三年级数学 简单枚举

合集下载

省重点小学三年级数学一对一个性化辅导教案——简单枚举

省重点小学三年级数学一对一个性化辅导教案——简单枚举

省重点小学三年级数学一对一个性化辅导教案简单枚举一、专题导引枚举是一种常见的分析问题、解决问题的方法。

一般地,要根据问题要求,一一列举问题解答。

运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。

运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。

二、龙文与你1对1【例1】从小华家到学校有3条路可以走,从学校到岐江公园有4条路可以走,从小华家到岐江公园,有几种不同的走法?【试一试】1. 从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路可以直达,从甲地到丙地有多少种不同的走法?2. 新华书店有3种不同的英语书,4种不同的数学读物销售,小明想买一种英语书和一种数学读物,共有多少种不同的买法?【例2】把4个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?【试一试】1.把5个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?2.把7个同样的苹果放在三个同样的盘子里,不允许有的盘子空着不放,问共有多少种不同的分法?【例3】从1~6这六个数字中,每次取2个数字,这两个数字的和都必须大于7,能有多少种取法?【试一试】1.从1~9这九个数字中,每次取2个数字,这两个数字的和都必须大于10,能有多少种取法?2.从1~19这十九个数字中,每次取2个数字,这两个数字的和都必须大于20,能有多少种取法?【例4】一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能值?【试一试】1.一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?2.把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?【例5】有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?【试一试】1.6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?2.有8位小朋友,要互通一次电话,他们一共打了多少次电话?三、培优提高看名校【※例1】一条铁路,共有10个车站,如果每个起点站到终点站只用一种车票(中间至少相隔5个车站),那么这样的车票共有多少种?【※试一试】1.上海、北京、天津三个城市分别设有一个飞机场,它们之间通航一共需要多少种不同的机票?2. 一条公路上,共有8个站点,如果每个起点到终点只用一种车票(中间至少相隔3个车站),那么共有多少种不同的车票?四、课后作业1.小熊有2件不同的上衣,3条不同的裤子,最多可以搭配多少种不同的装束?2.3个自然数的乘积是12,问由这样的3个数所组成的数有多少个?如(1,2,6)就是其中一个,而且数组中数字相同但顺序不同的算作同一数组,如(1,2,6)和(2,6,1)是同一数组。

小学三年级奥数专题十六:简单枚举

小学三年级奥数专题十六:简单枚举

小学三年级奥数专题十六:简单枚举
专题简析:一是分类要全,不能造成遗漏;二是枚举要清,必须有次序、有规律地进行枚举。

例题1:从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?
思路:为了帮助理解题意,可以画出示意图。

根据图中可知,从小明家经学校到文峰公园,走①路有4种不同走法,走②路有4种不同走法,走③路也有4种不同走法,共有4×3=12种不同走法。

试一试1:明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子。

最多可搭配成多少种不同的装束?例题2:用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?
思路:组成的信号有:红绿黄、红黄绿;绿红黄、绿黄红;黄红绿、黄绿红等6种。

可以把组成的信号看成是三个位置:第1个位置有3种选择,第2个位置有2种选择,第3个位置就只有1中选择。

所以排列方法一共有:3×2×1=6(种)
试一试2:用数字1、2、3,可以组成多少个不同的三位数?分别是哪几个数?
例题3:有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?
思路1:每个小朋友都节打电话3次。

但两人之间只需打1次电话,互打就重复了。

因此一共打3×4÷2=6(次)
思路2:第1个小朋友打了3个电话,第2个小朋友打了2个电话,第3个小朋友打了1个电话,第4个小朋友不需要打电话。

因此一共打3+2+1=6(次)
试一试3:
(1)6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?
(2)暑假里,三位小朋友互发一封问候邮件,他们一共发了多少封邮件?。

三年级奥数简单枚举

三年级奥数简单枚举

4、简单枚举上图中,整个平面被分成了几个部分?枚举,词典里的意思是“一一列举”顾名思义,“枚举法”就是把所有可能的情况一一列举出来,然后数一下总共有几种情况,虽然枚举法看上去很简单,但当情况复杂时,想要不重漏地枚举出所有情况就有一定难度了,需要同学们有严谨的思维。

对于简单的题目,直接按题意一条条地枚就可以了,由于情况较少,枚举出所有情况还是比较容易的,先来看一道简单的题目。

例题1小明、小红、小亮三个人去看电影,他们买了3个相邻座位的票,他们三人的座位顺序一共有多少种不同的安排方法?分析:如果小明在最左边的话,有几种安排方法?练习1、(1)用0、1、2这三个数字各一次,一共能组成多少个不同的三位数?(2)用3、5、6、7这四个数字各一次,一共能组成多少个不同的三位数?当满足条件的方法数较多时,为了达到不重不漏的目的,往往会按照一定的顺序来枚举,可能是“从前往后”、“从大到小”等等。

