光电检测知识点

合集下载

光电效应原理及其应用知识点总结

光电效应原理及其应用知识点总结

光电效应原理及其应用知识点总结在物理学的众多奇妙现象中,光电效应无疑是一颗璀璨的明星。

它不仅揭示了光的粒子性,还为现代科技的发展奠定了坚实的基础。

接下来,让我们一同深入探索光电效应的原理及其广泛的应用。

一、光电效应原理光电效应,简单来说,就是当光照射到金属表面时,金属中的电子会吸收光子的能量而从金属表面逸出的现象。

要理解光电效应,首先得认识几个关键概念。

1、光子:光是由一份一份不连续的能量子组成,这些能量子被称为光子。

每个光子的能量与光的频率成正比,即$E = h\nu$,其中$E$ 是光子能量,$h$ 是普朗克常量,$\nu$ 是光的频率。

2、逸出功:使电子从金属表面逸出所需要的最小能量,用$W_0$ 表示。

不同的金属具有不同的逸出功。

当光照射到金属表面时,如果光子的能量大于金属的逸出功,电子就能吸收光子的能量并克服金属的束缚而逸出,成为光电子。

光电效应具有以下几个重要特点:1、存在截止频率:只有当入射光的频率大于某一特定频率(截止频率)时,才会发生光电效应。

低于截止频率的光,无论光强多大,都不会产生光电效应。

2、光电子的初动能与入射光的频率有关,而与光强无关:入射光的频率越高,光电子的初动能越大。

3、光电流强度与入射光的强度成正比:在发生光电效应的前提下,入射光越强,单位时间内逸出的光电子数越多,光电流越大。

二、光电效应的应用光电效应在现代科技中有着广泛而重要的应用,极大地推动了社会的发展和进步。

1、光电传感器光电传感器是利用光电效应将光信号转换为电信号的装置。

常见的有光电二极管、光电三极管等。

它们在自动控制、测量技术、通信等领域发挥着重要作用。

例如,在工业生产中的自动计数、自动报警系统中,光电传感器能够快速、准确地检测到物体的存在和运动状态。

2、太阳能电池太阳能电池是基于光电效应将太阳能转化为电能的器件。

当太阳光照射到太阳能电池板上时,光子的能量被半导体材料中的电子吸收,产生光生伏特效应,从而形成电流。

高中光电门知识点总结

高中光电门知识点总结

高中光电门知识点总结一、光电效应的基本原理光电效应是指当金属或半导体等物质受到光的照射后,产生电子的现象。

光电效应的基本原理是光子与物质相互作用,将能量传递给物质中的电子,使其获得足够的能量从而逸出金属或半导体表面,形成电流。

光电效应的发生需要满足一定的条件,主要包括光子能量大于电子逸出功、光子的频率大于临界频率等。

二、光电效应的主要特点1. 具有波粒二象性:光子既具有波动性又具有粒子性,能够实现与物质的相互作用。

2. 具有能量量子化:光电效应的能量是离散的,取决于光子的能量大小,能够准确定位电子的逸出能量。

3. 具有瞬时性:光电效应发生的过程极为迅速,电子被激发后立即逸出金属表面形成电流。

4. 光电子的动能与光子能量呈正比:光电子的动能与光子的能量成正比关系,这一特点是通过实验观测得到的。

三、光电效应与光电倍增管光电效应不仅是一种基础的物理现象,还在现代技术中得到了广泛的应用。

光电效应广泛应用于光电器件中,其中最具代表性的应用之一就是光电倍增管。

光电倍增管是一种光电转换器件,主要用于检测低强度光信号并放大信号强度。

光电倍增管的工作原理是基于光电效应,当光子照射到光阴极上时,能够激发光电子的产生,进而引发电子的法拉德放大效应,最终得到放大的电子信号。

四、光电效应在太阳能电池中的应用太阳能电池是一种将太阳能转化为电能的器件,它利用光电效应的原理将太阳光转化为电能。

太阳能电池的工作原理是当光子照射到半导体材料表面时,光子能量被传递给半导体中的电子,使其跃迁到导带中,从而形成电子-空穴对并形成电流。

光电效应在太阳能电池中得到了充分的应用,使得太阳能电池成为了清洁能源领域里一种重要的能源转换设备,对于缓解能源危机和改善环境污染具有重要的意义。

五、光电效应在信息存储中的应用光电效应还在信息存储领域得到了广泛的应用。

例如,在光盘和DVD光盘等存储介质中,光电效应被用来实现信息的读写。

在这些存储介质中,信息被编码为微小的凸起或凹陷,当激光照射到这些区域时,能够引发相应的光电效应,从而实现信息的读写。

第4章__光电测距

第4章__光电测距

气象改正 :
气象改正数随温度和气压的变化而变化,因此气象元素( 气象改正数随温度和气压的变化而变化,因此气象元素(温度 和气压)最好是取测线上的平均值来计算。 和气压)最好是取测线上的平均值来计算。
波道弯曲改正 :
由于波道弯曲引起的弧长化为弦长的波道几何改正。 由于波道弯曲引起的弧长化为弦长的波道几何改正。 由于实际大气折射系数仅用测线两端的中值, 由于实际大气折射系数仅用测线两端的中值,而没有采用严格沿 波道上的积分平均值,因此产生了所谓折射系数的代表性改正。 波道上的积分平均值,因此产生了所谓折射系数的代表性改正。
按反射目标分: 按反射目标分:
漫反射目标 合作目标 有源反射器
按精度指标分: 按精度指标分:I级
II级 II级 10mm
III级 III级 20mm
mD
5mm
相位式光电测距仪的基本公式
D= c ( N + ∆Φ / 2π ) = L( N + ∆N ) 2f
∆N 式中: = ∆Φ / 2π ——测尺长度; N ——整周数; L = c / 2 f = λ / 2 ——不足一周的尾数
固定误差的影响 :
测相误差,仪器加常数误差和对中误差都属于固定误差。 测相误差,仪器加常数误差和对中误差都属于固定误差。在精 密的短程测距时,这类误差将处于突出的地位。 密的短程测距时,这类误差将处于突出的地位。 对中误差 在控制测量中,一般要求对中误差在3mm以下 以下, 在控制测量中,一般要求对中误差在3mm以下,要求归心误差 在5mm左右。但在精密短程测距时,由于精度要求高,必须采用强 mm左右。但在精密短程测距时, 由于精度要求高, 左右 制归心方法,最大限度地削弱此项误差影响。 制归心方法,最大限度地削弱此项误差影响。 仪器加常数误差 经常对加常数进行及时检测, 经常对加常数进行及时检测,予以发现并改用新的加常数来避 免这种影响。 免这种影响。 测相误差 包括测相设备本身的误差 ,幅相误差 ,照准误差 ,信噪比 引起的误差, 引起的误差,周期误差 。

