题考查函数奇偶性、单调性及对数式大小比较,属于基础题.12.C解析:C 【分析】求得函数()y f x =的定义域,利用复合函数法求得函数()y f x =的单调递增区间,根据题意可得出区间的包含关系,由此可求得实数m 的取值范围. 【详解】解不等式2450x x -++>,即2450x x --<,解得15x -<<,内层函数245u x x =-++在区间()1,2-上单调递增,在区间()2,5上单调递减, 而外层函数12log y u =在定义域上为减函数,由复合函数法可知,函数()()212log 45f x x x =-++的单调递增区间为()2,5, 由于函数()()212log 45f x x x =-++在区间()32,2m m -+上单调递增,所以,32232225m m m m -≥⎧⎪-<+⎨⎪+≤⎩,解得423m ≤<.因此,实数m 的取值范围是4,23⎡⎫⎪⎢⎣⎭. 故选:C. 【点睛】本题考查利用对数型复合函数在区间上的单调性求参数,考查计算能力,属于中等题.二、填空题13.10000【分析】根据条件先计算出的值然后分别计算出里氏9级地震的最大的振幅和里氏5级地震最大振幅由此可求解出最终结果【详解】由条件可知:所以设里氏9级地震的最大的振幅为里氏5级地震最大振幅为所以所解析:10000 【分析】根据条件先计算出0A 的值,然后分别计算出里氏9级地震的最大的振幅和里氏5级地震最大振幅,由此可求解出最终结果. 【详解】由条件可知:06lg1000lg A =-,所以3010A -=,设里氏9级地震的最大的振幅为1A,里氏5级地震最大振幅为2A,所以31329lg lg105lg lg10AA--⎧=-⎨=-⎩,所以621210,10A A==,所以1210000AA=,故答案为:10000.【点睛】关键点点睛:解答本题的关键在于理解公式0lg lgM A A=-中各个量的含义并先求解出0A的值,由此继续分析.14.【分析】由复合函数的单调性只需求出的增区间即可【详解】令则由与复合而成因为在上单调递增且在上单调递增所以由复合函数的单调性知在上单调递增故答案为:【点睛】本题主要考查了复合函数的单调性对数函数的单调解析:(]5,2--【分析】由复合函数的单调性,只需求出245t x x=--+的增区间即可.【详解】令245t x x=--+,则()()2lg45f x x x=--+由lgy t=与245t x x=--+复合而成,因为lgy t=在(0,)t∈+∞上单调递增,且245(0)t x x t=--+>在(5,2]x∈--上单调递增,所以由复合函数的单调性知,()()2lg45f x x x=--+在(5,2]x∈--上单调递增.故答案为:(]5,2--【点睛】本题主要考查了复合函数的单调性,对数函数的单调性,二次函数的单调性,属于中档题. 15.【解析】画出函数的图象如图所示:观察图象可知函数的零点依次是点的横坐标由图像可知故答案为点睛:函数的零点与方程根的分布问题解题时常用数形结合思想对于方程的根可分别画出与的图象则两个函数图象的交点的横解析:a b c<<【解析】画出函数3xy=,3logy x=,y x=-,2y=-的图象,如图所示:观察图象可知,函数()3xf x x=+,3()log2g x x=+,3()logh x x x=+的零点依次是点A ,B ,C 的横坐标,由图像可知a b c <<. 故答案为a b c <<点睛:函数的零点与方程根的分布问题,解题时常用数形结合思想,对于方程()()0f x g x -=的根,可分别画出()f x 与()g x 的图象,则两个函数图象的交点的横坐标即为方程()()0f x g x -=的根.16.【分析】根据求得之间的等量关系再利用均值不等式求得的最小值【详解】因为且不妨设则一定有且即即可得解得因为故可得当且仅当且即时取得最小值故的最小值为故答案为:【点睛】本题考查对数函数的性质以及对数运算解析:3【分析】根据()()f a f b =,求得,a b 之间的等量关系,再利用均值不等式求得2a b +的最小值. 【详解】因为()()2log 1f x x =-,且()()f a f b = 不妨设a b <,则一定有12a b <<<, 且()()22log 1log 1a b -=- 即()()22log 1log 1a b --=-, 即可得()()2log 110a b --=, 解得()()111a b --=. 因为10,10a b ->->故可得()()22113a b a b +=-+-+3≥3=当且仅当()211a b -=-,且()()111a b --=,即11a b =+=+.故2a b +的最小值为3.故答案为:3. 【点睛】本题考查对数函数的性质,以及对数运算,涉及均值不等式求最值的问题,属综合性困难题.17.【分析】首先求出函数的定义域再根据复合函数的单调性计算可得【详解】解:则解得即函数的定义域为令则因为在上单调递增在上单调递减;在定义域上单调递减根据复合函数的单调性同增异减可知函数在上单调递增故答案解析:()1,1-【分析】首先求出函数的定义域,再根据复合函数的单调性计算可得. 【详解】 解:()()12log 13y x x =-+则()()130x x -+>解得31x -<<即函数的定义域为()3,1- 令()()()()21314t x x x x =-+=-++,()3,1x ∈-,则12logy t =因为()t x 在()3,1--上单调递增,在()1,1-上单调递减;12log y t =在定义域上单调递减根据复合函数的单调性“同增异减”可知函数()()12log 13y x x =-+在()1,1-上单调递增故答案为:()1,1- 【点睛】本题考查复合函数的单调区间的计算,属于基础题.18.【分析】根据题意由韦达定理得进而得再结合换底公式得【详解】解:因为、是方程的两个实根所以由韦达定理得所以所以所以故答案为:【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算其中两个公式的转化是 解析: 【分析】根据题意由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-,进而得()2log log 37c c a b -=,再结合换底公式得1log log b acc b a==【详解】解:因为log c a 、log c b 是方程2530x x +-=的两个实根, 所以由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-, 所以()()22log log log log 4log log 37c c c c c c a b a b ab -=+-⋅=, 所以log logc c ba -=所以11log log log 37log b c c acc b b aa===±-.故答案为: 【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算,其中()()22log log log log 4log log c c c c c c a b a b a b -=+-⋅,1log log b acc b a=两个公式的转化是核心,考查运算求解能力,是中档题.19.或2【分析】根据复合函数的单调性及对数的性质即可求出的值【详解】当时在为增函数求得即;当时在为减函数求得即故答案为:或【点睛】本题考查复合函数单调性对数方程的解法难度一般解析:12或2 【分析】根据复合函数的单调性及对数的性质即可求出a 的值. 【详解】当1a >时, 1log 12a y x ⎛⎫=+ ⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为增函数,min 33log 1-224a y f ⎛⎫⎛⎫=-=-+= ⎪ ⎪⎝⎭⎝⎭,求得-214a =,即=2a ; 当01a <<时, 1log 12a y x ⎛⎫=+ ⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为减函数,()()min 6log 31-2a y f ==+=,求得-24a =,即1=2a . 故答案为:12或2. 【点睛】本题考查复合函数单调性,对数方程的解法,难度一般.20.【分析】首先求出函数的定义域再根据复合函数同增异减求其单调减区间即可【详解】函数的定义域为:解得:或令为增函数当为增函数为增函数当为减函数为减函数所以增区间为故答案为:【点睛】本题主要考查复合函数的 解析:()2,+∞【分析】首先求出函数的定义域,再根据复合函数同增异减求其单调减区间即可. 【详解】函数()f x 的定义域为:220x x -->,解得:2x >或1x <-. 令22t x x =--,2log y t =为增函数.当2x >,t 为增函数,22()log (2)f x x x =--为增函数, 当1x <-,t 为减函数,22()log (2)f x x x =--为减函数.所以增区间为(2,)+∞.故答案为:(2,)+∞ 【点睛】本题主要考查复合函数的单调性,同增异减为解题的关键,属于中档题.三、解答题21.(1)[]0,4a ∈;(2)2k <. 【分析】(1)由()2log f x x =,()()y f g x =的值域为R ,知()g x 值域应为小于等于0的数直至正无穷,分类讨论参数a 的正负,再结合二次函数值域与判别式的关系即可求解; (2)对恒成立问题与存在性问题转化得()22tmin k h x ⋅<+在[]1,1t ∈-有解,求得()min h x ,再结合函数单调性即可求解【详解】(1)0a <时,内函数有最大值,故函数值不可能取到全体正数,不符合题意; 当0a =时,内函数是一次函数,内层函数值可以取遍全体正数,值域是R ,符合题意; 当0a >时,要使内函数的函数值可以取遍全体正数,只需要函数最小值小于等于0, 故只需0≥,解得(]0,4a ∈.综上得[]0,4a ∈;2()由题意可得2222()222t k h x log x log x ⋅<+=-+在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立, 则()221tmin k h x ⋅<+=在[]1,1t ∈-有解,即1<2tk 在[]1,1t ∈-有解, 122t maxk ⎛⎫∴<= ⎪⎝⎭,综上,实数k 的取值范围2k <.【点睛】关键点睛:本题考查由对数型复合函数的值域求解参数取值范围,由恒成立与存在性问题建立的不等式求解参数取值范围,解题关在在于: (1)()()()log a f x g x =值域为R ,()g x 值域范围的判断; (2)全称命题与存在性命题逻辑关系的理解与正确转化.22.(1)()1log 1m x f x x+=-;(2)()f x 为奇函数,理由见解析;(3)3m ≥+. 【分析】(1)令21t x =-,采用换元法求解函数解析式;(2)先确定函数的定义域,再由函数奇偶性的定义判断即可; (3)由条件可转化为()11x m x x +=-在()0,1x ∈上有解问题即可.【详解】(1)令21t x =-,则21x t =+,则()()11log log 211m m t t f t t t++==-+-,所以()1log 1m x f x x+=-; (2)由101xx+>-得11x -<<, 又()()()11log log 11mm x xf x f x x x---===---+,所以()f x 为定义域上的奇函数;(3)由11x x -<<⎧⎨>⎩得01x <<,又1log 1log log 1mm m x x mx x +=+=-,11x mx x+=-在()0,1x ∈上有解, ()11x m x x +=-,令()11,2u x =+∈,2132323t m u u u u ==≥=+-+-⎛⎫-++ ⎪⎝⎭,当且仅当u =,所以3m ≥+.【点睛】 易错点睛:(1)判断函数的奇偶性一定不要忘记先判断定义域是否关于原点对称; (2)利用基本不等式求解范围,一定要注意满足“一正二定三相等”的条件. 23.(1)11,33⎛⎫- ⎪⎝⎭;(2)奇函数;(3)分类讨论,答案见解析. 【分析】(1)根据对数的真数大于零列不等式组,解不等式组求得()F x 的定义域. (2)通过()()F x F x -=-证得()F x 是奇函数.(3)对a 进行分类讨论,结合对数型函数的单调性求得x 的取值范围. 【详解】(1)()log (31)log (13)a a F x x x =+--,310130x x +>⎧⎨->⎩,解得:1133x -<<,所以()F x 的定义域为11,33⎛⎫- ⎪⎝⎭.(2)由(1)可知()F x 的定义域关于原点对称,又()log (13)log (31)()a a F x x x F x -=--+=-,所以()F x 是奇函数,. (3)()()0f x g x ->,即log (31)log (13)a a x x +>-,当1a >时,3101303113x x x x+>⎧⎪->⎨⎪+>-⎩,解得:103x <<,当01a <<时,3101303113x x x x+>⎧⎪->⎨⎪+<-⎩,解得:103x -<<.【点睛】判断函数的奇偶性,首先要判断函数的定义域是否关于原点对称性. 24.(1)1k =;()f x 为R 上的增函数;(2)存在,176m =. 【分析】(1)根据奇函数的性质和()312f =,代入求函数的解析式,并判断单调性;(2)由(1)可知()()2(2)2log 22221xx x x m g x m ---=+--+⎡⎤⎣⎦,并通过换元22x x t -=-,转化为()()()22log 3m g t t mt -=-+,讨论底数21m ->,和021m <-<两种情况,并讨论内层函数的对称轴和定义域的关系,结合外层函数的单调性,确定内层函数的最值,最后确定函数的最大值求m . 【详解】(1)∵函数()x xf x a k a -=-⋅(0a >且1a ≠)是定义域为R 的奇函数,0R ∈,∴(0)0f =,10k -=,∴1k =. 