例题2(1)老师给了小红14个相同的练习本,如果小红把这些本子全都分给了小李和小高,并且每人都要分到练习本,共有几种不同的分法?(2)老师给了小红14个相同的练习本,如果小红只需要把这些本子分成2堆,又有多少种分法?分析:仔细审题,两个小题之间有什么区别?在例题2中,同样是把练习本分成两部分,第(1)小题中给小李10本,小高4本是一种情况,而给小李4本,小高10本又是另一种情况,但到了第(2)小题里,一堆10本、一堆4本和一堆4本,一堆10本是同一种情况,我们可以说第(1)小题是“有顺序”的情况,而第(2)小题是“无顺序”,在枚举时尤其要注意这一点,究竟什么时候是“有顺序”,什么时候是“无顺序”。

练习2、老师把9颗糖分给阿呆阿瓜两个人,每人都有糖,那么一共有多少种不同的分法?(1)小明买回了一袋糖豆,他数了一下,一共有10个,现在他要把这些糖豆分成3堆,一共有多少种不同的分法?(2)如果小明有两袋糖豆,每袋10个,要把这两袋糖豆分成3堆,每堆最少要有5个,那么一共有多少种不同的分法?分析:(1)本题属于“有顺序”还是“无顺序”的情况?(2)每堆至少有5个,那么先在每堆中放上5个,还剩几个糖豆?练习3、阳阳有12颗巧克力,要把这些巧克力分成3堆,并且一堆里的巧克力不能超过8块,有几种不同的分法?要把一个数分成3份,可以先确定其中一份,于是问题就变为把剩下的部分分成2份的问题了这种简化问题的思想在数学中经常运用,最后来看两个较为复杂的问题。

三年级-枚举法

三年级-枚举法
枚举法
枚举法要点:
1.找到可能性有哪些
2.按照可能性列举
3.总结一下总共有多少种可能
仔细+仔细+仔细!!!
凑钱数
一把硬币全是2角和5角的,这把硬币一共有1元,问这里可能有多少种情况?
1.定分类的标准:有几个5角很关键
2.分类:
(1)有0个5角
(2)有1个5角X
(3)有2个5角
(4)有3个5角X
答:有两种可能性。
运动会
4个男同学和3个女同学进行乒乓球比赛,如果每个男同学和每个女同学都打1盘,一共要打几盘?
男女
A D
B E
C F
D
路线问题
如果,从甲地到乙地有2条路可以走,从乙地到有3条路可以走,从甲地到丙地有4条不同的路可以走,问从甲地到丙地共有多少种的走法?
1.分类
(1)甲经乙Biblioteka 丙(2)甲到丙上台阶问题
邮局门前共有5级台阶,规定一步智能登上一级或两级,那么这个台阶一共有多少种不同的走法?
分类:
1.第一步走两个台阶
2.第一步走一个台阶
数字凑数
用数字5、6、4可以组成多少个不同的两位数?数字可以重复使用。
数字凑数
用0、1、2三张卡片,分别组成多少个不同的三位数?其中最小的数和最大的数分别是多少?

3年简 单 枚 举

3年简 单 枚 举

简单枚举【典型例题】【例1】从小华家到学校有3条路可以走,从学校到岐江公园有4条路可以走,从小华家到岐江公园,有几种不同的走法?【试一试】1. 从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路可以直达,从甲地到丙地有多少种不同的走法?2. 新华书店有3种不同的英语书,4种不同的数学读物销售,小明想买一种英语书和一种数学读物,共有多少种不同的买法?【例2】把4个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?【试一试】1.把5个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?2.把7个同样的苹果放在三个同样的盘子里,不允许有的盘子空着不放,问共有多少种不同的分法?【例3】从1~6这六个数字中,每次取2个数字,这两个数字的和都必须大于7,能有多少种取法?【试一试】1.从1~9这九个数字中,每次取2个数字,这两个数字的和都必须大于10,能有多少种取法?2.从1~19这十九个数字中,每次取2个数字,这两个数字的和都必须大于20,能有多少种取法?【例4】一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能值?【试一试】1.一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?2.把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?【例5】有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?【试一试】1.6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?2.有8位小朋友,要互通一次电话,他们一共打了多少次电话?【※例6】一条铁路,共有10个车站,如果每个起点站到终点站只用一种车票(中间至少相隔5个车站),那么这样的车票共有多少种?【※试一试】1.上海、北京、天津三个城市分别设有一个飞机场,它们之间通航一共需要多少种不同的机票?2. 一条公路上,共有8个站点,如果每个起点到终点只用一种车票(中间至少相隔3个车站),那么共有多少种不同的车票?【※例7】在1~49中,任取两个和小于50的数,共有多少种不同的取法?【※试一试】1.在两位整数中,十位数字小于个位数字的共有多少个?2.从1~99这九个数中,每次取2个数,这两个数的和都必须大于100,能有多少种取法?课外作业1.小熊有2件不同的上衣,3条不同的裤子,最多可以搭配多少种不同的装束?2.3个自然数的乘积是12,问由这样的3个数所组成的数有多少个?如(1,2,6)就是其中一个,而且数组中数字相同但顺序不同的算作同一数组,如(1,2,6)和(2,6,1)是同一数组。