光电师的知识点总结

光电师的知识点总结

光电师的知识点总结第一部分:光电基础知识1. 光电效应光电效应指的是当金属或半导体受到光照射时,会产生电子的排出现象。

这是光电师工作中非常重要的基础知识。

光电效应分为外光电效应和内光电效应。

2. 光电元件光电元件是光电师研究和应用的基础。

常见的光电元件主要包括光敏电阻、光电二极管、光电晶体管等。

3. 光的波粒二象性光具有波粒二象性,既可以表现为波动,也可以表现为粒子。

光电师需要深入了解这一性质,以便更好地理解光电效应和光电元件的工作原理。

4. 光电信号的生成和传输光电师需要了解光电信号的生成和传输机制,包括光信号的接收、放大、转换和传输等方面的知识。

第二部分:光电测量技术1. 光电测量系统光电测量系统是光电师工作中常用的设备,主要包括光电传感器、光谱仪、光电倍增管、光电二极管等。

2. 光电检测原理与方法光电师需要掌握各种光电检测原理与方法,包括光电传感、光谱分析、光电放大、光电转换等。

3. 光电测量技术的应用光电测量技术在工业控制、环境监测、医学诊断等领域有广泛的应用,光电师需要了解这些应用领域的特点和需求,以便更好地开展工作。

第三部分:光电器件与应用1. 光电器件的分类和特性光电器件包括光敏电阻、光电二极管、光电晶体管、光电倍增管等,光电师需要深入了解这些器件的分类、特性和工作原理。

2. 光电器件的应用光电器件在光通信、光学成像、光谱分析、光电传感等方面有广泛的应用,光电师需要了解这些应用领域的需求和技术要求。

3. 光电器件的研发和制造光电师需要了解光电器件的研发和制造流程,包括光电器件的设计、加工、测试和封装等方面的知识。

第四部分:光电系统集成与优化1. 光电系统集成技术光电系统集成技术是光电师工作中非常重要的技术,需要深入了解光电器件的选择、配置、连接、控制等方面的知识。

2. 光电系统优化技术光电系统优化技术是光电师工作中必不可少的技术,需要了解光电系统的性能、效率、稳定性等方面的优化方法。

光电知识点总结

光电知识点总结

光电知识点总结光电技术是一门涉及光和电的交叉学科,主要研究光和电能量之间的相互转换和作用规律。

光电技术涉及到光电器件的设计、制造和应用,涵盖了光电转换、光电检测、光电调制等方面的内容。

光电技术已经成为现代科技发展的重要领域,在通讯、医疗、能源、环境等领域都有着广泛的应用。

一、光电效应1. 光电效应概述光电效应是指材料受到光照射后,发生电子的发射、传输或者输运现象的过程。

光电效应包括外光电效应和内光电效应两种。

外光电效应是指光照射在材料表面,引起材料表面电子的发射,产生光电流现象;内光电效应是指光照射在材料内部,通过光生载流子(电子-空穴对)的发生,从而产生光电流。

2. 外光电效应外光电效应是指光照射在金属或半导体表面时,引起金属或半导体表面电子的发射,产生光电流现象。

外光电效应是实现光电转换的关键过程,应用广泛。

3. 内光电效应内光电效应是指在光照射下,材料内部的电子-空穴对的产生和输运过程。

内光电效应是光电器件的工作原理,包括光电二极管、太阳能电池等。

二、光电器件1. 光电二极管光电二极管是一种能够将光信号转化为电信号的光电转换器件。

光电二极管分为光电探测二极管和光发射二极管两种。

光电探测二极管是将光信号转化为电信号的光电器件,主要应用于光通信、光电传感等领域。

光发射二极管是将电信号转化为光信号的光电器件,主要应用于光通信、显示屏等领域。

2. 光电场效应器件光电场效应器件是一种基于光电效应的半导体器件,主要包括光电场效应晶体管、光电场效应器件。

光电场效应器件主要应用于光电调制、光电开关等领域。

3. 太阳能电池太阳能电池是一种将太阳能转化为电能的光电转换器件,是目前能源领域的热门技术之一。

太阳能电池主要包括单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池等。

4. 光电晶体管光电晶体管是一种能够实现光电转换的半导体器件,是现代光电器件中最重要的一种。

光电晶体管主要应用于光电检测、光电调制、光电放大等领域。

光电专业必学知识点总结

光电专业必学知识点总结

光电专业必学知识点总结第一,光电基础知识:光电技术是用光来传输、处理信息,其基础知识包括光波特性、光学成像、光的干涉和衍射等。

在这部分的学习中,学生需要了解光的波粒二象性、光的传播特性、光的相互作用等基本概念,同时还需要学习光的成像原理、光的干涉和衍射现象等内容。

第二,光电器件与器件制造技术:光电器件是光电技术的核心部分,它包括光电二极管、光电晶体管、光电探测器等。

在这部分的学习中,学生需要了解不同光电器件的结构和工作原理,以及光电器件的性能参数和制造工艺。

此外,还需要学习光电器件的测试方法和应用技术。

第三,光电传感技术:光电传感技术是一种重要的感知技术,它包括光电传感器的种类、工作原理、应用领域以及实际应用案例等内容。

在这部分的学习中,学生需要了解各种光电传感器的结构和特点,以及光电传感技术在工业自动化、环境监测、智能交通等方面的应用。

第四,光电测量与控制技术:光电测量与控制技术是一种重要的检测和控制技术,它包括光电仪器的种类、工作原理、精度和分辨率等。

在这部分的学习中,学生需要了解光电仪器的设计和校准原理,以及光电测量与控制技术在精密测量、自动化控制、医学影像等方面的应用。

第五,光电信息处理技术:光电信息处理技术是一种重要的信息处理技术,它包括光电数字转换技术、光电信号处理技术、光电成像技术等。

在这部分的学习中,学生需要了解光电信息处理技术的基本原理、算法和硬件实现,以及光电信息处理技术在通信、图像处理、光纤传感等方面的应用。

第六,光电系统集成技术:光电系统集成技术是一种重要的系统集成技术,它包括光电器件的组装、调试和测试技术,以及光电系统的设计和优化方法。

在这部分的学习中,学生需要了解光电系统集成技术的基本原理和技术,以及光电系统集成技术在通信网、光学仪器等领域的应用及发展趋势。

以上是光电专业的一些必学知识点总结,其中所涉及到的内容十分庞杂,学生需要在学习光电专业的过程中注重理论知识与实践技能的结合,不断提升自己的动手能力和创新能力,为今后在光电领域的发展和应用做好充分的准备。

