贵州省2022-2022年高三11月月考数学(理)试题

合集下载

四川省绵阳市绵阳中学2024-2025学年高三上学期10月月考数学试题(含答案)

四川省绵阳市绵阳中学2024-2025学年高三上学期10月月考数学试题(含答案)

绵阳中学高2022级高三上期第一学月月考数学试题一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集,集合和的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )A.3个B.2个C.1个D.无穷多个2.围棋是中国传统棋种,蕴含着中华文化丰富内涵,围棋棋盘横竖各有19条线,共有个落子点.每个落子点都有落白子、落黑子和空白三种可能,因此围棋空间复杂度的上限.科学家们研究发现,可观测宇宙中普通物质的原子总数.则下列各数中与最接近的是( )(参考数据:)A. B. C. D.3.的定义域为( )A. B.C. D.4.设,,,则( )A. B. C. D.5.设函数,则不等式的解集是( )A. B. C. D.6.下列选项可以使得成立的一个充分不必要条件的是( )A. B. C. D.R U ={}2230M x x x =--≤{}21,Z N x x k k ==-∈1919361⨯=3613M ≈8010N ≈MNlg 30.48≈9310831073105310lg(tan 1)y x =-ππππ,Z 24xk x k k ⎧⎫⎨⎬⎩⎭+>>+∈πππ,π,Z 42x x k x k k ⎭>+≠+⎧⎫⎨⎬⎩∈ππ,Z 4x x k k ⎧⎫⎨⎬⎩⎭>+∈ππ,Z 42k x x k ⎧⎫⎨⎬⎩⎭>+∈0.30.2a =0.20.3b =0.2log 2c =c b a>>c a b >>b a c >>a b c>>3()f x x x =()()332log 3log 0f x f x +-<1,2727⎛⎫⎪⎝⎭10,27⎛⎫ ⎪⎝⎭()0,27()27,+∞1144xy -≤≤221x y +=2241x y +=1x y +=1y x=7.函数的导函数,若函数仅在有极值,则的取值范围是( )A. B.或 C.或 D.8.存在三个实数,,使其分别满足下述两个等式:(1);(2)其中表示三个实数,,中的最小值,则( )A.的最小值是 B.的最大值是 C.的最小值是 D.的最大值是二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知定义在R 上的奇函数,其周期为4,当时,,则( )A. B.的值域为C.在上单调递增D.在上有9个零点10.已知函数,下列说法正确的是( )A.关于对称B.的值域为R ,当且仅当或C.的最大值为1,当且仅当D.有极值,当且仅当11.关于函数,下列说法中正确的是( )A.图象关于直线对称 B.为偶函数C.为的周期D.三、填空题(本题共3小题,每小题5分,共15分.把答案填在题中的横线上.)12.已知顶点在坐标原点,始边与轴非负半轴重合,其终边上一点P 的坐标为,则的值为________13.甲说:在上单调递减乙说:存在实数使得在成立若甲、乙两人至少有一人说的话是对的,则的取值范围是________()f x ()(1)(ln 1)f x x x ax '=-+-()f x 1x =a 21e a ≤-21ea <-1a =21ea ≤-1a =1a =1a 2a 3a 1232a a a =-1230a a a ++=M 1a 2a 3a M 2-M 2-M M -()f x (0,2)x ∈()22xf x =-(2024)0f =()f x (2,2)-()f x (2,2)-()f x [4,4]-()214()log 21f x x ax =-+()f x x a =()f x 1a ≥1a ≤-()f x a =()f x 1a <()cos sin 2f x x x =π4x =()f x 2π()f x αx 11,23⎛⎫⎪⎝⎭sin(2)α()2ln 23y x ax =-+(,1]-∞x 2210x ax -+>1,22⎡⎤⎢⎥⎣⎦a14.已知不等式对任意的实数恒成立,则的最大值为________四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知函数.(1)若,求函数的极值;(2)讨论函数的单调性.16.(15分)已知函数,将函数的图象向右平移个单位长度,再将所得函数图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象.(1)求的解析式;(2)若关于的方程在区间上有且只有两个实数解,求实数的取值范围.17.(15分)已知,,,(1)求的值(2)求角的值.18.(17分)已知函数.(1)证明:曲线是中心对称图形;(2)若,求实数m 的取值范围.19.(17分)已知函数.(1)函数与的图像关于对称,求的解析式;(2)在定义域内恒成立,求的值;(3)求证:,.112x aeax b -+-≥x ba3212()232a f x x x ax +=-+1a =()f x ()f x π()sin 26f x x ⎛⎫=++ ⎪⎝⎭()f x π212()y g x =()g x x ()g x k =-π5π,186⎡⎤-⎢⎥⎣⎦k ππ42α≤≤3ππ2β≤≤4sin 25α=cos()αβ+=225sin 8sincos11cos 82222πsin 2ααααα++-⎛⎫- ⎪⎝⎭βα-3()ln2(1)2xf x x x x=++--()y f x =(21)()40f m f m -+-<()2ln(1)cos(2)g x x x =--+--()f x ()g x 1x =-()f x ()1f x ax -≤a 2111ln 42nk n f k =+⎛⎫-< ⎪⎝⎭∑*N n ∈绵阳中学高2022级高三上期第一学月月考数学试题参考答案题号1234567891011答案AAACBBABABDABCCD12.13. 14.8.【详解】由已知得,,,中必有2个正数,1个负数,设,,,则,因为,所以,所以,即,所以,由得,,即,所以,故选:B.10.【详解】A.令,有,由于,所以,所以关于对称,故A 正确;B.当函数的值域为R ,则能取到的所有值,所以解得:或,故B 正确;C.若函数的最大值为1,则,故C 正确;D.若有极值,则在定义域内不单调,所以,则,故D 错误.故选:ABC 11.【详解】对于A ,,故A 错误;对于B ,,故B 错误对于C ,,故是的周期,故C 正确;对于D ,,令故,,利用导数求得,故D 正确.故选:CD 12132a <22ln 2-1a 2a 3a 30a <10a >20a >3M a =1230a a a ++=312a a a -=+312a a a -=+≥23124a a a ≤331234a a a a ≥1232a a a =-3324a ≤-338a ≤-32a ≤-2()21g x x ax =-+()(2)g x g a x =-14()log ()f x g x =1144(2)log (2)log ()()f a x g a x g x f x -=-==()f x x a =2()21g x x ax =-+(0,)+∞2440a ∆=-≥1a ≥1a ≤-()f x min 11()()44g x g a a =⇒=⇒=()f x 2()21g x x ax =-+2440a ∆=-<11a -<<ππcos sin(π2)sin sin 2()22f x x x x x f x ⎛⎫⎛⎫-=--=≠⎪ ⎪⎝⎭⎝⎭()cos()sin(2)()f x x x f x -=--=-(2π)cos(2π)sin(24π)cos sin 2()f x x x x x f x +=++==2π()f x ()22()cos sin 22cos sin 21sin sin f x x x x x x x ===-sin x t =()2()21f x t t =-[1,1]t ∈-()f x13.甲对,则有在上单调递减,且大于零,所以有且,则.若乙对,则,,若甲、乙两人至少有一人说的话是对的其对立面为甲乙说的均不对,此时或与求交集为,取其补集后的取值范围,所以14.可转化为图像恒在上方,所以必然有,现考虑刚好相切时的情况,设切点为,则,消元得到带得到,所以图像恒在上方,只需要,所以,令,所以15.【详解】(1),,所以或时,,时,,则在上递减,在递增,所以的极小值为,极大值为.(2),当时,,所以在上递增,当时,或时,;时,,所以在上递增,在上递减,当时,或时,;时,,所以在上递增;在上递减.16.【详解】(1)将的图象向右平移个单位长度后,得到的图象,2210x ax -+>(,1]-∞1a ≥420a ->12a ≤<1,22x ⎡⎤∃∈⎢⎥⎣⎦max 115522224x a x a a a x x ⎛⎫+>⇒+>⇒>⇒< ⎪⎝⎭{1a a <}2a ≥54a a ⎧≥⎫⎨⎬⎩⎭{}2a a ≥a {}2a a <{}2a a <11x ay e-=2y ax b =+0a >0110,x ax e-+⎛⎫ ⎪⎝⎭001111022x a x a e ae ax b-+-+⎧=⎪⎨⎪=+⎩022a b x a -=0112x a e a -+=121212ln 22422ln 22a b a ab e a a b a a a a a--+=⇒=--⇒=--11x ay e -+=2y ax b =+422ln 2b a a a ≤--242ln 2b a a a ≤--222(1)42ln 2()()a a h a h a a a-'--=⇒=max ()(1)22ln 2h a h ==-321323()2x x x f x =-+(1)(2)()x x f x =--'1x <2x >()0f x '>12x <<()0f x '<()f x (1,2)(,1),(2,)-∞+∞()f x 2(2)3f =5(1)6f =()()(2)f x x a x '=--2a =()0f x '≥()f x (,)-∞+∞2a >2x <x a >()0f x '>2x a <<()0f x '<()f x (,2),(,)a -∞+∞(2,)a 2a <x a <2x >()0f x '>2a x <<()0f x '<()f x (,),(2,)a -∞+∞(,2)a ()f x π2πππsin 2sin 2263y x x ⎡⎤⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦再将所得函数图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,所以.(2)因为,所以.,即在区间上有且只有两个实数解,于是函数与的图象在区间上有且只有两个交点,,,,所以.画出在区间上的图象如图所示,所以,所以,.所以实数的取值范围是.17.(1)由12πsin 223y x ⎛⎫=-+ ⎪⎝⎭π()sin 223g x x ⎛⎫=-+ ⎪⎝⎭π5π186x-≤≤4ππ4π2933x-≤-≤()g x k =-πsin 223x k ⎛⎫-=-- ⎪⎝⎭π5π,186⎡⎤-⎢⎥⎣⎦πsin 23y x ⎛⎫=-⎪⎝⎭2y k =--π5π,186⎡⎤-⎢⎥⎣⎦44πsin sin 99π⎛⎫-=- ⎪⎝⎭4πππ3πsin sin πsin sin 3339⎛⎫=+=-=-= ⎪⎝⎭3π4ππ0992<<<4π4πsin sin93⎛⎫-< ⎪⎝⎭πsin 23y x ⎛⎫=-⎪⎝⎭π5π,186⎡⎤-⎢⎥⎣⎦21k ≤--<23k +≤-<32k -<≤k 3,2⎛--+ ⎝222225sin 5cos 4sin 6cos 85sin 8sin cos 11cos 82222222πcos sin 2αααααααααα⎛⎫+++-++- ⎪⎝⎭=-⎛⎫- ⎪⎝⎭2254sin 6cos 84sin 6cos 34sin 3cos 22(4tan 3)cos cos cos αααααααααα++-+-+====-+---又因为,所以,可得,解得或,由于,所以.原式.(2)又由知,因则,由,又因,故.18.【详解】(1)函数,定义域为,所以曲线关于点对称.(2),因为,,所以,所以在定义域上单调递增;又关于点对称,,由(1)得恒成立,所以,所以所以,解得19.【详解】(1)依题意,设图像上任意一点坐标为,则其关于对称的点在图像上,4sin 25α=2sin cos 5αα=222sin cos tan 2sin cos 1tan 5αααααα==++tan 2α=1tan 2α=ππ42α≤≤tan 2α=∴11=-3ππ2β≤≤5π2π4αβ≤+≤cos()αβ+=sin()αβ+===sin()sin[()2]sin()cos 2cos()sin 2βααβααβααβα-=+-=+-+3455⎛⎛⎫=--⨯= ⎪ ⎝⎭⎝π5π24βα≤-≤3π4βα-=3()ln 2(1)2xf x x x x=++--(0,2)332()(2)ln 2(1)ln 2(2)(1)2x xf x f x x x x x x x-+-=++-++-+--332ln [22(2)](1)(1)04042x x x x x x x x-⎡⎤=⋅++-+-+-=++=⎣⎦-()y f x =(1,2)22112()23(1)23(1)2(2)f x x x x x x x '=+++-=++---(0,2)x ∈20(2)x x >-22()23(1)0(2)f x x x x '=++->-()f x (0,2)()f x (1,2)(21)()4f m f m -+<()(2)4f x f x +-=()(2)4f m f m +-=(21)()4()(2)f m f m f m f m -+<=+-212021202022m mm m m -<-⎧⎪<-<⎪⎨<<⎪⎪<-<⎩112m <<()f x ()00,x y 1x =-()002,x y --()g x则,则,故,;(2)令,则在在恒成立,又,且在上是连续函数,则为的一个极大值点,,.下证当时,在恒成立,令,,当,,在上单调递增,当,,在上单调递减,故,在上恒成立,又,则时,恒成立,综上,.(3)由(2)可知:,则,即,则,又由(2)可知:在上恒成立,则在上恒成立且当且仅当时取等,令,,则,即,则,综上,,即证.()()0002y f x g x ==--()()()000022ln 1cos f x g x x x =--=++()01x >-()2ln(1)cos f x x x =++(1)x >-()()12ln(1)cos 1h x f x ax x x ax =--=++--(1)x >-()0h x ≤(1,)x ∈-+∞(0)0h =()h x (1,)x ∈-+∞0x =()h x 2()sin 1h x x a x '=--+(0)202h a a '=-=⇒=2a =()0h x ≤(1,)x ∈-+∞()ln(1)x x x ϕ=+-1()111xx x x ϕ'=-=-++(1,0)x ∈-()0x ϕ'>()x ϕ(1,0)-(0,)x ∈+∞()0x ϕ'<()x ϕ(0,)+∞()(0)0x ϕϕ≤=ln(1)x x +≤(1,)-+∞cos 1x ≤2a =()()12[ln(1)](cos 1)0h x f x ax x x x =--=+-+-≤2a =()12f x x -≤11111222f k k ⎛⎫⎛⎫--≤- ⎪ ⎪⎝⎭⎝⎭1122f k k ⎛⎫-≤ ⎪⎝⎭211111122122nk n f k n n n =+⎛⎫⎛⎫-≤+++ ⎪ ⎪++⎝⎭⎝⎭∑ ln(1)x x +≤(1,)-+∞ln 1x x ≤-(0,)+∞1x =(0,1)1n x n =∈+*N n ∈1ln 1111n n n n n -<-=+++11ln ln ln(1)ln 11n n n n n n n +<-==+-++111ln(1)ln ln(2)ln(1)ln(2)ln(21)122n n n n n n n n n+++<+-++-+++--++ ln(2)ln ln 2n n =-=21112ln 2ln 42nk n f k =+⎛⎫-<= ⎪⎝⎭∑。

贵州省铜仁市德江县第二中学2023-2024学年高一下学期第三次月考数学试题(含答案)

贵州省铜仁市德江县第二中学2023-2024学年高一下学期第三次月考数学试题(含答案)