最新三年级奥数简单枚举教学提纲

最新三年级奥数简单枚举教学提纲

简单枚举1.从小华家到学校有3条路可以走,从学校到文峰公园有4条路可以走。

从小华家到文峰公园有几种不同的走法?2.从甲地到乙地有3条公路直达,从乙地到丙地有2条铁路直达,从甲地到丙地有多少种不同的走法?3.新华书店有3种不同的英语辅导书、4种不同的数学辅导书在销售,小明想买一本英语辅导书和一本数学辅导书,共有多少种不同的买法?4.明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子,最多可以搭配成多少种不同的装束?5.一个长方形的周长是22米,如果他的长和宽都是整米数,那么这个长方形的面积有多少种可能?6.一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种不同的可能?7.把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?8.3个自然数的乘积是18,由这样的3个数所组成的数组有多少个?如(1,2,9)就是其中的一个,而且数组中的数字相同但顺序不同的算作同一数组,如(1,2,9)和(2,9,1)是同一数组。

9.4个小朋友在寒假中相互打一次电话,他们一共打了多少次电话?10.6个小队进行排球比赛,每两队比赛一场,共要进行多少场比赛?11.小芳出席由19人参加的联欢会,散会后每两人都要握一次手,它们一共握了多少次手?12.A,B,C,D,E这5个人一起回答一个问题,结果只有两个人答对了,所有可能的回答情况一共有多少种?13.一条铁路有10个车站。

如果每个起点站到终点站只用一种车票(中间至少相隔5个车站),那么这样的车票共有多少种?14.上海、北京、天津三个城市分别建有一个飞机场,它们之间通航一共需要多少种不同的机票?15.小王准备从青岛、北京、海南、桂林4个城市中选2个去旅游,有多少种不同的选择方法?如果小王想去其中的3个城市,又有多少种不同的选择方法?16.一条公路上共有8个站点,如果每个起点站到终点站只用一种车票(中间至少相隔3个车站),那么共有多少种不同的车票?17.小悦买了一些大福娃和小福娃,一共不到10个,且两种福娃的个数不一样多。

三年级_简单枚举 -汇编

三年级_简单枚举 -汇编

• 3.用3、4、5、6四个数字可以组成多少个 不同的四位数?
【例题3】 有4位小朋友,寒假中互相通一次电话,他 们一共打了多少次电话?
【练习3】
1.6个小队进行排球比赛,每两队比赛一场,共要
进行多少次比赛?
2、小芳出席由19人参加的联欢会,散会后,每两人
都要握一次手,他们一共握了多少次手? 3.A、B、C、D、E这五个人一起回答一个问题,结 果只有两人答对了,所有可能的回答情况一共有多 少种?
简单枚举
专题解析
枚举是一种常见的分析问题、解决问题 的方法。一般地,要根据问题要求,一一列 举问题解答。运用枚举法解应用题时,必须 注意无重复、无遗漏,因此必须有次序、有 规律地进行枚举。 运用枚举法解题的关键是要正确分类, 要注意以下两点:一是分类要全,不能造成 遗漏;二是枚举要清,要将每一个符合条件 的对象都列举出来。
精讲精练
【例题1】
从小华家到学校有3条路可走,从学校到文峰公园有 4条路可走。从小华家到文峰公园,有几种不同的走 法?
【练习1】
1.从甲地到乙地,有3条公路直达,从乙地到丙地有2 条铁路直达。从甲地到丙地有多少种不同走法?
2. 从甲地到乙地,有3条公路直达,从乙地到丙地
有2条铁路直达。从甲地到丙地有多少种不同走法?
• 3.从甲地到乙地,有两条直达铁路,从乙地 到丙地,有4条直达公路。那么,从甲地到 丙地有多少种不同的走法?
• 【例题2】
用红、绿、黄三种信号灯组成一种信号,可 以组成多少种不同的信号?
练习2
• 1.用红、黄、蓝三种颜色涂圆圈,每个圆圈涂一 种颜色,一共有多少种不同的涂法?
○○○
2.小红有3种不同颜色的上衣,4种不同颜色 的裙子,问她共有多少种不同的穿法?

3年级第7讲简单枚举

3年级第7讲简单枚举

三年级秋第7讲分类计数初步姓名:李老师提示:1:分类枚举仔细审题,看清要求。

2:按照顺序,不重不漏。

3:掌握树状图,标数法。

例子1:马戏团有三只动物:猴子,老虎,狮子。

为了收入好,打算分3天展出这些动物,每天展出1只,小朋友,请帮忙算算不同的展出顺序有多少种?例子2:卖水果的王阿姨批发回来一批橘子,苹果,和香蕉。

分给他的三个孩子---王大,王二,和王小,每人一个水果,小朋友,你知道他有多少种不同的分法吗?例子3:马戏团饲养员到王阿姨那里买了7份水果给小猴子,小猴子每天最少吃2份水果,那么吃完这7份水果,有多少种不同的吃法呢?例子4:十一国庆,小王计划游览A,B,C三个风景区。