光电科普知识点总结

光电科普知识点总结

光电科普知识点总结光电科学是一门研究光与电之间相互转换关系的交叉学科,它涉及了光电子学、光电检测、光电通信、光电显示等领域。

光电科学的发展使得人类对光的理解更加深入,也推动了光电技术的不断创新。

在这篇文章中,我们将对光电科学的一些基本知识进行总结和介绍,希望能够帮助读者更好地了解这门学科。

1. 光电效应光电效应是指物质受到光照射后产生电子的现象。

这一现象最早由爱因斯坦在1905年提出,并为他赢得了诺贝尔奖。

光电效应是量子理论的一个重要实验验证,通过光的能量被原子吸收,激发出电子,使得电子从金属表面或半导体的导带跃迁到自由电子状态,从而产生电流。

光电效应对于电子生产的机制和光的波粒二象性的理解都有重要作用。

2. 光电子学光电子学是研究光与电子之间相互作用的学科。

它包括光电子材料的研究、光电子器件的设计与制造、光电子技术在通信、能源、信息等领域的应用等内容。

光电子学的发展促进了光电子器件的不断改进与突破,如光电二极管、光伏电池等,对现代科技发展具有重要意义。

3. 光电检测光电检测是利用光电传感技术对物体进行探测与分析的技术。

通过光电检测技术,可以对物体的形状、颜色、表面质地、位置等进行精确的检测与测量。

光电检测技术在工业生产、医疗诊断、环境监测等领域有着广泛的应用。

4. 光电通信光电通信是利用光信号传输信息的通信技术。

它主要包括激光通信、光纤通信、光电路的设计与应用等内容。

光电通信技术具有传输速度快、带宽大、抗干扰能力强等优点,已经成为现代通信技术的主要发展方向之一。

5. 光电显示光电显示是利用光电效应技术设计制造的显示设备。

它主要包括LED显示屏、液晶显示屏、OLED显示屏等内容。

光电显示技术有着高亮度、高对比度、低功耗等优点,已经成为现代显示技术的主要应用形式。

6. 光电传感器光电传感器是一种利用光电效应原理制造的传感器。

它可以通过光信号来检测物体的位置、形状、颜色等信息,并将这些信息转换为电信号输出。

智能光电知识点总结大全

智能光电知识点总结大全

智能光电知识点总结大全智能光电技术是指利用光电传感器和智能控制器相结合,实现对光线、颜色、距离等信息的采集和分析,并对其进行智能控制的一种技术。

智能光电技术在工业、医疗、农业、交通等领域有着广泛的应用。

一、光电传感器1. 光电传感器的类型(1)光电开关传感器:根据检测到的光线信号来控制开关的闭合与断开,常用于自动化生产线上的物体检测和计数;(2)光电对射传感器:由发射器和接收器组成,用于检测物体的存在、颜色、距离等参数;(3)光电编码器:用于测量旋转物体的速度和位置,常用于机械设备的运动控制。

2. 光电传感器的工作原理光电传感器通过发射、接收和转换光信号来实现对物体的检测。

当物体进入传感器的检测范围内时,光电传感器会发出光线并将接收到的光信号转换成电信号,通过电路进行处理后输出给控制器进行进一步的处理和应用。

3. 光电传感器的特点(1)高精度:能够实现对物体位置、距离等参数的高精度检测;(2)快速响应:能够在微秒或毫秒级别内对物体的变化做出快速响应;(3)高稳定性:具有较高的抗干扰能力和稳定性,适用于各种恶劣环境下的应用。

二、智能控制器1. 智能控制器的功能智能控制器是光电传感器的核心部分,其主要功能包括信号处理、数据分析、决策与控制。

智能控制器能够根据光电传感器采集到的数据进行智能化处理,实现对光电信号的识别、分析和控制。

2. 智能控制器的应用(1)工业自动化:应用于自动化生产线上的物体检测、定位和计数;(2)智能家居:用于智能灯光控制、智能窗帘控制等;(3)智能农业:用于植物生长环境的监测与控制;(4)智能交通:用于交通信号灯控制、智能停车系统等。

三、智能光电技术的应用1. 工业自动化(1)自动化生产线上的物体检测和计数;(2)机械设备的运动控制和位置检测。

2. 智能家居(1)智能灯光控制:根据环境光线进行自动调节;(2)智能窗帘控制:根据光线和温度进行自动开合。

3. 智能医疗(1)医疗器械的自动化操作和监测;(2)医疗环境的光线和温度检测与控制。

光电检测原理

光电检测原理

光电检测原理光电检测是一种利用光电传感器来检测物体的存在、形状、位置、颜色等信息的技术。

它在工业自动化、机器人、智能交通、医疗设备等领域有着广泛的应用。

光电检测原理是基于光电传感器的工作原理,通过对物体反射、吸收、透过光线的特性进行检测和分析,实现对物体的识别和测量。

光电检测原理的核心是光电传感器。

光电传感器是一种能够将光信号转换为电信号的器件,它主要由光源、光电元件和信号处理电路组成。

光源发出光线,光线照射到被检测物体上后,经过反射、吸收或透过后,被光电元件接收并转换为电信号,再经信号处理电路进行处理,最终输出检测结果。

在光电检测中,常用的光电传感器有光电开关、光电传感器和光电编码器等。

光电开关主要用于检测物体的存在或不存在,当被检测物体遮挡光线时,光电开关输出信号,实现对物体的检测。

光电传感器则可以实现对物体的距离、颜色、形状等信息的检测,通过光电传感器的不同类型和工作原理,可以实现对不同特性物体的检测。

光电编码器则主要用于测量物体的位置、速度等信息,通过对物体运动过程中光电编码器输出的脉冲信号进行计数和分析,可以得到物体的运动参数。

光电检测原理的关键在于光线与被检测物体之间的相互作用。

光线照射到物体上时,会发生反射、吸收或透过,不同物体对光线的反应不同,这就为光电检测提供了可靠的依据。

通过对被检测物体反射、吸收、透过光线的特性进行分析,可以实现对物体的识别、测量和控制。

在实际应用中,光电检测原理可以应用于各种自动化设备和系统中。

例如,在工业生产线上,可以利用光电传感器实现对产品的检测和分拣;在智能交通系统中,可以利用光电传感器实现对车辆和行人的检测和识别;在医疗设备中,可以利用光电传感器实现对生物样本的检测和分析。

光电检测原理的应用范围非常广泛,可以满足不同领域对物体检测和控制的需求。

总的来说,光电检测原理是一种基于光电传感器的技。

光电离检测法

光电离检测法

光电离检测法
光电离检测法(Photoionization Detection, PID)是一种用于气相色谱(Gas Chromatography, GC)的检测技术,它利用光子能量将样品分子中的电子激发到足够高的能级,从而实现电离。