2024年春季学期德江县第二中学高一第三次月考数学全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:必修第一册,必修第二册第六章~一第八章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,则( )A. B. C.D.2.()A.D.3.已知在上的投影为,则( )A. B. C. D.4.已知函数是定义在上的奇函数,当时,,则()A.-2B.2C.3D.-35.如图,为水平放置的斜二测画法的直观图,且,则的周长为( )A.9 B.10 C.11 D.12{}*{215},15M xx N x x =->=∈-<<N ∣∣()M N ⋂=R ð{}0,1,2,3{}1,2,3{}0,1,2{}1,2cos43cos13sin43sin13+= 12cos57 2,a b = a 13a b ⋅= 1313-23-23()f x R 0x >()323f x x x =-()1f -=A O B ''' AOB 3,42O A O B '''=='AOB6.在中,,则( )B.7.如图,在中,为的中点,则( )A. B.C. D.8.如图,在棱长为2的正方体中,为的中点,则异面直线与所成角的余弦值为( )二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知为虚数单位,复数,则( )A.的共轭复数为B.C.为实数D.在复平面内对应的点在第一象限ABC 2,120AB AC C === sin A =ABC 4,AB DB P = CD BP = 1142AB AC -+ 1143AB AC -+ 5182AB AC -+ 5183AB AC -+ 1111ABCD A B C D -M AD 1B C 1D M i 1212i,2i z z =+=-1z 12i-+12z z =12z z +12z z ⋅10.以直角边长为2的等腰直角三角形的一边所在直线为旋转轴,将该三角形旋转一周所得几何体的体积可以为()A.B. C.11.已知函数的部分图象如图所示,则下列说法正确的是( )A.函数的解析式B.直线是函数图象的一条对称轴C.在区间上单调递增D.不等式的解集为三、填空题:本题共3小题,每小题5分,共15分.12.已知函数则__________.13.已知向量,若三点共线,则__________.14.已知,且,则的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)已知复数满足.(1)求复数;(2)求复数的实部和虚部.16.(本小题满分15分)已知向量,且.8π34π3π()()π3sin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭()f x ()π3sin 23f x x ⎛⎫=+ ⎪⎝⎭11π12x =-()f x ()f x 3π11π,26⎛⎫ ⎪⎝⎭()32f x …3πππ,π,412k k k ⎡⎤-+-+∈⎢⎥⎣⎦Z ()21log ,0,1,0,4x x x f x x ->⎧⎪=⎨⎛⎫ ⎪⎪⎝⎭⎩…f f ⎛⎫= ⎪ ⎪⎝⎭()()()2,3,2,5,3,1AB BC m CD ===- ,,A B D m =12a >2250ab ab -+-=a b +z 22,2i z z z +==-z 4z ()()()2,4,,1,1,2a b mc === ()2a b c -⊥(1)求的值;(2)求向量与的夹角的余弦值.17.(本小题满分15分)如图,在四棱锥中,,设分别为的中点,.(1)证明:平面;(2)证明:平面平面.18.(本小题满分17分)在中,内角的对边分别为,且.(1)求角;(2)若为锐角三角形,是线段的中点,求的长的取值范围.19.(本小题满分17分)在四棱锥中,是等边三角形,四边形是矩形,,是棱的中点.(1)求证:;(2)求二面角的正切值.2024年春季学期德江县第二中学高一第三次月考·数学参考答案、提示及评分细则m a b - 23b c - P ABCD -BC ∥,,222AD AB BC AB BC AD ⊥===,E F ,PD PA AO OD =CE ∥PAB BOF ∥CDE ABC ,,A B C ,,a b c sin sin sin sin b a C A c B A --=+B ABC 2,AC D =AC BD P ABCD -PAB ABCD 2,AB AD ==,PB AD E ⊥PD PA BE ⊥P AE B --1.B 由题意知,所以.故选B.2.CC.3.D 因为在上的投影为,可得,所以.故选D.4.B 因为是定义在上的奇函数,所以.故选B.5.D 在中,,由,可得的周长为12.6.B ,由余弦定理可得:,解得:,或-3(舍去),由正弦定理可得:.故选B.7.C 由题意知.故选C.8.A 取的中点,连接,则,则为异面直线所成的角或其补角,易求.故选A.9.BD 因为的共轭复数为,所以A 不正确;因为,所以B 正确;因为,所以不正确;{}{}*{215}{3},151,2,3,4M x x x x N x x =->=>=∈-<<=N ∣∣∣(){}1,2,3M N ⋂=Rð()cos43cos13sin43sin13cos 4313cos30+=-== 2,a b = a 1313a b a ⋅= 1122333a b a ⋅==⨯= ()f x R ()()()11132f f -=-=--=OAB 3,4OA OB ==OA OB ⊥5,AB OAB = 2,120AB AC C === ∴2222cos AB BC AC BC AC C =+-⋅2230BC BC +-=∴1BC =∴sin sin BC C A AB ⋅==()11111113514242422482BP BD DP AB DC AB AC AD AB AC AB AB AC =+=-+=-+-=-+-⋅=-+ 1A A N 1,MN D N MN∥1A D ∥1B C 1D MN ∠111MN D M D N D MN ∠======112i z =+12i z =-1z ===1212i 2i 3i z z +=++-=+C因为,点的坐标在第一象限,所以D 正确.10.BD ①当以直角边所在直线为旋转轴时,得到一个底面圆半径为2,高为2的圆锥,则;②,则.故选BD.11.ABD 由图知函数的最小正周期,所以,所以.将点代入,得,所以,解得,又,所以,所以,故A 正确;当时,,故B 正确;当时,,故C 错误;由,得,所以,解得,故D 正确.故选ABD.12.8 ,所以.()()1212i 2i 43i z z ⋅=+-=+()4,3184π2π33V =⨯⨯=122ππ3V ⎛=⨯⨯= ⎝()f x 45πππ3612T ⎛⎫=⨯-= ⎪⎝⎭2π2πω==()()3sin 2f x x ϕ=+π,312⎛⎫ ⎪⎝⎭π33sin 6ϕ⎛⎫=+ ⎪⎝⎭()ππ2π62k k ϕ+=+∈Z π2π3k ϕ=+()k ∈Z π2ϕ<π3ϕ=()π3sin 23f x x ⎛⎫=+ ⎪⎝⎭11π12x =-()3f x =3π11π,26x ⎛⎫∈ ⎪⎝⎭π10π2,4π33x ⎛⎫+∈ ⎪⎝⎭()32f x …π33sin 232x ⎛⎫+ ⎪⎝⎭…7πππ2π22π,636k x k k -+++∈Z ……3ππππ,412k x k k -+-+∈Z ……21log 2f ==-11211824f f f --⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13. 由,4,又三点共线,得,解得.14. 因为,所以,又,所以.所以,当且仅当,即时,取等号,所以的最小值为.15.解:(1)设,可得由,可得,又由和,有可得,由上知;(2)由,有,可知复数的实部为-4,虚部为0.16.解:(1)因为,且,所以,解得;(2)因为,所以,所以17.证明:(1)连接,由于为的中点,则,又因为,因此,则四边形为平行四边形,于是平面平面,则平面;(2)由于,则为中点,因此,16-(23BD BC CD m =+=+ ),,A B D ()83230m -+=16m =-122250a b ab -+-=()()2114a b -+=12a >210,10ab ->+>()()11112112222a b a b +=-++--=-…()12112a b -=+1a b ==a b +12-i,,z a b a b =+∈∈R R iz a b =-i i 22z z a b a b a +=++-==1a =222(1i)12i z b b b =+=-+22i z =-210,22,b b ⎧-=⎨=-⎩1b =-1i z =-1i z =-24422(1i)(1i)(2i)4z ⎡⎤=-=-=-=-⎣⎦4z ()()()22,42,122,2a b m m -=-=- ()2a b c -⊥ ()222220a b c m -⋅=-+⨯= 3m =()()()()()()2,43,11,3,2323,131,23,4a b b c -=-=--=-=- ()()()()35,23313415a b c a b b c -=-=-⋅-=⨯-+⨯-=- ()()23cos ,2323a b b c a b b c a b b c -⋅---===-- EF ,E F ,PD PA 12EF AD ∥12BC AD ∥EF BC ∥BCEF CE ∥,BF CE ⊄,PAB BF ⊂PAB CE ∥PAB AO OD = O AD OF ∥DE又因为平面平面,则平面,由(1)知平面平面,则平面,由于平面,则平面平面.18.解:(1)因为,由正弦定理得,所以,由余弦定理得,又,所以;(2)因为,所以.因为是线段的中点,所以,所以,由正弦定理得,所以,又为锐角三角形,所以解得,所以,所以,所以,OF ⊄,CDE DE ⊂CDE OF ∥CDE BF ∥,CE BF ⊄,CDE CE ⊂CDE BF ∥CDE ,,BF OF F BF OF ⋂=⊂BOF BOF∥CDE sin sin sin sin b a C A c B A --=+b a c a c b a--=+222a c b ac +-=2221cos 222a cb ac B ac ac +-===()0,πB ∈π3B =222a c b ac +-=224a c ac +=+D AC ()12BD BA BC =+ ()()22221111242BD BA BC a c ac ac ⎡⎤=+=++=+⎢⎥⎣⎦ 2πsin sin sin sin 3a b c A B C ====,a A c C ==16π8π4sin sin sin 233363ac A C A A A ⎛⎫⎛⎫==+=-+ ⎪ ⎪⎝⎭⎝⎭ABC π0,22ππ0,32A A ⎧<<⎪⎪⎨⎪<-<⎪⎩ππ62A <<ππ5π2666A <-<8,43ac ⎛⎤∈ ⎥⎝⎦27,33BD ⎛⎤∈ ⎥⎝⎦所以,即的长的取值范围是.19.(1)证明:取的中点,连接,如图所示.因为是等边三角形,是的中点,所以.因为是的中点,是棱的中点,所以.又四边形是矩形,所以,所以,又,所以,又平面,所以平面,又平面,所以,又平面,所以平面,又平面,所以;(2)解:因为平面平面,所以,又平面,所以平面.又平面,所以.过作的垂线,垂足为,连接,如图所示.因为平面,所以平面,又平面,所以,所以二面角的大小为.在中,易得在中,易得,所以.BD ∈BD PA F ,BF EF PAB F PA BF PA ⊥F PA E PD EF ∥AD ABCD AB AD ⊥EF AB ⊥PB AD ⊥EF PB ⊥,,PB AB B PB AB ⋂=⊂PAB EF ⊥PAB PA ⊂PAB PA EF ⊥,,BF EF E BF EF ⋂=⊂BEF PA ⊥BEF BE ⊂BEF PA BE ⊥EF ⊥,PAB BF ⊂PAB EF BF ⊥,,,BF PA BF PA F BF PA ⊥⋂=⊂PBA BF ⊥PDA AE ⊂PDA BF AE ⊥F AE G BG ,,BF FG F BF FG ⋂=⊂BFG AE ⊥BFG BG ⊂BFG AE BG ⊥P AE B --BGF ∠PAB BF =PAE FG =tan 2BF BGF FG ∠===。

贵州省贵阳市贵州大学附属中学2024-2025学年高一上学期10月月考数学试卷(无答案)

贵州省贵阳市贵州大学附属中学2024-2025学年高一上学期10月月考数学试卷(无答案)

贵州大学附属中学高一年级数学考试试卷2024年10月注意事项:1.本试题共150分,考试时长120分钟。

2.答卷前,考生务必将自己的姓名、报名号填写在答题卡上。

3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,在选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.)1.已知集合,,则()A. B. C. D.2.已知集合,集合,则集合B 的子集个数为()A.7B.8C.16D.323.,,若,则实数x 的取值集合为( )A. B. C. D.4.设,则“”是“”的( )A.充分非必要条件 B.必要非充分条件C.充分必要条件D.既非充分也非必要条件5.如图,已知矩形U 表示全集,A ,B 是U 的两个子集,则阴影部分可表示为()A. B. C. D.6.已知实数,则函数的最小值为( )A.5B.6C.7D.87.已知不等式成立的充分条件是,则实数m 的取值范围是( )A. B.{}219A x x =<<{}2,1,0,1,2B =--A B = {}0,1,2{}1,2{}2,2-{}2,1,1,2--{}1,1,2,3A =-{}2,B y y x x A ==∈{}1,,A x y ={}21,,2B x y =A B =12⎧⎫⎨⎬⎩⎭11,22⎧⎫-⎨⎬⎩⎭10,2⎧⎫-⎨⎬⎩⎭110,,22⎧⎫-⎨⎬⎩⎭0ab >a b <11a b>()U A B ð()U A B ð()U B Að()U A Bð1x >221y x x =+-11m x m -<<+1132x -<<1223m m ⎧⎫⎨-<⎩<⎬⎭1223m m ⎧⎫⎨-≤⎩≤⎬⎭C. D.8.持续的高温干燥天气导致某地突发山火,现需将物资运往灭火前线.从物资集散地到灭火前线共40km ,其中靠近灭火前线5km 的山路崎岖,需摩托车运送,其他路段可用汽车运送.已知在可用汽车运送的路段,运送的平均速度为60km/h ,设需摩托车运送的路段平均速度为x km/h ,为使物资能在1小时内到达灭火前线,则x 应该满足的不等式为( )A.B. C. D.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知全集,集合A ,B 满足,则下列选项正确的有( )A. B. C. D.10.下列不等式恒成立的是( )A. B.若,则C.若,则 D.若a ,,则11.下列命题正确的是()A.命题“,”的否定是“,”B.的充要条件是C.,D.,是的充分不必要条件三、填空题(本题共3小题,每小题5分,共15分。

贵州省遵义市第四十五中学2022-2023学年八年级上学期11月月考数学试题(含答案解析)

贵州省遵义市第四十五中学2022-2023学年八年级上学期11月月考数学试题(含答案解析)

程中,是否存在这样的点 P,使得 EOP AOB ?若存在,请求出 t 的值;若不存在,
请说明理由.
试卷第 7页,共 7页
1.B
参考答案:
【分析】根据轴对称图形特点分别分析判断即可.
【详解】解:A、不是轴对称图形,不符合题意;
B、是轴对称图形,符合题意;
C、不是轴对称图形,不符合题意;
பைடு நூலகம்
D、不是轴对称图形,不符合题意,
腰三角形,符合条件的 M 点有( )
A.6 个
B.7 个
C.8 个
D.9 个
12.如图,△ABC 的面积为 12,AB=AC,BC=4,AC 的垂直平分线 EF 分别交 AB,
AC 边于点 E,F,若点 D 为 BC 边的中点,点 P 为线段 EF 上一动点,则△PCD 周长的
最小值为( )
A.6
B.8
判断 D.
【详解】解:A、a4+a4=2a4,故此选项不符合题意;
B、(-a2)3=-a6,故此选项不符合题意;
C、a2•a3=a5,故此选项符合题意;
D、(2ab2)3=8a3b6,故此选项不符合题意;
故选:C.
【点睛】本题考查合并同类项,同底数幂的乘法,幂的乘方与积的乘方,掌握幂的乘方(am)
n=amn,积的乘方(ab)n=anbn 运算法则是解题关键.
故答案为:B.
【点睛】本题考查了轴对称图形,轴对称图形沿一条轴折叠后,被折叠两部分能完全重合,
关键是找到对称轴.
2.A
【分析】根据将两条较短的线段长度之和是否大于第三条线段的长度进行判断.
【详解】A 选项:4+5>6,故能组成三角形;
B 选项:2+4<7,故不能组成三角形;

贵州省织金县第五中学2024届高三下学期第一次月考数学试题

贵州省织金县第五中学2024届高三下学期第一次月考数学试题

æ çè
2 3
,1ö÷ø
B. (-¥,1)
C. (-¥, 53)
D.
(1,
5) 3
2.已知复数
z
=
2 + 4i 1-i
,其中
i
为虚数单位,则
z
在复平面内对应的点的坐标为(

A. ( -1, 3)
B. (1, -3)
C.(3, -1)
D. ( -3,1)
3.已知
a
>
1
,则
a
+
4a a -1
的最小值是(

A.9
B.10
C.12
D.6
( ) 4.已知抛物线 C: y2 = mx 过点 2, 5 ,则抛物线 C 的准线方程为( )
A.
x
=
5 8
B.
x
=
-
5 8
C.
x
=
3 8
D.
x
=
-
3 8
5.已知函数
f
(x)
=
1 3
x3
+
(a
-
2)
x2
+
x
+
5
有极值,则实数
a
的取值范围是(

A.(0, 2)
B.(-¥, 0) U (2, +¥) C.(1,3)
试卷第41 页,共33 页
AE = CF = CP = 1(如图 1),将△AEF 沿 EF 折起到VA1EF 的位置,使二面角 A1 - EF - B 成直二面角,连接 A1B , A1P (如图 2).
(1)求证: A1E ^ EP ; (2)求二面角 B - A1P - F 的正弦值.

贵州省2024-2025学年高三上学期第一次联考(9月月考)数学试题答案

贵州省2024-2025学年高三上学期第一次联考(9月月考)数学试题答案

数学参考答案·第1页(共9页)贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 答案 DCBCBCAA【解析】1.由题,{|13}A x x x =<->或,{1234}B =,,,,则{4}A B = ,故选D .2.对于A 选项,1y x=-的定义域为(0)(0)-∞+∞,,,该函数在(0)-∞,和(0)+∞,上单调递增,在定义域内不单调;对于B 选项,2ln y x =的定义域为(0)(0)-∞+∞ ,,,该函数在(0)-∞,上单调递减,在(0)+∞,上单调递增, 在定义域内不单调;对于C 选项,32y x ==[0)+∞,,该函数在定义域上单调递增;对于D 选项,e x y x =的定义域为R . (1)e x y x '=+∵,当(1)x ∈-∞-,时,0y '<;当(1)x ∈-+∞,时,0y '>,e x y x =∴在(1)-∞-,上单调递减,在(1)-+∞,上单调递增,因此该函数在定义域内不单调,故选C .3.537232a a a =+=∵,516a =,6426d a a =-=,3d =,1544a a d =-=,故选B .4.设点00()A x y ,,则20000252||4y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩,,,整理得582p p ⎛⎫-= ⎪⎝⎭,解得2p =或8p =,故选C .5.(23)f x -∵的定义域为[23],. 当23x ≤≤时,1233x -≤≤,()f x ∴的定义域为[13],,即[13]A =,. 令1213x -≤≤,解得12x ≤≤,(21)x f -∴的定义域为[12],, 即[12]B =,. B A ⊆∵,∴“x A ∈”是“x B ∈”的必要不充分条件,故选B .6.由题,()()()e ()e ()()()5e ()5e x xx xg x g x f x fx hx h x f x f x --⎧=-+=-+⎧⎪⇒⎨⎨=---=--+⎩⎪⎩,,,解得()3e 2e x xf x -=+,所以()3e 2e x x f x -=+≥,当且仅当3e 2e x x -=,即12ln 23x =时,等号成立,min ()f x =∴C .数学参考答案·第2页(共9页)7.设51x ⎫+⎪⎭的二项展开式的通项公式为53521551C C kkk k kk T xx --+⎛⎫== ⎪⎝⎭,0k =,1,2,3,4,5,所以二项展开式共6项. 当0k =,2,4时的项为无理项;当1k =,3,5时的项为有理项. 两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为223326C C 25C +=,故选A . 8.由题,1C :22(1)(1)2x y -+-=,即圆心为1(11)C ,(20)M ,,(02)N ,,MN 为1C 的直径. 1C ∵与2C 相外切,12||C C =+=∴. 由中线关系,有222222121||||2(||||)2(182)40C M C N C C C M +=+=⨯+=,22||||C M C N ∴≤2222||||202C M C N +=,当且仅当22||||C M C N =时,等号成立,所以22||||C M C N 的最大值为20,故选A .二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号 9 10 11 答案 ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,()202420252024(1)20252024E X m n n n n =+=-+=+. 01n <<∵,2024()2025E X <<∴,正确;对于D 选项,令2024Y X =-,则Y 服从两点分布,()(1)D Y n n mn =-=,()(2024)()D X D Y D Y mn =+==∴,正确,故选ACD.10.令2()21g x ax ax =-+,244a a ∆=-,对于A 选项,()f x 的定义域为0a ⇔=R 或0010a a >⎧⇔<⎨∆<⎩,≤,故A 错误;对于B 选项,()f x 的值域为()g x ⇔R 在定义域内的值域为0(0)0a a >⎧+∞⇔⇔⎨∆⎩,,≥1≥,故B 正确;对于C 选项,()f x 的最大值为2()g x ⇔在定义域内的最小值为011511616(1)16a a g >⎧⎪⇔⇔=⎨=⎪⎩,,故C 正确;对于D 选项,()f x 有极值()g x ⇔在定义域内有极值01(1)0a a g ≠⎧⇔⇔<⎨>⎩,且0a ≠,故D 选项错误,故选BC.数学参考答案·第3页(共9页)11.对于A 选项,因为(1)g x +为奇函数,所以(1)0g =,又由()(1)1g x f x --=,可得(1)(0)1g f -=,(0)1f =-,故A 错误;对于B 选项,由()(3)f x g x ''=+可得()(3)f x g x C =++,C 为常数,又由()(1)1g x f x --=,可得(1)()1g x f x --=,则(1)(3)1g x g x C --+-=,令1x =-,得(2)(2)1g g C --=,所以1C =-,所以(1)(3)g x g x -=+,()g x 的图象关于直线2x =对称,故B 正确;对于C 选项,因为(1)g x +为奇函数,所以(3)(1)(1)g x g x g x +=-=-+,所以(2)()g x g x +=-,(4)(2)g x g x +=-+ ()g x =,所以()g x 是一个周期为4的周期函数,()(3)1f x g x =+-,(4)(7)f x g x +=+ 1(3)1()g x f x -=+-=,所以()f x 也是一个周期为4的周期函数,故C 正确;对于D 选项,因为(1)g x +为奇函数,所以(1)0g =,(2)(0)(4)g g g =-=-,又(3)(1)0g g ==,又()g x 是周期为4的周期函数,所以20251()(1)0k g k g ===∑,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号 12 13 14 答案 e14433e 6-【解析】12.设切点坐标为()t t a ,,ln x y a a '=∵,∴切线方程为ln x y a a x = . 将()t t a ,代入得ln t t a a t a = ,可得1log e ln a t a==,∴切点纵坐标为e log e t a a a ==. 13.先对小七孔和千户苗寨两个相邻元素捆绑共有22A 种方法,再安排梵净山的位置共有13C 种方法,再排其余元素共有44A 种排法,故共有214234A C A 144= 种不同的方案.14.设123()()()f x f x f x t ===,由()f x 的函数图象知,23t <≤,又122x x +=-,3ln x t =∵,3e t x =,112233()()()2e t x f x x f x x f x t t ++=-+∴. 令()2e t t t t ϕ=-+,23t <≤,()t ϕ'= (1)e 20t t +->,()t ϕ∴在(23],上单调递增,则3max ()(3)3e 6t ϕϕ==-,112233()()()x f x x f x x f x ++∴的最大值为33e 6-.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列{n a }是首项为1,公比为3的等比数列,因此11133n n n a --=⨯=;…………………………………………………………………………………(3分)数学参考答案·第4页(共9页)数列{n b }是首项为1,公比为34的等比数列,因此,1133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭.…………………………………………………………………………………(6分)(2)证明:由(1)可得121121121333344n n n n n n n c a b a b a b a b ----⎛⎫⎛⎫=++++=++ ⎪⎪⎝⎭⎝⎭121333344n n --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 12101111141111331444414n n n n n ----⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=++++=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦- 214314n n -⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ , ………………………………………………………(10分)因为2114314411334n n n nn nc a --⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 所以413n n c a <≤,所以4.3n n n a c a <≤ …………………………………………………(13分) 16.(本小题满分15分)(1)证明:如图1,连接1A C ,设11A C C G O = ,连接1HO A G ,,三棱台111A B C ABC -,则11A C AC ∥,又122CG AC ==, ∴四边形11A C CG 为平行四边形,则1.CO OA = ………………………………………………………………(2分)∵点H 是BC 的中点,∴1BA OH ∥. …………………………………………………………………(4分)又OH ⊂平面1C HG ,1A B ⊄平面1C HG ,∴1A B ∥平面1C HG . …………………………………………………………………(6分)(2)解:因为平面1C GH 分三棱台111A B C ABC -所成两部分几何体的体积比为2∶5, 所以111127C GHC A B C ABC V V --=,即11111121()373GHC ABC A B C S CC S S CC =++ △△△, 化简得12GHC ABC S S =△△, 图1数学参考答案·第5页(共9页)此时点H 与点B 重合. ……………………………………………………………(8分)1190C CA BCC ∠=∠=︒,∵11C C BC CC AC BC AC C ⊥⊥= ∴,,且都在平面ABC ,则1CC ⊥平面ABC , 又ABC △为等腰直角三角形,则BG AC ⊥. 又由(1)知11A G CC ∥,则1A G ⊥平面ABC , 建立如图2所示的坐标系G xyz -,…………………………………………………(10分)则(200)(020)(000)(020)H A G C -,,,,,,,,,,,,11(02(122)1)C B --,,,,,.设平面1C HG 的法向量()n x y z =,,,1(022)(200)GC GH =-= ,,,,,, 则22020y z x -+=⎧⎨=⎩,,令1y =,解得(011)n =,,, 设平面1B GH 的法向量1()(112)m a b c GB ==-,,,,,,则2020a b c a -+=⎧⎨=⎩,,令2b =,解得(021)m = ,,. ……………………………………(12分) 设二面角11C GH B --的平面角为θ,|||cos |=|cos |||||m n m n m n θ〈〉==,=, ………………(14分)所以sin θ==所以二面角11C GH B --的正弦值为10. …………………………………………(15分)解得21m =,即双曲线N :2212y x -=. ………………………………………………(3分) 因为双曲线M 与双曲线N 的离心率相同, 不妨设双曲线M 的方程为222y x λ-=, 因为双曲线M 经过点(22),,所以42λ-=,解得2λ=,则双曲线M 的方程为221.24x y -= ………………………………………………(6分) 图2数学参考答案·第6页(共9页)(2)易知直线l 的斜率存在,不妨设直线l 的方程为11223344()()()()y kx t A x y B x y C x y D x y =+,,,,,,,,,联立222y kx t y x λ=+⎧⎪⎨-=⎪⎩,,消去y 并整理得222(2)220k x ktx t λ----=,此时222222Δ44(2)(2)0202k k t t t k λλ⎧=+-+>⎪⎨--<⎪-⎩,,可得22k <,…………………………………(8分)当2λ=时,由韦达定理得21222kt x x k +=-,221242t x x k --=-;当1λ=时,由韦达定理得23422kt x x k +=-,232422t x x k --=-,………………………(10分)则||||2AB CD ==== 化简可得222t k +=, …………………………………………………………………(13分) 由(1)可知圆O :222x y +=,则圆心O 到直线l的距离d ==== 所以直线l 与圆O 相切或相交. …………………………………………………(15分) 18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为: 在[020),内有0.00252020010⨯⨯=(只); 在[2040),内有0.006252020025⨯⨯=(只); 在[4060),内有0.008752020035⨯⨯=(只); 在[6080),内有0.025********⨯⨯=(只); 在[80100],内有0.00752020030⨯⨯=(只).…………………………………………(1分) 由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有10253570++=(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:数学参考答案·第7页(共9页)单位:只指标值抗体小于60不小于60合计有抗体 50 110 160 没有抗体 20 20 40 合计70130200……………………………………………………………………………………………(3分) 零假设为0H :注射疫苗后小白鼠产生抗体与指标值不小于60无关联.…………………………………………………………………………………………(4分) 根据列联表中数据,得220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯. ………………………………………………………………………………………(6分) 根据0.01α=的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.…………………………………………………………………………………(7分) (2)(i )令事件A =“小白鼠第一次注射疫苗产生抗体”,事件B =“小白鼠第二次注射疫苗产生抗体”,事件C =“小白鼠注射2次疫苗后产生抗体”. 记事件A ,B ,C 发生的概率分别为()P A ,()P B ,()P C , 则160()0.8200P A ==,20()0.540P B ==, ……………………………………………(9分) 0.20.509()1()().1P C P A P B =-=-⨯=,所以一只小白鼠注射2次疫苗后产生抗体的概率0.9P =.……………………………(11分) (ii )由题意,知随机变量(1000.9)X B ,,所以()1000.990.E X np ==⨯= ………………………………………………(13分)又()C 0.90.1()012k k n kn P k n X k -=⨯⋅⋅==⨯⋅,,,,,设0k k =时,()P X k =最大, 所以000000000000100119910010010011101100100C 0.90.1C 0.90.1C 0.90.1C 0.90.1k k k k k k k k k k k k -++-----⎧⨯⨯⨯⨯⎪⎨⨯⨯⨯⨯⎪⎩≥,≥, ………………………………(15分) 解得089.990.9k ≤≤,因为0k 是整数,所以090k =.…………………………………(17分)数学参考答案·第8页(共9页)19.(本小题满分17分)(1)若选①,证明如下:22sin 3sin(2)sin 2cos cos 2sin 2sin cos (12sin )sin θθθθθθθθθθθ=+=+=+-2232sin (1sin )(12sin )sin 3sin 4sin θθθθθθ=-+-=-.………………………………(4分)若选②,证明如下:22cos3cos(2)cos 2cos sin 2sin (2cos 1)cos 2sin cos θθθθθθθθθθθ=+=-=--3232cos cos 2(1cos )cos 4cos 3cos θθθθθθ=---=-. ………………………………(4分)(2)(i)解:2()33f x x a =-', …………………………………………………………(5分) 当0a ≤时,()0f x '≥恒成立,所以()f x 在()-∞+∞,上单调递增,至多有一个零点;令()0fx '>,得x <x >,所以()f x 在(上单调递减,在(-∞,,)+∞上单调递增.0f <⎪⎩,220a -<⎪⎩,且3222(4)(4)3(4)(4)(516)0f a a a a aa aa a +=+-++=++++>,所以()f x 在4)a +上有唯一一个零点,同理-<2(22)0g a-=-+=<, 所以()f x 在(-上有唯一一个零点.又()f x 在(上有唯一一个零点,所以()f x 有三个零点,综上可知a 的取值范围为(04)., …………………………………………………(10分) (ii)证明:设22133()()3())(x f x x x x x ax x a x ==----+, 则23211(0)f x x x a ==-=.又04a <<,所以1a =. ………………………………………………………………(11分) 此时(2)10(1)30(1)10(2)30f f f f -=-<-=>=-<=>,,,,方程3031x x -+=的三个根均在(22)-,内,…………………………………………(12分)数学参考答案·第9页(共9页)方程3031x x -+=变形为3143222x x =⎛⎫- ⎪⎝⎭ ,令ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭,则由三倍角公式31sin 33sin 4sin .2θθθ=-= 因为3π3π322θ⎛⎫∈- ⎪⎝⎭,,所以7ππ5π3666θ=-,,,7ππ5π.181818θ=-,,…………………………………………………………………………………………(14分) 因为123x x x <<,所以12327ππ52sin2si π181n n 81si 8x x x =-==, ……………………………………………………………………………(15分)所以222221π7ππ7π21cos 21cos 18184sin4sin 99x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝=⎭- 137ππ5π7π2cos2cos 2sin 2sin .991818x x =-=--=- …………………………………(17分)。