因为3(1)2f =,∴132a a -=,22320a a --=,2a =或12a =-, ∵0a >,∴2a =,()22x x f x -=-,因为2x 为增函数,2x -为减函数,所以()f x 为R 上的增函数. (Ⅱ)()()22(2)log 1xx m g x aa mf x --⎡⎤=+-+⎣⎦()22(2)log 22221x x x x m m ---=+--+⎡⎤⎣⎦()()2(2)log 22223x x x x m m ---⎡⎤=---+⎢⎥⎣⎦, 设22x x t -=-,则()()22222233xx x x m t mt -----+=-+,∵[]1,2x ∈,∴315,24⎡⎤∈⎢⎥⎣⎦t ,记()23h t t mt =-+, (1)当021m <-<,即23m <<时,要使()g x 最大值为0,则要min ()1h t =,∵22()()(3)24m m h t t =-+-,312m <<,315,24⎡⎤∈⎢⎥⎣⎦t ,∴()h t 在315,24⎡⎤⎢⎥⎣⎦上单调递增,∴min 3213()()242h t h m ==-,由min ()1h t =,得176m =,因17(2,3)6∈,所以176m =满足题意. (2)当21m ->,即3m >时,要使()g x 最大值为0,则要max ()1h t =,且min ()0h t >. ∵322m >, ①若321228m <≤ ,则max 1522515()()314164h t h m ==-+=,25760m =, 又2min ()()3024m m h t h ==->,∴3m <<25760>∴25760m =不合题意. ②若2128m > ,即214m >,则max 32132132121()()02424248h t h m ==-<-⨯=-<,max ()1h t ≠,综上所述,只存在176m =满足题意. 【点睛】关键点点睛:本题考查对数型复合函数根据最值,求参数的取值范围,属于中档题型,本题的第一个关键点是换元化简函数,设22x x t -=-,则()()22222233x x x x m t mt -----+=-+,第二个关键点是需分析外层函数的单调性,并讨论内层函数的对称轴和定义域的关系.25.(1)奇函数,证明见解析;(2)证明见解析;(3)}{23x x <<. 【分析】(1)求出函数定义域,求出()()()()ln 1ln 1f x x x f x -=--+=-即可得到奇偶性; (2)任取1211x x -<<<, 则()()12f x f x -122111ln 11x x x x ⎛⎫+-=⋅⎪+-⎝⎭,得出与0的大小关系即可证明; (3)根据奇偶性解()()()2522f x f x f x -<--=-,结合单调性和定义域列不等式组即可得解. 【详解】(1)由对数函数的定义得1010x x ->⎧⎨+>⎩,得11x x <⎧⎨>-⎩,即11x -<<所以函数()f x 的定义域为()1,1-.因为()()()()ln 1ln 1f x x x f x -=--+=-, 所以()f x 是定义上的奇函数. (2)设1211x x -<<<,则()()()()()()121122ln 1ln 1ln 1ln 1f x f x x x x x -=+---++-122111ln 11x x x x ⎛⎫+-=⋅ ⎪+-⎝⎭因为1211x x -<<<,所以12011x x <+<+,21011x x <-<-, 于是12211101,0111x x x x +-<<<<+-. 则1221110111x x x x +-<⋅<+-,所以122111ln 011x x x x ⎛⎫+-⋅< ⎪+-⎝⎭所以()()120f x f x -<,即()()12f x f x <,即函数()f x 是()1,1-上的增函数. (3)因为()f x 在()1,1-上是增函数且为奇函数.所以不等式()()2520f x f x -+-<可转化为()()()2522f x f x f x -<--=-所以1251121252x x x x -<-<⎧⎪-<-<⎨⎪-<-⎩,解得23x <<.所以不等式的解集为}{23x x <<.【点睛】此题考查判断函数的奇偶性和单调性,利用单调性解不等式,关键在于熟练掌握奇偶性和单调性的判断方法,解不等式需要注意考虑定义域.26.(1)当0,0a b >>时,函数()f x 在R 上是增函数,当0,0a b <<时,函数()f x 在R 上是减函数;(2)当0,0a b <>时,则 1.5log ()2ax b>-;当0,0a b ><时,则1.5log ()2a x b<-. 【详解】(1)当0,0a b >>时,任意1212,,x x R x x ∈<, 则121212()()(22)(33)xxxxf x f x a b -=-+-∵121222,0(22)0x x x x a a ⇒-<,121233,0(33)0x x x xb b ⇒-<, ∴12())0(f x f x -<,函数()f x 在R 上是增函数, 当0,0a b <<时,同理,函数()f x 在R 上是减函数;(2)(1)()2230x xf x f x a b +-=⋅+⋅>当0,0a b <>时,3()22xa b >-,则 1.5log ()2a x b >-; 当0,0a b ><时,3()22xa b <-,则 1.5log ()2a x b<-.。
(压轴题)高中数学必修一第三单元《指数函数和对数函数》检测(答案解析)(4)
一、选择题1.函数()212()log 23f x x x =--+单调减区间为( ) A .(,1]-∞- B .(3,1]--C .[)1,1-D .[)1-+∞, 2.下列等式成立的是( ) A .222log (35)log 3log 5+=+ B .2221log 3log 32-=C .222log 3log 5log (35)⋅=+D .231log 3log 2= 3.已知函数()()2log 2xf x m =+,则满足函数()f x 的定义域和值域都是实数集R 的实数m 构成的集合为 ( ) A .{}|0m m =B .{}0|m m ≤C .{}|0m m ≥D .{}|1m m =4.若实数a ,b ,c 满足232log log ab c k ===,其中()1,2k ∈,则下列结论正确的是( ) A .b c a b >B .log log a b b c >C .log b a c >D .b a c b >5.专家对某地区新冠肺炎爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(50)11()t f t e--=+,当()0.1f t =时,标志着疫情将要大面积爆发,则此时t 约为( )(参考数据: 1.13e ≈) A .38B .40C .45D .476.集合{}1002,x x x x R =∈的真子集的个数为( )A .2B .4C .6D .77.已知1311531log ,log ,363a b c π-===,则,,a b c 的大小关系是( )A .b a c <<B .a c b <<C .c b a <<D .b c a <<8.函数()213log 23y x x =-++的单调递增区间是( ) A .(]1,1- B .(1)∞-,C .[) 1,3D .(1)∞,+ 9.已知函数()f x 是定义在R 上的单调递增的函数,且满足对任意的实数x 都有[()3]4x f f x -=,则()()f x f x +-的最小值等于( ).A .2B .4C .8D .1210.已知函数()sin 2f x x x =-,且()0.3231ln,log ,223a f b f c f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则以下结论正确的是 A .c a b >>B .a c b >>C .a b c >>D .b a c >>11.已知函数222,0()2,0x x x f x x x x ⎧+≥=⎨-<⎩,212(log )(log )2(1)f a f f a ≤+,则实数a 的取值范围是( ) A .1,22⎡⎤⎢⎥⎣⎦B .102⎛⎤ ⎥⎝⎦,C .[]1,2D .(]0,2 12.函数213()log 4f x x =-的单调减区间是( )A .(]()2,02,-+∞B .(]2,0-和(2,)+∞ C .(),20,2[)-∞-D .(,2)-∞-和[0,2)二、填空题13.已知0a >,函数()y f x =,其中21()log f x a x ⎛⎫=+⎪⎝⎭,若对任意1,12t ⎡⎤∈⎢⎥⎣⎦,函数()y f x =在区间[,1]t t +上的最大值与最小值的差不超过1,则a 的取值范围为_______.14.已知常数0a >,函数()22xx f x ax =+的图象经过点65P p ⎛⎫ ⎪⎝⎭,,15Q q ⎛⎫- ⎪⎝⎭,.若236p q pq +=,则a =______.15.设函数123910()lg 10x x x x x af x +++++=,其中a 为实数,如果当(,1]x ∈-∞时()f x 有意义,则a 的取值范围是________.16.关于x 的不等式()()222log 1log 2x x ->-的解集为______.17.函数()22log 617y x x =-+的值域是__.18.给出下列命题:①函数2x y =与2log y x =互为反函数,其图象关于直线y x =对称; ②已知函数2(1)21f x x x -=-+,则(5)26f =;③当0a >且1a ≠时,函数()log (2)3a f x x =--的图像必过定点(3,3)-; ④用二分法求函数()ln 26f x x x =+-在区间(2,3)内的零点近似值,至少经过3次二分后精确度达到0.1;⑤函数2()2x f x x =-的零点有2个. 其中所有正确命题....的序号是______ 19.函数()213log 253y x x =--的单调递增区间为_______. 20.有以下结论:①将函数xy e =的图象向右平移1个单位得到1x y e-=的图象;②函数()xf x e =与()g x lnx =的图象关于直线y =x 对称③对于函数()xf x a =(a >0,且1a ≠),一定有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭④函数()22log (2)f x x x =-+的图象恒在x 轴上方.其中正确结论的序号为_________.三、解答题21.(1)计算00.520.531222(0.01)54--⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭;(2)已知11223x x-+=,求12222x x x x --+++-的值.22.已知函数35()log 5xf x x-=+. (1)求函数()f x 的定义域;(2)判断函数()f x 奇偶性,并证明你的结论. 23.求下列各式的值.(1)7log 23log lg 25lg 473+++. (2)()146230.2516248201249-⎛⎫⨯+-⨯+- ⎪⎝⎭.24.已知函数()442xx f x =+;(1)若01a <<,求()()1f a f a +-的值; (2)求12320202021202120212021f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值. 25.(1)若223a a -+=,求1a a --和33a a --的值;(2)计算33(lg 2)3lg 2lg 5(lg 5)+⋅+的值.26.函数()2lg 34y x x=-+的定义域为M ,x M ∈,求()2234x x f x +=-⨯的最值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【分析】根据复合函数的单调性可知,()()212log 23f x x x =--+的单调减区间为223t x x =--+在定义域上的单调增区间.再根据一元二次函数的单调性求单调增区间即可. 【详解】解:函数()()212log 23f x x x =--+的定义域为()3,1-令223t x x =--+,则()12log g t t =为单调递减函数,由复合函数的单调性可知:()f x 的单调递减区间为223t x x =--+在()3,1-上的单调增区间.()222314t x x x =--+=-++,对称轴为1x =-,开口向下,所以223t x x =--+的单调增区间为(]3,1--. 故选:B. 【点睛】本题考查复合函数的单调性,属于中档题. 方法点睛:(1)先求出函数的定义域; (2)判断外层函数的单调性;(3)根据复合函数同增异减的原则,判断要求的内层函数的单调性; (4)求出单调区间.2.D解析:D 【分析】根据对数的运算法则和换底公式判断. 【详解】22222log 3log 5log (35)log 15log (35)+=⨯=≠+,A 错误;22221log 32log 3log 32-=-≠,B 错误;222log 3log 5log (35)⋅≠+,C 错误; 3233log 31log 3log 2log 2==,D 正确. 故选:D . 【点睛】关键点点睛:本题考查对数的运算法则.log log log ()a a a M N MN +=,log log n a a b n b =,一般log ()log log a a a M N M N +≠+.log ()log log a a a MN M N ≠⋅, 1log log n a a b b n≠.解析:A 【分析】若定义域为实数集R ,则20x m +>对于x ∈R 恒成立,可得0m ≥,若值域为实数集R ,令2x t m =+,则2log y t = 此时需满足2x t m =+的值域包括()0,∞+,可得0m ≤,再求交集即可. 【详解】若()()2log 2xf x m =+定义域为实数集R ,则20x m +>对于x ∈R 恒成立,即2x m >-对于x ∈R 恒成立, 因为20x >,所以20x -<,所以0m ≥, 令2x t m =+,则2log y t =若()()2log 2xf x m =+值域为实数集R ,则2x t m =+的值域包括()0,∞+, 因为t m >,所以0m ≤, 所以0m =, 故选:A 【点睛】关键点点睛:本题的关键点是要找到定义域为R 的等价条件即20x m +>对于x ∈R 恒成立,分离参数m 求其范围,值域为R 的等价条件即2x t m =+可以取遍所有大于0的数,由t m >,所以0m ≤,再求交集.4.D解析:D 【分析】首先确定a ,b ,c 的取值范围,再根据指对互化得到2k b =,3k c =,再代入选项,比较大小. 