这种技术主要用于检测具有易电离特性的化合物,如芳香族化合物、多环芳烃(PAHs)和一些卤代烃等。

光电离检测法的基本原理是,样品分子在通过带有紫外光(UV)或可见光的检测器时,光子的能量被分子吸收,导致分子中的电子跃迁到更高的能级。

如果光子的能量足够高,电子可以脱离分子,使分子带正电荷,从而实现电离。

这些带电的分子(离子)随后被检测器中的电极捕获,产生电流信号,这个信号可以被用来定量分析样品中的化合物。

光电离检测法的优点包括:
高灵敏度:对于某些化合物,尤其是具有易电离特性的化合物,PID可以提供非常高的检测灵敏度。

选择性:PID对特定类型的化合物具有较好的选择性,因为它依赖于分子的电离特性。

简单性:PID检测器结构相对简单,操作和维护也较为容易。

然而,PID也有其局限性,例如对于不易电离的化合物,
如饱和烃类,PID的灵敏度可能较低。

此外,PID检测器对于光子和电子的传输效率有一定要求,因此在使用时需要考虑样品的物理和化学特性。

光电离检测法在环境分析、食品安全、法医学、石油化工等领域有着广泛的应用,尤其是在检测痕量和超痕量有机污染物方面表现出色。

光电检测与技术知识点总结

光电检测与技术知识点总结

光电检测与技术知识点总结一、光电检测基础知识1. 光电效应:光子射入物质时,将能量传递给物质,或者将物质中的粒子激发出来。

前者称为光吸收,后者称为光发射。

2. 光电效应分类:外光电效应、内光电效应和光热效应。

3. 光电效应的应用:光电管、光电倍增管、光电摄像管等。

二、光电检测技术基础1. 光电检测器的分类:根据工作原理,可分为外光电效应检测器、内光电效应检测器和光热效应检测器。

2. 光电检测器的工作特性:光谱响应、频率响应、线性范围、探测率和噪声等。

3. 常用光电检测器:光电二极管、光电晶体管、光电池、光电倍增管等。

三、光电检测系统1. 光电检测系统的基本组成:光源、被测物、光电检测器、信号处理电路和显示设备。

2. 光电检测系统的应用:测量长度、测量角度、测量速度、测量温度等。

3. 光电检测系统的误差来源:光源的不稳定性、光学系统的误差、探测器噪声和信号处理电路的误差等。

四、常用光电检测技术1. 红外线检测技术:利用红外线的热效应,可以测量物体的温度和辐射功率。

红外线传感器有热敏电阻、热电偶等。

2. 激光雷达技术:利用激光的反射和散射,可以测量物体的距离和形状。

常用的激光雷达有脉冲式和连续波式两种。

3. 光纤传感器技术:利用光纤的传光特性,可以测量物体的位移、压力和温度等物理量。

光纤传感器有折射率型、光强调制型和光相位调制型等。

4. 图像传感器技术:利用图像传感器将光学图像转换为电信号,可以测量物体的尺寸和形状。

常用的图像传感器有CCD和CMOS两种。

5. 色彩传感器技术:利用色彩传感器测量物体的颜色和色差,可以应用于颜色识别和颜色检测等方面。

常用的色彩传感器有RGB和CMYK两种。

光电门测速知识点总结

光电门测速知识点总结

光电门测速知识点总结一、光电门测速原理光电门测速是一种常见的测速方式,它利用光电传感器检测物体通过时的光电信号变化来计算物体的速度。

光电传感器由光源和光电检测器组成,光源发出光线,物体通过时遮挡光线,导致光电检测器接收到不同的光信号,通过计算光信号的变化来确定物体的速度。

光电门测速原理简单易懂,适用于各种场合的测速需求。

二、光电门测速的应用1. 交通工程:光电门测速可用于交通信号控制系统中,通过测量车辆的速度来调整信号灯的时间,提高交通效率。

2. 体育运动:光电门测速可用于体育运动的计时和成绩测量,如田径比赛、自行车比赛等。

3. 工业生产:光电门测速可用于机器设备的运行监测和控制,确保生产线的正常运行。

4. 游乐设施:光电门测速可用于游乐设施的安全监控,确保游客的安全。

5. 科学研究:光电门测速可用于科学实验中,如光速实验、动态物体速度测量等。

三、光电门测速的优点1. 高精度:光电门测速可以实现高精度的测速和计时,适用于各种场合的测速需求。

2. 高稳定性:光电门测速系统稳定性高,能够长时间稳定运行。

3. 非接触式测速:光电门测速不需要与测量物体接触,避免了对物体的影响和损坏。

4. 快速响应:光电门测速系统响应速度快,可以实时监测和控制物体的速度。

四、光电门测速的技术要点1. 光电传感器的选择:光电门测速系统中的光电传感器是核心部件,需要根据测速对象的特点选择合适的传感器类型,如红外光电传感器、激光光电传感器等。

2. 光电门的布置:光电门测速系统需要合理布置光电门,以确保测速的准确性和稳定性。

3. 信号处理和计算算法:光电门测速系统的信号处理和计算算法对测速结果的准确性有重要影响,需要合理设计和优化。

4. 系统的稳定性和可靠性:光电门测速系统需要具有良好的稳定性和可靠性,可以长时间稳定运行。

五、光电门测速的发展趋势1. 高精度化:随着科技的发展,光电门测速系统的测速精度不断提高,可以满足更高要求的测速需求。

2023年光电检测知识点总结

2023年光电检测知识点总结

辐射学和光度量学基本概念辐射度学单位是纯粹物理量旳单位,例如,熟悉旳物理学单位焦耳和瓦特就是辐射能和辐射功率旳单位,光度学所讨论旳内容仅是可见光波旳传播和量度,因此光度学旳单位必须考虑人眼旳响应,包括了生理原因。

例如,光度学中光功率旳单位不用瓦特而用流明。

其他基本概念点源:照度与距离之间旳平方反比定律扩展源:朗伯源旳辐出度与辐亮度间旳关系漫反射面:漫反射体旳视亮度与照度间旳关系定向辐射体例题,已知太阳辐亮度为2x107W/(m2.sr),太阳半径6,957x108m,地球半径6.374x106m,太阳地球平均距离为1.496x1011m,求太阳辐出度、辐强度、辐通量及地球接受旳辐通量,大气边缘旳辐照度。