四川省成都市第七中学2024-2025学年高三上学期10月月考数学试题(含答案)

四川省成都市第七中学2024-2025学年高三上学期10月月考数学试题(含答案)

2024-2025学年度高三上期数学10月阶段性测试(考试时间:120分钟;满分150分)第Ⅰ卷(选择题,共58分)一、单项选择题:本题共8小题,每小题5分,共40分.1.已知集合,则( )A .B .C .D .2.已知复数满足,则( )A .B .C .D .3.已知向量满足,且,则( )A .B .C .D .4.如图为函数在上的图象,则的解析式只可能是( )A .B .C .D .5.已知为奇函数,则曲线在点处的切线方程为( )A .B .C .D .6.在体积为12的三棱锥中,,平面平面,若点都在球的表面上,则球的表面积为( )A .B .C .D .7.若,则的最大值为( )ABCD8.设,则( ){{},21x A x y B y y ====+A B = (]0,1(]1,2[]1,2[]0,2z 23i z z +=+3iz+=12i+12i-2i+2i-,a b 222a b a b -=-= 1b = a b ⋅=1414-1212-()y f x =[]6,6-()f x ())ln cos f x x x=+())lnsin f x x x=+())ln cos f x x x=-())ln sin f x x x=-()()cos f x x a x =+()y f x =()()π,πf ππ0x y +-=ππ0x y -+=π0x y -+=0x y +=A BCD -,AC AD BC BD ⊥⊥ACD ⊥ππ,,34BCD ACD BCD ∠=∠=,,,A B C D O O 12π16π32π48π()()sin cos2sin αβααβ+=-()tan αβ+202420230.2024log 2023,log 2022,log 0.2023a b c ===A .B .C .D .二、多项选择题:本题共3小题,每小题6分,共18分.9.设等比数列的公比为,其前项和为,前项积为,并满足条件:,下列结论正确的是( )A .B .C .是数列中的最大值D .数列无最大值10.透明的盒子中装有大小和质地都相同的编号分别为的4个小球,从中任意摸出两个球.设事件“摸出的两个球的编号之和小于5”,事件“摸出的两个球的编号都大于2”,事件“摸出的两个球中有编号为3的球”,则( )A .事件与事件是互斥事件B .事件与事件是对立事件C .事件与事件是相互独立事件D .事件与事件是互斥事件11.已知,其中,则的取值可以是( )A .eB .C .D .第Ⅱ卷(非选择题,共92分)三、填空题:本题共3小题,每小题5分,共15分,第14题第一个空3分,第二个空2分.12.若,则______.13.设是数列的前n 项和,点在直线上,则数列的前项和为______.14.已知点是轴上的动点,且满足的外心在轴上的射影为,则点的轨迹方程为______,的最小值为______.四、解答题:本题共5小题,共77分.15.(13分)设的内角的对边分别为,且,边上的两条中线相交于点.c a b <<b c a <<b a c <<a b c<<{}n a q n n S n n T 2024120242025202511,1,01a a a a a ->><-20242025S S <202420261a a <2024T {}n T {}n T 1,2,3,41A =2A =3A =1A 2A 1A 3A 1A 3A 23A A 13A A 6ln ,6e n m m a n a =+=+e nm ≠e nm +2e23e24e1sin 3α=-()cos π2α-=n S {}n a ()()*,n n a n ∈N 2y x =1n S ⎧⎫⎨⎬⎩⎭n ()()2,0,1,4,A B M N 、y 4,MN AMN =△P y Q P PQ PB +ABC △,,A B C ,,a b c ()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-,BC AC ,AD BE P(1)求;(2)若,求的面积.16.(15分)如图,在三棱锥中,是以为斜边的等腰直角三角形,是边长为2的正三角形,为的中点,为上一点,且平面平面.(1)求证:平面;(2)若平面平面,求平面与平面夹角的余弦值.17.(15分)为研究“眼睛近视是否与长时间看电子产品有关”的问题,对某班同学的近视情况和看电子产品的时间进行了统计,得到如下的列联表:每天看电子产品的时间近视情况超过一小时一小时内合计近视10人5人15人不近视10人25人35人合计20人30人50人附表:0.10.050.010.0050.0012.7063.8416.6357.87910.828.(1)根据小概率值的独立性检验,判断眼睛近视是否与长时间看电子产品有关;(2)在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是多少?(3)以频率估计概率,在该班所在学校随机抽取2人,记其中近视的人数为,每天看电子产品超过一小时的人数为,求的值.BAC ∠2,cos AD BE DPE ==∠=ABC △D ABC -ABC △AB ABD △E AD F DC BEF ⊥ABD AD ⊥BEF ABC ⊥ABD BEF BCD αx α()()()()22()n ad bc a b c d a c b d χ-=++++0.05α=2χX Y ()P X Y =18.(17分)已知函数.(1)求曲线在处的切线方程;(2)讨论函数的单调性;(3)设函数.证明:存在实数,使得曲线关于直线对称.19.(17分)已知椭圆的对称中心在坐标原点,以坐标轴为对称轴,且经过点和.(1)求椭圆的标准方程;(2)过点作不与坐标轴平行的直线交曲线于两点,过点分别向轴作垂线,垂足分别为点,,直线与直线相交于点.①求证:点在定直线上;②求面积的最大值.2024-2025学年度高三上期数学10月阶段性测试(参考答案)一、单项选择题:BAACDDDC8.【解】由对数函数的性质知,,所以;当时,,所以,取,则,所以,即,综上,.二、多项选择题:ABC ACD CD .11.【解】令,则,()()ln 1f x x =+()y f x =3x =()()()F x ax f x a =-∈R ()()1111g x x f f x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭m ()y g x =x m =C )⎛- ⎝C ()2,0M l C ,A B ,A B xDE AE BD P P PAB △0.20240.2024log 0.2023log 0.20241c =>=2024202420242023202320230log 1log 2023log 20241,0log 1log 2022log 20231=<<==<<=1,01,01c a b ><<<<2n >()()ln 1ln ln 10n n n +>>->()()()()222ln 1ln 1ln 1ln 1(ln )(ln )2n n n n n n ++-⎡⎤+⋅--<-⎢⎥⎣⎦()()()2222222222ln 1ln 11ln (ln )(ln )(ln )(ln )(ln )0222n n n n n n n n n ⎡⎤-+-⎡⎤⎛⎫=-=-<-=-=⎢⎥ ⎪⎢⎢⎥⎝⎭⎣⎦⎣⎦2023n =2lg2022lg2024(lg2023)0⋅-<220232024lg2022lg2023lg2022lg2024(lg2023)log 2022log 20230lg2023lg2024lg2023lg2024b a ⋅--=-=-=<⋅b a <b ac <<()6ln f x x x =-()661xf x x x-=-='故当时,单调递增,当时,单调递减,,又,不妨设,解法一:记,设,则在上恒成立,所以在上单调递减,所以,则,又因为,且在上单调递减,所以,则,所以.解法二:由,两式相减,可得,令,则;令,则,令,则在上恒成立,所以在上单调递增,因为在上恒成立,所以在上单调递增,则,即,所以.解法三:,两式相减得,,可得,三、填空题: ;3()0,6x ∈()()0,f x f x '>()6,x ∈+∞()()0,f x f x '<()()6ln ,66lne e ,e n n n m m a n a f m f =+==+∴= e n m ≠06e n m <<<12,e nx m x ==()()()()12,0,6g x f x f x x =--∈()()()()2662(6)1201212x x x g x f x f x x x x x ---=---=-=<--'''()0,6()g x ()0,6()()()()()1260,0,6g x f x f x g x =-->=∈()()()11212f x f x f x ->=()1212,6,x x -∈+∞()f x ()6,+∞1212x x -<1212x x +>e 12n m +>6ln ,66lne e nnm m a n a =+==+e 6ln e n nm m =-e (1)n t t m=>()()61ln 6ln 6ln 6ln 1,,e ,e 111n n t t t t tt m t m mt m t t t +=-===∴+=---()()()1ln 21,1g t t t t t =+-->()11ln 2ln 1t g t t t t t+=+-=+-'1ln 1(1)y t t t =+->221110t y t t t-=-=>'()1,+∞()g t '()1,+∞()()10g t g ''>=()1,+∞()g t ()1,+∞()()10g t g >=()1ln 21t t t +>-()61ln e 121n t tm t ++=>-6ln ,66lne e nnm m a n a =+==+ e 6lne ln n n mm-=-212121ln ln 2x x x xx x -+<<-e 12n m +>79-1n n +24y x =14.【解】设点,则根据点是的外心,,而,则,所以从而得到点的轨迹为,焦点为由抛物线的定义可知,因为,即,当点在线段上时等号成立.四、解答题:15.【解】(1)因为,所以由正弦定理得,由余弦定理得,又,所以.(2)因为是边上的两条中线与的交点,所以点是的重心.又,所以在中,由余弦定理,所以,又,所以,所以,所以的面积为.()0,M t ()0,4)N t -P AMN V (),2P x t -22||PM PA =2224(2)(2)x x t +=-+-2(2),24t x y t -==-P 24y x =()1,0F 1PF PQ =+4,14PF PB BF PF PB PQ PB +≥=+=++≥3PQ PB +≥P BF ()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-222b c a bc +-=2221cos 22b c a BAC bc +-∠==0πBAC <∠<π3BAC ∠=P ,BC AC AD BE P ABC △2,AD BE APB DPE ==∠=∠ABP △22222cos c AB PA PB PA PB APB==+-⋅∠22442433⎛⎫=+-⨯= ⎪⎝⎭2c =π2,3BE BAC =∠=2AE BE ==24b AE ==ABC △1π42sin 23⨯⨯⨯=16.【解】(1)是边长为的正三角形,为的中点,则.且平面平面,平面平面平面,则平面.(2)由于底面为等腰直角三角形,是边长为2正三角形,可取中点,连接,则.且平面平面,且平面平面,则平面.因此两两垂直,可以建立空间直角坐标系.是边长为2的正三角形,则可求得高.底面为等腰直角三角形,求得.可以得到关键点的坐标由第(1)问知道平面的法向量可取.设平面的法向量为,且,则,则,解得.则.则平面与平面17.【解】(1)零假设为:学生患近视与长时间使用电子产品无关.计算可得,,根据小概率值的独立性检验,推断不成立,即患近视与长时间使用电子产品的习惯有关.(2)每天看电子产品超过一小时的人数为,ABD △2E AD BE AD ⊥BEF ⊥ABD BEF ,ABD BE AD =⊂ABD AD ⊥BEF ABC △ABD △AB O OD ,OD AB OC AB ⊥⊥ABC ⊥ABD ABC ABD AB =OD ⊥ABC ,,OC OA OD O xyz -ABD △OD =ABC △1OC OA OB ===()()()(0,1,0,0,1,0,1,0,0,A B C D -BEF (0,AD =-BCD (),,m x y z = ()(1,1,0,BC CD ==- 0m BC m CD ⎧⋅=⎪⎨⋅=⎪⎩x y x +=⎧⎪⎨-+=⎪⎩)m = cos ,m AD m AD m AD ⋅〈〉===⋅ BEF BCD 0H 220.0550(1025105)4006.349 3.8411535203063x χ⨯⨯-⨯==≈>=⨯⨯⨯0.05α=2χ0H ξ则,所以在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是.(3)依题意,,事件包含两种情况:①其中一人每天看电子产品超过一小时且近视,另一人既不近视,每天看电子产品也没超过一小时;②其中一人每天看电子产品超过一小时且不近视,另一人近视且每天看电子产品没超过一小时,于是,所以.18.【解】(1)切点为.因为,所以切线的斜率为,所以曲线在处的切线方程为,化简得;(2)由题意可知,则的定义域为,当时,,则在上单调递减;当时,令,即,解得,若;若,则在上单调递减,在上单调递增.综上所述,当时,在上单调递减;当时,在上单调递减,在上单调递增;()()()21310510331515C C C 45512069223C C 45591P P P ξξξ⨯+≥==+==+==6991()()1111110,22245525P X Y P X Y ===⨯====⨯=1X Y ==()1122111161C C 2551025P X Y ===⨯⨯+⨯⨯=()()()()1165301242525100P X Y P X Y P X Y P X Y ====+==+===++=()3,ln4()11f x x '=+()134k f ='=()y f x =3x =()1ln434y x -=-48ln230x y -+-=()()ln 1F x ax x =-+()F x ()1,-+∞()()11,1,,11ax a F x a x x x +-=-=∈-'+∞++0a ≤()101F x a x '=-<+()F x ()1,-+∞0a >()0F x '=10ax a +-=11x a=-()11111,01a ax a x F x a a x '-+--<≤=-=≤+()111,01ax a x F x a x +--'>=>+()F x 11,1a ⎛⎤-- ⎥⎝⎦11,a ⎛⎫-+∞ ⎪⎝⎭0a ≤()F x ()1,-+∞0a >()F x 11,1a ⎛⎤-- ⎥⎝⎦11,a ⎛⎫-+∞ ⎪⎝⎭(3)证明:函数,函数的定义域为.若存在,使得曲线关于直线对称,则关于直线对称,所以由.可知曲线关于直线对称.19.【解】(1)设椭圆的方程为,代入已知点的坐标,得:,解得,所以椭圆的标准方程为.(2)如图:①设直线的方程为,并记点,由消去,得,易知,则.由条件,,直线的方程为,直线的方程为()()111ln 1ln 2g x x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭()g x ()(),10,-∞-+∞ m ()y g x =x m =()(),10,-∞-+∞ x m =12m =-()()111ln 1ln 211g x x x x ⎛⎫⎛⎫--=-+-+ ⎪ ⎪----⎝⎭⎝⎭21121lnln ln ln 111x x x x x x x x x x +++=--=-+++()()()11211211lnln ln 1ln ln 1x x x x x x x g x x x x x x+++++=+--=+-=+()y g x =12x =-C 221(0,0,)mx ny m n m n +=>>≠312413m n m n +=⎧⎪⎨+=⎪⎩1612m n ⎧=⎪⎪⎨⎪=⎪⎩C 22162x y +=l ()20x my m =+≠()()()112200,,,,,A x y B x y P x y 222,162x my x y =+⎧⎪⎨+=⎪⎩x ()223420m y my ++-=()()222Δ16832410m m m =++=+>12122242,33m y y y y m m --+==++()()12,0,,0D x E x AE ()1212y y x x x x =--BD,联立解得,所以点在定直线上.②,而,所以,则令,则,所以,当且仅当时,等号成立,所以.()2121y y x x x x =--()()2112211212012121222223my y my y x y x y my y x y y y y y y ++++====++++P 3x =0212121121111312222PAB S AD x x y x y my y my y =⋅-=⋅-=⋅-=-△121212my y y y =+()121212my y y y =+1211211224PABy y S y y y +=-=-==△t =1t >2122PAB t S t t t==≤=++△t =PAB △。