【详解】由题意可知a ∈(0,1),b ∈(2,4),c ∈(3,9),且23k k b c ==,,对于A 选项,01b a <<,1c b >可得到b c a b <,故选项A 错误;对于B 选项,log log 2log 20k a a a b k ==<,log log 3log 30k b b b c k ==>,所以log log a b b c <,故B 选项错误;对于C 选项,22log log 3log 31k kb c a ==>>,故C 选项错误;对于D 选项,1a b b b <=,1b c c c >=,而c >b ,所以b a c b >,故D 选项正确. 故选:D . 【点睛】关键点点睛:本题考查指对数比较大小,本题的关键是首先确定,,a b c 的大小,并结合指对数运算化简选项中的对数式,再和中间值0或1比较大小,本题属于中档题型.解析:B 【分析】 根据()0.1f t =列式求解即可得答案.【详解】 解:因为()0.1f t =,0.22(50)11()t f t e --=+,所以0.22(50)()0.111t f t e--==+,即0.22(50)011t e --=+,所以0.22(50)9t e --=,由于 1.13e ≈,故()21.12.29e e =≈,所以0.222().250t e e --=,所以()0.2250 2.2t --=,解得40t =. 故选:B. 【点睛】本题解题的关键在于根据题意得0.22(50)9t e --=,再结合已知 1.13e ≈得()21.12.29e e =≈,进而根据0.222().250t e e --=解方程即可得答案,是基础题.6.D解析:D 【分析】分析指数函数2xy =与幂函数100y x=的图像增长趋势,当0x <时,有1个交点;当0x >时,有2个交点;即集合{}1002,x x x x R =∈有3个元素,所以真子集个数为3217-=【详解】分析指数函数2xy =与幂函数100y x =的图像增长趋势,当0x <时,显然有一个交点;当0x >时,当1x =时,110021>;当2x =时,210022<;故()1,2x ∈时,有一个交点;分析数据发现,当x 较小时,100y x=比2xy =增长的快;当x 较大时,2xy =比100y x =增长的快,即2x y =是爆炸式增长,所以还有一个交点.即2xy =与100y x=的图像有三个交点,即集合{}1002,x x xx R =∈有3个元素,所以真子集个数为3217-= 故选:D. 【点睛】结论点睛:本题考查集合的子集个数,集合A 中含有n 个元素,则集合A 的子集有2n 个,真子集有()21n-个,非空真子集有()22n-个.7.D解析:D 【分析】根据指数函数和对数函数性质,借助0和1进行比较. 【详解】由对数函数性质知151log 16>,13log 03π<,由指数函数性质知13031-<<,∴b c a <<. 故选:D . 【点睛】方法点睛:本题考查指数式、对数式的大小比较,比较指数式大小时,常常化为同底数的幂,利用指数函数性质比较,或化为同指数的幂,利用幂函数性质比较,比较对数式大小,常常化为同底数的对数,利用对数函数性质比较,如果不能化为同底数或同指数,或不同类型的数常常借助中间值如0或1比较大小.8.C解析:C 【分析】由不等式2230x x -++>,求得函数的定义域()1,3-,令()223g x x x =-++,得到()g x 在区间(]1,1-上单调递增,在区间[1,3)上单调递减,结合复数函数的单调性的判定方法,即可求解. 【详解】由题意,函数213()log 23y x x =-++有意义,则满足2230x x -++>, 即223(3)(1)0x x x x --=-+<,解得13x,即函数的定义域为()1,3-,令()223g x x x =-++,则函数()g x 表示开口向下,对称轴方程为1x =的抛物线, 所以函数()g x 在区间(]1,1-上单调递增,在区间[1,3)上单调递减, 又由函数13log y x =在定义上是递减函数,结合复数函数的单调性的判定方法,可得函数213()log 23y x x =-++的递增区间为[1,3). 故选:C. 【点睛】函数单调性的判定方法与策略:定义法:一般步骤:设元→作差→变形→判断符号→得出结论;图象法:如果函数()f x 是以图象形式给出或函数()f x 的图象易作出,结合图象可求得函数的单调区间;导数法:先求出函数的导数,利用导数值的正负确定函数的单调区间;复合函数法:先将函数(())y f g x =分解为()y f t =和()t g x =,再讨论这两个函数的单调性,最后根据复合函数“同增异减”的规则进行判定.9.B解析:B 【分析】根据()3x f x -为定值,可假设()3xf x m =+,然后计算()()f x f x +-,并计算m 的值,然后使用基本不等式,可得结果. 【详解】由题可知:()3xf x -为定值故设()3xf x m -=,即()3xf x m =+又[()3]4xf f x -=,所以()341mf m m m =+=⇒= 则()31xf x =+()()3131x x f x f x -+-=+++则1()()32243x x f x f x +-=++≥= 当且仅当133xx=时,取等号 所以()()f x f x +-的最小值为:4故选:B 【点睛】本题考查基本不等式的应用,还考查镶嵌函数的应用,难点在于()3xf x -为定值,审清题意,细心计算,属中档题.10.D解析:D 【解析】因为()cos 20f x x '=-<,所以函数()sin 2f x x x =-的单调递减函数,又因为0.3213log 0,ln ln 1,12232e <<=<<,即0.3213log ln 232<<,所以由函数的单调性可得:0.3213(log )(ln )(2)32f f f >>,应选答案D .11.A解析:A 【分析】根据条件判断()f x 的奇偶性和单调性,把不等式212(log )(log )2(1)f a f f a ≤+转化为2log 1a ≤进行求解即可.【详解】当0x <时,0x ->,则2()2()f x x x f x -=-=, 当0x >时,0x -<,则2()2()-=+=f x x x f x , ∴函数()f x 为偶函数,∴222122(log )(log )(log )(log )2(log )f a f a f a f a f a +=+-=.又当0x ≥时,函数()f x 单调递增,∴22(log )2(1)f a f ≤可转化为2((log 1))f a f ≤,则2log 1a ≤, ∴21log 1a -≤≤,解得122a ≤≤. 故选:A. 【点睛】本题考查了分段函数的性质,考查函数的单调性与奇偶性,考查学生的推理能力与计算求解能力,属于中档题.12.B解析:B 【分析】先分析函数的定义域,然后根据定义域以及复合函数的单调性判断方法确定出()f x 的单调递减区间. 【详解】因为240x ->,所以定义域为()()(),22,22,-∞--+∞,令()24u x x =-,13log y u =在()0,∞+上单调递减, 当(),2x ∈-∞-时,()u x 单调递减,所以()f x 单调递增; 当(]2,0x ∈-时,()u x 单调递增,所以()f x 单调递减; 当()0,2x ∈时,()u x 单调递减,所以()f x 单调递增; 当()2,x ∈+∞时,()u x 单调递增,所以()f x 单调递减; 综上可知:()f x 的单调递减区间为(]2,0-和()2,+∞. 故选:B. 【点睛】本题考查对数型复合函数的单调区间的求解,难度一般.分析复合函数的单调性,注意利用判断的口诀“同增异减”,当内外层函数单调性相同时,整个函数为增函数,当内外层函数单调性相反时,整个函数为减函数.二、填空题13.【分析】由函数单调性可得在区间上的最大值最小值则可得对任意恒成立利用二次函数的性质即可求出【详解】因为在区间内单调递减所以函数在区间上的最大值与最小值分别为则得整理得对任意恒成立令则的图象是开口向上解析:23⎡⎫+∞⎪⎢⎣⎭, 【分析】由函数单调性可得()f x 在区间[1]t t ,+上的最大值()f t ,最小值(1)f t +,则可得2(1)10at a t ++-≥对任意1,12t ⎡⎤∈⎢⎥⎣⎦恒成立,利用二次函数的性质即可求出.【详解】因为()f x 在区间[1]t t ,+内单调递减, 所以函数()f x 在区间[1]t t ,+上的最大值与最小值分别为()f t ,(1)f t +, 则2211()(1)log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭, 得1121a a tt ⎛⎫+≤+⎪+⎝⎭,整理得2(1)10at a t ++-≥对任意1,12t ⎡⎤∈⎢⎥⎣⎦恒成立.令2()(1)1h t at a t =++-,则()h t 的图象是开口向上,对称轴为11022t a=--<的抛物线,所以()h t 在1,12t ⎡⎤∈⎢⎥⎣⎦上是增函数,2(1)10at a t ++-≥等价于102h ⎛⎫≥⎪⎝⎭, 即211(1)1022a a ⎛⎫⨯++⨯-≥ ⎪⎝⎭,解得23a ≥,所以a 的取值范围为23⎡⎫+∞⎪⎢⎣⎭,. 故答案为:23⎡⎫+∞⎪⎢⎣⎭,. 【点睛】关键点睛:由单调性判断出最大值和最小值,从而转化为2(1)10at a t ++-≥对任意1,12t ⎡⎤∈⎢⎥⎣⎦恒成立,根据二次函数性质求解. 14.6【分析】直接利用函数的关系式利用恒等变换求出相应的a 值【详解】函数f (x )=的图象经过点P (p )Q (q )则:整理得:=1解得:2p+q=a2pq 由于:2p+q=36pq 所以:a2=36由于a >0故【分析】直接利用函数的关系式,利用恒等变换求出相应的a 值. 【详解】函数f (x )=22xx ax+的图象经过点P (p ,65),Q (q ,15-).则:226112255p q pq ap aq +=-=++, 整理得:22222222p q p q p qp qp q aq ap aq ap a pq+++++++++=1, 解得:2p+q =a 2pq , 由于:2p+q =36pq , 所以:a 2=36, 由于a >0, 故:a=6. 故答案为6 【点睛】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.15.【分析】由题意可得对任意的恒成立分离变量后利用函数的单调性求得在上的范围即可得解【详解】根据题意对任意的恒成立即恒成立则因为函数在上为增函数所以故答案为:【点睛】本题考查对数函数的定义域指数函数的单 解析:[ 4.5,)-+∞【分析】由题意可得对任意的(,1]x ∈-∞,10210x x a ⋅+⋯++>恒成立,分离变量a 后利用函数的单调性求得981()101010x x xg x ⎛⎫⎛⎫⎛⎫=---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在(,1]x ∈-∞上的范围,即可得解. 【详解】根据题意对任意的(,1]x ∈-∞,123910010x x x x x a+++++>恒成立,即10210x x a ⋅+⋯++>恒成立,则981101010x x xa ⎛⎫⎛⎫⎛⎫>---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为函数981()101010xxxg x ⎛⎫⎛⎫⎛⎫=---⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在(,1]x ∈-∞上为增函数,所以111981 4.5101010a ⎛⎫⎛⎫⎛⎫---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:[ 4.5,)-+∞本题考查对数函数的定义域,指数函数的单调性,不等式恒成立问题,属于基础题.16.【分析】由对数函数的性质化对数不等式为一元二次不等式组求解【详解】由得解得∴不等式的解集为故答案为:【点睛】本题考查对数不等式的解法考查了对数函数的性质是基础题解析:(,1-∞-. 【分析】由对数函数的性质化对数不等式为一元二次不等式组求解. 【详解】由()()222log 1log 2x x ->-,得21220x xx ⎧->-⎨->⎩,解得1x <--∴不等式()()222log 1log 2x x ->-的解集为(,1-∞-.故答案为:(,1-∞-. 【点睛】本题考查对数不等式的解法,考查了对数函数的性质,是基础题.17.【分析】设转化为函数根据在上单调递增可求解【详解】设函数则函数∵在上单调递增∴当时最小值为故答案为:【点睛】本题考察了二次函数对数函数性质综合解决问题 解析:[)3,+∞【分析】设()2261738t x x x =-+=-+,转化为函数2log y t =,[)8,t ∈+∞,根据2log y t =在[)8,t ∈+∞上单调递增,可求解.【详解】设()2261738t x x x =-+=-+函数()22log 617y x x =-+,则函数2log y t =,[)8,t ∈+∞, ∵2log y t =,在[)8,t ∈+∞上单调递增, ∴当8t =时,最小值为2log 83=, 故答案为:[)3,+∞. 【点睛】本题考察了二次函数,对数函数性质,综合解决问题.18.①③【分析】①求解出的反函数再根据反函数的特点进行判断;②采用换元法求解出的解析式由此计算出的值并进行判断;③分析当对数式的真数为时此时的值由此确定出函数所过定点并进行判断;④根据每经过一次操作区间解析:①③ 【分析】①求解出2x y =的反函数,再根据反函数的特点进行判断;②采用换元法求解出()f x 的解析式,由此计算出()5f 的值并进行判断;③分析当对数式的真数为1时,此时,x y 的值,由此确定出函数所过定点并进行判断; ④根据每经过一次操作区间长度变为原来的一半,由此列出关于次数的不等式,求解出次数的范围并进行判断;⑤根据()()2,4f f 的值以及零点的存在性定理进行判断. 