计划旅游5天,如果他第一天在A地,最后一天回到A地,同时要求不能连续2天在同一个风景区。

符合条件的游览路线有几条?拓展:十一国庆,小王计划游览A,B,C三个风景区。

计划旅游5天,最后一天回到A地,同时要求不能连续2天在同一个风景区。

符合条件的游览路线有几条?例子5:王大的家在方格上的A点,他的学校在B点,要求他上学必须沿着格线走,王大上学最短的路线有多少条呢?拓展:小蚂蚁从A点爬到B点,要求必须沿着格线走,聪明的小朋友,你知道小蚂蚁的最短路线有多少条吗?B金牌挑战:(华杯赛)编号为1到10 的10个白色小球排成1排,现按照如下要求涂红色,(1)图2个球,(2)被涂色的2个球的编号之差大于2,那么满足着两个条件的涂色方法有多少种?课后作业:1:把10 拆成3个不同的自然数相加的形式,一共有多少种不同的拆法?2:有足够多的下面三种数字卡片,用这些数字卡片可以组成几个不同的三位数?3:兔子妈妈摘了15个相同的蘑菇,分装在2个相同的篮子里。

如果不允许有空蓝,有多少种不同的装法?4:十一国庆节,王叔叔去北京玩,小朋友,请你找找看,从北京到黄山的最短路线有几条?AB。

三年级奥数简单枚举

三年级奥数简单枚举

蔚然教育精品班导学案
年级:_ ___ 科目:教师第次课
导学目标与考点、重、难点分析:
运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。

导学内容:
例题1从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?
例题2 用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?
思路导航:要使信号不同,要求每一种信号颜色的顺序不同,我们可以把这些信号进行列举:
例题3一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多
教务处签字:
年月日。

三年级寒假奥数培优讲义——3-08-简单枚举3-讲义-学生

三年级寒假奥数培优讲义——3-08-简单枚举3-讲义-学生

第8讲简单枚举【学习目标】1、熟悉简单枚举的常见题型;2、提升学生逻辑推理、解决问题的能力。

【知识梳理】1、概念:枚举根据问题要求,一一列举问题解答。

运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。

2、注意事项:(1)分类要全,不能遗漏;(2)枚举要清,不能重复。

【典例精析】【例1】一个长方形的周长是30米,如果它的长和宽都是整米数,那么这个长方形有多少种可能?【趁热打铁-1】一个长方形的周长是26米,如果它的长和宽都是整米数,那么这个长方形有多少种可能?【例2】有4位同学,寒假中互相通一次电话,他们一共打了多少次电话?【趁热打铁-2】5个足球队进行比赛,每两队比赛一场,共要进行多少次比赛?【例3】从往返于成都和上海的动车包括起终点共24个站,那么一共有多少种车票?【趁热打铁-3】从A地到B地中间一共有C、D、E、F、G5个站,则AB两地之间一共能卖____种不同的票样.【例4】有一个六层台阶,若每一次可以上一层或两层,那么登上六层台阶共有多少种不同的办法?【趁热打铁-4】有一个五层台阶,若每一次可以上一层或两层,那么登上五层台阶共有多少种不同的办法?【例5】老师拿着苹果、桃子和梨3个水果发给小明、小冬和小华,一共有几种不同的发法?【趁热打铁-5】小明、小冬和小华站成一排拍照,一共有几种排法?【例6】有9个足球队,两两进行淘汰赛,最后产生一个冠军,共要赛____场.【趁热打铁-6】在一次篮球比赛中,6个队进行循环赛,需要比赛____场.【例7】用1克、3克、9克三个砝码(砝码只能放在一个秤盘上),可以秤出几种不同重量的物体?【趁热打铁-7】用1克、2克、5克三个砝码(砝码只能放在一个秤盘上),可以秤出几种不同重量的物体?【例8】学生食堂有主食3种、肉类4种、蔬菜3种,从其中各选1种配成盒饭,可以配成____种.【趁热打铁-8】有3件上衣,2条裤子.要配成一套衣服,不同的搭配方法共有____种.【例9】数一数,图中有多少个三角形?【趁热打铁-9】数一数下面的图形.有____个长方形.【例10】用3、4、5、6四个数字可以组成多少个不同的四位数?【趁热打铁-10】用3、5、6四个数字可以组成多少个不同的三位数?【过关精炼】1、一个长方形的周长是20米,如果它的长和宽都是整米数,那么这个长方形有多少种可能?2、有5位同学,寒假中互相通一次电话,他们一共打了多少次电话?3、李丹有3顶凉帽和4条连衣裙,有种搭配方法。

【精品奥数】三年级上册数学思维训练讲义-第19讲 简单枚举 人教版(含答案)

【精品奥数】三年级上册数学思维训练讲义-第19讲  简单枚举  人教版(含答案)

第十九课时简单枚举第一部分:趣味数学小欧拉智改羊圈小朋友们,当周长一定时,怎样围羊圈的面积更大呢?让我们看一看数学家-----欧拉小时候发生了什么有趣的故事?欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。