2021-2022年高三上学期第二次月考数学(理)试题含答案

2021-2022年高三上学期第二次月考数学(理)试题含答案

2021-2022年高三上学期第二次月考数学(理)试题含答案一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0}, 则A∩()=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}2.下列函数在其定义域内既是奇函数又是增函数的是( ) (A)y=tanx (B)y=3x (C)y= (D)y=lg|x|3.下列四种说法中,错误的个数是( ) ①A={0,1}的子集有3个;②“若am 2<bm 2,则a<b ”的逆命题为真;③“命题p ∨q 为真”是“命题p ∧q 为真”的必要不充分条件;④命题“∀x ∈R,均有x 2-3x-2≥0”的否定是:“∃x 0∈R,使得x 02-3x 0-2≤0”. (A)0 (B)1 (C)2 (D)3 4.已知函数则f(f())的值是( ) (A)9(B)(C)-9(D)-5.若a=log 20.9,则( )(A)a<b<c (B)a<c<b (C)c<a<b(D)b<c<a6.若函数y=-x 2+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是( )()()()()53A B C D 4664ππππ7.已知命题p:函数f(x)=2ax 2-x-1(a ≠0)在(0,1)内恰有一个零点;命题q:函数y=x 2-a 在(0,+∞)上是减函数.若p 且﹁q 为真命题,则实数a 的取值范围是 ( ) (A)a>1(B)a ≤2 (C)1<a ≤2(D)a ≤1或a>28.函数f(x)=的大致图象为( )9.设函数f (x )=x 2+xsinx ,对任意x 1,x 2∈(﹣π,π), 若f (x 1)>f (x 2),则下列式子成立的是( ) A .x 1>x 2B .C .x 1>|x 2|D .|x 1|<|x 2|10函数y=f(x)(x ∈R)满足f(x+1)=-f(x),且x ∈[-1,1]时f(x)=1-x 2,函数()lg x,x 0,g x 1,x 0,x>⎧⎪=⎨-<⎪⎩则函数h(x)=f(x)-g(x)在区间[-5,4]内的零点的个数为( ) (A)7(B)8(C)9(D)10二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知集合M={y|y=x 2﹣1,x ∈R},,则M∩N=_____ 12.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是 [﹣1,0],则a+b= .13.已知p:≤x ≤1,q:(x-a)(x-a-1)>0,若p 是﹁q 的充分不必要条件,则实数a 的取值范围是 .14.若f (x )=是R 上的单调函数,则实数a 的取值范围为 . 15.若方程有正数解,则实数的取值范围是_______三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)已知p :∀x ∈R ,2x >m (x 2+1),q :∃x 0∈R , x+2x 0﹣m ﹣1=0,且p ∧q 为真,求实数m 的取值范围.17、(12分)已知函数.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明f(x)在(0,1)内单调递减.18.(12分)已知函数f(x)=x3﹣ax2﹣3x(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;(2)若x=﹣是f(x)的极值点,求f(x)在[1,4]上的最大值.19.(12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).20. (13分)已知函数f(x)满足()()()x 121f x f 1e f 0x x .2-='-+(1)求f(x)的解析式及单调区间.(2)若f(x)≥x 2+ax+b,求(a+1)b 的最大值.21、 (14分)已知函数21()(21)2ln ()2f x ax a x x a R =-++∈.(Ⅰ)若曲线y=f (x )在x=1和x=3处的切线互相平行,求a 的值; (Ⅱ)求f (x )的单调区间;(Ⅲ)设g (x )=x 2﹣2x ,若对任意x 1∈(0,2],均存在x 2∈(0,2],使得 f (x 1)<g (x 2),求a 的取值范围.高三数学第一次检测题答案解析1. C .2.C.3.D.4.B.5.B.6.D.7.C 8、D.9.【解析】∵f (﹣x )=(﹣x )2﹣xsin (﹣x )=x 2+xsinx=f (x ),∴函数f (x )=x 2+xsinx 为偶函数,又f′(x )=2x+sinx+xcosx ,∴当x >0时,f′(x )>0,∴f (x )=xsinx 在[0,π]上单调递增,∴f (﹣x )=f (|x|);∵f (x 1)>f (x 2),∴结合偶函数的性质得f (|x 1|)>f (|x 2|),∴|x 1|>|x 2|,∴x 12>x 22.故选B .10.选A.由f(x+1)=-f(x),可得f(x+2)=-f(x+1)=f(x),所以函数f(x)的周期为2,求h(x)=f(x)-g(x)的零点,即求f(x)=g(x)在区间[-5,4]的解的个数.画出函数f(x)与g(x)的图象,如图,由图可知两图象在[-5,4]之间有7个交点,所以所求函数有7个零点,选A.11、解:∵集合M={y|y=x2﹣1,x∈R}={y|y≥﹣1},={x|﹣},∴M∩N=.故答案为:.12、解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:13.q:x>a+1或x<a,从而﹁q:a≤x≤a+1.由于p是﹁q的充分不必要条件,故a111a2≥⎧⎪⎨≤⎪⎩+,,即0≤a≤.答案:[0,]14、解:∵f(x)=是R上的单调函数,∴,解得:a≥,故实数a的取值范围为[,+∞),故答案为:[,+∞)15.16、解:不等式2x>m(x2+1),等价为mx2﹣2x+m<0,若m=0,则﹣2x<0,即x>0,不满足条件.若m≠0,要使不等式恒成立,则,即,解得m<﹣1.即p:m<﹣1.———————————————————————4分若∃x0∈R,x+2x﹣m﹣1=0,则△=4+4(m+1)≥0,解得m≥﹣2,即q:m≥﹣2.———————————————————————8分若p∧q为真,则p与q同时为真,则,即﹣2≤m<﹣1————12分17、解:(1)⇔﹣1<x<0或0<x<1,故f(x)的定义域为(﹣1,0)∪(0,1);————————————4分(2)∵,∴f(x)是奇函数;————————————————————————————6分(3)设0<x1<x2<1,则∵0<x1<x2<1,∴x2﹣x1>0,x1x2>0,(1﹣x1)(1+x2)=1﹣x1x2+(x2﹣x1)>1﹣x1x2﹣(x2﹣x1)=(1+x1)(1﹣x2)>0∴,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2)∴f(x)在(0,1)内递减——————————————————12分另解:∴当x∈(0,1)时,f′(x)<0故f(x)在(0,1)内是减函数.—————————————————12分18、解:(1)求导函数,可得f′(x)=3x2﹣2ax﹣3,∵f(x)在区间[1,+∞)上是增函数,∴f′(x)≥0在区间[1,+∞)上恒成立∴3x2﹣2ax﹣3≥0在区间[1,+∞)上恒成立∴且f′(1)=﹣2a≥0∴a≤0———4分(2)∵x=﹣是f(x)的极值点,∴∴∴a=4——6分∴f(x)=x3﹣4x2﹣3x,f′(x)=3x2﹣8x﹣3,∴x1=﹣,x2=3令f′(x)>0,1<x<4,可得3<x<4;令f′(x)<0,1<x<4,可得1<x<3;∴x=3时,函数取得最小值﹣18∵f(1)=﹣6,f(4)=﹣12∴f(x)在[1,4]上的最大值为﹣6.————————————————12分19、解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v (x)=ax+b再由已知得,解得故函数v(x)的表达式为.——————4分(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.—————————————————————————10分答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.——————————————————————————12分20.(1)∵f(x)=f′(1)e x-1-f(0)x+x2,∴f′(x)=f′(1)e x-1-f(0)+x,令x=1得:f(0)=1,∴f(x)=f′(1)e x-1-x+x2,∴f(0)=f′(1)e-1=1,∴f′(1)=e得:f(x)=e x-x+x2.—————————4分设g(x)=f′(x)=e x-1+x,g′(x)=e x+1>0,∴y=g(x)在R上单调递增.令f′(x)>0=f′(0),得x>0,令f′(x)<0=f′(0)得x<0,∴f(x)的解析式为f(x)=e x-x+x2且单调递增区间为(0,+∞),单调递减区间为(-∞,0).————————————-4分(2)由f(x)≥x2+ax+b得e x-(a+1)x-b≥0,令h(x)=e x-(a+1)x-b,则h′(x)=e x-(a+1).①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增.x→-∞时,h(x)→-∞与h(x)≥0矛盾.——————————6分②当a+1>0时,由h′(x)>0得x>ln(a+1),由h′(x)<0得x<ln(a+1)=(a+1)-(a+1)ln(a+1)-b≥0.———8分得当x=ln(a+1)时,h(x)min(a+1)b≤(a+1)2-(a+1)2ln(a+1) (a+1>0).令F(x)=x2-x2ln x(x>0),则F′(x)=x(1-2ln x),——————10分由F′(x)>0得0<x<,由F′(x)<0得x>,当x=时,F(x)=,∴当a=-1,b=时,(a+1)b的最大值为.—————————max—————————————13分21、解:(Ⅰ)∵函数,∴(x>0).∵曲线y=f(x)在x=1和x=3处的切线互相平行,∴f'(1)=f'(3),即,解得.————————————4分(Ⅱ)(x>0).①当a≤0时,x>0,ax﹣1<0,在区间(0,2)上,f'(x)>0;在区间(2,+∞)上f'(x)<0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).②当时,,在区间(0,2)和上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是(0,2)和,单调递减区间是③当时,,故f(x)的单调递增区间是(0,+∞).④当时,,在区间和(2,+∞)上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是和(2,+∞),单调递减区间是.————————————8分(Ⅲ)由已知,在(0,2]上有f(x)max <g(x)max.由已知,g(x)max=0,由(Ⅱ)可知,①当时,f(x)在(0,2]上单调递增,故f(x)max=f(2)=2a﹣2(2a+1)+2ln2=﹣2a﹣2+2ln2,所以,﹣2a﹣2+2ln2<0,解得a>ln2﹣1,故.——————————————————12分②当时,f(x)在上单调递增,在上单调递减,故.由可知,2lna>﹣2,﹣2lna<2,所以,﹣2﹣2lna<0,f(x)max<0,综上所述,a>ln2﹣1.————————————————14分21072 5250 剐31873 7C81 粁31426 7AC2 竂z33043 8113 脓e35722 8B8A 變 39463 9A27 騧K34467 86A3 蚣38124 94EC 铬=40272 9D50 鵐。

2022年贵州省贵阳市第十七中学高三数学理月考试题含解析

2022年贵州省贵阳市第十七中学高三数学理月考试题含解析

2021-2022学年贵州省贵阳市第十七中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在公比大于1的等比数列{a n}中,a3a7=72,a2+a8=27,则a12=()A.96 B.64 C.72 D.48参考答案:A【考点】等比数列的性质.【分析】由已知条件推导出a2,a8是方程x2﹣27x+72=0的两个根,且a2<a8,由此求得a2=3,a8=24,进而得到q2=2,由此能求出a12.【解答】解:在公比大于1的等比数列{a n}中,∵a3a7=72=,a2+a8=27,∴a2,a8是方程x2﹣27x+72=0的两个根,且a2<a8,解得a2=3,a8=24,∴,解得q2=2,∴=3×25=96.故选:A.2. 某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )参考答案:A略3. 已知函数y=f(x)是定义在R上的偶函数,当x∈(﹣∞,0]时,f(x)为减函数,若a=f (20.3),,c=f(log25),则a,b,c的大小关系是()A.a>b>c B.c>b>a C.c>a>b D.a>c>b参考答案:B【考点】对数值大小的比较.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】由题意可知f(x)在[0,+∞)为增函数,根据函数的单调性即可判断.【解答】解:函数y=f(x)是定义在R上的偶函数,当x∈(﹣∞,0]时,f(x)为减函数,∴f(x)在[0,+∞)为增函数,∵=f(﹣2)=f(2),1<20.3<2<log25,∴c>b>a,故选:B.【点评】考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.4. 已知函数则此函数的“和谐点对”有A、0对B、1对C、2对D、3对参考答案:C作出函数的图像,然后作出关于直线对称的图像,与函数的图像有2个不同交点,所以函数的“和谐点对”有2对.5. 已知函数,其导函数的部分图象如图所示,则函数的解析式为A. B.C. D.参考答案:答案:B6. 已知实数满足,则的最大值为()A.B.C.D.参考答案:C作可行域,如图阴影部分所示.表示可行域内的点与点连线的斜率. 易知,,. 当直线与曲线相切时,,切点为,所以切点位于点、之间.因此根据图形可知,的最大值为.故选C.拓展:思考:如何求的取值范围呢?答案:更一般地,当直线,的交点不在可行域内时,的取值范围均能求出。