【详解】①令2y x =,所以2log y x =,所以函数2x y =与2log y x =互为反函数,则图象关于y x =对称,故正确;②令1x t -=,则1x t =+,所以()()()221211f t t t t =+-++=,所以()2f x x =,所以()525f =,故错误;③令21x -=,所以3x =,所以()3log 133a f =-=-,所以()f x 过定点()3,3-,故正确;④因为区间()2,3的长度为1,经过n 次操作过后区间长度变为12n ,所以10.12n≤,所以4n ≥,故错误;⑤因为()()22422220,4240f f =-==-=,且()()()21011210,020102f f --=--=-<=-=>,所以()f x 在()1,0-上有零点,所以()f x 的零点至少有3个,故错误; 故答案为:①③. 【点睛】 结论点睛:(1)同底数的指数函数和对数函数互为反函数,图象关于y x =对称;(2)形如()()()log 0,1a f x g x b a a =+>≠的图象过定点问题,可考虑令()1g x =,由此求解出x 的值,从而对应的()f x 的值可求,则定点坐标可求;(3)利用二分法求解函数零点的近似值时,每进行一次操作,区间长度会变为原来的一半.19.【分析】先由求得函数的定义域然后令由复合函数的单调性求解【详解】由解得或所以函数的定义域为或因为在上递减在递减所以函数的单调递增区间为故答案为:【点睛】方法点睛:复合函数的单调性的求法:对于复合函数解析:1,2⎛⎫-∞- ⎪⎝⎭【分析】先由22530x x -->,求得函数的定义域,然后令2253t x x =--,由复合函数的单调性求解. 【详解】由22530x x -->,解得 12x <-或 3x >, 所以函数()213log 253y x x =--的定义域为{1|2x x <-或 }3x >, 因为2253t x x =--在1,2⎛⎫-∞-⎪⎝⎭上递减,13log y t =在()0,∞+递减, 所以函数()213log 253y x x =--的单调递增区间为1,2⎛⎫-∞- ⎪⎝⎭.故答案为:1,2⎛⎫-∞- ⎪⎝⎭【点睛】方法点睛:复合函数的单调性的求法: 对于复合函数y =f [g (x )],先求定义域,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数; 若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.20.②③④【分析】①根据图象的平移规律直接判断选项;②根据指对函数的对称性直接判断;③根据指数函数的图象特点判断选项;④先求的范围再和0比较大小【详解】①根据平移规律可知的图象向右平移1个单位得到的图象解析:②③④ 【分析】①根据图象的平移规律,直接判断选项;②根据指对函数的对称性,直接判断;③根据指数函数的图象特点,判断选项;④先求22x x -+的范围,再和0比较大小. 【详解】①根据平移规律可知xy e =的图象向右平移1个单位得到1x y e -=的图象,所以①不正确;②根据两个函数的对称性可知函数()xf x e =与()g x lnx =的图象关于直线y =x 对称,正确;③如下图,设1a >,122x x f +⎛⎫ ⎪⎝⎭对应的是曲线上横坐标为122x x +的点C 的纵坐标,()()122f x f x +是线段AB 的中点D 的纵坐标,由图象可知()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭,同理,当01a <<时,结论一样,故③正确;④2217721244x x x ⎛⎫-+=-+≥> ⎪⎝⎭ 根据函数的单调性可知()222log 2log 10x x -+>=,所以函数()22log (2)f x x x =-+的图象恒在x 轴上方,故④正确. 故答案为:②③④ 【点睛】思路点睛:1.图象平移规律是“左+右-”,相对于自变量x 来说,2.本题不易判断的就是③,首先理解122x x f +⎛⎫⎪⎝⎭和()()122f x f x +的意义,再结合图象判断正误. 三、解答题21.(1)1615;(2)15. 【分析】(1)利用幂的运算法则计算;(2)已知式平方得1x x -+,再平方可得22x x -+,然后代入求值. 【详解】(1)原式112219112111441004310-⎛⎫⎛⎫=+⨯-=+⨯- ⎪⎪⎝⎭⎝⎭1615= (2)∵11223x x-+=,∴21112227x x x x --⎛⎫+=+-= ⎪⎝⎭,()2221249247x x x x--+=+-=-=,故122272124725x x x x --+++==+--.【点睛】本题考查幂的运算法则,整数指数幂中多项的乘法公式在分数指数幂中仍然适用. 22.(1)(5,5)- (2)奇函数,见解析 【分析】(1)若()f x 有意义,则需满足505xx->+,进而求解即可;(2)由(1),先判断定义域是否关于原点对称,再判断()f x -与()f x 的关系即可. 【详解】 (1)由题,则505xx->+,解得55x -<<,故定义域为()5,5- (2)奇函数,证明:由(1),()f x 的定义域关于原点对称, 因为()()33355log log log 1055x xf x f x x x+--+=+==-+,即()()f x f x -=-, 所以()f x 是奇函数 【点睛】本题考查具体函数的定义域,考查函数的奇偶性的证明. 23.(1)154;(2)210 【分析】(1)根据对数的运算法则运算求值即可(2)根据指数的运算法则化简求值. 【详解】(1)7log 23log lg 25lg 473+++ 143log 3lg1002-=++1224=-++154= (2)()146230.2516248201249-⎛⎫⨯+-⨯+- ⎪⎝⎭43132334447223(2)42214=⨯⨯+-⨯-⨯+2162721=+--+210=【点睛】本题主要考查了对数的运算,指数的运算,属于中档题. 24.(1)1;(2)1010. 【分析】(1)根据4()42xx f x =+的表达式,求出()(),1f a f a -的表达式,再进行分式通分运算,可得()()11f a f a +-=.(2)设12320202021202120212021S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再把S 的表达式运用加法交换律改写成20201202120212021202321S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,把两式相加利用()(1)1f x f x +-=求出S 的值.【详解】 (1)4()42xxf x =+,x ∈R . ∴()()1f a f a +-1144444442424224aaaa a a a a--=+=+++++4214224a a a=+=++,(2)设12320202021202120212021S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则 20201202120212021202321S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 两式相加得:12[][][]92022020220120201202120212022120211021S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭由(1)得:20202201109211,1,,221202120212021202120220101f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ∴220201010S S =⇒=.【点睛】本题考查指数幂运算,分式运算,利用函数的性质进行式子求值,考查运算求解能力. 25.(1)1,4±±;(2)1. 【分析】(1)利用完全平方公式和立方差公式计算. (2)由对数的运算法则计算. 【详解】(1)1222()2321a a a a ---=-+=-=,所以11a a --=±,33122()(1)1(31)4a a a a a a ----=-++=±⨯+=±;(2)lg 2lg5lg(25)1+=⨯=.3322(lg 2)3lg 2lg5(lg5)(lg 2lg5)(lg 2lg 2lg5lg 5)3lg 2lg5+⋅+=+-++ 2222lg 2lg 2lg5lg 53lg 2lg5lg 22lg 2lg5lg 5=-++=++2(lg 2lg 5)1=+=.【点睛】本题考查幂的运算法则和对数的运算法则,掌握幂与对数运算法则是解题基础.26.最大值为43,无最小值. 【分析】首先根据对数真数大于0,解不等式2340x x -+>求出定义域M ,然后利用换元法,即可求出函数()f x 的最值. 【详解】由2340x x -+>,解得1x <或3x >,所以(,1)(3,)M =-∞+∞,22()234423(2)x x x x f x +=-⨯=⨯-⨯,令2x t =,由x M ∈得02t <<或8t >,则原函数可化为2224()433()33g t t t t =-=--+,其对称轴为23t =,所以当02t <<时,4()(4,]3g t ∈-;当8t >时,()(,160)g t ∈-∞-.所以当23t =,即223log x =时,()g t 取得最大值43,即函数()f x 取得最大值43,函数()g t 无最小值,故函数()f x 无最小值.【点睛】本题主要考查函数定义域的求法及换元法求函数最值.。
(压轴题)高中数学必修一第三单元《指数函数和对数函数》测试(答案解析)(4)
一、选择题1.若函数()()23log 5f x x ax a =+++,()f x 在区间(),1-∞上是递减函数,则实数a的取值范围为( ) A .[]3,2--B .[)3,2--C .(],2-∞-D .(),2-∞-2.设()|lg |f x x =,且0a b c <<<时,有()()()f a f c f b >>,则( ) A .(1)(1)0a c --> B .1ac >C .1ac =D .01ac <<3.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微:数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,页常用函数的解析式来琢磨函数图象的特征,如函数()22xy xx R =-∈的大致图象是( )A .B .C .D .4.函数()212()log 4f x x =-的单调递增区间为( ).A .(0,+∞)B .(-,0)C .(2,+∞)D .(-,-2)5.若函数()()20.3log 54f x x x =+-在区间()1,1a a -+上单调递减,且lg0.3=b ,0.32c =,则A .b a c <<B .b c a <<C .a b c <<D .c b a <<6.已知函数()f x 满足()()11f x f x -=+,当(],1-∞时,函数()f x 单调递减,设()41331=log ,log 3,92a f b f c f log ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( ) A .a b c <<B .c a b <<C .a c b <<D .c b a <<7.已知235log log log 0x y z ==<,则2x 、3y、5z 的大小排序为A .235x y z<< B .325y x z << C .523z x y<< D .532z y x<< 8.若函数112xy m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是( )A .1m ≤-B .10m -≤<C .m 1≥D .01m <≤9.设0.512a ⎛⎫= ⎪⎝⎭,0.50.3b =,0.3log 0.2c =,则a 、b 、c 的大小关系( ). A .b a c << B .a b c << C .a b c >> D .a c b <<10.已知函数()()213log f x x ax a =--对任意两个不相等的实数1x 、21,2x ⎛⎫∈-∞- ⎪⎝⎭,都满足不等式()()21210f x f x x x ->-,则实数a 的取值范围是( )A .[)1,-+∞B .(],1-∞-C .11,2⎡⎤-⎢⎥⎣⎦D .11,2⎡⎫-⎪⎢⎣⎭11.已知0.22a =,0.20.4b =,0.60.4c =,则( )A .a b c >>B .a c b >>C .c a b >>D .b c a >>12.设()lg (21)fx x a =-+是奇函数,则使f(x)<0的x 的取值范围是( ).A .(-1,0)B .(0, 1)C .(-∞,0)D .(-∞,0)∪(1,+∞)二、填空题13.已知函数()1122,121,1x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则关于x 的不等式()()10f x f x -+≤的解集为___________________.14.已知函数()f x 的定义域是[1,1]-,则函数(21)()ln(1)f xg x x -=-的定义域是________.15.已知函数2,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥恒成立,则a 的取值范围是________.16.给出下列四个命题:①函数f (x )=log a (2x ﹣1)﹣1的图象过定点(1,0);②已知函数f (x )是定义在R 上的偶函数,当x ≤0时,f (x )=x (x +1),则f (x )的解析式为f (x )=x 2﹣|x |;③若log a12<1,则a 的取值范围是(0,12)∪(2,+∞);④若2﹣x ﹣2y >ln x ﹣ln (﹣y )(x >0,y <0),则x +y <0.其中所有正确命题的序号是_____.17.定义在(,0)(0,)-∞+∞上的函数1,0(),0x x e x f x e m x -⎧->=⎨+<⎩是奇函数,则实数m 的值为______.18.