黑体辐射定律绝对黑体:任何温度、任何波长旳入射辐射旳吸取比都等于1。

任何物体旳单色辐出度和单色吸取比之比,等于同一温度下绝对黑体旳单色辐出度。

(强吸取体也必是强发射体。

)光谱辐出度随波长持续变化,每条曲线只有一种极大值;不一样温度旳曲线彼此不相交;某一波长上,温度越高,光谱辐出度越大;随温度升高,曲线峰值对应旳波长向短波方向移动;波长不不小于λm旳部分能量约占25%,波长不小于λm旳能量约占75%;维恩位移定律(Wien‘s Displacement Law )将普朗克公式对波长λ求微分后令其等于0,则可以得到峰值光谱辐出度所对应旳波长λm 与绝对温度T旳关系。

维恩位移定律(Wien's Displacement Law )当黑体温度升高时,辐射曲线旳峰值波长向短波长方向移动。

黑体,灰体和选择性发射体,发射率与材料旳性质及表面状态有关,随物体自身旳温度和辐射波长而变化,并随观测方向而有不一样。

(光谱发射率、半球发射率、方向发射率…)发射率不随波长变化且不不小于1旳物体称灰体;发射率随波长变化旳物体称为选择性辐射体;例题,已知太阳旳峰值辐射波长为0.48um,太阳地球平均距离1.495x108km,太阳半径6.955x105km,假如将太阳与地球均近似看出黑体,求太阳旳地球旳表面温度。

光电传感器,光电检测相关的知识点

光电传感器,光电检测相关的知识点

光电传感器,光电检测相关的知识点
光电传感器和光电检测是现代科技中非常重要的概念。

下面我将为您概括和解释光电传感器和光电检测的基本知识点。

一、光电传感器
光电传感器是一种基于光-电转换原理的传感器,它通过接收特定波长的光线,并将其转换为电信号,从而实现对物理量的测量。

光电传感器的主要组成部分是光敏元件,它能够将接收到的光线转换为电信号。

根据使用的光敏材料和结构的不同,光电传感器可以分为多种类型,如光电二极管、光电池、光电晶体管等。

光电传感器的主要优点包括高灵敏度、高响应速度、高精度和高可靠性。

它们通常能够在恶劣的环境条件下工作,例如高温、低温、强磁等环境条件下。

因此,光电传感器被广泛应用于许多领域,如工业自动化、医疗诊断、环境监测等。

二、光电检测
光电检测是一种利用光电传感器对物理量进行测量和检测的技术。

它基于光-电转换原理,通过将待测物理量转换为光线信号,再将其转换为电信号,从而实现对物理量的测量。

光电检测的主要应用领域包括光学测量、光学通信、光谱分析等。

在光电检测中,需要使用不同的光电传感器和光学系统来适应不同的测量环境和待测物理量。

例如,在光谱分析中,通常使用光谱仪来将不同波长的光线分离并转换为电信号,再通过计算机进行分析和处理。

在光学测量中,可以使用激光雷达、三维扫描仪等设备来进行高精度的测量。

总之,光电传感器和光电检测是现代科技中非常重要的概念和技术。

它们的应用范围广泛,涉及到许多领域。

随着科技的不断发展和进步,光电传感器和光电检测的技术和应用也在不断发展和完善。

光电操作知识点总结图

光电操作知识点总结图

光电操作知识点总结图光电操作是通过光电传感器进行的一种自动化操作,其原理是利用光电传感器对光线的变化进行探测,并将探测到的信号转化为电信号进行下一步的操作。

光电操作在工业、家用电器、医疗、交通等领域有着广泛的应用,本文将从光电传感器的类型、原理、应用及维护等方面进行总结。

一、光电传感器的类型光电传感器主要分为光电开关、光电尺、光电对射器等几种类型,这里主要介绍常用的光电开关和光电尺。

1. 光电开关:光电开关是一种利用光电传感器探测物体到达或离开的开关设备。

根据其工作原理可以分为反射型光电开关和测距型光电开关两种。

反射型光电开关是通过发射器发出光束,物体反射光束回到接收器上,当物体遮挡光束时,接收器将不再接收到光束信号,从而产生开关信号。

测距型光电开关是通过测量物体到光电传感器的距离来产生开关信号。

2. 光电尺:光电尺是一种利用光电传感器测量物体线性位移的设备。

光电尺由发光体和光电检测器组成,当测量物体在光电尺上移动时,光电检测器会接收到不同强度的光信号,从而产生位移信号。

二、光电传感器的原理光电传感器的原理是利用光电效应将光能转化为电能,通过光电传感器的发射器发射光束,物体反射或透过光束产生光信号,光电传感器的接收器接收到光信号后转化为电信号,再通过电路进行信号处理和判断,最终产生相应的输出信号。

光电传感器主要应用了光电效应、光电二极管、激光二极管等原理。

三、光电操作的应用1. 工业自动化领域:光电操作在工业自动化领域有着广泛的应用,如光电开关用于物体到达或离开检测、光电尺用于位移测量、光电对射器用于位置对准等。

2. 家用电器领域:在家用电器中,光电操作也有应用,例如光电开关用于感应门窗的开关、自动感应开关等。

3. 医疗领域:在医疗领域,光电操作被应用于各种医疗仪器的感应、控制等,例如光电开关用于手术台的高度调节等。

4. 交通领域:在交通领域,光电操作被应用于交通信号灯、车辆感应器等,以实现交通的自动控制。

最新光电检测技术知识点

最新光电检测技术知识点

1、光电效应应按部位不同分为内光电效应和外光电效应,内光电效应包括(光电导)和(光生伏特效应)。

2、真空光电器件是一种基于(外光电)效应的器件,它包括(光电管)和(光电倍增管)。

结构特点是有一个真空管,其他元件都放在真空管中3、光电导器件是基于半导体材料的(光电导)效应制成的,最典型的光电导器件是(光敏电阻)。

4、硅光电二极管在反偏置条件下的工作模式为(光电导),在零偏置条件下的工作模式为(光生伏特模式)。

5、变象管是一种能把各种(不可见)辐射图像转换成为可见光图像的真空光电成像器件。

6、固体成像器件(CCD)主要有两大类,一类是电荷耦合器件(CCD),另一类是(SSPD)。

CCD电荷转移通道主要有:一是SCCD(表面沟道电荷耦合器件)是电荷包存储在半导体与绝缘体之间的界面,并沿界面传输;二是BCCD称为体内沟道或埋沟道电荷耦合器件,电荷包存储在离半导体表面一定深度的体内,并沿着半导体内一定方向传输7、光电技术室(光子技术)和(电子技术)相结合而形成的一门技术。