2022-2023学年贵州省新高考“西南好卷”高二年级下册学期适应性月考数学试题(五)【含答案】

2022-2023学年贵州省新高考“西南好卷”高二年级下册学期适应性月考数学试题(五)【含答案】

2022-2023学年贵州省新高考“西南好卷”高二下学期适应性月考数学试题(五)一、单选题1.若 ,则( )1i z =-z =A .0B .1C D .2【答案】C【分析】根据复数的求模公式计算.=故选:C.2.某高中共有学生1800人,其中高一、高二、高三的学生人数比为16:15:14,现用分层抽样的方法从该校所有学生中抽取一个容量为90的样本,则高二年级应该抽取的人数为( )A .28B .30C .32D .36【答案】B【分析】根据分层抽样的性质,按比例抽取即可求解.【详解】高二年级应该抽取人,159030161514⨯=++故选:B3.在中,角所对的边分别为,且,则等于( )ABC ,,A B C ,,a b c 4,3a b c ===B C +A .B .C .D .π22π33π45π6【答案】B【分析】根据给定条件,求出角A ,再利用三角形内角和定理计算作答.【详解】在中,由余弦定理得,ABC 222169131cos 22432b c a A bc +-+-===⨯⨯而,则,0πA <<π3A =所以.2ππ3B C A +=-=故选:B4.老师布置了两道数学题,学生做对第一题的概率是,做对第二题的概率是,两题都做对的7868概率是,现在抽查一个学生,该生在第一题做对的前提下,第二题做对的概率是( )58A .B .C .D .68586757【答案】D【分析】根据条件概率公式求解.【详解】设做对第一题为事件,做对第二题为事件,A B 由条件可知,,()()()765,,888P A P B P AB === ;∴()()()558|778P AB P B A P A ===故选:D.5.已知成等比数列,且1和4为其中的两项,则的最小值为( )1234,,,a a a a 3a A .2B .C .D .142-16-【答案】C【分析】根据给定条件,当1和4为两项时,求出较小的值,当1和4为连续的两项或为24,a a 3a 或为两项时,分析判断作答.13,a a 14,a a 【详解】依题意,当1和4为两项时,则,解得或,取,24,a a 23244==a a a 32a =32a =-32a =-当1和4为两项时,为正数,大于,13,a a 3a 2-当1和4为任意连续的两项时,等比数列的公比,必为正数,大于,0q >3a 2-当1和4为两项时,由于与同号,必为正数,大于,14,a a 3a 1a 3a 2-所以的最小值为.3a 2-故选:C6.已知圆锥的母线长为2,则过圆锥顶点的截面面积最大值为( )A .1BC .2D.【答案】C【分析】由其侧面展开图的中心角可求得底面圆的半径为,当截面顶角为时,过圆锥顶点r =π2的截面面积最大,从而可得结论.【详解】设底面圆的半径为,,解得,由圆锥母线长为2,可得圆锥轴截面r 22r π=r =的顶角为,2π3当截面顶角为时,过圆锥顶点的截面面积最大,此时.π212222S =⨯⨯=故选:C.7.函数在单调递减,且为奇函数.,则满的取()f x (),-∞+∞()13f =-()33ln 102f x x ⎡⎤⎛⎫--+< ⎪⎢⎥⎝⎭⎣⎦x 值范围是( )A .B .C .D .()11,0,2⎛⎫-⋃+∞⎪⎝⎭()31,0,2⎛⎫-⋃+∞ ⎪⎝⎭()30,3,2⎛⎫+∞ ⎪⎝⎭()1,+∞【答案】A【分析】根据函数的单调性,奇偶性以及可解不等式组或分()13f =-()332ln 10f x x ⎧⎛⎫->⎪ ⎪⎝⎭⎨⎪+<⎩()332ln 10f x x ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪+>⎩,别解两个不等式组即可得出结论.【详解】由已知,使不等式成立的满足或,x ()332ln 10f x x ⎧⎛⎫->⎪ ⎪⎝⎭⎨⎪+<⎩()332ln 10f x x ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪+>⎩因为为奇函数.且,所以,()f x ()13f =-()13f -=将的图象右移个单位后,由得,()f x 32332f x ⎛⎫-> ⎪⎝⎭12x <又得,即,()ln 10x +<011x <+<10x -<<所以满足的范围为,()332ln 10f x x ⎧⎛⎫->⎪ ⎪⎝⎭⎨⎪+<⎩x 10x -<<同理,满足的范围为.()332ln 10f x x ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪+>⎩x 12x >综上,的取值范围为,x ()11,0,2⎛⎫-⋃+∞⎪⎝⎭故选:A.【点睛】关键点睛:通过函数的单调性,奇偶性,以及,从而解出得,()13f =-332f x ⎛⎫-> ⎪⎝⎭12x <以及得,是解题关键.本题考查函数的基本性质的综合应用,属于较难题.()ln 10x +<10x -<<8.分别为双曲线的左,右焦点,过的直线与双曲线左支交于两12,F F 2222:1(0,0)x y C a b a b -=>>1F ,A B 点,且,以为圆心,为半径的圆经过点,则的离心率为( )113AF BF =O 2OF B CA B C .D .5253【答案】A【分析】根据双曲线的定义以及可得边的关系,结合余弦定理即可求解.113AF BF =【详解】由题意得,1290F BF ∠=设,则,1BF m=2122,3,32,4BF m a AF m AF m a AB m=+==+=在中,由勾股定理得,解得,则,2Rt ABF ()()()2222432a m m m a ++=+m a =12,3BF a BF a==在中,由勾股定理得,化简得,所以的离心率12Rt F BF ()()22232a a c +=22104c a =C c e a ==故选:A.二、多选题9.已知圆的方程为,则关于圆的说法正确的是( )M ()()22121x y -++=M A .圆心的坐标为M ()1,2-B .点在圆内33,22P ⎛⎫- ⎪⎝⎭MC .直线被圆0x y +=MD .圆在点处的切线方程为M ()1,1-1y =-【答案】BCD【分析】由圆的标准方程即可判断A,根据点与圆的位置关系即可判断B,根据直线与圆相交,结合勾股定理即可求解弦长判断C,根据点的位置即可判断切线与轴平行,即可判断D.x 【详解】由圆的方程为,知圆心为,半径为1,选项A 错误;M ()()22121x y -++=()1,2-点到点,选项B正确;33,22P ⎛⎫- ⎪⎝⎭()1,2-1=<点到,所以,选项C 正确;()1,2-0x y +==由于点在圆上,点与圆心在垂直于坐标轴的直线上,所以圆在点()1,1-M ()1,1-()1,2-x M 的切线直线与轴平行,其方程为,选项D 正确;()1,1-x 1y =-故选:BCD.10.设函数,则下列结论正确的是( )()πsin 23f x x ⎛⎫=+ ⎪⎝⎭A .的图象关于直线对称()y f x =7π12=x B .的图象关于点中心对称()y f x =π,06⎛⎫- ⎪⎝⎭C .在区间有两个极值点()f x π11π,1212⎛⎫- ⎪⎝⎭D .在区间单调递减()f x 5π0,12⎛⎫ ⎪⎝⎭【答案】ABC【分析】代入验证法即可判断AB,根据的范围,求解的范围,结合正弦函数的性质即可判x π23x +断CD.【详解】对A ,,A 正确;7π7ππ3πsin 2+sin 1121232f ⎛⎫⎛⎫=⨯==- ⎪ ⎪⎝⎭⎝⎭对B ,,B 正确;πππsin 2sin 00663f ⎡⎤⎛⎫⎛⎫-=⨯-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦对C ,当时,,π11π,1212x ⎛⎫∈- ⎪⎝⎭ππ13π2,366t x ⎛⎫=+∈ ⎪⎝⎭由正弦函数的性质和图象可知有2个极值点,sin y t =()y f x =由,解得,解得,即和为函数的极值点,C 正确;ππ2=32x +ππ3π,2=1232x x =+7π12=x π=12x 7π12=x 对D , 当时,,5π0,12x ⎛⎫∈ ⎪⎝⎭ππ7π2,336t x ⎛⎫=+∈ ⎪⎝⎭由正弦函数的性质知当时,单调递增,当时,单调递减,ππ32t ,æöç÷Îç÷èøsin y t =π7π26t ,æöç÷Îç÷èøsin y t =所以在上不单调,D 错误;()y f x =5π0,12⎛⎫ ⎪⎝⎭故选:ABC.11.如图,在中,关于的值,以下说法正确的是( )C ·AB ACA .当半径为定值,弦越长,的值就越大C AB ·AB ACB .当弦长度为定值,半径越大,的值就越大AB ·AB ACC .的值与弦的长度无关·AB AC ABD .的值与半径的大小无关·AB AC 【答案】AD【分析】由圆中的垂径定理结合数量积的计算即可得,结合选项即可求解答案.22AB AC a⋅=【详解】设的半径为,的长度为,取的中点,连接,则C r AB 2a AB D CD CD AB⊥在中,Rt ACD △,,cos aAD a AC r CAD r==∠=∴22cos 22aAB AC a r CAD ar a r ⋅=⋅⋅∠=⋅= 只与弦的长度有关,且弦越长,的值越大,与半径无关.AB AB ·AB AC 故选:AD.12.已知函数,且.则下列结论一定正确的是( )()()1ln f x x x=-()()e af f b >A .若,则B .若,则0a >0a b ->0a >e 0ab ->C .若,则D .若,则a<0e 2ab +>a<0ln 0a b -<【答案】BD【分析】利用导数研究函数的单调性,结合选项及函数单调性逐项判断即可.【详解】函数的定义域为,因为,()f x {}|0x x >()()1ln f x x x =-所以,令,()1ln 1f x x x '=+-()1ln 1h x x x =+-则,所以函数在上单调递增,()2110h x x x '=+>()1ln 1h x x x =+-()0,∞+又,所以当时,,即,所以在上单调递减,()10h =01x <<()0h x <()0f x '<()f x ()0,1当时,,即,所以在上单调递增,1x >()0h x >()0f x ¢>()f x ()1,+∞所以.()()min 10f x f ==所以当,取,因为,所以,此时,A 错误;0a >2,e a b ==2e e 1>>()()e a f f b >0a b -<当时,,由得,即,B 正确;0a >e 1a>()()e a f f b >e a b >e 0a b ->当时,取,,满足,此时,C 错误;a<01,1a b =-=1e 1-<()()e af f b >e 2a b +<当时,,由得,则,即,D 正确.a<00e 1a <<()()e a f f b >e ab >ln b a >ln 0a b -<故选:BD.三、填空题13.展开式中含项的系数为______.(723x 【答案】14【分析】求出展开式的通项公式,令x 的指数为3,可求出r 值,从而得解.【详解】展开式的通项公式为,(72(()772177C 21C 2r rrrrr rr Tx--+==-令,则,所以含项为,32r =6r =3x 63377C 214T x x ==所以展开式中含项的系数为14.(723x 故答案为:14.14.抛物线在第一象限上一点,满足,为该抛物线的焦点,则直线的斜率为24y x =P 5PF =F PF ______.【答案】43【分析】过点P 作抛物线准线的垂线段,利用抛物线定义结合直角三角形即可求解.【详解】由题意作图如下:过引抛物线准线的垂线,垂足为,P M 则,所以,5PM PF ==23AF PM =-=在中,,所以,Rt PAF △222AP AF PF+=4PA =所以.4tan 3PA AFP AF∠==故答案为:.4315.有五名教师到甲,乙两个学校支教,每个学校至少安排一名教师,则在不同,,,,A B C D E ,A B 的学校方法的种数为__________.【答案】16【分析】理解题意,根据排列和组合的概念及其性质即可得出结论.【详解】其中被安排在不同学校有种,,A B ()22122232A A C A 2816+=⨯=故答案为16.16.某学习小组研究函数的性质时,得出了如下的结论:()1112f x x x =+--①函数图象关于轴对称;()f x y②函数图象关于点中心对称;()f x 3,02⎛⎫ ⎪⎝⎭③函数在上单调递减;()f x ()1,2④函数在上有最大值.()f x ()1,1-32-其中正确的结论是_____________(填写所有正确结论的序号)【答案】①③④【分析】对于①,通过偶函数的定义即可判断, 对于②,即可判断,()()63f f ≠--对于③,根据导函数的正负即可判断,对于④,结合①③即可判断.【详解】函数的定义域为,()f x {}|1,2x x x ≠±≠±且定义域内任意都满足,所以函数的图象关于轴对称,①正确;x ()()f x f x -=()f x y 因为,而,且;②错,()11119661625420f =+=+=--()111331313222f -=+=+=--()()63f f ≠--对于时,,()1,2x ∈()11111212f x x x x x =+=-----+,()()()()()()()()()22222222121163121212x x x f x x x x x x x --+---'=+==----+-+在上,单调递减,③正确;x ()1,2()()0,f x f x '<由①③知,为偶函数,时,,单调递减,()f x [)0,1x ∈()1112f x x x =+--()f x 又为偶函数,所以在上单调递增,()f x ()f x ()1,0x ∈-当时,有,④正确;0x =()()max 113001022f x f ==+=---故正确的结论是①③④.故答案为:①③④.四、解答题17.已知函数,求函数的单调区间及最小值.()43212314324f x x x x =--+()f x 【答案】单调增区间为,,单调递减区间为,最小值.()1,0-()3,+∞()(),1,0,3∞--11-【分析】根据导函数即可求解单调区间,再根据单调区间,即可求解最小值.【详解】由题意,函数的定义域为.()f x R 令,得或,或,()()()3223130f x x x x x x x =--=+-='=1x -0x =3x =当时,或;当时,或,()0f x ¢>10x -<<3x >()0f x '<1x <-03x <<所以函数的单调递增区间为,,单调递减区间为,()f x ()1,0-()3,+∞()(),1,0,3∞--所以函数的极小值为和()f x ()()()()43212311111143243f -=⨯--⨯--⨯-+=-,又为上的连续函数,()43212313333114324f =⨯-⨯-⨯+=-()f x R 所以函数在上的最小值为-11.()f x R 18.已知数列满足.{}n a 111,1nn n a a a a +==+(1)求证:数列为等差数列;1n a⎧⎫⎨⎬⎩⎭(2)若,求满足条件的最小整数.123132497100n n a a a a a a a a +++++>n 【答案】(1)证明见解析(2)33【分析】(1)取倒数,即可由等差数列的定义求解,(2)由裂项相消求和可得,由不等式即可求解.31223411n n na a a a a a a a n +++++=+【详解】(1)由得11n n n a a a +=+11111n n n na a a a ++==+又11a =所以数列是以为首项,公差为1的等差数列;1n a ⎧⎫⎨⎬⎩⎭111a =(2)由(1)知,,即则()1111n n n n a a =+-⨯=1n a n =()111111n n a a n n n n +==-++所以,133224111111197122311100n n n a a a a a a a a n n n +++++=-+-+-=>++ 解得,973n >又为整数.n所以的最小值为33 .n 19.甲盒中有3个黑球,3个白球,乙盒中有4个黑球,2个白球,丙盒中有4个黑球,2个白球,三个盒中的球只有颜色不同,其它均相同,从这三个盒中各取一球.(1)求“三球中至少有一个为白球”的概率;(2)设表示所取白球的个数,求的分布列.ξξ【答案】(1)79(2)分布列见解析【分析】(1)由题意,分别求出甲、乙、丙盒中取一球为白球事件的概率,再用间接法即可求得“三球中至少有一个为白球”的概率;(2)由题意可得的可能取值为0,1,2,3.分别求出各个取值的概率,从而可列出离散型随机变ξ量的分布列.【详解】(1)记甲、乙、丙盒中取一球为白球事件分别为,三球中至少有一球为白球记为、、A B C 事件,M 则;;.()12P A =()13P B =()13P C =()()1P M P ABC =-1111111233⎛⎫⎛⎫⎛⎫=--⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;79=(2)由题意可知,随机变量的可能取值为0,1,2,3.ξ,()2112011239P ξ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭()()1P P ABC ABC ABCξ==++,21111141211232339⎛⎫⎛⎫⎛⎫=⨯-+⨯-⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()2P P ABC ABC ABC ξ==++111111111111233233233⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯-⨯+-⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,518=.()211132318P ξ⎛⎫==⨯= ⎪⎝⎭所以,随机变量的分布列如下:ξξ0123P 294951811820.如图,在四棱锥中,底面为菱形, 是边长为2的正三角形,P ABCD =ABCD PAB .60ABC ︒∠=(1)求证:;AB PC ⊥(2)若与平面夹角的余弦值.PC =PAD PBC 【答案】(1)证明见解析(2)35【分析】(1)根据几何关系,证明平面POC 即可;AB ⊥(2)建立空间直角坐标系,运用空间向量求解.【详解】(1)如图,取中点,连接,, ,AB O OC OP AC ∵底面为菱形,, 是等边三角形,ABCD 60ABC ∠=︒ABC ∴,OC AB ⊥∵ 是等边三角形,PAB∴,OP AB ⊥∵ ,平面POC ,平面POC ,OP OC O ⋂=PO ⊂CO ⊂∴平面,又平面,AB ⊥POC PC ⊂POC ∴;AB PC ⊥(2)∵ 是边长为2的正三角形,点为中点,∴,PAB OAB OP ∵四边形为菱形,,则∴,ABCD 60,2ABC AB ∠=︒=OC =222OC OP PC +=∴,又 ,平面ABCD ,平面ABCD ,且,OC OP ⊥OP AB ⊥OC ⊂AB ⊂OC AB O = ∴底面;OP ⊥ABCD 如图,以所在直线分别为轴建立空间直角坐标系,,,OC OAOP ,,x yz 则,()()))(0,1,0,0,1,0,,2,0,AB C D P -,()((1,0,0,,DA CB AP BP ==-=-= 设平面的法向量为,由得:,PAD ()1,,n x y z = 1100DA n AP n ⎧⋅=⎪⎨⋅=⎪⎩ 00y y ⎧-=⎪⎨-=⎪⎩取,∴,y =1,1x z =-=()1n =- 设平面的法向量为,由得:,PBC ()2,,b c n a = 2200CB n BP n ⎧⋅=⎪⎨⋅=⎪⎩ 00b b ⎧-=⎪⎨=⎪⎩取,∴,b =1,1a c =-=()21n =-- ∴,平面与平面夹角的余弦值为;1212123cos ,5n n n n n n ⋅== PAD PBC 35综上,平面与平面夹角的余弦值为.PADPBC 3521.已知椭圆,三点,,中恰2222:1(0)x y C a b a b +=>>⎛ ⎝1,⎛- ⎝12⎫-⎪⎪⎭有两点在椭圆上.C (1)求的标准方程;C (2)设过点的直线(不为轴)与交于不同的两点,若点满足,()2,0P -l x C A B 、()0,M m MA MB =求的取值范围.m 【答案】(1)2212x y +=(2)m ⎛⎫⎛∈ ⎪ ⎪ ⎝⎭⎝ 【分析】(1)根据对称性判断三点中哪两点在椭圆上并求出 ;,,a b c (2)由题意,M 点必定在线段AB 的垂直平分线上,设直线l 的方程,根据l 的斜率确定m 的范围.【详解】(1)由椭圆的对称性可知点和在上,代入方程得,⎛ ⎝1,⎛- ⎝C221112a b +=设的半焦距为,则离心率为,,所以,解得,C (0)c c>c a=,a b c ==a =1a b =则椭圆;22:12x C y +=(2)由题意直线的斜率存在,设为,l (),0k k ≠则,联立得:,():2l y k x =+()222220y k x x y ⎧=+⎨+-=⎩()2222128820k x k x k ++-+=设,的中点设为,()()1122,,,A x y B x y AB ()00,N x y ,,2122812k x x k -+=+()()()1212122422412k y y k x k x k x x k k +=+++=++=+,()()()222228412821680k k k k ∆=-+-=-+>解得,且,则,,k -<<0k ≠202412k x k -=+02212k y k =+又 ,所以 , ,MA MB =MN AB ⊥202022112412MNk m y m k k k x kk --+===--+解得:,,且,2212k m k =-+k ⎛∈ ⎝0k≠当时,, ,k ⎛∈⎝22201122k k k k<=<++∴22012k k <-<+当,k ⎛⎫∈ ⎪ ⎪⎝⎭22012k k >->+所以;m ⎛⎫⎛∈ ⎪ ⎪ ⎝⎭⎝ 22.已知函数.()()e 1,0ax f x a x a =-+>(1)当时,求曲线在点处的切线与两坐标轴围成的三角形的面积;2a =()y f x =()()0,0f (2)若,求的取值范围.()ln 1f x x ax ≥-+a 【答案】(1)94(2)1,)e ∞⎡+⎢⎣【分析】(1)根据导数的几何意义求得切线方程为,分别令和当,求得与坐标23y x =+0x =0y =轴交点坐标,结合面积公式,即可求解;(2)根据题意转化为在上恒成立,设,求得e ln 0(0)ax a x x -≥>()0,x ∞∈+()e ln ax g x a x =-,再令,求得,得到为单调递增函数,得出()21e ax g x a x '=-()21e ax h x a x =-()0h x '>()h x ,使得,求得,结合和基本不等式,即()00,x ∃∈+∞()00g x '=()00min e ln ax g x a x =-0201e 0ax a x -=可求解.【详解】(1)解:当时,,则,2a =()22e 21x f x x =-+()24e 2x f x '=-可得,即在点处的切线的斜率为,()02f '=()()0,0f 2k =又由,所以曲线在点处的切线方程为,()03f =()y f x =()()0,0f 23y x =+当时,;当时,,0x =3y =0y =32x =-所以曲线在点处的切线与坐标轴围成三角形的面积.()y f x =()()0,0f 1393224S =⨯⨯=(2)解:因为,则在上恒成立,()()e 1ax f x a x =-+()ln 1f x x ax nx ≥-+()0,x ∞∈+即为在上恒成立,e ln 0(0)ax a x x -≥>()0,x ∞∈+设,可得,()e ln ,0axg x a x x =->()21e ax g x a x '=-当时,;当时,,0x +→()g x '→-∞x →+∞()g x '→+∞令,可得()()21e ax h x g x a x '==-()321e 0ax h x a x'=+>所以在上单调递增,()21e ax h x a x =-()0,x ∞∈+所以,使得,()00,x ∃∈+∞()02001e 0ax g x a x '=-=当上,,单调递减,()00,x x ∈()0g x '<()g x 当上,,单调递增,()0,x x ∈+∞()0g x '>()g x 所以()()000min e ln ax g x g x a x ==-由,可得0201e 0ax a x -=020001e ln ln ax a x ax a ax =-=+所以,解得,()()022000min 01e ln 2ln 0ln ax g x g x a x ax a ax a ==-=+≥+≥+1e a ≥即实数的取值范围为a 1,)e ∞⎡+⎢⎣【点睛】方法技巧:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.。