已知1a b >>,若10log log 3a b b a +=,b a a b =,则ab =___________. 19.已知函数()f x 满足()()1f x f x =-+,当()0,1x ∈时,函数()3xf x =,则13log 19f ⎛⎫= ⎪⎝⎭______. 20.函数()212log 2y x x =-的定义域是______,单调递减区间是______.三、解答题21.设函数()log (1)log (3)(0,1)a a f x x x a a =++->≠. (1)求函数()f x 的定义域(2)若(1)2f =,求函数()f x 在区间3[0,]2上的最大值. (3)解不等式:log (1)log (3)a a x x +>-.22.已知函数()log (1)log (1)a a f x x x =+--,(0a >且1a ≠) (1)求()f x 的定义域;(2)判断()f x 的奇偶性,并予以证明; (3)求使()0f x >的x 取值范围. 23.已知12324x A x ⎧⎫=≤≤⎨⎬⎩⎭,121log ,264B y y x x ⎧⎫==≤≤⎨⎬⎩⎭.(1)求AB ;(2)若{}11C x m x m =-≤≤+,若C A ⊆,求m 的取值范围. 24.(1)已知函数()()()2110x g x a a -=++>的图像恒过定点A ,且点A 又在函数())f x x a =+的图像上,求不等式()3g x >的解集;(2)已知121log 1x -≤≤,求函数1114242x xy -⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭的最大值和最小值. 25.已知函数35()log 5xf x x-=+. (1)求函数()f x 的定义域;(2)判断函数()f x 奇偶性,并证明你的结论. 26.已知函数121()log 21axf x x -=-,a 常数. (1)若2a =-,求证()f x 为奇函数,并指出()f x 的单调区间;(2)若对于35,22x ⎡⎤∈⎢⎥⎣⎦,不等式1221log (21)log (21)4xx m x ⎛⎫+->-- ⎪⎝⎭恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】判断复合函数的单调性,首先要分清楚内外层函数,根据复合函数“同增异减”原则,同时内层函数的值域要满足外层函数的定义域要求即可. 【详解】由题意知,()f x 在区间(),1-∞上是递减函数,由()()23log 5f x x ax a =+++可知,此复合函数外层函数为:()3log f x x =,在定义域上为增函数, 内层函数为()25h x x ax a =+++,要使()f x 在区间(),1-∞上是递减函数, 根据复合函数“同增异减”原则,内层函数为()h x 在区间(),1-∞上必须是递减函数, 同时须保证最大值()10h ≥,所以()1210a h ⎧-≥⎪⎨⎪≥⎩,解得32a --≤≤. 故选:A. 【点睛】易错点睛:判断复合函数的单调性,根据复合函数“同增异减”原则,同时内层函数的值域要满足外层函数的定义域要求.解析:D 【分析】作出()f x 的图象,利用数形结合即可得到结论. 【详解】∵函数()|lg |f x x =,作出()f x 的图象如图所示,∵0a b c <<<时,有()()()f a f c f b >>,∴0<a <1,c >1,即f (a )=|lga |=﹣lga ,f (c )=|lgc |=lgc ,∵f (a )>f (c ), ∴﹣lga >lgc ,则lga +lgc =lgac <0,则01ac <<. 故选:D .【点睛】关键点点睛:利用对数函数的图象和性质,根据条件确定a ,c 的取值范围.3.A解析:A 【分析】分析函数()()22xf x xx R =-∈的奇偶性,结合()01f =可得出合适的选项.【详解】令()22=-xf x x ,该函数的定义域为R ,()()()2222xxf x x x f x --=--=-=,函数()22=-xf x x 为偶函数,排除B 、D 选项;又()010f =>,排除C 选项. 故选:A. 【点睛】函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)从函数的特征点,排除不合要求的图象.解析:D 【分析】求出函数的定义域,根据对数型复合函数的单调性可得结果. 【详解】函数()212()log 4f x x =-的定义域为()(),22,-∞-+∞,因为函数()f x 是由12log y u =和24u x =-复合而成,而12log y u =在定义域内单调递减,24u x =-在(),2-∞-内单调递减,所以函数()212()log 4f x x =-的单调递增区间为(),2-∞-,故选:D. 【点睛】易错点点睛:对于对数型复合函数务必注意函数的定义域.5.A解析:A 【分析】求出原函数的定义域,再求出内函数二次函数的增区间,由题意列关于a 的不等式组,求得a 的范围,结合b=1g0.3<0,c=20.3>1得答案. 【详解】由5+4x-x 2>0,可得-1<x <5, 函数t=5+4x-x 2的增区间为(-1,2),要使f(x)=log 0.3(5+4x−x 2)在区间(a-1,a+1)上单调递减,则1112a a -≥-⎧⎨+≤⎩,即0≤a≤1. 而b=1g0.3<0,c=20.3>1, ∴b <a <c . 故选A . 【点睛】本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是中档题.6.B解析:B 【分析】由()()11f x f x -=+可得函数()f x 关于直线1x =对称,根据对数的运算法则,结合函数的对称性,变形41log 2、13log 3、39log 到区间[)1,+∞内,由函数()f x 在[)1,+∞上单调递增,即可得结果. 【详解】根据题意,函数()f x 满足()()11f x f x -=+, 则函数()f x 关于直线1x =对称,又由当(],1-∞时,函数()f x 单调递减,则函数在[)1,+∞上单调递增, 又由()44115log log 2222a f f f f ⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()()13log 313b f f f ⎛⎫==-= ⎪⎝⎭,()()3log 92c f f ==,则有c a b <<,故选B.【点睛】在比较()1f x ,()2f x ,,()n f x 的大小时,首先应该根据函数()f x 的奇偶性(对称性)与周期性将()1f x ,()2f x ,,()n f x 通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.7.A解析:A 【解析】x y z ,, 为正实数,且235log log log 0x y z ==<,111235235k k k x y z ---∴===,,,可得:1112352131,51k k k x y z---=>=>=>,. 即10k -> 因为函数1k f x x -=() 单调递增,∴235x y z<<. 故选A.8.B解析:B 【分析】11()+2x y m -=与x 有公共点,转化为11()2xy -=与y m =-有公共点,结合函数图象,可得结果. 【详解】11()+2x y m -=与x 有公共点,即11()2x y -=与y m =-有公共点,11()2xy -=图象如图可知0110m m <-≤⇒-≤< 故选:B 【点睛】本题考查了函数的交点问题,考查了运算求解能力和数形结合思想,属于基础题目.9.A解析:A 【分析】利用对数函数,幂函数的单调性比较大小即可. 【详解】解:因为12y x =在[0,)+∞上单调递增,110.32>>所以0.50.50.5110.32⎛⎫> ⎪⎝⎭>,即0.50.5110.32⎛⎫>> ⎪⎝⎭因为0.30.3log 0.2log 0.31>= 所以b a c << 故选:A 【点睛】本题主要考查了利用对数函数,幂函数的单调性比较大小,是中档题.10.C解析:C 【分析】由题意可知,函数()()213log f x x ax a =--在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递增,利用复合函数的单调性可知,内层函数2u x ax a =--在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减,且0>u 对任意的1,2x ⎛⎫∈-∞- ⎪⎝⎭恒成立,进而可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【详解】因为()()21210f x f x x x ->-,所以()()213f x log x ax a =--在1,2⎛⎫-∞- ⎪⎝⎭上是增函数, 令2u x ax a =--,而13log y u =是减函数,所以2u x ax a =--在1,2⎛⎫-∞-⎪⎝⎭上单调递减,且20u x ax a =-->在1,2⎛⎫-∞- ⎪⎝⎭上恒成立,所以212211022a a a ⎧≥-⎪⎪⎨⎛⎫⎛⎫⎪----≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得112a -≤≤. 故选:C. 【点睛】本题考查利用对数型复合函数在区间上的单调性求参数,解题时还应注意真数要恒为正数,考查分析问题和解决问题的能力,属于中等题.11.A解析:A 【解析】分析:0.20.4b =, 0.60.4c =的底数相同,故可用函数()0.4x f x =在R 上为减函数,可得0.60.200.40.40.41<<=.用指数函数的性质可得0.20221a =>=,进而可得0.20.20.620.40.4>>.详解:因为函数()0.4x f x =在R 上为减函数,且0.2<0.4 所以0.60.200.40.40.41<<= 因为0.20221a =>=. 所以0.20.20.620.40.4>>. 故选A .点睛:本题考查指数大小的比较,意在考查学生的转化能力.比较指数式的大小,同底数的可利用指数函数的单调性判断大小,底数不同的找中间量1,比较和1的大小.12.A解析:A 【解析】 试题分析:由()lg (21)fxx a=-+为奇函数,则()()f xf x-=-,可得1a =-,即()lg 11f xx x=+-,又()0f x <,即lg 110x x +-<,可变为0111xx <+-<,解得10x -<<.考点:函数的奇偶性,对数函数性质,分式不等式.二、填空题13.【分析】对自变量分情况讨论即然后对各种情况分别解不等式最后取并集;【详解】当时所以由此时不等式恒成立;当时则由则此时不等式恒成立;当时符合题意;当时解得∴综上可得不等式的解集为故答案为:【点睛】关键解析:7,2⎛⎤-∞ ⎥⎝⎦【分析】对自变量分情况讨论,即1x ≤,12x <≤,23x <<,3x ≥,然后对各种情况分别解不等式,最后取并集; 【详解】当1x ≤时,10x -≤,121x -≤,121x -≥,所以()11220x x f x --=-≤由2122x -≤,222x -≥,()221220x xf x ---=-<, 此时不等式()()10f x f x +-≤恒成立;当12x <≤时,()212110f x x x x =--=--=-<,011x <-≤,则()22122x xf x ---=-,由221x -≤,221x -≥,则()10f x -≤此时不等式()()10f x f x +-≤恒成立;当23x <<时,()()12131f x f x x x +-=--+--213110x x =--+--=-<, 符合题意;当3x ≥时,()()12131270f x f x x x x +-=--+--=-≤,解得72x ≤, ∴732x ≤<. 综上可得,不等式()()10f x f x +-<的解集为7,2⎛⎤-∞ ⎥⎝⎦.故答案为:7,2⎛⎤-∞ ⎥⎝⎦【点睛】关键点睛:本题考查分别函数解不等式的问题,涉及分类讨论思想的应用,解答本题的关键是对自变量x 的范围进行分类,即1x ≤,12x <≤,23x <<,3x ≥,从而得出()f x 和()1f x -的表达式,从而求解不等式,属于中档题.14.【分析】由函数的定义域是即结合函数的解析式列出不等式组即可求解【详解】由题意函数的定义域是即则函数有意义则满足解得解得即函数的定义域是故答案为:【点睛】本题主要考查了抽象函数定义域的求解以及对数函数 解析:(0,1)【分析】由函数()f x 的定义域是[1,1]-,即11x -≤≤,结合函数的解析式(21)()ln(1)f xg x x -=-,列出不等式组12111011x x x -≤-≤⎧⎪->⎨⎪-≠⎩,即可求解. 【详解】由题意,函数()f x 的定义域是[1,1]-,即11x -≤≤,则函数(21)()ln(1)f x g x x -=-有意义,则满足12111011x x x -≤-≤⎧⎪->⎨⎪-≠⎩ ,解得0110x x x ≤≤⎧⎪<⎨⎪≠⎩,解得01x <<,即函数(21)()ln(1)f xg x x -=-的定义域是(0,1).故答案为:(0,1). 【点睛】本题主要考查了抽象函数定义域的求解,以及对数函数的性质的应用,其中解答中熟记抽象函数的定义域的求解方法,以及对数函数的性质是解答的关键,着重考查推理与运算能力.15.【分析】分两种情况讨论当时结合图象可知;当时再分两种情况讨论分离参数后化为函数的最值可解得结果【详解】当时则恒成立等价于恒成立函数的图象如图:由图可知;当时所以恒成立等价于恒成立若则若则恒成立所以综 解析:10a -≤≤【分析】分0x >,0x ≤两种情况讨论,当0x >时,结合图象可知0a ≤;当0x ≤时,再分0x =,0x <两种情况讨论,分离参数后化为函数的最值可解得结果.【详解】当0x >时,()ln(1)0f x x =+>,则|()|f x ax ≥恒成立等价于ln(1)x ax +≥恒成立, 函数ln(1)y x =+的图象如图:由图可知0a ≤;当0x ≤时,2()0f x x x =-+≤,所以|()|f x ax ≥恒成立等价于2x x ax -≥恒成立, 若0x =,则a R ∈,若0x <,则1a x ≥-恒成立,所以1a ≥-, 综上所述:10a -≤≤. 