小时候他帮助爸爸放羊,成了一个牧童。

爸爸的羊群渐渐增多了,达到了100只。

原来的羊圈有点小了,爸爸决定建造一个新的羊圈。

他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。

正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。

若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)。

父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。

小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划,他有办法。

父亲不相信小欧拉会有办法,没有理他。

小欧拉急了,大声说只要稍稍移动一下羊圈的桩子就行了。

父亲听了直摇头,心想:“世界上哪有这样便宜的事情?”但是小欧拉却坚持说他一定能两全齐美,父亲终于同意让儿子试试看。

小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁忙了起来。

他以一个木桩为中心,将原来的40米边长截短,缩短到25米。

父亲着急了,说:“那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。

”小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。

经这样一改,原来计划中的羊圈变成了一个边长为25米的正方形。

然后,小欧拉很自信地对爸爸说:“现在,篱笆也够了,面积也够了。

”父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。

面积也足够了,而且还稍稍大了一些。

父亲心里感到非常高兴。

孩子比自己聪明,真会动脑筋,将来一定大有出息。

父亲感到,让这么聪明的孩子放羊实在是太可惜了。

三年级奥数专题简单枚举

三年级奥数专题简单枚举

三年级奥数专题简单枚举【一】从小华家到学校有2条路可以走,从学校到岐江公园有3条路可以走,从小华家到岐江公园,有几种不同的走法?练习1、丽丽有红、蓝、黑帽子各一顶,红、蓝、黑围巾各一条。

冬天,丽丽每天戴一顶帽子、围一条围巾,有几种不同的搭配方式?2、新华书店有3种不同的英语书,4种不同的数学读物,小明想买一种英语书和一种数学读物,共有多少种不同的买法?【二】把4个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?练习1、把5个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?2、把7个同样的苹果放在三个同样的盘子里,不允许有的盘子空着不放,问共有多少种不同的分法?【三】从1~6这六个数中,每次取2个数,这两个数的和都必须大于7,能有多少种取法?练习1、从1~4这四个数中,如果每次取2个数,要使两个数的和都大于5,能有多少种取法?2、从1~7这七个数中,任取两个和大于8的数,能有多少种取法?【四】一个长方形花圃的周长是18米,如果它的长和宽都是整厘米数,那么这个花圃的面积有多少种可能值?练习1、一个长方形的周长是12厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?2、把10个彩色气球分成数量不同的3堆,共有多少种不同的分法?【五】中、日、韩、美进行四国足球赛,每两队踢一场。

按积分排名次,一共要踢多少场?练习1、五个同学参加乒乓球赛,每两个人都要比赛一场,一共要赛多少场?2、某学校乒乓球队员8人,其中女队员6人,现在要组成双打混合队去参加比赛,有几种组队方法?【六】往返于南京和上海之间的沪宁高速列车沿途要停靠常州、无锡、苏州三站,问:铁路部门要为这趟车准备多少种车票?练习1、上海、北京、天津、广州四个城市分别设有一个飞机场,它们之间通航一共需要多少种不同的机票?2、从广州到长沙的特快列车,中途要停靠8个站。

有几种不同的标价的车票?【七】在1~19中,任取两个和小于20的数,共有多少种不同的取法?练习1、在两位整数中,十位数字小于个位数字的共有多少个?2、在1~29中,每次取2个数,这两个数的和都必须大于30,能有多少种取法?课外作业1、小红有2件不同的上衣,3条不同的裤子,最多可以搭配多少种不同的装束?2、明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子,最多可以搭配多少种不同的装束?3、用0、1、2、3可组成多少个不同的三位数?分别是哪几个数?4、2个自然数的乘积是24,问由这样的2个数所组成的数有多少组?5、某校老师17人举行乒乓球赛,每两人都要比赛一场,一共要比赛多少场?6、在珠江的某一航线上共有7个码头,它们之间通航需要多少种不同的船票?7、有9把不同的锁,开这9把锁的9把钥匙混在一起了,最多要试多少次就可以找到相应的锁?最多要试多少次就能打开相应的锁?。

三年级简单枚举法解题

三年级简单枚举法解题

三年级简单枚举法解题一、简单枚举法题目及解析。

1. 题目:小明有3件不同的上衣,2条不同的裤子,他有多少种不同的穿法?- 解析:- 我们可以用枚举法来解决。

当选择第一件上衣时,可以搭配2条不同的裤子,这样就有2种穿法;当选择第二件上衣时,同样可以搭配2条不同的裤子,又有2种穿法;当选择第三件上衣时,还是可以搭配2条不同的裤子,再有2种穿法。

- 所以总的穿法有2 + 2+2=3×2 = 6种。

2. 题目:用1、2、3这三个数字能组成多少个不同的三位数?- 解析:- 百位上是1时,组成的数有123、132;百位上是2时,组成的数有213、231;百位上是3时,组成的数有312、321。

- 一共可以组成2 + 2+2 = 6个不同的三位数。

3. 题目:从甲地到乙地有2条路可走,从乙地到丙地有3条路可走,从甲地到丙地有多少种不同的走法?- 解析:- 从甲地到乙地的第一条路,到乙地后再去丙地有3种走法;从甲地到乙地的第二条路,到乙地后再去丙地又有3种走法。