8、场致发光有(粉末、薄膜和结型三种形态。

9、常用的光电阴极有正电子亲合势光电阴极(PEA)和负电子亲合势光电阴极(NEA),正电子亲和势材料光电阴极有哪些(Ag-O-Cs,单碱锑化物,多碱锑化物)。

10、根据衬底材料的不同,硅光电二极管可分为(2DU)型和(2CU)型两种。

11、像增强器是一种能把微弱图像增强到可以使人眼直接观察的真空光电成像器件,因此也称为(微光管)。

12、光导纤维简称光纤,光纤有(纤芯)、(包层)及(外套)组成。

13、光源按光波在时间,空间上的相位特征可分为(相干)和(非相干)光源。

14、光纤的色散有材料色散、(波导色散)和(多模色散)。

15、光纤面板按传像性能分为(普通OFP)、(变放大率的锥形OFP)和(传递倒像的扭像器)。

16、光纤的数值孔径表达式为,它是光纤的一个基本参数、它反映了光纤的(集光)能力,决定了能被传播的光束的半孔径角17、真空光电器件是基于(外光电)效应的光电探测器,他的结构特点是有一个(真空管),其他元件都置于(真空管)。

光电信息知识点总结

光电信息知识点总结

光电信息知识点总结一、光电信息的基本原理光电信息技术是基于光电子器件的技术,其基本原理是光电效应。

光电效应是指材料在受到光照射时,吸收光能并产生电子的现象。

光电信息技术通过利用光电器件将光能转换为电能来实现信息的传递、处理和控制。

光电信息技术的基本原理包括光电效应、光电转换、光电器件等。

其中,光电效应是指当光照射到材料表面时,光子的能量被材料吸收,激发出电子-空穴对,并在电场的作用下产生电流。

光电转换是指将光信号转换为电信号的过程,其过程包括光吸收、电子-空穴对的产生、电荷的运动、电流的输出等。

光电器件是利用光电效应来实现信息传递和控制的装置,包括光电二极管、光电晶体管、光电探测器等。

二、光电器件光电器件是利用光电效应来实现信息传递和控制的装置,主要包括光电二极管、光电晶体管、光电探测器等。

1. 光电二极管光电二极管是一种利用光电效应来实现光信号到电信号转换的器件,其工作原理是当光照射到PN结时,光子的能量被吸收,激发出电子-空穴对,使得PN结上发生电荷分离,产生光电流。

光电二极管广泛应用于光通信、光测量、光电控制等领域。

2. 光电晶体管光电晶体管是一种利用光电效应来控制电子流的器件,其工作原理是当光照射到PN结时,光子的能量被吸收,激发出电子-空穴对,使得PN结上发生电荷分离,进而在电场的作用下控制输出电流。

光电晶体管具有较高的灵敏度和速度,广泛应用于光电控制、光电调制等领域。

3. 光电探测器光电探测器是一种利用光电效应来检测光信号的器件,其工作原理是当光照射到探测器时,光子的能量被吸收,并产生光电流或光电压信号。

光电探测器主要包括光电二极管、光电晶体管、光电倍增管、光电子管等,广泛应用于光通信、光测量、光电控制等领域。

三、光通信光通信是一种利用光信号来传递信息的通信技术,其基本原理是光信号的发射、传输、接收和解调。

光通信具有传输速度快、带宽大、抗干扰能力强等优点,已成为现代通信网络的主要传输方式。

光电检测技术知识点

光电检测技术知识点

1、光电效应应按部位不同分为光电效应和外光电效应,光电效应包括〔光电导〕和〔光生伏特效应〕。

2、真空光电器件是一种基于〔外光电〕效应的器件,它包括〔光电管〕和〔光电倍增管〕。

构造特点是有一个真空管,其他元件都放在真空管中3、光电导器件是基于半导体材料的〔光电导〕效应制成的,最典型的光电导器件是〔光敏电阻〕。

4、硅光电二极管在反偏置条件下的工作模式为〔光电导〕,在零偏置条件下的工作模式为〔光生伏特模式〕。

5、变象管是一种能把各种〔不可见〕辐射图像转换成为可见光图像的真空光电成像器件。

6、固体成像器件〔CCD〕主要有两大类,一类是电荷耦合器件〔CCD〕,另一类是〔SSPD〕。

CCD电荷转移通道主要有:一是SCCD〔外表沟道电荷耦合器件〕是电荷包存储在半导体与绝缘体之间的界面,并沿界面传输;二是BCCD称为体沟道或埋沟道电荷耦合器件,电荷包存储在离半导体外表一定深度的体,并沿着半导体一定方向传输7、光电技术室〔光子技术〕和〔电子技术〕相结合而形成的一门技术。

8、场致发光有〔粉末、薄膜和结型三种形态。

9、常用的光电阴极有正电子亲合势光电阴极〔PEA〕和负电子亲合势光电阴极〔NEA〕,正电子亲和势材料光电阴极有哪些〔Ag-O-Cs,单碱锑化物,多碱锑化物〕。

10、根据衬底材料的不同,硅光电二极管可分为〔2DU〕型和〔2CU〕型两种。

11、像增强器是一种能把微弱图像增强到可以使人眼直接观察的真空光电成像器件,因此也称为〔微光管〕。

12、光导纤维简称光纤,光纤有〔纤芯〕、〔包层〕及〔外套〕组成。

13、光源按光波在时间,空间上的相位特征可分为〔相干〕和〔非相干〕光源。

14、光纤的色散有材料色散、〔波导色散〕和〔多模色散〕。

15、光纤面板按传像性能分为〔普通OFP〕、〔变放大率的锥形OFP〕和〔传递倒像的扭像器〕。

16、光纤的数值孔径表达式为,它是光纤的一个根本参数、它反映了光纤的〔集光〕能力,决定了能被传播的光束的半孔径角17、真空光电器件是基于〔外光电〕效应的光电探测器,他的构造特点是有一个〔真空管〕,其他元件都置于〔真空管〕。