故答案为:10a -≤≤ 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;16.②④【分析】根据对数函数的图像与性质以及函数的单调性和奇偶性逐个分析判断即可得解【详解】对于①由2x ﹣1=1得x =1∴函数f (x )=loga (2x ﹣1)﹣1的图象过定点(1﹣1)故①错误;对于②函数解析:②④ 【分析】根据对数函数的图像与性质,以及函数的单调性和奇偶性,逐个分析判断即可得解. 【详解】对于①,由2x ﹣1=1,得x =1,∴函数f (x )=log a (2x ﹣1)﹣1的图象过定点(1,﹣1),故①错误;对于②,函数f (x )是定义在R 上的偶函数, 当x ≤0时,f (x )=x (x +1),设x >0,则﹣x <0, ∴f (x )=f (﹣x )=﹣x (﹣x +1)=x (x ﹣1), 则f (x )的解析式为f (x )=x 2﹣|x |,故②正确; 对于③,由log a12<1,得log a 12<log a a ,当a >1时,不等式成立, 当0<a <1时,解得012a <<. 则a 的取值范围是(0,12)∪(1,+∞),故③错误;对于④,由2﹣x ﹣2y >ln x ﹣ln (﹣y )(x >0,y <0), 得2﹣x ﹣lnx >2y ﹣ln (﹣y ),∵函数f (x )=2﹣x ﹣ln x 为定义域内的减函数, ∴x <﹣y ,即x +y <0,故④正确. 故答案为:②④. 【点睛】本题考查了对数函数的运算以及对数函数的性质,考查了函数奇偶性和单调性的应用,考查了转化思想,属于中档题.本题涉及的方法有一下几个: (1)根据奇偶性求解析式,注意范围的设定; (2)构造函数,利用函数的单调性,确定大小关系.17.【分析】由奇函数定义求解【详解】设则∴此时时为奇函数故答案为:【点睛】方法点睛:本题考查函数的奇偶性对于分段函数一般需要分类求解象这种由奇函数求参数可设求得参数值然后再验证这个参数值对也适用即可本题解析:1-. 【分析】由奇函数定义求解. 【详解】设0x >,则()1x f x e -=-,()x f x e m --=+,∴10x x e m e --++-=,1m =-. 此时,0x <时,()1,x f x e =-()1()x f x e f x -=-=-,()f x 为奇函数. 故答案为:1-. 【点睛】方法点睛:本题考查函数的奇偶性,对于分段函数,一般需要分类求解.象这种由奇函数求参数,可设0x >,求得参数值,然后再验证这个参数值对0x <也适用即可.本题也可以由特殊值如(1)(1)f f -=-求出参数,然后检验即可.18.9【分析】由对数的运算性质解并整理得由可求出的值【详解】解:整理得解得或因为所以则即因为所以所以解得或因为所以所以所以故答案为:9【点睛】关键点睛:本题主要考查对数运算和指数运算解题的关键是由得出再解析:9 【分析】由对数的运算性质解10log log 3a b b a +=并整理得3a b =,由b a a b =可求出,a b 的值. 【详解】解:110log log log log 3a b b b b a a a +=+=,整理得()23log 10log 30b b a a -+=, 解得log 3b a =或13,因为1a b >>,所以log 1b a >,则log 3b a =,即3a b =,因为b a a b =,所以33b b b b =,所以33b b =,解得b =0,因为1b >,所以b =所以3a ==,所以9ab ==. 故答案为:9. 【点睛】关键点睛:本题主要考查对数运算和指数运算,解题的关键是由10log log 3a b b a +=得出3a b =,再根据指数运算求解.19.【分析】由满足得到函数是以2为周期的周期函数结合对数的运算性质即可求解【详解】由题意函数满足化简可得所以函数是以2为周期的周期函数又由时函数且则故答案为:【点睛】函数的周期性有关问题的求解策略:求解 解析:2719-【分析】由()f x 满足()()1f x f x =-+,得到函数()f x 是以2为周期的周期函数,结合对数的运算性质,即可求解. 【详解】由题意,函数()f x 满足()()1f x f x =-+,化简可得()()2f x f x =+, 所以函数()f x 是以2为周期的周期函数,又由()0,1x ∈时,函数()3xf x =,且()()1f x f x =-+,则133339(log 19)(log 19)(log 192)(log )19f f f f =-=-+= 327log 193392727(log 1)(log )3191919f f =-+=-=-=-.故答案为:2719-【点睛】函数的周期性有关问题的求解策略:求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期; 解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.20.【分析】由表达式可知解出对应即可求解定义域再结合复合函数同增异减性质可求函数单调减区间【详解】由题可知可看作在定义域内为减函数根据复合函数增减性当内层函数为增函数则在对应区间为减函数故函数的定义域是解析:()(),02,-∞+∞ ()2,+∞【分析】由表达式可知220x x ->,解出对应x ,即可求解定义域,再结合复合函数同增异减性质可求函数单调减区间 【详解】由题可知,()()220,02,x x x ->⇒∈-∞+∞,()212log 2y x x =-可看作12log y t =,22t x x =-,12log y t =在定义域内为减函数,根据复合函数增减性,当()2,x ∈+∞,内层函数为增函数,则()212log 2y x x =-在对应区间为减函数,故函数()212log 2y x x =-的定义域是()(),02,-∞+∞,单调递减区间是()2,+∞故答案为:()(),02,-∞+∞;()2,+∞【点睛】本题考查对数型函数具体定义域和对应增减区间,属于基础题三、解答题21.(1)(1,3)-;(2)2;(3)答案见解析. 【分析】(1)由1030x x +>⎧⎨->⎩得解定义域(2)由(1)2f =求得2a =.化简 22()log (1)4f x x ⎡⎤=--+⎣⎦,求得函数单调性得解(3)分类1a >和01a <<讨论得解 【详解】 (1)由1030x x +>⎧⎨->⎩得13x ,所以函数()f x 的定义域为(1,3)-.(2)因为(1)2f =,所以log 42(0,1)a a a =>≠,所以2a =.22222()log (1)log (3)log [(1)(3)]log (1)4f x x x x x x ⎡⎤=++-=+-=--+⎣⎦,所以当(1,1]x ∈-时,()f x 是增函数;当(1,3)x ∈时,()f x 是减函数, 故函数()f x 在(1,3)-上的最大值是2(1)log 42f ==. (3)当1a >时1330x x x +>-⎧⎨->⎩解得13x x >⎧⎨<⎩不等式解集为:{|13}x x <<当01a <<时1310x xx +<-⎧⎨+>⎩解得11x x <⎧⎨>-⎩不等式解集为:{|11}x x -<<【点睛】简单对数不等式问题的求解策略(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数a 的值有关,在研究对数函数的单调性时,要按1a >和01a <<进行分类讨论.22.(1){|11}x x -<<;(2)函数()f x 是奇函数,证明见解析;(3)当1a >时,01x <<;当01a <<时,10x -<<【分析】(1)根据对数的真数为正数列式可解得结果; (2)函数()f x 是奇函数,根据奇函数的定义证明即可;(3)不等式化为log (1)log (1)a a x x +>-后,分类讨论底数a ,根据对数函数的单调性可解得结果. 【详解】(1)要使函数数()f x 有意义,则必有1010x x +>⎧⎨->⎩,解得11x -<<,所以函数()f x 的定义域是{|11}x x -<< . (2)函数()f x 是奇函数,证明如下: ∵(1,1)x ∈-,(1,1)x -∈-,()log (1)log (1)a a f x x x -=--+[]log (1)log (1)a a x x =-+-- ()f x =-,∴函数()f x 是奇函数(3)使()0f x >,即log (1)log (1)a a x x +>-当1a >时,有111010x xx x +>-⎧⎪->⎨⎪+>⎩,解得01x <<,当01a <<时,有111010x x x x +<-⎧⎪->⎨⎪+>⎩,解得10x -<<.综上所述:当1a >时,01x <<;当01a <<时,10x -<<. 【点睛】方法点睛:已知函数解析式,求函数定义域的方法: 有分式时:分母不为0;有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0; 有指数时:当指数为0时,底数一定不能为0;有根号与分式结合时,根号开偶次方在分母上时:根号下大于0; 有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1. 23.(1)[1,5]A B ⋂=-;(2)(],3-∞. 【分析】(1)根据指数运算解不等式求出集合A ,利用对数的运算求出集合B ,由此能求出A B ;(2)由{}11C x m x m =-≤≤+和C A ⊆,对C 是否为空集分类讨论,列出不等式组,由此能求出m 的取值范围. 【详解】 解:(1)1{|232}{|25}4xA x x x ==-, 12{|log B y y x==,12}{|16}64x x x =-, [1,5]A B ∴=-.(2){}11C x m x m =-≤≤+且C A ⊆,若,11,0C m m m =∅->+<若C ≠∅,则111512m m m m -≤+⎧⎪+⎨⎪--⎩,解得03m ≤≤,m ∴的取值范围是(],3-∞.【点睛】本题考查交集的运算以及根据集合间的包含关系求参数的取值范围,还涉及指对数的运算,属于基础题.24.(1)()3,+∞;(2)min 1y =,max 54y =. 【分析】(1)结合指数函数性质首先求a 的值,再解指数不等式;(2)通过换元,设12xt ⎛⎫= ⎪⎝⎭,并且求变量的取值范围,转化为二次函数在定义域内的最大值和最小值. 【详解】(1)由题意知定点A 的坐标为()2,2, ∴)22a =+解得1a =.∴()221x g x -=+.∴由()3g x >得,2213x -+>. ∴222x ->.∴21x ->. ∴3x >.∴不等式()3g x >的解集为()3,+∞.(2)由121log 1x -≤≤得122x ≤≤令12xt ⎛⎫= ⎪⎝⎭,则14t ≤≤,221442412y t t t ⎛⎫=-+=-+ ⎪⎝⎭.∴当12t =,即1122x⎛⎫= ⎪⎝⎭,1x =时,min 1y =, 当14t =,即1124x⎛⎫= ⎪⎝⎭,2x =时,max 54y =. 【点睛】本题考查指数函数与对数函数的图象与性质,考查求对数型函数的值域,求值域的方法是用换元法把函数转化为二次函数,然后求解. 25.(1)(5,5)- (2)奇函数,见解析 【分析】(1)若()f x 有意义,则需满足505xx->+,进而求解即可; (2)由(1),先判断定义域是否关于原点对称,再判断()f x -与()f x 的关系即可. 【详解】 (1)由题,则505xx->+,解得55x -<<,故定义域为()5,5- (2)奇函数,证明:由(1),()f x 的定义域关于原点对称, 因为()()33355log log log 1055x xf x f x x x+--+=+==-+,即()()f x f x -=-, 所以()f x 是奇函数 【点睛】本题考查具体函数的定义域,考查函数的奇偶性的证明. 26.(1)证明见解析;单调增区间为1,2⎛⎫-∞- ⎪⎝⎭,1,2⎛⎫+∞ ⎪⎝⎭;(2)98m <-. 【分析】(1)2a =-时,1221()log 21x f x x +=-,求其定义域,计算()()0f x f x 即可.(2)将不等式整理为21211log 214xx m x +⎛⎫-> ⎪-⎝⎭,12211()log 214xx g x x +⎛⎫=- ⎪-⎝⎭,只需要min ()g x m >.利用()g x 单调性即可求出min 39()28g x g ⎛⎫==- ⎪⎝⎭,进而可得98m <-.【详解】(1)证明:当2a =-时,1221()log 21x f x x +=-. ()f x 的定义域为11,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.当11,,22x ⎛⎫⎛⎫∈-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭时, 11222121()()log log 2121x x f x f x x x -++-+=+---11222121log log 102121x x x x -++⎛⎫=⋅== ⎪---⎝⎭.∴()()0f x f x +-=, ∴()f x 是奇函数,1221()log 21x f x x +=-是由2121x t x +=-和12log y t=复合而成, 12log y t =单调递减,2121221212121x x t x x x +-+===+---在1,2⎛⎫-∞- ⎪⎝⎭ 和1,2⎛⎫+∞ ⎪⎝⎭单调递减,所以1221()log 21x f x x +=-在1,2⎛⎫-∞- ⎪⎝⎭ 和1,2⎛⎫+∞ ⎪⎝⎭单调递增, 所以()f x 的单调增区间为1,2⎛⎫-∞-⎪⎝⎭,1,2⎛⎫+∞ ⎪⎝⎭.(2)由1221log (21)log (21)4xx m x ⎛⎫+->-- ⎪⎝⎭,得21211log 214xx m x +⎛⎫-> ⎪-⎝⎭,令12211()log 214xx g x x +⎛⎫=- ⎪-⎝⎭,若使题中不等式恒成立,只需要min ()g x m >.