- 所以从甲地到丙地不同的走法有3+3 = 2×3=6种。

4. 题目:有红、黄、蓝三种颜色的小旗各一面,从中选用1面或2面升上旗杆,分别用来表示一种信号。

一共可以表示多少种不同的信号?- 选1面小旗时,有红、黄、蓝3种信号;选2面小旗时,有红黄、红蓝、黄蓝3种信号。

- 总共可以表示3 + 3=6种不同的信号。

5. 题目:有3个小朋友,每两个人握一次手,一共握几次手?- 解析:- 设三个小朋友为A、B、C。

A和B握一次手,A和C握一次手,B和C握一次手。

- 一共握1+1 + 1=3次手。

6. 题目:用0、1、2这三个数字能组成多少个不同的两位数(数字不能重复)?- 解析:- 十位上是1时,组成的两位数有10、12;十位上是2时,组成的两位数有20、21。

- 一共能组成2+2 = 4个不同的两位数。

7. 题目:从1 - 9这9个数字中,每次取2个数字,这两个数字的和大于10,有多少种取法?- 解析:- 两个数为9和2、9和3、9和4、9和5、9和6、9和7、9和8;8和3、8和4、8和5、8和6、8和7;7和4、7和5、7和6;6和5。

2016三年级奥数简单枚举

2016三年级奥数简单枚举

2021/3/11
9
例题3
有4位小朋友,寒假中互相通一次电话, 他们一共打了多少次电话?
2021/3/11
10
疯狂操练3
1、6个小队进行排球比赛,每两队比赛一 场,共要进行多少次比赛?
2021/3/11
11
2、有8位小朋友,要互通一次电话,他们 一共打了多少次电话?
2021/3/11
12
3、小芳出席由19人参加的联欢会,散会后, 每两人都要握一次手,他们一共握了多少 次手?
2021/3/11
3
1、 从甲地到乙地,有3条公路直达, 从乙地到丙地有2条铁路直达。从甲地到丙 地有多少种不同走法?
2021/3/11
4
2、新华书店有3种不同的英语书,4种不同 的数学读物销售。小明想买一种英语书和 一种数学读物,共有多少种不同买法?
2021/3/11
5
3、明明有2件不同的上衣,3条不同的裤子, 4双不同的鞋子,最多可搭配成多少种不同 的装束?
5、1至8这8个自然数中,每次取出两个不同的数 相加,要使它们的和大于11,共有多少种不同的 取法? 6、有3个工厂共订300份《吉林日报》,每个工厂 最少订99份,最多101份。问一共有多少种不同的 定法?
2021/这九个数字中,每次取2个数字, 这两个数的和都必须大于10,能有多少种 不同的取法?
2021/3/11
20
3、十把不同的锁,每把锁都有一把能打开它的 钥匙。可是这10把钥匙已混在了一起,不知 道哪把钥匙开哪把锁 。问最多要试多少次
可以找到相应的锁,最多要试多少次才能 开相应的锁?
简单枚举
2021/3/11
1
运用枚举法解应用题时,必须注意无

小学三年级数学简单枚举

小学三年级数学简单枚举
14=1+13=2+12=3+11=……=13+1 分给不同的两 个人,共13种分法
如果老师只要求亚亚将这些练习本分成2堆, 又有多少种分法?
14=1+13=2+12=3+11=……=6+8=7+7 分2堆,共 7种分法
分糖果
(1)小明买了一袋糖果,数下来有10粒,他要将 其分成3堆,一共有多少种不同的分法?
分析:

从晓明家到广场,如果走

①,那到广场后,可有甲、
小明家

广场
乙两条路可走;如果走②、 西湖 ③的话,到广场后,分别
有两条路可以走,所以从


晓明家到西湖共有3×2=6 (条)路可走。
衣服配套
幼儿园有3种不同颜色(红、黄、蓝)的上 衣,4种不同颜色(黑、白、灰、青)的裙 子,请问可以搭配出多少套衣服?
( 9 )倍。 比较大小 2400 ×50 ( )> 40 × 2500
方法介绍
简单枚举
简单枚举简介
一个问题中,如果有优先的几种可能的情 况,往往需要将这些可能的情况全部列举 出来,逐个进行讨论。这种方法就称为枚 举(或穷举)
枚举时,考虑要全面,不要遗漏。
枚举时,还应注意分类方法,分类的标准 不同,情况也不一定相同,讨论的过程也 会有差异。
20=5+5+10=5+6+9=5+7+8
=1+1+3=1+2+2
=6+6+8=6+7+7
பைடு நூலகம்
共有3+2=5种
共有3+2=5种