(三管齐下)贵州省高三数学 复习试题7 指数与指数函数 理(含解析)新人教A版

(三管齐下)贵州省高三数学 复习试题7 指数与指数函数 理(含解析)新人教A版

7 指数与指数函数导学目标: 1.了解指数函数模型的实际背景.2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念,并掌握指数函数的单调性与函数图象通过的特殊点.4.知道指数函数是一类重要的函数模型.自主梳理1.指数幂的概念(1)根式如果一个数的n次方等于a(n>1且n∈N*),那么这个数叫做a的n次方根.也就是,若x n=a,则x叫做________,其中n>1且n∈N*.式子na叫做________,这里n叫做________,a叫做____________.(2)根式的性质①当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时,a的n次方根用符号________表示.②当n为偶数时,正数的n次方根有两个,它们互为相反数,这时,正数的正的n次方根用符号________表示,负的n次方根用符号________表示.正负两个n次方根可以合写成________(a>0).③(na)n=____.④当n为偶数时,na n=|a|=⎩⎪⎨⎪⎧a,a≥0,-a,a<0.⑤当n为奇数时,na n=____.⑥负数没有偶次方根.⑦零的任何次方根都是零.2.有理指数幂(1)分数指数幂的表示①正数的正分数指数幂是mna=________(a>0,m,n∈N*,n>1).②正数的负分数指数幂是mna-=____________=______________(a>0,m,n∈N*,n>1).③0的正分数指数幂是______,0的负分数指数幂无意义.(2)有理指数幂的运算性质①a r a s=________(a>0,r,s∈Q).②(a r)s=________(a>0,r,s∈Q).③(ab)r=________(a>0,b>0,r∈Q).3.指数函数的图象与性质a>10<a<1图象定义域(1)________值域(2)________性质(3)过定点________(4)当x>0时,______;当(5)当x>0时,________;当x<0时,______ x<0时,______(6)在(-∞,+∞) 上是______(7)在(-∞,+∞) 上是______自我检测1.下列结论正确的个数是 ( )①当a<0时,232)(a=a3;②na n=|a|;③函数y=21)2(-x-(3x-7)0的定义域是(2,+∞);④若100a=5,10b=2,则2a+b=1.A.0 B.1 C.2 D.32.函数y=(a2-3a+3)a x是指数函数,则有 ( )A.a=1或a=2 B.a=1C.a=2 D.a>0且a≠13.如图所示的曲线C1,C2,C3,C4分别是函数y=a x,y=b x,y=c x,y=d x的图象,则a,b,c,d的大小关系是 ( )A.a<b<1<c<dB.a<b<1<d<cC.b<a<1<c<dD.b<a<1<d<c4.若a>1,b>0,且a b+a-b=22,则a b-a-b的值等于 ( )A. 6 B.2或-2C.-2 D.25.(·六安模拟)函数f(x)=a x-b的图象如图,其中a、b为常数,则下列结论正确的是( )A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0探究点一 有理指数幂的化简与求值例1 已知a ,b 是方程9x 2-82x +9=0的两根,且a <b ,求:(1)a -1+b -1ab-1;3327a a ÷3a -8·3a 15.变式迁移1 化简3421413223)(ab b a ab b a (a 、b >0)的结果是 ( )A.b aB .ab C.a bD .a 2b探究点二 指数函数的图象及其应用例2 已知函数y =(13)|x +1|.(1)作出函数的图象(简图); (2)由图象指出其单调区间;(3)由图象指出当x 取什么值时有最值,并求出最值.变式迁移2 (·山东)函数y =e x +e-x e x -e-x 的图象大致为 ( )探究点三 指数函数的性质及应用例3 如果函数y =a 2x +2a x-1(a >0且a ≠1)在区间[-1,1]上的最大值是14,求a 的值.变式迁移3 (·龙岩月考)已知函数f (x )=(12x -1+12)x 3.(1)求f (x )的定义域; (2)证明:f (-x )=f (x ); (3)证明:f (x )>0.分类讨论思想的应用 例 (12分)已知f (x )=aa 2-1(a x -a -x)(a >0且a ≠1). (1)判断f (x )的奇偶性; (2)讨论f (x )的单调性;(3)当x ∈[-1,1]时f (x )≥b 恒成立,求b 的取值范围. 【答题模板】解 (1)函数定义域为R ,关于原点对称.又因为f (-x )=aa 2-1(a -x -a x)=-f (x ), 所以f (x )为奇函数.[3分](2)当a >1时,a 2-1>0,y =a x 为增函数,y =a -x 为减函数,从而y =a x -a -x 为增函数, 所以f (x )为增函数.[5分]当0<a <1时,a 2-1<0,y =a x 为减函数,y =a -x 为增函数,从而y =a x -a -x 为减函数, 所以f (x )为增函数.故当a >0,且a ≠1时,f (x )在定义域内单调递增.[7分] (3)由(2)知f (x )在R 上是增函数, ∴在区间[-1,1]上为增函数, ∴f (-1)≤f (x )≤f (1),∴f (x )min =f (-1)=a a 2-1(a -1-a )=a a 2-1·1-a 2a=-1.[10分]∴要使f (x )≥b 在[-1,1]上恒成立,则只需b ≤-1, 故b 的取值范围是(-∞,-1].[12分] 【突破思维障碍】本例第(2)(3)问是难点,讨论f (x )的单调性对参数a 如何分类,分类的标准和依据是思维障碍之一. 【易错点剖析】在(2)中,函数的单调性既与a x -a -x有关,还与a a 2-1的符号有关,若没考虑aa 2-1的符号就会出错,另外分类讨论完,在表达单调性的结论时,要综合讨论分类的情况,如果没有一个总结性的表达也要扣分,在表达时如果不呈现a 的题设条件中的范围也是错误的.1.一般地,进行指数幂的运算时,化负指数为正指数,化根式为分数指数幂,化小数为分数进行运算,便于用运算性质进行乘、除、乘方、开方运算,可以达到化繁为简的目的.2.比较两个指数幂大小时,尽量化同底数或同指数,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.3.指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系如图所示,则0<c <d <1<a <b .在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小;即无论在y轴的左侧还是右侧,底数按逆时针方向变大.(满分:75分)一、选择题(每小题5分,共25分)1.函数y =x2的值域是 ( ) A .[0,+∞) B .[1,+∞) C .(-∞,+∞) D .[2,+∞)2.(·金华月考)函数y =xa x|x |(0<a <1)的图象的大致形状是 ( )3.(·重庆)函数f (x )=4x+12x 的图象 ( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称4.定义运算a b =⎩⎪⎨⎪⎧a a ≤b ,b a >b ,则函数f (x )=12x的图象是( )5.若关于x 的方程|a x-1|=2a (a >0,a ≠1)有两个不等实根,则a 的取值范围是( ) A .(0,1)∪(1,+∞) B .(0,1)C .(1,+∞)D .(0,1)题号 1 2 3 4 5 答案6.(·嘉兴月考)函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x <0,a x , x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围是________.7.(·江苏)设函数f (x )=x (e x +a e -x),x ∈R 是偶函数,则实数a =________.8.若函数f (x )=a x-1(a >0且a ≠1)的定义域和值域都是[0,2],则实数a 的值为________.三、解答题(共38分)9.(12分)(·衡阳模拟)已知定义域为R 的函数f (x )=-2x+b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.10.(12分)(·北京丰台区期末)已知函数f (x )=3x,f (a +2)=18,g (x )=λ·3ax -4x 的定义域为[0,1]. (1)求a 的值.(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.11.(14分)(·东莞模拟)函数y =1+2x +4xa 在x ∈(-∞,1]上y >0恒成立,求a 的取值范围.答案 自主梳理1.(1)a 的n 次方根 根式 根指数 被开方数 (2)①n a ②n a -n a ±na ③a ⑤a 2.(1)①na m ②nma11na m③0 (2)①ar +s②a rs ③a r b r3.(1)R (2)(0,+∞) (3)(0,1) (4)y >1 0<y <1(5)0<y <1 y >1 (6)增函数 (7)减函数自我检测1.B [只有④正确.①中a <0时,232)(a >0,a 3<0,所以232)(a ≠a 3;②中,n 为奇数时且a <0时,nan=a ;③中定义域为[2,73)∪(73,+∞).]2.C [∵y =(a 2-3a +3)a x 是指数函数,∴a 2-3a +3=1,解得a =2或a =1(舍去).] 3.D [y 轴左、右的图象对应函数的底数按逆时针方向增大.所以c >d >1,1>a >b >0.]4.D [(a b -a -b )2=(a b +a -b )2-4=4,∵a >1,b >0,∴a b >1,0<a -b <1,∴a b -a -b=2.]5.D [由f (x )=a x -b 的图象可以观察出,函数f (x )=a x -b在定义域上单调递减,所以0<a <1;函数f (x )=a x -b 的图象是在f (x )=a x的基础上向左平移得到的,所以b <0.] 课堂活动区例1 解题导引 1.指数幂的化简原则 (1)化负数指数为正指数; (2)化根式为分数指数幂; (3)化小数为分数.2.指数幂的化简结果要求为有关有理指数幂的化简结果不要同时含有根号和分数指数幂,也不要既有分母又含有负指幂,即尽量化成与题目表示形式一致且统一的最简结果.解 ∵a ,b 是方程的两根,而由9x 2-82x +9=0解得x 1=19,x 2=9,且a <b ,故a =19,b =9,(1)化去负指数后求解.a -1+b -1ab -1=1a +1b 1ab =a +b ab 1ab=a +b . ∵a =19,b =9,∴a +b =829,即原式=829.(2)原式=3127⨯a ·3123⨯-a÷ (21)38(⨯-a·21315⨯a)=)2534(2167+---a=21-a.∵a =19,∴原式=3.变式迁移1 C [原式=31312316123ba ab ba b a -••=3123113116123--++-+•b a=ab -1=a b.]例2 解题导引 在作函数图象时,首先要研究函数与某一基本函数的关系,然后通过平移、对称或伸缩来完成.解 (1)方法一 由函数解析式可得y =(13)|x +1|=⎩⎪⎨⎪⎧13x +1, x ≥-1,3x +1, x <-1.其图象由两部分组成:一部分是:y =(13)x (x ≥0)――→向左平移1个单位y =(13)x +1(x ≥-1);另一部分是:y =3x(x <0)――→向左平移1个单位y =3x +1(x <-1). 如图所示.方法二 ①由y =(13)|x |可知函数是偶函数,其图象关于y 轴对称,故先作出y =(13)x的图象,保留x ≥0的部分,当x <0时,其图象是将y =(13)x (x ≥0)图象关于y 轴对折,从而得出y =(13)|x |的图象.②将y =(13)|x |向左移动1个单位,即可得y =(13)|x +1|的图象,如图所示.(2)由图象知函数在(-∞,-1]上是增函数,在[-1,+∞)上是减函数. (3)由图象知当x =-1时,有最大值1,无最小值.变式迁移2 A [y =e x +e -x e x -e -x =1+2e 2x -1,当x >0时,e 2x-1>0,且随着x 的增大而增大,故y =1+2e 2x -1>1且随着x 的增大而减小,即函数y 在(0,+∞)上恒大于1且单调递减.又函数y 是奇函数,故只有A 正确.]例3 解题导引 1.指数函数y =a x(a >0且a ≠1)的图象与性质与a 的取值有关,要特别注意区分a >1与0<a <1来研究.2.指数函数与二次函数复合而成的初等函数的性质可通过换元的方法转化为指数函数或二次函数的性质.解 设t =a x ,则y =f (t )=t 2+2t -1=(t +1)2-2.(1)当a >1时,t ∈[a -1,a ],∴y max =a 2+2a -1=14,解得a =3,满足 a >1;(2)当0<a <1时,t ∈[a ,a -1],∴y max =(a -1)2+2a -1-1=14,解得a =13,满足0<a <1.故所求a 的值为3或13.变式迁移3 (1)解 由2x-1≠0⇒x ≠0, 所以定义域为(-∞,0)∪(0,+∞).(2)证明 f (x )=(12x -1+12)x 3可化为f (x )=2x+122x-1·x 3, 则f (-x )=2-x+122-x-1(-x )3=2x+122x-1x 3=f (x ), 所以f (-x )=f (x ).(3)证明 当x >0时,2x >1,x 3>0,所以(12x -1+12)x 3>0.因为f (-x )=f (x ),所以当x <0时,f (x )=f (-x )>0. 综上所述,f (x )>0. 课后练习区1.B [由y =x2中x ≥0,所以y =x2≥20=1,即函数的值域为[1,+∞).]2.D [函数的定义域为{x |x ∈R ,x ≠0},且y =xa x |x |=⎩⎪⎨⎪⎧a x, x >0-a x,x <0.当x >0时,函数是一个指数函数,其底数a 满足0<a <1,所以函数递减;当x <0时,函数图象与指数函数y =a x的图象关于x 轴对称,函数递增.]3.D [函数定义域为R ,关于原点对称,∵f (-x )=4-x +12-x =1+4x 2x =f (x ),∴f (x )是偶函数,图象关于y 轴对称.]4.A [当x <0时,0<2x <1,此时f (x )=2x;当x ≥0时,2x≥1,此时f (x )=1.所以f (x )=1⊕2x=⎩⎪⎨⎪⎧2xx <0,1 x ≥0.]5.D [方程|a x-1|=2a 有两个不等实根可转化为函数y =|a x-1|与函数y =2a 有两个不同交点,作出函数y =|a x-1|的图象,从图象观察可知只有0<2a <1时,符合题意,即0<a <12.]6.[13,1)解析 据单调性定义,f (x )为减函数应满足:⎩⎪⎨⎪⎧0<a <1,3a ≥a 0,即13≤a <1. 7.-1解析 设g (x )=e x +a e -x,则f (x )=xg (x )是偶函数.∴g (x )=e x +a e -x是奇函数.∴g (0)=e 0+a e -0=1+a =0, ∴a =-1. 8. 3解析 当a >1时,f (2)=2,∴a 2-1=2,a =3,经验证符合题意; 当0<a <1时,f (0)=2,即1-1=2,无解. ∴a = 3.9.解 (1)∵f (x )是定义域为R 的奇函数,∴f (0)=0,即-1+b2+a =0,解得b =1,…………………………………………………(2分)从而有f (x )=-2x+12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a, 解得a =2.经检验a =2适合题意,∴所求a 、b 的值分别为2、1.……………………………………………………………(4分)(2)由(1)知f (x )=-2x+12x +1+2=-12+12x +1.由上式易知f (x )在(-∞,+∞)上为减函数.…………………………………………(6分) 又因f (x )是奇函数,从而不等式f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).……………………………………………………………………………(8分)因为f (x )是减函数,由上式推得t 2-2t >-2t 2+k .即对一切t ∈R 有3t 2-2t -k >0.从而判别式Δ=4+12k <0,解得k <-13.………………………………………………(12分)10.解 方法一 (1)由已知得3a +2=18⇒3a=2⇒a =log 32.…………………………(4分)(2)此时g (x )=λ·2x -4x,设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调递减函数, 所以g (x 1)-g (x 2)=)22)(22(1221x x x x ---λ>0恒成立,……………………………(8分)即λ<1222xx+恒成立.由于0222212+>+xx=2,所以,实数λ的取值范围是λ≤2. ……………………………………………………………………………………………(12分)方法二 (1)由已知得3a +2=18⇒3a=2⇒a =log 32.……………………………………………………………………………………………(4分)(2)此时g (x )=λ·2x -4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln 2·2x -ln 4·4x =2x ln 2(-2·2x+λ)≤0成立,…………………………(8分)所以只需要λ≤2·2x恒成立.所以实数λ的取值范围是λ≤2.…………………………(12分)11.解 由题意得1+2x +4xa >0在x ∈(-∞,1]上恒成立,即a >-1+2x4x 在x ∈(-∞,1]上恒成立.………………………………………………(6分)又因为-1+2x4x =-(12)2x -(12)x,设t =(12)x,∵x ≤1,∴t ≥12且函数f (t )=-t 2-t =-(t +12)2+14(t ≥12)在t =12时,取到最大值.∴(12)x =12即x =1时,-1+2x4x 的最大值为-34,………………………………………(12分) ∴a >-34.…………………………………………………………………………………(14分)。

贵州省贵阳市第一中学2024-2025学年高三上学期适应性月考(一)地理试题(含答案)

贵州省贵阳市第一中学2024-2025学年高三上学期适应性月考(一)地理试题(含答案)

地理试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效。

3.考试结束后,请将本试卷和答题卡一并交回。

满分100分,考试用时75分钟。

一、选择题(本大题共16小题,每小题3分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的)2024年6月25日14时,嫦娥六号返回器携带来自月背的月球样品(主要是月壤和岩石)安全着陆在内蒙古四子王旗预定区域,标志着探月工程嫦娥六号任务取得圆满成功。

据此完成1~3题。

1.与月壤形成关联度最大的是A. 温度B. 湿度C. 气压D. 地形2. 嫦娥六号返回器安全着陆地面时纽约(40°43'N,74°W) 的地方时大致为A.6 月24日20时B.6 月24日18时C.6 月25日5时D.6 月25日1时3.内蒙古四子王旗航天着陆场的主要区位优势有①地势平坦开阔②地表坚硬、没有大河流③全年干燥少雨,空气能见度高④交通便利A.①②③B.①②④C.②③④D.①③④夏威夷岛是太平洋夏威夷群岛中的最大岛,美国夏威夷州的一部分,岛上多火山,图1为夏威夷岛地图。

据此完成4~6题。

150°W20°N▲山地0 37km比例尺图 14. 该岛位于北京A. 西南方B.西北方C. 东南方D. 东北方5. 一架飞机从北京沿最短航线飞向夏威夷岛,其飞行方向为A. 先东南后东北B.先东北后东南C. 先西南后西北D. 先西北后西南6. 图1中两山地的直线距离大致是A.40kmB.20kmC.10kmD.50km图2示意我国西北某山地植被的分布状况,图中相邻等高线之间高差均为100米。

读 图,完成7~8题。

植被密集区等高线图2 7. 植被生长与土壤水分条件相关,图中植被密集区位于A. 山麓B. 山脊 C. 山谷 D. 山顶 .8.图示区域内南、北两侧最大高差可能是A.635 米B.578 米C.420 米D.855 米巴黎奥组委3月8日正式向外界公布,2024年巴黎奥运会将于北京时间7月27日凌 晨1时30分开幕,开幕式将在塞纳河上举行。

贵州省遵义清华中学2022-2023学年高二下学期第一次月考数学试题及参考答案

贵州省遵义清华中学2022-2023学年高二下学期第一次月考数学试题及参考答案

遵义清华中学2022-2023学年度第二学期第一次月考试题高二年级数学试题(卷面分值:150分 考试时间:120分钟)注意事项:1.本试卷共4页,答题前,请考生务必将自己的学校、姓名、班级、考号等信息填写答卷的密封区内。

2.作答选择题必须用2B 铅笔在答题卡上将对应题目的选项涂黑。

如需改动,请用橡皮擦干净后,再选涂其它答案,作答非选择题时必须用黑色字迹0.5毫米签字笔书写在答题卡的指定位置上,请保持答题卡卡面清洁和答题纸清洁,不折叠、不破损。