由(1)知()f x 在35,22⎡⎤⎢⎥⎣⎦上是增函数,14xy ⎛⎫= ⎪⎝⎭单调递减,所以12211()log 214xx g x x +⎛⎫=- ⎪-⎝⎭在35,22⎡⎤⎢⎥⎣⎦上是增函数,所以min 39()28g x g ⎛⎫==-⎪⎝⎭. 所以m 的取值范围是98m <-. 【点睛】本题主要考查了函数的奇偶性,利用函数的单调性求最值,考查了恒成立问题,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微:数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,页常用函数的解析式来琢磨函数图象的特征,如函数()22xy xx R =-∈的大致图象是( )A .B .C .D .2.已知()f x ,()g x 分别为定义在R 上的偶函数和奇函数,且满足()()2xf xg x +=,若对于任意的[]1,2x ∈,都有()()20f x a g x a -⋅-≤⎡⎤⎡⎤⎣⎦⎣⎦恒成立,则实数a 的取值范围是( ) A .317,44⎡⎤⎢⎥⎣⎦B .155,82⎡⎤⎢⎥⎣⎦C .15,28⎡⎤⎢⎥⎣⎦D .172,4⎡⎤⎢⎥⎣⎦3.已知定义在R 上的函数()f x 满足(3)()f x f x +=,且当(1x ∈,3]时,4()log f x x =,则(2021)f =( )A .12B .0C .4log 3D .14.函数1()1x f x a +=-恒过定点( )A .(1,1)B .(1,1)-C .(1,0)-D .(1,1)--5.若函数y x a a -a >0,a ≠1)的定义域和值域都是[0,1],则log a56+log a 485=( )A .1B .2C .3D .46.已知函数()()2ln f x ax bx c =++的部分图象如图所示,则a b c -+的值是( )A .1-B .1C .5-D .57.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( ) A .2,13⎛⎫⎪⎝⎭B .(0,1)C .20,3⎛⎫ ⎪⎝⎭D .[)3,+∞ 8.已知偶函数()f x 在[0,)+∞上单调递增,131(())4a f =,37(log )2b f =,13(log 5)c f =,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>9.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .3 10.设0.512a ⎛⎫= ⎪⎝⎭,0.50.3b =,0.3log 0.2c =,则a 、b 、c 的大小关系( ).A .b a c <<B .a b c <<C .a b c >>D .a c b <<11.已知0.22a =,0.20.4b =,0.60.4c =,则( )A .a b c >>B .a c b >>C .c a b >>D .b c a >>12.物理学规定音量大小的单位是分贝(dB ),对于一个强度为I 的声波,其音量的大小η可由如下公式计算:010lgII η=(其中0I 是人耳能听到声音的最低声波强度).我们人类生活在一个充满声音的世界中,人们通过声音交换信息、交流情感,人正常谈话的音量介于40dB 与60dB 之间,则60dB 声音的声波强度1I 是40dB 声音的声波强度2I 的( ) A .32倍 B .3210倍C .100倍D .3lg2倍 二、填空题13.已知函数()()212log 23f x x ax =-+,若函数的增区间是(),1-∞,则实数a =______.14.若3log 14a>(0a >且1a ≠),则实数a 的取值范围为________ 15.已知0x >且1x ≠,0y >且1y ≠,方程组58log log 4log 5log 81x y x y +=⎧⎨-=⎩的解为11x x y y =⎧⎨=⎩或22x x y y =⎧⎨=⎩,则()1212lg x x y y =________. 16.下列五个命题中:①函数log (21)2015(0a y x a =-+>且1)a ≠的图象过定点()1,2015; ②若定义域为R 函数()f x 满足:对任意互不相等的1x 、2x 都有()()()12120x x f x f x -->⎡⎤⎣⎦,则()f x 是减函数;③2(1)1f x x +=-,则2()2f x x x =-;④若函数22()21x x a a f x ⋅+-=+是奇函数,则实数1a =-;⑤若log 8(0,1)log 2c c a c c =>≠,则实数3a =. 其中正确的命题是________.(填上相应的序号).17.定义在(,0)(0,)-∞+∞上的函数1,0(),0x x e x f x e m x -⎧->=⎨+<⎩是奇函数,则实数m 的值为______.18.函数()213log 253y x x =--的单调递增区间为_______.19.若函数1log 12a y x ⎛⎫=+⎪⎝⎭在区间3,62⎡⎤-⎢⎥⎣⎦有最小值-2,则实数a =_______.20.关于下列命题:①若函数2x y =的定义域是{}|0x x ≤,则它的值域是{}|1y y ≤ ②若函数1y x =的定义域是{}|2x x >,则它的值域是12y y ⎧⎫<⎨⎬⎩⎭ ③若函数2yx 的值域是{}|04y y ≤≤,则它的定义域可能是{}|22x x -≤≤④若函数2log y x =的值域是{}|3y y ≤,则它的定义域是{}|8x x ≤其中不正确的命题的序号是________.(注:把你认为不正确的命题的序号都填上)三、解答题21.已知函数2()46f x ax x =-+.(1)若函数2log ()y f x =的值域为R ,求实数a 的取值范围;(2)若函数log ()a y f x =在区间(1,3)上单调递增,求实数a 的取值范围.22.计算1132113321(4)()40.1()ab a b ----⋅(其中0a >,0b >)23.已知函数()442xx f x =+;(1)若01a <<,求()()1f a f a +-的值; (2)求12320202021202120212021f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值. 24.已知指数函数()x f x a =(0a >,且1a ≠)的图象过点12,4⎛⎫ ⎪⎝⎭. (1)求函数的解析式;(2)设函数()(1)1g x f x =--,(0)x ≥,求函数()g x 的值域. 25.已知222log ()log log x y x y +=+,则x y +的取值范围是__________.26.已知函数1()log a f x a x ⎛⎫=-⎪⎝⎭, 其中实数0a >且1a ≠. (1)当3a =时,求不等式()0f x >的解集;(2)若()f x 在区间[1,3]上单调递增,求a 的取值范围;【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分析函数()()22xf x xx R =-∈的奇偶性,结合()01f =可得出合适的选项.【详解】令()22=-xf x x ,该函数的定义域为R ,()()()2222xxf x x x f x --=--=-=,函数()22=-xf x x 为偶函数,排除B 、D 选项;又()010f =>,排除C 选项. 故选:A. 【点睛】函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置.(3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)从函数的特征点,排除不合要求的图象.2.B解析:B 【分析】利用奇偶性求出()222x x f x -+=,()222x x g x --=,讨论()22x xh x -=+和()g x 的单调性求最值可得()()h x g x >恒成立,则不等式恒成立等价于()()max min g x a h x ≤≤. 【详解】()()2x f x g x +=,()()2x f x g x --+-=∴,()f x 是偶函数,()g x 分是奇函数,()()2x f x g x -=∴-,可得()222x x f x -+=,()222x xg x --=,则不等式为()()1222202x xx x a a --⎡⎤+-⋅--≤⎢⎥⎣⎦,令()22xxh x -=+,令2x t =,由对勾函数的性质可得1y t t=+在[]2,4单调递增,则()22x xh x -=+在[]1,2单调递增,则()()()()min max 5171,224h x h h x h ====, 对于()222x xg x --=,因为2x y =单调递增,2x y -=-单调递增,()g x ∴在[]1,2单调递增,()()()()min max 3151,248g x g g x g ∴====, ()()h x g x ∴>恒成立,则不等式()()0h x a g x a --≤⎡⎤⎡⎤⎣⎦⎣⎦,解得()()g x a h x ≤≤,()()max min g x a h x ∴≤≤,即15582a ≤≤. 故选:B. 【点睛】关键点睛:本题考查不等式的恒成立问题,解题的关键是利用奇偶性求出函数解析式,根据函数的单调性求出最值将不等式等价为()()max min g x a h x ≤≤即可求解.3.A解析:A 【分析】根据题意,由(3)()f x f x +=可得()f x 是周期为3的周期函数,则有(2021)f f=(2),结合函数的解析式计算可得答案. 【详解】根据题意,定义在R 上的函数()f x 满足(3)()f x f x +=,则()f x 是周期为3的周期函数,则(2021)(23673)(2)f f f =+⨯=,又由当(1x ∈,3]时,4()log f x x =,则f (2)41log 22==, 故1(2021)2f =, 故选:A. 【点睛】关键点点睛:根据函数的周期性将(2021)f 化为(2)f ,再利用函数解析式求值是解题关键.4.C解析:C 【分析】根据指数函数性质求定点. 【详解】因为01a =,所以()011f a -=-=0,因此过定点()1,0-,选C.【点睛】本题考查指数函数性质以及定点问题,考查基本分析求解能力,属于基础题.5.C解析:C 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y [0,1]上单调递减,值域是[0,1],所以f (0)1,f (1)=0, 所以a =2, 所log a 56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.6.D解析:D 【分析】由图中函数的单调性可得方程20ax bx c ++=的两根为2和4,利用根与系数的关系结合(1)0f =列式求得,,a b c 的值,则答案可求.【详解】解:由图可知,函数()f x 的减区间为(,2)-∞,增区间为(4,)+∞, ∴内层函数2t ax bx c =++的减区间为(,2)-∞,增区间为(4,)+∞, ∴方程20ax bx c ++=的两根为2和4, 又(1)0f =,68ln()0ba ca abc ⎧-=⎪⎪⎪∴=⎨⎪++=⎪⎪⎩,解得13283a b c ⎧=⎪⎪=-⎨⎪⎪=⎩.182533a b c ∴-+=++=.故选:D. 【点睛】本题考查函数的图象与图象变换,考查复合函数的单调性,考查数学转化思想方法,是中档题.7.C解析:C 【分析】根据对数函数性质与复合函数的单调性求解. 【详解】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数, 由对数函数性质知230a ->,即23<a , 综上023a <<. 故选:C . 【点睛】本题考查复合函数的单调性,掌握对数函数性质是解题关键,考查逻辑思维能力和计算能力,属于常考题.8.C解析:C 【分析】偶函数()f x 在[0,)+∞上单调递增,化简1333(log 5)(log 5)(log 5)f f f =-=,利用中间量比较大小得解. 【详解】∵偶函数()f x 在[0,)+∞上单调递增1333(log 5)(log 5)(log 5)c f f f ∴==-=,∵1333170()1log log 542<<<<,133317(()(log )(log 5)42)f f f << ∴a b c <<. 故选:C 【分析】本题考查函数奇偶性、单调性及对数式大小比较,属于基础题.9.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.10.A解析:A 【分析】利用对数函数,幂函数的单调性比较大小即可. 【详解】解:因为12y x =在[0,)+∞上单调递增,110.32>>所以0.50.50.5110.32⎛⎫> ⎪⎝⎭>,即0.50.5110.32⎛⎫>> ⎪⎝⎭因为0.30.3log 0.2log 0.31>= 所以b a c << 故选:A 【点睛】本题主要考查了利用对数函数,幂函数的单调性比较大小,是中档题.11.A解析:A 【解析】分析:0.20.4b =, 0.60.4c =的底数相同,故可用函数()0.4x f x =在R 上为减函数,可得0.60.200.40.40.41<<=.用指数函数的性质可得0.20221a =>=,进而可得0.20.20.620.40.4>>.详解:因为函数()0.4x f x =在R 上为减函数,且0.2<0.4 所以0.60.200.40.40.41<<= 因为0.20221a =>=. 所以0.20.20.620.40.4>>. 故选A .点睛:本题考查指数大小的比较,意在考查学生的转化能力.比较指数式的大小,同底数的可利用指数函数的单调性判断大小,底数不同的找中间量1,比较和1的大小.12.C解析:C 【分析】 先根据010lg II η=得10010I I η=,再将60dB 和40dB 代入得计算12I I 即可得答案.【详解】解:因为音量大小与强度为I 的声波的关系为010lg II η=, 所以10010I I η=,所以606101001010I I I ==,404102001010I I I ==,所以6014201010010I I I I ==, 故选:C. 【点睛】本题以物理知识为背景,考查指对数的互化,运算等,是中档题.