小学数学三年级 分类枚举 PPT带答案带作业

小学数学三年级 分类枚举 PPT带答案带作业
总结:无序枚举:分堆或分给完全相同的物体,遵循不降原则。
练习1
把7 支相同的笔放入完全相同的2 个文具盒里,一共有多少种不 同的放入方法?(文具盒不能空)
7
1 < 6 2 < 5 3 < 4 共3种
例题2
把9 颗一样的糖放入完全相同的3 个瓶子里,一共有多少 种不同的放入方法?(瓶子不能空)
9
9
有多少种称重方式?(砝码在左,物品在右)
8克
4克
2克
0
0
10
0
1
8
0个8克砝码 0 0
2
6
3
4
0
4
2
0
5
0
1
0
6
1
1个8克砝码
1 1
1
4
2
2
3
0
共6+4+2=12 种
2
2个8克砝码
2
0
2
1
0
例题5 用三种重量分别为1 克、3 克和5 克的砝码各1 个可以称 出多少种不同的重量?(砝码在左,物品在右)
共3+3+1=7 种
练习5:
用三种重量分别为1 克、2 克和4 克的砝码各1 个可以称出多少种不同的重量?(砝码在 左,物品在右)
1克 1个砝码 2克
4克 1+2=3克 2个砝码 1+4=5克 2+4=6克
3个砝码
1+2+4=7克
共3+3+1=7 种
例题6:
有羽毛球、乒乓球和篮球各若干个,从中任意取3 个球,一共有多少种不同的情况?
抢答1:一本书共100页,其页码中有多少个数字6?
个位是6

小学奥数三年级举一反三第十九周 简单枚举

小学奥数三年级举一反三第十九周  简单枚举

第十九周简单枚举专题简析:枚举是一种常见的分析问题、解决问题的方法。

一般地,要根据问题要求,一一列举问题解答。

运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。

运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。

例题1 从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?文峰公园小华家为了帮助理解题意,我们可以画出如上示意图。

我们把小华的不同走法一一列举如下:根据列举可知,从小明家经学校到文峰公园,走①路有4种不同走法,走②路有4种不同走法,走③路也有4种不同走法,共有4×3=12种不同走法。

练习一1,从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路直达。

从甲地到丙地有多少种不同走法?2,新华书店有3种不同的英语书,4种不同的数学读物销售。

小明想买一种英语书和一种数学读物,共有多少种不同买法?3,明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子。

最多可搭配成多少种不同的装束?例题2 用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?思路导航:要使信号不同,要求每一种信号颜色的顺序不同,我们可以把这些信号进行列举:红绿黄红绿黄红绿黄红绿黄红绿黄黄绿红从上面可以看出,红色信号灯排在第一个位置时,有两种不同的信号,绿色信号灯排在第一个位置时,也有两种不同的信号,黄色信号灯排在第一个位置时,也有两种不同的信号,因而共有3个2种不同排列方法,即2×3=6种。

练 习 二1,用红、黄、蓝三种颜色涂圆圈,每个圆圈涂一种颜色,一共有多少种不同的涂法?○○○2,用数字1、2、3,可以组成多少个不同的三位数?分别是哪几个数?3,用2、3、5、7四个数字,可以组成多少个不同的四位数?例题3 一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能?思路导航:由于长方形的周长是22米,可知它的长与宽之和为11米。

三年级枚举法

三年级枚举法

枚举法(一)课前预习胖子的枚举法几个人又坐回到自己的座位上,都是唉声叹气,我让他人省点力气,其实这样盲目的试验,反而会导致思维的中断。

接着事情又回到我睡觉前,我们又开始毫无意义的讨论起来。

讨论中总是有人睡过去,但是好在一个人睡觉,其他几个人都能继续思考。

就这样,我们东一个想法,西一个想法,提出来,然后否决掉,一开始说法还很多,后来几个人话就越来越少,时间不知不觉就过去了六七个小时,我们的肚子又开始叫起来。

最后胖子点起一只烟,想了想,对我们说:“不行,咱们这么零散的想办法是很浪费时间的,我们把所有的可能性全部都写出来,然后归纳成几条,之后直接把这条验证,不就行了。

”我点点头,其实说到最后很多的问题我们都在重复的讨论,几个人都进入到一种混乱状态了胖子在金器铺满的地面上整理出一块石头面,然后写下来几个数字:1、2、3、4,然后说:“我们想想我们现在有几种假设,你们都回忆一下,不要具体的,要大概的方向就行了。

”潘子就道:“最有可能就是有机关。

”胖子在1那个地方写了机关。

然后顺子就说道:“你的想法,可能有东西在影响我们的感觉,比如说心理暗示或者催眠,让我们自己不知不觉的走回来。

”胖子对他道:“不用说这么详细。

”按着在2的后面写了错觉,然后看向我。

我道:“要说理论上,也有可能是空间折叠。

”“你这个不可能,太玄乎了。

”潘子道。

胖子道:“不管,有万分之一地可能性,我们就承认,我们只是列一个备忘录而已。

”说着也写了上去,在3后面写了空间折叠。

然后自己说:“也可能是有鬼。

”说着写了个4,有鬼。

“你这样写出来有什么意义?”潘子不理解的问。

胖子道:“你们念的书多,不懂,我读书少,凡事都必须用笔写下来,但是这样有个好处,比如说有几件事情,你可以一起做,你事先一理就能知道,可以节省不少时间。

咱们不是只有两天了吗?还是得省点,对了,还有5吗?谁还有5?”我看了看这四点,这确实己经是包括量子力学到玄学到心理学到工程学四大学科都齐了,第五点一时半会儿还真想不出来。