3.考试结束后,请将试卷和答题卡交回。

第I 卷 (选择题 共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B xx x =-=-+=∣,则=( )A .{1,3}B .{0,3}C .{2,1}-D .{2,0}-2.已知随机变量ξ服从二项分布,1(3,)2B ξ,则()1ξ≥P 的值为( )A .18B .78C .38D .583.复数322iz i-=+,则复数z 在复平面上所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.已知随机变量X 的分布列如表(其中a 为常数): 则()13P X ≤≤等于( ) A .0.4 B .0.5C .0.6D .0.75.5位大学生在暑假期间主动参加A ,B ,C 三个社区的志愿者服务,且每个社区至少有1人参加,至多有2人参加,则不同的安排方法共有( ) A .30种 B .90种 C .120种 D .150种 6.某中学制订了“光盘计划”,为了了解师生们对这一倡议的关注度和支持度,开展了一次问卷调查,调查中的2000人的得分数据.据统计此次问卷调查的得分x (满分:100分)服从正态分布()293,2N ,则()9197P x <<=( )若随机变量()2,N ξμσ,则()0.6827P μσξμσ-<<+=,()220.9545P μσξμσ-<<+=A .0.8186B .0.6827C .0.47725D .0.341357.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰X 0 1 2 3 4 5P 0.1 0.1 a 0.3 0.2 0.1 学校: 班级: 姓名: 考号: 线启用 前绝密宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有六种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( ) A .1560B .1180C .1020D .4208.艺术节即将到来,承办班级筹备节目单时,准备在前五个节目排三个歌唱节目,一个小品节目以及一个相声节目,若三个歌唱节目最多有两个相邻,则不同的排法总数为( ) A .75B .80C .84D .96二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若2155C C x x -=,则正整数x 的值是( )A .1B .2C .3D .410.下列说法正确的是( ) A .已知随机变量(),XB n p ,若()()30,10E X D X ==,则13p =B .两位男生和两位女生随机排成一列,则两位女生不相邻的概率是12C .已知23A C n n =,则8n =D .从一批含有10件正品、4件次品的产品中任取3件,则取得2件次品的概率为459111.已知2nx⎛⎝的展开式中二项式系数之和为1024,则下列说法正确的( )A .展开式中奇数项的二项式系数和为256B .展开式的各项系数之和为1024C .展开式中常数项为45D .展开式中含15x 项的系数为4512.将2n (n ∈N *)个有编号的球随机放入2个不同的盒子中,已知每个球放入这2个盒子的可能性相同,且每个盒子容纳球数不限记2个盒子中最少的球数为X (0≤X ≤n ,X ∈N *),则下列说法中正确的有( ) A .当n =1时,方差1()4D X = B .当n =2时,3(1)8P X ==C .3n ∀≥,*0,) [(,)n k n N k ∃∈∈,使得P (X =k )>P (X =k +1)成立D .当n 确定时,期望222(2)()2n nn nn C E X -= 第II 卷 (非选择题 共90分)三、填空题:本题共4小题,每小题5分,共20分.13.过点()2,3-且与直线210x y ++=垂直的直线l 的方程是________.14.设随机变量X 服从二项分布()2,B p ,若()35136P X ≥=,则p =______. 15.学校有8个优秀学生名额,要求分配到高一、高二、高三,每个年级至少1个名额,则有种 分配方案.16. 某单位安排7位员工在春节期间大年初一到初七值班,每人值班1天,若7位员工中的甲、乙排在相邻的两天,丙不排在初一,丁不排在初七,则不同的安排方案共有_______ 四、解答题:本题共6小题,共70分.其中第17题10分,其余各题12分.解答应写出文字说明、证明过程或演算步骤.17.一袋中装有6个黑球,4个白球.如果不放回地依次取出2个球.求: (1)第1次取到黑球的概率;(2)在第1次取到黑球的条件下,第2次又取到黑球的概率. 18.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos 3a C c A +=,2a b =,记ABC 的面积为S .(1)求a ; (2)请从下面的三个条件中任选一个,探究满足条件的ABC 的个数,并说明理由. 条件:①()222312S a c b =+-,②2cos 2b A ac +=,③πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭. 注:如果选择多个条件分别解答,按第一个解答计分.19.近些年来,短视频社交软件日益受到追捧,用户可以通过软件选择歌曲,拍摄音乐短视频,创作自己的作品.某用户对自己发布的视频个数x 与收到的点赞个数之和y 之间的关系进行了分析研究,得到如下数据:(1)计算x ,y 的相关系数r (计算结果精确到0.01),并判断是否可以认为发布的视频个数与收到的点赞数之和的相关性很强; (2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程.参考数据:0.430.656≈,0.0430.207≈.参考公式:()()()1122211ˆn niii ii i nniii i x x y y x y nx ybx x xnx====---⋅==--∑∑∑∑,ˆˆay bx =-,()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑.20.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,AB AP =,E 为棱PD 的中点.x 34567y 45 50 60 65 70(1)证明:AE CD ⊥;(2)求直线AE 与平面PBD 所成角的正弦值21. 2021年9月,贵州省正式施行“312++”高考新模式.为调研新高考模式下,某校学生选择物理或历史与性别是否有关,统计了该校高三年级800名学生的选科情况,部分数据如表: (1)根据所给数据完成上述表格,并依据0.001a =的独立性检验,分析学生选择物理或历史与性别是否有关;(2)该校为了提高选择历史科目学生的数学学习兴趣,用分层抽样的方法从该类学生中抽取5人,组成数学学习小组.一段时间后,从该小组中抽取3人汇报数学学习心得.记3人中男生人数为X ,求X 的分布列和数学期望()E X .附:()()()()22()n ad bc a b c d a c b d χ-=++++.22. 已知椭圆22221x y a b +=的左右焦点分别为12,F F ,过1F 作直线L ,交椭圆于A 、B 两点,2F AB 的周长为8,且椭圆经过点⎭. (1)求椭圆的方程;(2)过坐标原点O 作直线L 的垂线,交椭圆于P ,Q 两点,试判断214AB PQ +是否为定值,若是,求出这个定值.遵义清华中学2022-2023学年度第二学期第一次月考高二年级数学参考答案一、选择题(每小题8分,共40分) 1.D【分析】解方程求出集合B ,再由集合的运算即可得解.【详解】由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U2,0A B ⋃=-.故选:D. 2.B【分析】根据二项分布概率公式计算.【详解】()()()()()30317112310128P P P P P C ξξξξξ⎛⎫≥==+=+==-==-⨯= ⎪⎝⎭.故选:B 3.D【分析】先利用复数的除法化简复数z ,即得解. 【详解】由题得32(32)(2)47472(2)(2)555i i i i z i i i i ----====-++-, 所以复数对应的点为47(,)55-,在第四象限,故选:D. 3.D【分析】先利用复数的除法化简复数z ,即得解. 【详解】由题得32(32)(2)47472(2)(2)555i i i i z i i i i ----====-++-, 所以复数对应的点为47(,)55-,在第四象限,故选:D.4.【答案】C【解析】因为0.10.10.30.20.11a +++++=,所以0.2a =,所以()()()()13123P X P X P X P X ≤===++≤=0.10.20.30.6=++=. 故选:C. 5.【答案】B【解析】因为5位大学生在暑假期间主动参加A ,B ,C 三个社区的志愿者服务,且每个社区至少有1人参加,至多有2人参加,所以5名大学生分成3组,每组的人数分别为1,2,2,所以不同的安排方式有22353322C C A 90A ⋅=种,故选:B 6.【答案】A【点睛】本题主要考查古典概型的概率求法,还考查了分析求解问题的能力,属于基础题. 7.【答案】A【解析】第一步中间小正方形涂色,有6种方法,剩下5种颜色涂在四个直角三角形中,就按图中所示1234的顺序,1有5种方法,2有4种方法,3有4种方法,但要分类:与1相同和与1不相同,然后确定4的方法数, 所以所求方法数为654(1433)1560⨯⨯⨯⨯+⨯=. 故选:A. 8.【答案】C【解析】三个歌唱节目,一个小品节目以及一个相声节目的全排列的排列数为55A ,其中三个歌唱节目都相邻的排法数为3333A A ,故满足条件的排法数为533533A A A =120-36=84-,所以三个歌唱节目最多有两个相邻的排法总数为84, 故选:C.二、选择题(每小题5分,共20分) 9.【答案】AB【分析】由组合数的性质可以列出方程,求出正整数x 的值 【详解】由题意得:21x x =-或215x x +-=, 解得:1x =或2x =,经过检验,均符合题意. 故选:AB11.【答案】BCD【分析】先由已知条件得21024n =求出n 的值,然后求出二项式展开式的通项公式,再逐个12.【答案】ACD三、填空题(每小题5分,共20分)14.【答案】56【解析】因为随机变量X 服从二项分布()2,B p , 所以()()()2202=0C 11P X p p =-=-, 所以()()()23511=01136P X P X p ≥=-=--=, 因为0p >,所以56p =,故答案为:5615.【答案】21【解析】问题等价于将8个完全相同的小球,放入3个不同的盒子,每个盒子至少1个球,由隔板法可知,不同的分配方案种数为27C 21=.16. 【答案】1008【详解】分析:本题的要求比较多,有三个限制条件,甲、乙排在相邻两天可以把甲和乙看做一个元素,注意两元之间有一个排列,丙不排在初一,丁不排在初七,则可以甲乙排初一、初二和初六、初七,丙排初七和不排初七,根据分类原理得到结果. 详解:分两类:第一类:甲乙相邻排初一、初二或初六、初七,这时先安排甲和乙,有2224A =种,然后排丙或丁,有144A =种,剩下的四人全排有4424A =种,因此共有4424384⨯⨯=种方法;第二类:甲乙相邻排中间,有224A 种,当丙排在初七,则剩下的四人有44A 种排法,若丙排在中间,则甲有13A 种,初七就从剩下的三人中选一个,有13C 种,剩下三人有33A 种,所以共有24113243334()624A A A C A +=种,故共有3846241008+=种安排方案,故答案为1008.点睛:该题考查的是由多个限制条件的排列问题,在解题的过程中,注意相邻问题捆绑法,特殊元素优先考虑的原则,利用分类加法计数原理求得结果.四、解答题(第17题10分,其余各题12分,共70分)17.一袋中装有6个黑球,4个白球.如果不放回地依次取出2个球.求: (1)第1次取到黑球的概率;(2)在第1次取到黑球的条件下,第2次又取到黑球的概率.18.(1)a =(2)选①,满足条件的ABC 的个数为2;选②,满足条件的ABC 的个数为1;选③,不存在满足条件的三角形;理由见解析【分析】(1)利用余弦定理化简已知条件,由此求得,b a .(2)选①,利用三角形的面积公式化简已知条件,求得tan B ,进而求得B ,利用正弦定理求得A 有两个解,从而得出结论.选②利用正弦定理化简已知条件,求得B ,利用正弦定理求得A 有一个解,从而得出结论.选③,结合三角恒等变换求得B ,利用正弦定理求得sin 1A >,无解,从而得出结论.(1)因为cos cos a C c A +=22222222a b c b c a a c ab bc+-+-⋅+⋅=解得b =a =(2)选择①,因为)222S a c b =+-,所以)2221sin 2ac B a c b =+-,所以1sin 2cos 2ac B ac B =,化简得tan B =. 又0πB <<,故π6B =.由sin sin a b A B =,得sin sin a B A b ==. 因为a b >,所以π4A =或3π4A =,故满足条件的ABC 的个数为2.选择②,因为cos b A c =,所以sin cos sin B A A C =,即sin cos sin()2B A A A B +=+,sin cos A A B =,因为sin 0A ≠,所以cos B =,解得π4B =.由sin sin a bA B=,得sin sin 1a B A b ==,所以π2A =,故满足条件的ABC 的个数为1. 选择③,因为πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭,所以πsin sin sin cos 6B A A B ⎛⎫=- ⎪⎝⎭.又sin 0A ≠,所以πsin cos 6B B ⎛⎫=- ⎪⎝⎭,所以31sin cos sin 22BB B ,化简得tan B =又0πB <<,故π3B =.由sin sin a b A B =,得sin sin 1a B A b ==>,无解,不存在满足条件的三角形. 19.【解析】(1)因为3456755x ++++==,4550606570585y ++++==, 所以()()5165i i i x x y y =--=∑,()52110i i x x =-=∑.因为()521430i i y y =-=∑,所以()()5522114300i ii i x x y y ==--=∑∑所以()()5650.9965.6iix x y y r --=≈≈∑, 由此可以认为发布的视频个数与收到的点赞数之和的相关性很强. (2)由(1)知()()5165i i i x x y y =--=∑,()52110i i x x =-=∑,所以()()()5152165ˆ 6.510iii i i x x y y bx x ==--===-∑∑. 因为ˆ58 6.5525.5ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为 6.525.5y x =+. (0,1,1AE =,(2,0,2BP =-,(0,DP =-设平面PBD 的法向量(),,n x y z =,则00n BP n DP ⎧⋅=⎨⋅=⎩,即则()1,1,1n =.设直线AE 与平面PBD 所成角为θ,则26sin 323AE n AE nθ⋅===⨯⋅.21.【解析】(1)根据所给数据完成列联表:科目性别合计男生 女生物理 300 250 550 历史 100 150 250 合计 400400800222800(300150250100)(450250)16010.828,5502504004005525211χ⨯⨯-⨯-===>⨯⨯⨯⨯⨯所以推断该校学生选择物理或历史与性别有关,此推断犯错误的概率不大于0.001; (2)按照分层抽样的方法,抽取男生2人,女生3人, 随机变量X 的所有可能取值为0,1,2,()032335C C 10C 10P X ∴===()122335C C 31C 5P X ===()212335C C 32C 10P X ===X ∴的分布列为:X 01 2()1336012.105105E X ∴=⨯+⨯+⨯=22.(1)22143xy +=;(2)是定值;214712AB PQ +=. 【分析】(1)根据椭圆定义,由2F AB 的周长为8,求出2a =,再由椭圆过点⎭,求出b =(2)先讨论直线L 的斜率不存在时,求出214ABPQ+;再讨论直线L 的斜率存在时,设直线():1AB y k x =+,()11,A x y 、()22,B x y ,()33,P x y 、()44,B x y ,线1:PQ y x k=-,分别联立直线与椭圆方程,根据弦长公式求出AB 和PQ ,即可得出结果. 【详解】(1)由椭圆的定义可得,122a AF AF =+,122a BF BF =+, ∴2248AF BF AB a ++==,则2a =;又椭圆经过点⎭221b ⎝⎭=,解得b =所以椭圆的方程为22143x y +=; (2)当直线L 的斜率不存在时,直线L 的方程为=1x -,代入22143x y +=得294y =,所以3AB =,4PQ =,2141173412AB PQ +=+=; 当直线L 的斜率存在时,设直线():1AB y k x =+,()11,A x y 、()22,B x y ,()33,P x y 、()44,B x y , 将()1y k x =+代入22143x y +=,整理得:()22223484120k x k x k +++-=, ∴2122212283441234k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩,∴12 AB x=-===()2212134kk+=+=;又直线1:PQ y xk=-,代入22143x y+=整理得:()22234120k x k+-=,则3423421243x xkx xk+=⎧⎪⎨=-⎪+⎩,∴34PQ x=-=则()()()()()2222222434711443712121481121k kkAB k k kPQ++++=+==+++,综上所述214712AB PQ+=为定值.【点睛】本题主要考查求椭圆的标准方程,考查椭圆中的定值问题,熟记椭圆的标准方程,以及椭圆的简单性质即可,属于常考题型.。

贵州省贵阳市第一中学2024-2025学年高三上学期9月月考试题 数学 (解析版)

贵州省贵阳市第一中学2024-2025学年高三上学期9月月考试题 数学 (解析版)