光学基本测量知识点总结

光学基本测量知识点总结

光学基本测量知识点总结一、光的传播特性1. 光的传播方式光是一种电磁波,它的传播方式有两种:直线传播和波的传播。

当光线遇到透明介质时,它会以直线的方式传播;当光线遇到不透明介质时,它会以波的方式传播。

2. 光的色散特性光的色散是指光通过介质时,不同频率的光线会以不同的速度传播,从而产生颜色分散的现象。

这种现象在光学测量中非常重要,因为它可以用来确定不同颜色的光线的波长和频率。

3. 光的反射和折射当光线遇到平滑的界面时,会发生反射和折射现象。

反射是指光线从界面上反射出去,而折射是指光线在界面上发生折射现象。

这些现象在光学测量中经常会用到。

4. 光的偏振光的偏振是指光线的振动方向是固定的现象。

在光学测量中,偏振光通常可以用来减少光线的干扰,从而提高测量的准确性。

二、光的测量方法1. 光的强度测量光的强度是指光线的能量密度,它是光学测量中经常需要测量的一个参数。

强度测量方法有直接照度法、反射法和逆反射法等。

2. 光的波长测量光的波长是指光线的波长,它是光学测量中非常重要的一个参数。

波长测量方法有光栅光谱仪、光电离仪和单色仪等。

3. 光的频率测量光的频率是指光线的振动频率,它是光学测量中需要测量的一个参数。

频率测量方法有光电离法、激光干涉法和频率计等。

4. 光的速度测量光的速度是指光线在介质中传播的速度,它是光学测量中需要测量的一个参数。

速度测量方法有直线测量法、闪烁测量法和干涉测量法等。

三、光学仪器的使用和应用1. 光学仪器的分类光学仪器包括光学显微镜、光谱仪、激光器和光电检测器等。

这些仪器在光学测量中起着非常重要的作用,它们可以用来测量光的强度、波长、频率和速度等参数。

2. 光学仪器的使用光学仪器的使用包括仪器的安装、调试和使用。

在使用光学仪器时,需要注意仪器的使用方法、保养和维护等,以保证测量的准确性。

3. 光学仪器的应用光学仪器在科学研究、医学诊断和工业生产中有着广泛的应用。

例如,在科学研究中可以用光学显微镜观察微观结构,在医学诊断中可以用光谱仪检测生物样本,在工业生产中可以用激光器进行精密加工等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章名称解释1. 光通量2 坎德拉3. 照度4 半导体中的非平衡载流子5 绝对黑体6 基尔霍夫定律7 热噪声8 产生-复合噪声91/f 噪声知识要点半导体材料的光吸收效应(1) 本征吸收(2) 杂质吸收2. 非平衡载流子浓度载流子复合过程一般有直接复合和间接复合两种。

物体的光谱发射率总等于其光谱吸收比。

也就是强吸收体必然是强发射体。

维恩位移定律指出:当绝对黑体的温度增高时,单色辐出度的最大值向短波方向移动。

光电子发射过程可以归纳为以下三个步骤:(1) 物体吸收光子后体内的电子被激发到高能态;(2) 被激发电子向表面运动,在运动过程中因碰撞而损失部分能量;(3) 克服表面势垒逸出金属表面。

一般光电检测系统的噪声包括三种:(1) 光子噪声包括:信号辐射产生的噪声和背景辐射产生的噪声。

(2) 探测器噪声包括:热噪声、散粒噪声、产生-复合噪声、1/f 噪声和温度噪声。

(3) 信号放大及处理电路噪声在半导体器件中1/f 噪声与器件表面状态有关。

多数器件的1/f 噪声在300Hz 以上时已衰减到很低水平,所以频率再高时可忽略不计。

在频率很低时;l/f 噪声起主导作用;当频率达到中间频率范围时,产生-复合噪声比较显著;当频率较高时,只有白噪声占主导地位,其它噪声影响很小了光电探测器的合理选择(1) 根据待测光信号的大小,确定探测器能输出多大的电信号,即探测器的动态范围。

(2) 探测器的光谱响应范围是否同待测光信号的相对光谱功率分布一致。

即探测器和光源的光谱匹配。

(3) 对某种探测器,它能探测的极限功率或最小分辨率是多少—需要知道探测器的等效噪声功率;需要知道所产生电信号的信噪比。

(4) 当测量调制或脉冲光信号时,要考虑探测器的响应时间或频率响应范围。

(5) 当测量的光信号幅值变化时,探测器输出的信号的线性程度。

第二章名称解释光源的发光效率色温色表显色性相关色温分布温度知识要点选择光源时,应综合考虑光源的强度、稳定性、光谱特性等性能根据斯奇芬-玻尔兹曼定律知,物体只要其温度大于绝对零度,都会向外界辐射能量,其辐射特性与温度的四次方有关气体放电光源具有下述特点;1. 发光效率高。

比同瓦数的白炽灯发光效率高2〜10倍。

2. 由于不靠灯丝发光,电极可以做得牢固紧凑耐震、抗冲击。

3. 寿命长。

一般比白炽灯寿命长2〜10倍。

4. 光色适应性强,可在较大范围内选择。

激光产生的必要条件——粒子数反转、光泵、谐振腔按工作物质分类,激光器可分为气体激光器、固体激光器、染料激光器和半导体激光器等。

氙灯分为长弧氙灯、短弧氙灯和脉冲氙灯三种试述卤钨灯的工作原理和发光二极管工作原理第三章名称解释光生伏特效应雪崩倍增效应知识要点半导体结型光电器件按结的种类不同,可分为PN结型,PIN结型和肖特基结型PN 结光伏效应两种工作模式:光伏工作模式和光电导工作模式光照下PN 结,当PN 结上加有反偏压时,暗电流随反向偏压的增大有所增大,最后等于反向饱和电流I0,而光电流Ip几乎与反向电压的高低无关。

光电池是一个PN结,根据制作PN结材料的不同,光电池有硒光电池,硅光电池、砷化镓光电池和锗光电池四种。

光电池的开路电压Voc随着温度的升高而减小,短路电流Isc随着温度的升高而增大,但增大比例很小硅光电二极管的结构和工作原理与硅光电池相似,不同的地方是:①就制作衬底材料的掺杂浓度而言,光电池较高,②光电池的电阻率低③光电池在零偏置下工作,而硅光电二极管在反向偏置下工作;④一般说来光电池的光敏面面积都比硅光电二极管的光敏面大得多,因此硅光电二极管的光电流小得多,通常在微安级。

试述硅光电三极管与硅光电二极管特性比较一般光电二极管与运算放大电路的连接方式有三种方式,(1)电流放大型(2) 电压放大型(3)阻抗变换型三种电路各有优缺点,但都适用于光功率很小的场合PIN 光电二极管因有较厚的I 层,因此具有以下四点优点:a) .使PN结的结间距离拉大,结电容变小。

b) .由于内建电场基本上全集中于I层中,使耗尽层厚度增加,增大了对光的吸收和光电变换区域,量子效率提高了。

c) 增加了对长波的吸收,提高了长波灵敏度,d) 可承受较高的反向偏压,使线性输出范围变宽。

PSD光电位置传感器有以下特点:①对光斑的形状无严格要求,只与光的能量重心有关;②光敏面无死区,可连续测量光斑位置,分辨率高,一维PSD可达0.2 m;③可同时检测位置和光强;PSD器件输出总电流与入射光强有关,所以从总光电流可求得相应的入射光强。

使用PSD 时的注意事项:(1) 注意与光源的光谱匹配(2) 注意所加电压不宜太大也不能太小,以免影响PSD 的响应频率。

(3) 注意使用PSD 时的环境温度(4) 注意位置测量误差范围半导体色敏器件,它由在同一块硅片上制造两个深浅不同的PN 结构成,其中PD2 为深结,它对长波长的光响应率高;PD1 为浅结,它对波长短的光响应率高。