三年级培优之简单枚举

三年级培优之简单枚举

第六讲简单枚举
1.有一个学习小组有10个同学,如果每个人都与其余的人握一次手,问:10个人共握几次手?
2.楚楚有6件不同的上衣,3条不同的裙子,5双不同的鞋子,最多可搭配多少种不同的装束?
3.简间乘坐火车,共有6个火车站点,如果每个起点到终点只用一种车票(中间至少相隔2个车站),那么这样的车票共有多少种?
4.周老师要把7颗糖分给诚诚和楚楚,要保证每个人都要分到,请问共有几种不同分法?
如果分给三个人,同时要保证三个人都分到,又有几种不同的分法?
5.用5,8,3这三个数字可以组成多少个不同的两位数?多少个不同的三位数?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十九周简单枚举
专题简析:
枚举是一种常见的分析问题、解决问题的方法。

一般地,要根据问题要求,一一列举问题解答。

运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。

运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。

例题1 从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?
文峰公园
小华家
为了帮助理解题意,我们可以画出如上示意图。

我们把小华的不同走法一一列举如下:
根据列举可知,从小明家经学校到文峰公园,走①路有4种不同走法,走②路有4种不同走法,走③路也有4种不同走法,共有4×3=12种不同走法。

练习一
1,从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路直达。

从甲地到丙地有多少种不同走法?
2,新华书店有3种不同的英语书,4种不同的数学读物销售。

小明想买一种英语书和一种数学读物,共有多少种不同买法?
3,明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子。

最多可搭配成多少种不同的装束?
例题2 用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?
思路导航:要使信号不同,要求每一种信号颜色的顺序不同,我们可以把这些信号进行列举:
红绿黄红
绿黄红绿黄红绿黄红绿黄
黄绿红
从上面可以看出,红色信号灯排在第一个位置时,有两种不同的信号,绿色信号灯排在第一个位置时,也有两种不同的信号,黄色信号灯排在第一个位置时,也有两种不同的信号,因而共有3个2种不同排列方法,即2×3=6种。

练 习 二
1,用红、黄、蓝三种颜色涂圆圈,每个圆圈涂一种颜色,一共有多少种不同的涂法?
○○○
2,用数字1、2、3,可以组成多少个不同的三位数?分别是哪几个数?
3,用2、3、5、7四个数字,可以组成多少个不同的四位数?
例题3 一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能?
思路导航:由于长方形的周长是22米,可知它的长与宽之和为11米。

下面列举出符合这个条件的各种长方形:
35628
472438182
910110
面积(米^2)宽(米)长(米)
练 习 三
1,一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?
2,把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?
3,3个自然数的乘积是18,问由这样的3个数所组成的数组有多少个?如(1,2,9)就是其中的一个,而且数组中数字相同但顺序不同的算作同一数组,如(1,2,9)和(2,9,1)是同一数组。

例题4 有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?
思路导航:把4个小朋友分别编号:A、B、C、D,A与其他小朋友打电话,应该打3次,同样B小朋友也应打3次电话,同样C、D应该各打3次电话。

4个小朋友,共打了3×4=12次。

但题目要求两个小朋友之间只要通一次电话,那么A打电话给B时,A、B两人已经通过话了,所以B没有必要再打电话给A,照这样计算,12次电话中,有一半是重复计算的,所以实际打电话的次数是3×4÷2=6次。

练习四
1,6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?
2,有8位小朋友,要互通一次电话,他们一共打了多少次电话?
3,小芳出席由19人参加的联欢会,散会后,每两人都要握一次手,他们一共握了多少次手?
例题5 一条铁路,共有10个车站,如果每个起点站到终点站只用一种车票(中间至少相隔5个车站),那么这样的车票共有多少种?
我们可以利用列举的方法:
如果起点站是1,那么终点站只能是7、8、9或10;
如果起站站是2,那么终点站只能是8、9或10;
如果起点站是3,那么终点站只能是9或10;
如果起点站是4,终点站只能是10;
如果起点站是5、6时,就找不到与它至少相隔5站的终点站了;
如果起点站是7,终点站只能是1;
如果起点站是8,那么终点站是2或1;
如果起点站是9,那么终点站是3、2或1;
如果起点站是10,那么终点站是4、3、2或1。

所以,起点到终点至少相隔5个车站的车票有:
4+3+2+1+0+0+1+2+3+4=20种。

练习五
1,上海、北京、天津三个城市分别设有一个飞机场,它们之间通航一共需要多少种不同的机票?
2,一条公路上,共有8个站点。

如果每个起点到终点只用一种车票(中间至少相隔3个车站),那么共有多少种不同的车票?
3,在长江的某一航线上共有6个码头,如果每个起点终点只许用一种船票(中间至少要相隔2个码头),那么这样的船票共有多少种?。

相关文档
最新文档