二、填空题13.1或2【分析】因为函数在上单调递减要使的单调增区间为分两种情况讨论对称轴和对称轴分别计算可得;【详解】解:因为函数在上单调递减要使的单调增区间为①当函数对称轴为时因为所以恒成立满足条件②当函数对称轴解析:1或2 【分析】因为函数12log y x =在()0,∞+上单调递减,要使()()212log 23f x x ax =-+的单调增区间为(),1-∞,分两种情况讨论,对称轴1x =和对称轴1x a =>,分别计算可得; 【详解】解:因为函数12log y x =在()0,∞+上单调递减,要使()()212log 23f x x ax =-+的单调增区间为(),1-∞,①当函数()223g x x x a =-+对称轴为1x a ==时,因为()22430∆=--⨯<,所以2230x ax -+>恒成立,满足条件,②当函数()223g x x x a =-+对称轴1x a =>时,需满足()10g =,即21230a -+=解得2a =;综上可得1a =或2 故答案为:1或2 【点睛】本题考查复合函数的单调性判断,已知函数的单调性求参数的取值范围,属于中档题.14.【分析】讨论和两种情况利用函数单调性解不等式得到答案【详解】当时满足不成立;当时综上所述:故答案为:【点睛】本题考查了利用函数单调性解不等式分类讨论是解题的关键解析:3,14⎛⎫⎪⎝⎭【分析】讨论1a >和01a <<两种情况,利用函数单调性解不等式得到答案. 【详解】3log 1log 4aa a >=,当1a >时,满足34a >,不成立;当01a <<时,34a >. 综上所述:3,14a ⎛⎫∈⎪⎝⎭. 故答案为:3,14⎛⎫ ⎪⎝⎭. 【点睛】本题考查了利用函数单调性解不等式,分类讨论是解题的关键.15.【分析】利用换底公式得出分别消去和可得出二次方程利用韦达定理可求出和的值进而可计算出的值【详解】由换底公式得由①得代入②并整理得由韦达定理得即则因此故答案为:【点睛】本题考查了对数的换底公式对数的运 解析:6【分析】利用换底公式得出5858log log 4111log log x y x y+=⎧⎪⎨-=⎪⎩,分别消去5log x 和8log y ,可得出二次方程,利用韦达定理可求出12x x 和12y y 的值,进而可计算出()1212lg x x y y 的值. 【详解】由换底公式得5858log log 4111log log x y x y+=⎧⎪⎨-=⎪⎩①②, 由①得58log 4log x y =-,代入②并整理得()288log 2log 40y y --=,由韦达定理得8182log log 2y y +=,即()812log 2y y =,则261282y y ==,()51528182log log 8log log 6x x y y ∴+=-+=,6125x x ∴=,因此,()61212lg lg106x x y y ==.故答案为:6. 【点睛】本题考查了对数的换底公式,对数的运算性质,韦达定理,考查了计算能力,属于中档题.16.①③⑤【分析】对①由对数函数恒过即可判断;对②由函数单调性的定义即可判断函数的单调性;对③利用换元法即可求得函数的解析式;对④由奇函数的定义即可判断;对⑤由换底公式即可求得的值【详解】解:对①令解得解析:①③⑤ 【分析】对①,由对数函数恒过(1,0),即可判断; 对②,由函数单调性的定义即可判断函数的单调性; 对③,利用换元法即可求得函数()f x 的解析式; 对④,由奇函数的定义即可判断; 对⑤,由换底公式即可求得a 的值. 【详解】解:对①,令211x -=, 解得:1x =,则(1)2015f =,()f x ∴的图象过定点()1,2015,故①正确;对②,()()()12120x x f x f x -->⎡⎤⎣⎦,当12x x <时,()()12f x f x <; 当12x x >时,()()12f x f x >;()f x ∴是R 上的增函数,故②错误;对③,令1t x =+,则1x t =-;2()2f t t t ∴=-,即2()2f x x x =-,故③正确; 对④,由题意知()f x 的定义域为R , 又()f x 为奇函数,(0)0f ∴=,解得:1a =,故④不正确; 对⑤,log 8lg83lg 2=3log 2lg 2lg 2c c a ===,故⑤正确. 故答案为:①③⑤. 【点睛】方法点睛:求函数解析式常用方法:(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (2)换元法:已知复合函数(())f g x 的解析式,可用换元法,此时要注意新元的取值范围; (3)方程法:已知关于()f x 与1f x ⎛⎫⎪⎝⎭或()f x -的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).17.【分析】由奇函数定义求解【详解】设则∴此时时为奇函数故答案为:【点睛】方法点睛:本题考查函数的奇偶性对于分段函数一般需要分类求解象这种由奇函数求参数可设求得参数值然后再验证这个参数值对也适用即可本题解析:1-. 【分析】由奇函数定义求解. 【详解】设0x >,则()1x f x e -=-,()x f x e m --=+,∴10x x e m e --++-=,1m =-. 此时,0x <时,()1,x f x e =-()1()x f x e f x -=-=-,()f x 为奇函数. 故答案为:1-. 【点睛】方法点睛:本题考查函数的奇偶性,对于分段函数,一般需要分类求解.象这种由奇函数求参数,可设0x >,求得参数值,然后再验证这个参数值对0x <也适用即可.本题也可以由特殊值如(1)(1)f f -=-求出参数,然后检验即可.18.【分析】先由求得函数的定义域然后令由复合函数的单调性求解【详解】由解得或所以函数的定义域为或因为在上递减在递减所以函数的单调递增区间为故答案为:【点睛】方法点睛:复合函数的单调性的求法:对于复合函数解析:1,2⎛⎫-∞- ⎪⎝⎭【分析】先由22530x x -->,求得函数的定义域,然后令2253t x x =--,由复合函数的单调性求解. 【详解】由22530x x -->,解得 12x <-或 3x >, 所以函数()213log 253y x x =--的定义域为{1|2x x <-或 }3x >, 因为2253t x x =--在1,2⎛⎫-∞-⎪⎝⎭上递减,13log y t =在()0,∞+递减, 所以函数()213log 253y x x =--的单调递增区间为1,2⎛⎫-∞- ⎪⎝⎭.故答案为:1,2⎛⎫-∞- ⎪⎝⎭【点睛】方法点睛:复合函数的单调性的求法: 对于复合函数y =f [g (x )],先求定义域,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数; 若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.19.或2【分析】根据复合函数的单调性及对数的性质即可求出的值【详解】当时在为增函数求得即;当时在为减函数求得即故答案为:或【点睛】本题考查复合函数单调性对数方程的解法难度一般解析:12或2 【分析】根据复合函数的单调性及对数的性质即可求出a 的值. 【详解】当1a >时, 1log 12a y x ⎛⎫=+ ⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为增函数,min 33log 1-224a y f ⎛⎫⎛⎫=-=-+= ⎪ ⎪⎝⎭⎝⎭,求得-214a=,即=2a ;当01a <<时, 1log 12a y x ⎛⎫=+ ⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为减函数,()()min 6log 31-2a y f ==+=,求得-24a =,即1=2a . 故答案为:12或2. 【点睛】本题考查复合函数单调性,对数方程的解法,难度一般.20.①②④【分析】根据①②③④各个函数的定义域求出各个函数的值域判断正误即可【详解】①中函数的定义域值域;故①不正确;②中函数的定义域是值域;故②不正确;③中函数的值域是则它的定义域可能是故③是正确的;解析:①②④ 【分析】根据①、②、③、④各个函数的定义域,求出各个函数的值域,判断正误即可. 【详解】①中函数2x y =的定义域{}|0x x ≤,值域2(0,1]x y =∈;故①不正确; ②中函数1y x =的定义域是{|2}x x >,值域110,2y x ⎛⎫=∈ ⎪⎝⎭;故②不正确; ③中函数2y x 的值域是{|04}y y ≤≤,则它的定义域可能是{}|22x x -≤≤,故③是正确的;④中函数2log y x =的值域是{|3}y y ≤,∵2log 3,08y x x =≤∴<≤,,故④不正确; 故答案为:①②④. 【点睛】本题考查函数的定义域及其求法,函数的值域,指数函数的定义域和值域,对数函数的值域与最值,考查计算能力,属于基础题.三、解答题21.(1)20,3⎡⎤⎢⎥⎣⎦;(2)[)2,+∞. 【分析】(1)根据条件分析出2()46f x ax x =-+的值域包含()0,∞+,由此根据a 与0的关系分类讨论,求解出结果;(2)根据1,01a a ><<两种情况结合复合函数单调性的判断方法进行分类讨论,然后求解出a 的取值范围. 【详解】(1)因为()22log 46y ax x =-+的值域为R ,所以246y ax x =-+的值域包含()0,∞+,当0a =时,246y ax x =-+即46y x =-+,此时46y x =-+的值域为R ,满足;当0a ≠时,则有016240a a >⎧⎨∆=-≥⎩,所以203a <≤,综上可知:20,3a ⎡⎤∈⎢⎥⎣⎦;(2)当1a >时,log a y x =在()0+∞,上单调递增,所以2()46f x ax x =-+在()1,3上递增,所以()2110a f ⎧≤⎪⎨⎪>⎩,所以2a ≥,当01a <<时,log a y x =在()0+∞,上单调递减,所以2()46f x ax x =-+在()1,3上递减,所以()2330a f ⎧≥⎪⎨⎪>⎩,此时a 无解,综上可知:[)2,a ∈+∞. 【点睛】思路点睛:形如()()()2lg 0f x ax bx ca =++≠的函数,若函数的定义域为R ,则有0a >⎧⎨∆<⎩; 若函数的值域为R ,则有0a >⎧⎨∆≥⎩. 22.85【分析】将小数转化为分数,根式转化为分数幂的形式,利用指数幂的运算性质化简求值. 【详解】1113132211133133221(4)1(4)()=()4410.1()()()10ab ab a b a b --------⋅⋅ 原式13113322211()()(4)()410ab a b ----=原式33333002222211848555a b a b a b --=⨯⨯=⨯⨯=【点睛】本题考查指数幂的运算,要熟练掌握基本的运算法则和运算性质,小数转化为分数,根式转化为分数幂的形式,更有利于运算. 23.(1)1;(2)1010. 【分析】(1)根据4()42xx f x =+的表达式,求出()(),1f a f a -的表达式,再进行分式通分运算,可得()()11f a f a +-=. (2)设12320202021202120212021S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再把S 的表达式运用加法交换律改写成20201202120212021202321S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,把两式相加利用()(1)1f x f x +-=求出S 的值. 【详解】 (1)4()42xxf x =+,x ∈R . ∴()()1f a f a +-1144444442424224aaaa a a a a--=+=+++++4214224a a a=+=++,(2)设12320202021202120212021S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则 20201202120212021202321S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 两式相加得:12[][][]92022020220120201202120212022120211021S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭由(1)得:20202201109211,1,,221202120212021202120220101f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ∴220201010S S =⇒=.【点睛】本题考查指数幂运算,分式运算,利用函数的性质进行式子求值,考查运算求解能力.24.(1)1()2xf x ⎛⎫= ⎪⎝⎭;(2)(]1,1-. 【分析】(1)利用待定系数法求出参数a 的值,即可求出函数解析式;(2)由(1)可知11()12x g x -⎛⎫=- ⎪⎝⎭,再结合指数函数的性质计算可得;【详解】解:(1)设()x f x a =(0a >,且1a ≠),因为其图象过点12,4⎛⎫ ⎪⎝⎭,则214a =, 计算得:12a =±,∵0a >,且1a ≠,∴12a =, 所以1()2xf x ⎛⎫= ⎪⎝⎭.(2)依题意可知11()12x g x -⎛⎫=- ⎪⎝⎭,由函数1()2xf x ⎛⎫= ⎪⎝⎭为减函数可知:函数11()12x g x -⎛⎫=- ⎪⎝⎭(0)x ≥为减函数,当0x =时,max 1y =;又1102x -⎛⎫> ⎪⎝⎭,∴11112x -⎛⎫->- ⎪⎝⎭,所以()g x 的值域为(]1,1-.【点睛】本题考查待定系数法求函数解析式,以及指数函数的性质的应用,属于中档题.25.[4,)+∞【分析】利用对数式的运算性质把给出的等式变形,去掉对数符号后利用基本不等式转化为关于(x +y )的二次不等式,求解后即可得到x +y 的取值范围. 【详解】222log ()log log x y x y +=+,x y xy ∴+=,0,0x y >>,2()2x y x y xy +∴+=≤,当且仅当2x y ==时,等号成立。