第4 章光电导器件名称解释暗电流亮电流光电流知识要点光敏电阻噪声主要有三种:产生-复合噪声,热噪声和1/f 噪声频率低于100Hz 时以l/f 噪声为主,频率在100Hz 和接近1000Hz 之间以产生- 复合噪声为主,频率在1000Hz 以上以热噪声为主第5章真空光电器件名称解释光照灵敏度色光灵敏度光谱灵敏度光电倍增管的暗电流知识要点光电阴极一般分为透射型与反射型两种负电子亲和势材料制作的光电阴极与正电子亲和势材料光电阴极相比具有以下四点特点:a.量子效率高b光谱响应率均匀c.热电子发射小d.光电子的能量集中负电子亲和势材料表面区域能带弯曲,真空能级降到导带之下。

正电子亲和势材料真空能级位于导带之上光电倍增管主要由入射窗口、光电阴极、电子光学系统、电子倍增系统和阳极五个主要部分组成。

试述光电倍增管的工作原理光电倍增管的暗电流决定了光电倍增管的极限灵敏度暗电流来源可归纳为三类:阴极或其他零件的热发射、极间欧姆漏电、残余气体以及场致发射等的再生效应,光电倍增管在低电压时,暗电流由漏电流决定;电压较高时,主要是热电子发射;电压再大,则导致场致发射和残余气体离子发射,使暗电流急剧增加,甚至可能发生自持放电高压分压电路的接地方式多数情况下采用阳极接地、阴极接负高压方式。

此方案消除了外部电路与阳极之间的电压差,便于电流计或电流—电压转换运算放大器直接与光电倍增管相连接。

但在这种阳极接地的方案中,由于靠近光电倍增管玻壳的金属支架或磁屏蔽套管接地,它们与阴极和倍增极之间存在比较高的电位差,结果会使某些光电子打到玻壳内侧,产生玻璃闪烁现象,从而导致噪声的显著增加光电倍增管选择负载电阻时要注意三点:(1)在频响要求比较高的场合,负载电阻应尽可能小一些。

(2)当输出信号的线性要求较高时,选择的负载电阻应使信号电流在它上面产生的压降在几伏以下。

(3) 负载电阻应比放大器的输入阻抗小得多。

在测量中,要正确使用光电倍增管,应该注意如下几点1•阳极电流要小于I A,以减缓疲劳和老化效应。

2. 分压器中流过的电流应大于阳极最大电流的1000 倍,但是不应过分加大,以免发热。

3. 高压电源的稳定性必须达到测量精度的10 倍以上。

电压的纹波系数一般应小于0.001%。

4. 阴极和第一倍增极之间、末级倍增极和阳极之间的级间电压应设计得与总电压无关。

5. 用运算放大器作光电倍增管输出信号的电流电压变换,可获好的信噪比和线性度。

6. 电磁屏蔽时最好使屏蔽筒与阴极处于相同电位。

7. 光电倍增管使用前应接通高压电源,在黑暗中放置几小时。

不用时应贮存在黑暗中。

8•光电倍增管的冷却温度一般取-20C。

第六章真空成像器件知识要点像管包括变像管和像增强器,都具有光谱变换、图像增强和成像的功能。

变像管是一种能把各种不可见辐射图像转换成可见光图像的真空光电成像器件。

像增强器是能把微弱的辐射图像增强到人眼可直接观察的真空光电成像器件,因此也称为微光管像管由三个基本部分组成一是光电变换部分,即光电阴极二是电子光学部分,即电子透镜三是电光变换部分,即荧光屏级联式像增强器。

为了保证连接后的成像效果,应注意:1.图中每个单级变像管的输入和输出都用光纤面板制成,便于级与级之间的耦合。

2.必须注意荧光屏和后级光电阴极的光谱匹配。

第二代像增强器的微通道板结构配以负电子亲和势光电阴极,就构成第三代像增强器。

按光电变换形式摄像管基本上分为两类一类是利用外光电效应进行光电转换的摄像管,称光电发射型摄像管,也简称摄像管。

另一类是利用内光电效应进行光电转换的摄像管,统称为光电导型摄像管,也称为视像管,摄像管具有三个基本功能:光电变换、光电信息的积累、储存及扫描输出。

慢电子束扫描是:当电子束扫描各像素时,由于电子上靶的中和作用,使靶面电位与电子枪阴极电位平衡;由于靶面各像素积累电荷不同,需要中和的电子数也不相同,这个电子数就反映了积累信号的大小。

第七章固体成象器件固体成象器件有两大类:一是电荷耦合器件,简称CCD;二是自扫描光电二极管列阵,简称SSPD, SSPD又称MOS图像传感器。

CCD 的特点是以电荷作为信号,不是以电流或电压作为信号CCD 是在MOS 晶体管的基础上发展起来的,但与MOS 晶体管的工作原理不同。

MOS晶体管是利用在电极下的半导体表面形成的反型层进行工作的,而CCD是利用在电极下SiO2—半导体界面形成的深耗尽层(势阱)进行工作的,属非稳态器件CCD 主要由三部分组成,信号输入部分、电荷转移部分和信号输出部分。

CCD 的输入方式有场效应管输入、注入二极管输入、电势平衡法输入等。

输入部分的作用是将信号电荷引入到CCD 的第一个转移栅下的势阱中。

引入的方式有两种:电注入和光注入帧转移结构和行间转移结构各有其优缺点。

帧转移结构简单,灵敏度高;行间转移结构适合于低光强,拖影”小。

目前EBCCD常用的三种聚焦方法如下图所示。

各有优缺点,即静电聚焦方法得倒像,易产生枕形畸变;近贴型方法得正像,会引起强的背景辐射;磁聚焦法得正像,易引起螺旋形畸变。

CCD的噪声可归纳为3类,即散粒噪声、转移噪声和热噪声信号输出放大电路有两种类型:(1)电流放大输出,右图是常用电流放大器的原理图。

输出信号为尖脉冲,优点是电路简单,工作速度高(可达10MHz);(2)电荷积分放大输出,输出电路如右图所示。

输出信号为箱形波, 优点是开关噪声小,第八章红外辐射的波长范围大约在0.76卩m到1000卩m的范围之内,红外辐射分为四个区域:近红外区中红外区远红外区极远红外区热探测器光电转换的过程分为两步第一步是热探测器吸收红外辐射引起温升,第二步利用热探测器某些温度效应把温升转变成电量的变化热探测器四特性1 )响应率与波长无关,属于无选择性探测器;2)受热时间常数(热惯性)的制约,响应速度比较慢3)热探测器的探测率比光子探测器的峰值探测率低;4)可在室温下工作热敏电阻有金属和半导体两种。

相关文档
最新文档