数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号、在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,则( )A. B. C. D.2.下列函数在其定义域内单调递增的是( )A. B.C. D.3.已知等差数列满足,则( )A.2B.4C.6D.84.已知点是抛物线上一点,若到抛物线焦点的距离为5,且到轴的距离为4,则( )A.1或2B.2或4C.2或8D.4或85.已知函数的定义域为.记的定义域为集合的定义域为集合.则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知函数的定义域为.设函数,函数.若是偶函数,是奇函数,则的最小值为( )A.B.C.D.7.从的二项展开式中随机取出不同的两项,则这两项的乘积为有理项的概率为( ){}{}2230,1,2,3,4A xx x B =-->=∣A B ⋂={}1,2{}1,2,3{}3,4{}41y x=-2ln y x =32y x =e xy x ={}n a 376432,6a a a a +=-=1a =A ()2:20C y px p =>A A x p =()23f x -[]2,3()f x (),21xA f -B x A ∈x B ∈()f x R ()()e xg x f x -=+()()5e xh x f x =-()g x ()h x ()f x e 2e51x ⎫⎪⎭A.B. C. D.8.已知圆,设其与轴、轴正半轴分别交于,两点.已知另一圆的半径为,且与圆相外切,则的最大值为( )A.20B.C.10D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.离散型随机变量的分布列如下表所示,是非零实数,则下列说法正确的是( )20242025A.B.服从两点分布C.D.10.已知函数,下列说法正确的是( )A.的定义域为,当且仅当B.的值域为,当且仅当C.的最大值为2,当且仅当D.有极值,当且仅当11.设定义在上的可导函数和的导函数分别为和,满足,且为奇函数,则下列说法正确的是( )A.B.的图象关于直线对称C.的一个周期是4D.三、填空题(本大题共3小题,每小题5分,共15分)12.过点作曲线且的切线,则切点的纵坐标为__________.13.今年暑期旅游旺季,贵州以凉爽的气候条件和丰富的旅游资源为依托,吸引了各地游客前来游玩.由安25351323221:220C x y x y +--=x y M N 2C 1C 22C M C N ⋅X ,m n X Pm n1m n +=X ()20242025E X <<()D X mn=()()214log 21f x ax ax =-+()f x R 01a <<()f x R 1a …()f x 1516a =()f x 1a <R ()f x ()g x ()f x '()g x '()()()()11,3g x f x f x g x --=''=+()1g x +()00f =()g x 2x =()f x 20251()0k g k ==∑()0,0(0x y a a =>1)a ≠顺黄果树瀑布、荔波小七孔、西江千户苗寨、赤水丹霞、兴义万峰林、铜仁梵净山6个景点谐音组成了贵州文旅的拳头产品“黄小西吃晚饭”.小明和家人计划游览以上6个景点,若铜仁梵净山不安排在首末位置,且荔波小七孔和西江千户苗寨安排在相邻位置,则一共有__________种不同的游览顺序方案.(用数字作答)14.已知函数若存在实数且,使得,则的最大值为__________.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)下图中的一系列三角形图案称为谢尔宾斯基三角形.图(1)是一个面积为1的实心正三角形,分别连接这个正三角形三边的中点,将原三角形分成4个小正三角形,并去掉中间的小正三角形得到图(2),再对图(2)中的每个实心小正三角形重复以上操作得到图(3),再对图(3)中的每个实心小正三角形重复以上操作得到图(4),…,依此类推得到个图形.记第个图形中实心三角形的个数为,第n 个图形中实心区域的面积为.(1)写出数列和的通项公式;(2)设,证明.16.(本小题满分15分)如图,在三棱台中,和都为等腰直角三角形,为线段的中点,为线段上的点.(1)若点为线段的中点,求证:平面;(2)若平面分三棱台所成两部分几何体的体积比为,求二面角的正弦值.()223,0,ln ,0,x x x f x x x ⎧++=⎨>⎩…123,,x x x 123x x x <<()()()123f x f x f x ==()()()112233x f x x f x x f x ++n n n a n b {}n a {}n b 121121n n n n n c a b a b a b a b --=++++ 43n n n a c a <…111A B C ABC -111A B C V ABC V 111112,4,90,CC C A CA ACC BCC CBA G ∠∠∠====== AC H BC H BC 1A B ∥1C GH 1C GH 111A B C ABC -2:511C GH B --17.(本小题满分15分)已知双曲线与双曲线的离心率相同,且经过点的焦距为.(1)分别求和的方程;(2)已知直线与的左、右两支相交于点,与的左、右两支相交于点,D,,判断直线与圆的位置关系.18.(本小题满分17分)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)填写下面的列联表,并根据列联表及的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关;单位:只指标值抗体小于60不小于60合计有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率;(ii )以(i )中确定的概率作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记100个人注射2次疫苗后产生抗体的数量为随机变量.求及取最大值时的值.()2222:10,0x y M a b a b -=>>2222:12x y N m m-=M ()2,2,N M N l M ,A B N C AB CD=l 222:O x y a +=[)[)[)[)[]0,20,20,40,40,60,60,80,80,10022⨯0.01α=P P X ()E X ()P X k =k参考公式:(其中为样本容量)参考数据:0.1000.0500.0100.0052.7063.8416.6357.87919.(本小题满分17分)三角函数是解决数学问题的重要工具.三倍角公式是三角学中的重要公式之一,某数学学习小组研究得到了以下的三倍角公式:①;②.根据以上研究结论,回答:(1)在①和②中任选一个进行证明;(2)已知函数有三个零点且.(i )求的取值范围;(ii )若,证明:.()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++αx α3sin33sin 4sin θθθ=-3cos34cos 3cos θθθ=-()323f x x ax a =-+123,,x x x 123x x x <<a 1231x x x =-222113x x x x -=-贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号12345678答案DCBCBCAA【解析】1.由题,或,则,故选D.2.对于A 选项,的定义域为,该函数在和上单调递增,在定义域内不单调;对于B 选项,的定义域为,该函数在上单调递减,在上单调递增,在定义域内不单调;对于C 选项,,该函数在定义域上单调递增;对于D 选项,的定义域为,当时,;当时,,在上单调递减,在上单调递增,因此该函数在定义域内不单调,故选C.3.,故选B.4.设点,则整理得,解得或,故选C.5.的定义域为.当时,的定义域为,即.令,解得的定义域为,即.“”是“”的必要不充分条件,故选B.{1A xx =<-∣{}3},1,2,3,4x B >={}4A B ⋂=1y x=-()(),00,∞∞-⋃+(),0∞-()0,∞+2ln y x =()(),00,∞∞-⋃+(),0∞-()0,∞+32y x ==[)0,∞+e x y x =().1e xy x =+'R (),1x ∞∈--0y '<()1,x ∞∈-+0y '>x e y x ∴=(),1∞--()1,∞-+53756415232,16,26,3,44a a a a d a a d a a d =+===-===-= ()00,A x y 200002,5,24,y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩582p p ⎛⎫-= ⎪⎝⎭2p =8p =()23f x - []2,323x ……()1233,x f x -∴……[]1,3[]1,3A =1213x -……()12,21xx f ∴-……[]1,2[]1,2B =,B A ⊆∴ x A ∈x B ∈6.由题,解得,所以,即时,等号成立,C.7.设的二项展开式的通项公式为,,所以二项展开式共6项.当时的项为无理项;当时的项为有理项.两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为,故选A.8.由题,,即圆心为,且,为的直径.与相外切,.由中线关系,有,当且仅当时,等号成立,所以的最大值为20,故选A.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号91011答案ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,,正确;对于D 选项,令,则服从两点分布,,,正确,故选ACD.10.令,对于A 选项,的定义域为或,故A 错误;对于B 选项,的值域为在定义域内的值域为()()()()()()()(),e e ,5e 5e ,x xx xg x g x f x f x h x h x f x f x --⎧⎧=-+=-+⎪⎪⇒⎨⎨=---=--+⎪⎪⎩⎩()3e 2e x xf x -=+()3e 2e xxf x -=+…3e 2e x x -=12ln 23x =min ()f x ∴=51x ⎫⎪⎭53521551C C ,0,1,2kkk k kk T x k x --+⎛⎫=== ⎪⎝⎭3,4,50,2,4k =1,3,5k =223326C C 2C 5+=221:(1)(1)2C x y -+-=()11,1C ()()2,0,0,2M N MN 1C 1C 2C 12C C ∴=+=()()2222222222121222218240,202C M C NC M C N C C C MC M C N ++=+=⨯+=∴⋅=…22C M C N =22C M C N ⋅()()()202420252024120252024.01,20242025E X m n n n n n E X =+=-+=+<<∴<< 2024Y X =-Y ()()1D Y n n mn =-=()()()2024D X D Y D Y mn ∴=+==()2221,Δ44g x ax ax a a =-+=-()f x 0a ⇔=R 0,01Δ0a a >⎧⇔<⎨<⎩…()f x ()g x ⇔R,故B 正确;对于C 选项,的最大值为在定义域内的最小值为,故C 正确;对于D 选项,有极值在定义域内有极值且,故D 选项错误,故选BC.11.对于A 选项,因为为奇函数,所以,又由,可得,故A 错误;对于B 选项,由可得为常数,又由,可得,则,令,得,所以,所以的图象关于直线对称,故B 正确;对于C 选项,因为为奇函数,所以,所以,所以是一个周期为4的周期函数,,所以也是一个周期为4的周期函数,故C 正确;对于D 选项,因为为奇函数,所以,又,又是周期为4的周期函数,所以,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号121314答案144【解析】12.设切点坐标为切线方程为.将代入得,可得切点纵坐标为.13.先对小七孔和千户苗寨两个相邻元素捆绑共有种方法,再安排梵净山的位置共有种方法,再排其()0,0,1Δ0a a ∞>⎧+⇔⇔⎨⎩……()f x ()2g x ⇔()0,11511616116a a g >⎧⎪⇔⇔=⎨=⎪⎩()f x ()g x ⇔()0,110a a g ≠⎧⇔⇔<⎨>⎩0a ≠()1g x +()10g =()()11g x f x --=()()()101,01g f f -==-()()3f x g x '=+'()()3,f x g x C C =++()()11g x f x --=()()11g x f x --=()()131g x g x C --+-=1x =-()()221g g C --=1C =-()()()13,g x g x g x -=+2x =()1g x +()()()311g x g x g x +=-=-+()()()()()2,42g x g x g x g x g x +=-+=-+=()g x ()()()()()()31,47131f x g x f x g x g x f x =+-+=+-=+-=()f x ()1g x +()()()()10,204g g g g ==-=-()()310g g ==()g x 20251()(1)0k g k g ===∑e33e 6-(),,ln ,txt a y a a ='∴ ln x y a a x =⋅(),tt aln tta a t a ⋅=1log e,ln a t a==∴e log e t a a a ==22A 13C余元素共有种排法,故共有种不同的方案.14.设,由的函数图象知,,又,.令在上单调递增,则,的最大值为.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列是首项为1,公比为3的等比数列,因此;数列是首项为1,公比为的等比数列,因此,.(2)证明:由(1)可得因为,所以,所以.16.(本小题满分15分)(1)证明:如图1,连接,设,连接,44A 214234A C A 144⋅⋅=()()()123f x f x f x t ===()f x 23t <…1232,ln x x x t +=-= ()()()3112233e ,2e t t x x f x x f x x f x t t =∴++=-+()()()()2e ,23,1e 20,t t t t t t t t t ϕϕϕ'=-+<=+->∴…(]2,3()3max ()33e 6t ϕϕ==-()()()112233x f x x f x x f x ∴++33e 6-{}n a 11133n n n a --=⨯={}n b 341133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭1210121121121333333334444n n n n n n n n n c a b a b a b a b ------⎛⎫⎛⎫⎛⎫⎛⎫=++++=⋅+⋅++⋅+⋅ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12101111134444n n n ---⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦121114134311414n nn n --⎡⎤⎛⎫⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=⋅=⋅⋅-⎢⎥⎪⎝⎭⎢⎥⎣⎦-2114314411334n n nnn nc a --⎡⎤⎛⎫⋅⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥⎪⎝⎭⎢⎥⎣⎦413n n c a <…43n n n a c a <…1AC 11AC C G O ⋂=1,HO A G三棱台,则,又,四边形为平行四边形,则.点是的中点,.又平面平面,平面.(2)解:因为平面分三棱台所成两部分几何体的体积比为,所以,即,化简得,此时点与点重合.,且都在平面,则平面,111A B C ABC -11AC ∥AC 122CG AC ==∴11AC CG 1CO OA = H BC 1BA ∴∥OH OH ⊂11,C HG A B ⊄1C HG 1A B ∴∥1C HG 1C GH 111A B C ABC -2:511127C GHC AB V V B C ABC -=-()1111121373GHC ABC AB C S CC S S CC ⋅⋅=⋅⋅+⋅V V V 12GHC ABC S S =V V H B 1190C CA BCC ∠∠== 11,,C C BC CC AC BC AC C ∴⊥⊥⋂=ABC 1CC ⊥ABC又为等腰直角三角形,则.又由(1)知,则平面,建立如图2所示的坐标系则,设平面的法向量,则令,解得,设平面的法向量,则令,解得.设二面角的平面角为,,所以,所以二面角.17.(本小题满分15分)解:(1)由题意可知双曲线的焦距为,解得,即双曲线.因为双曲线与双曲线的离心率相同,不妨设双曲线的方程为,因为双曲线经过点,所以,解得,则双曲线的方程为.ABC V BG AC ⊥1A G ∥1CC 1A G ⊥ABC ,G xyz -()()()()2,0,0,0,2,0,0,0,0,0,2,0H A G C -()()110,2,2,1,1,2C B --1C HG ()()()1,,,0,2,2,2,0,0n x y z GC GH ==-= 220,20,y z x -+=⎧⎨=⎩1y =()0,1,1n = 1B GH ()()1,,,1,1,2m a b c GB ==- 20,20,a b c a -+=⎧⎨=⎩2b =()0,2,1m = 11C GH B --θcos cos ,m n m n m n θ⋅=<>=== sin θ==11C GH B --N =21m =22:12y N x -=M N M 222y x λ-=M ()2,242λ-=2λ=M 22124x y -=(2)易知直线的斜率存在,不妨设直线的方程为,联立消去并整理得此时可得,当时,由韦达定理得;当时,由韦达定理得,则,化简可得,由(1)可知圆,则圆心到直线的距离,所以直线与圆相切或相交.18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为:在内有(只);在)内有(只);在)内有(只);在)内有(只);在内有(只)由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:单位:只l l ()()()()11223344,,,,,,,,y kx t A x y B x y C x y D x y =+22,,2y kx t y x λ=+⎧⎪⎨-=⎪⎩y ()2222220,k x ktx t λ----=()()222222Δ44220,20,2k t k tt k λλ⎧=+-+>⎪⎨--<⎪-⎩22k <2λ=212122224,22kt t x x x x k k--+==--1λ=234342222,22kt t x x x x k k--+==--ABCD ====222t k +=22:2O x y +=O l d ====l O [)0,200.00252020010⨯⨯=[20,400.006252020025⨯⨯=[40,600.008752020035⨯⨯=[60,800.025********⨯⨯=[]80,1000.00752020030⨯⨯=10253570++=指标值抗体小于60不小于60合计有抗体50110160没有抗体202040合计70130200零假设为:注射疫苗后小白鼠产生抗体与指标值不小于60无关联.根据列联表中数据,得.根据的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.(2)(i )令事件“小白鼠第一次注射疫苗产生抗体”,事件“小白鼠第二次注射疫苗产生抗体”,事件“小白鼠注射2次疫苗后产生抗体”.记事件发生的概率分别为,则,.所以一只小白鼠注射2次疫苗后产生抗体的概率.(ii )由题意,知随机变量,所以.又,设时,最大,所以解得,因为是整数,所以.19.(本小题满分17分)(1)若选①,证明如下:若选②,证明如下:.0H 220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯0.01α=A =B =C =,,A B C ()()(),,P A P B P C ()()160200.8,0.520040P A P B ====()1P C =-()()10.20.50.9P A P B =-⨯=0.9P =()100,0.9X B ~()1000.990E X np ==⨯=()()C 0.90.10,1,2,,k k n k n P X k k n -==⨯⨯= 0k k =()P X k =00000000000010011910010010011101100100C 0.90.1C 0.90.1,C 0.90.1C 0.90.1,k k k k k k k k k k k k -++-----⎧⨯⨯≥⨯⨯⎪⎨⨯⨯≥⨯⨯⎪⎩089.990.9k ……0k 090k =()()22sin3sin 2sin2cos cos2sin 2sin cos 12sin sin θθθθθθθθθθθ=+=+=+-()()2232sin 1sin 12sin sin 3sin 4sin θθθθθθ=-+-=-()()22cos3cos 2cos2cos sin2sin 2cos 1cos 2sin cos θθθθθθθθθθθ=+=-=--()3232cos cos 21cos cos 4cos 3cos θθθθθθ=---=-(2)(i )解:,当时,恒成立,所以在上单调递增,至多有一个零点;当时,令,得;令,得令,得或所以在上单调递减,在上单调递增.有三个零点,则即解得,当时,,且,所以在上有唯一一个零点,同理所以在上有唯一一个零点.又在上有唯一一个零点,所以有三个零点,综上可知的取值范围为.(ii )证明:设,则.又,所以.此时,方程的三个根均在内,方程变形为,令,则由三倍角公式.因为,所以.()233f x x a =-'0a …()0f x '…()f x (),∞∞-+0a >()0f x '=x =()0f x '<x <<()0f x '>x <x >()f x ((),,∞∞-+()f x (0,0,f f ⎧>⎪⎨<⎪⎩2220,20,a a ⎧+>⎪⎨-<⎪⎩04a <<04a <<4a +>()()()()32224(4)3445160f a a a a a a a a a +=+-++=++++>()f x )4a +()2220,g a -<-=-=-<()f x (-()f x (()f x a ()0,4()()()()321233f x x ax a x x x x x x =-+=---()212301f a x x x ==-=04a <<1a =()()()()210,130,110,230f f f f -=-<-=>=-<=>3310x x -+=()2,2-3310x x -+=3134222x x ⎛⎫=⋅-⋅ ⎪⎝⎭ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭31sin33sin 4sin 2θθθ=-=3π3π3,22θ⎛⎫∈- ⎪⎝⎭7ππ5π7ππ5π3,,,,,666181818θθ=-=-因为,所以,所以.123x x x <<1237ππ5π2sin ,2sin ,2sin 181818x x x =-==222221π7ππ7π4sin 4sin 21cos 21cos 181899x x ⎛⎫⎛⎫-=-=--- ⎪ ⎪⎝⎭⎝⎭137ππ5π7π2cos 2cos 2sin 2sin 991818x x =-=--=-。

2022-2023学年内蒙古赤峰二中高二年级上册学期第一次月考(11月)数学(理)试题【含答案】

2022-2023学年内蒙古赤峰二中高二年级上册学期第一次月考(11月)数学(理)试题【含答案】

2022-2023学年内蒙古赤峰二中高二上学期第一次月考(11月)数学(理)试题一、单选题1.若直线过圆的圆心,则( )0x y a +-=22:2430C x y x y +--+==a A .0B .1C .2D .3D【分析】先求出圆的圆心坐标,根据圆心在直线上,代入即22:2430C x y x y +--+=0x y a +-=可求解.【详解】解:圆,22:2430C x y x y +--+=即,()()22122x y -+-= 圆的圆心坐标为:,∴C ()1,2将代入,()1,20x y a +-=即,120a +-=解得.3a =故选:D.2.直线,,若,则的值为( )1:310l ax y ++=2:2(1)10l x a y +--=12l l ∥a A .B .32C .或D .或3-232-A【分析】由直线与直线平行的判断条件求解即可【详解】因为直线,,且,1:310l ax y ++=2:2(1)10l x a y +--=12l l ∥所以,解得a =3,3121a a =≠--故选:A .3.已知平面,直线和,则下列命题中正确的是( ),,αβγm n A .若,则,m m αβ⊥⊥αβ∥B .若,则,αγβγ⊥⊥αβ∥C .若,则,m n m α⊥⊥n α∥D .若,则,m n αα∥∥m n ∥A【分析】对于A 选项,垂直于同一条直线的两个平面互相平行;对于B 选项,垂直于同一个平面的两个平面有可能相交,也有可能互相平行;对于C 选项,由线面垂直的性质即可判断;对于D 选项,平行于同一个平面的两条直线有可能相交、平行或异面.【详解】选项A 正确,因为垂直于同一直线的两个平面互相平行;选项B 错误,平面和也可以相交;αβ选项C 错误,直线可能在平面内;n α选项D 错误,直线和还可能相交或者异面.m n 故选:A.4.已知体积公式中的常数称为“立圆率”.对于等边圆柱(轴截面是正方形的圆柱),正方3V kD =k 体,球也可利用公式求体积(在等边圆柱中,表示底面圆的直径;在正方体中,表示3V kD =D D 棱长,在球中,表示直径).假设运用此体积公式求得等边圆柱(底面圆的直径为),正方体D a (棱长为),球(直径为)的“立圆率”分别为,,,则( )a a 1k 2k 3k 123::k k k =A .B .:1:46ππ:2:46ππC .D .3:2:2π111::64πA【分析】根据体积公式分别求出“立圆率”即可得出.【详解】因为,所以,231=2a V a k a π⎛⎫⨯⨯= ⎪⎝⎭圆柱14k π=因为,所以,332V a k a ==正方体21k =因为,所以,333432a V k a π⎛⎫=⨯= ⎪⎝⎭球36k π=所以.123::k k k =:1:46ππ故选:A.5.点P 为椭圆上一点,,为该椭圆的两个焦点,若,则( )22416x y +=1F 2F 13PF =2PF =A .13B .1C .7D .5D【分析】写出椭圆的标准方程,由椭圆的定义得到,从而求出答案.1228PF PF a +==【详解】椭圆方程为:,由椭圆定义可知:,221416x y +=1228PF PF a +==故25PF =故选:D 6.已知函数,则不等式的解集是( )()2log 1f x x x =-+()0f x <A .B .()1,2()(),12,-∞+∞ C .D .()0,2()()0,12,⋃+∞D【分析】由可得,在同一坐标系中作出两函数的图象,即可得答案.()0f x <2log 1x x <-【详解】解:依题意,等价于,()0f x <2log 1x x <-在同一坐标系中作出,的图象,如图所示:2log y x =1y x =-如图可得的解集为.2log 1x x <-()()0,12,⋃+∞故选:D.7.下列函数中,同时满足:①在上是严格增函数;②以为周期;③是奇函数的函数是0,2π⎛⎫⎪⎝⎭2π( )A .B .()sin y x π=+cos y x =C .D .tan2x y =tan y x=-C【分析】由三角函数的单调性、周期性及奇偶性逐项判断即可得解.【详解】对于A ,,该函数在上单调递减,不合题意;()sin sin y x xπ=+=-0,2π⎛⎫ ⎪⎝⎭对于B ,,该函数在上单调递减,且为偶函数,不合题意;cos y x =0,2π⎛⎫⎪⎝⎭对于C ,,当时,,在上是增函数,tan2x y =0,2x π⎛⎫∈ ⎪⎝⎭0,24x π⎛⎫∈ ⎪⎝⎭tan 2x y =0,2π⎛⎫ ⎪⎝⎭最小正周期,且为奇函数,符合题意;212T ππ==对于D ,,在上单调递减,不合题意.tan y x =-0,2π⎛⎫ ⎪⎝⎭故选:C.8.已知圆:与圆:相外切,则的最大值为( 1C 22()(2)4x a y -++=2C 22()(1)1x b y +++=ab )A .2B C .D .494A【分析】由圆的方程求得圆心坐标与半径,再由两圆外切可得,要使取得最大值,则,2(=8)a b +ab a 同号,不妨取,,然后利用基本不等式求得的最大值.b 0a >0b >ab 【详解】圆的圆心为,半径,221:()(2)4C x a y -++=1(,2)C a -12r =圆的圆心为,半径,222:()(1)1C x b y +++=2(,1)C b --21r =由圆C 1与圆C 2相外切,得1212||C C r r =+,3=∴;2(=8)a b +要使取得最大值,则,同号,不妨取,,ab a b 0a >0b >由基本不等式,得,当且仅当28()=224a b ab +∴≤=a b ==∴ab 的最大值为2.故选:A9.已知直线过第一象限的点和,直线的倾斜角为,则的最小值为( )l (),m n ()1,5l 135︒14m n +A .4B .9C .D .2332D【分析】由题得,再利用基本不等式求解.6(0,0)m n m n +=>>【详解】由题得,5tan1351,6(0,0)1n m n m n m -==-∴+=>>-所以.141141413()()(5(56662n m m n m n m n m n +=++=++≥+=当且仅当时取等.2,4m n ==所以的最小值为.14m n +32故选:D关键点睛:解答本题的关键在于“拼凑”化简,再利用基本不等式求解.14114()()6m n m n m n +=++10.瑞士数学家欧拉1765年在其所著的《三角形几何学》一书中提出:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线. 已知的顶点,则欧拉线的方程为( )ABC ()()()4,0,0,2,0,3A B C -ABC A .B .230x y +-=230x y +-=C .D .230x y --=230x y --=D【分析】求出重心,求出边上的高和AC 边上的高的方程,联立可求出垂心,即可求出欧拉线AB 的方程.【详解】由题可得的重心为,ABC 41,33G ⎛⎫- ⎪⎝⎭直线的斜率为,所以边上的高的斜率为2,则边上的高的方程为AB 021402-=--AB AB ,即,()320y x +=-230x y --=直线AC 的斜率为,所以AC 边上的高的斜率为,则AC 边上的高的方程为033404+=-43-,即,()4203y x -=--4360x y +-=联立可得垂心坐标为,2304360x y x y --=⎧⎨+-=⎩3,02H ⎛⎫⎪⎝⎭则直线GH 的斜率为,则直线GH 的方程为,10324332--=-3022y x ⎛⎫-=- ⎪⎝⎭所以欧拉线的方程为.ABC 230x y --=故选:D.11.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳌臑”.如图,在堑堵中,,且.下列说法错误的是( )111ABC A B C -AC BC ⊥12AA AB ==A .四棱锥为“阳马”11B A ACC -B .四面体为“鳖臑”11AC CB C .四棱锥体积的最大值为11B A ACC -23D .过A 点作于点E ,过E 点作于点F ,则面AEF1AE A B ⊥1EF A B ⊥1A B ⊥C【分析】根据“阳马”和“鳖膈”的定义,可判断A ,B 的正误;当且仅当时,四棱锥AC BC =体积有最大值,求值可判断C 的正误;根据题意可证平面,进而判断D 的11B A ACC -1A B ⊥AEF 正误.【详解】底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”,∴在堑堵中,,侧棱平面,111ABC A B C -AC BC ⊥1AA ⊥ABC A 选项,∴,又,且,则平面,1AA BC ⊥AC BC ⊥1AA AC A = BC ⊥11A ACC ∴ 四棱锥为“阳马”,故A 正确;11B A ACC -B 选项,由,即,又且,AC BC ⊥11A C BC ⊥111AC C C ⊥1BC C C C ⋂=∴平面,∴,则为直角三角形,11A C ⊥11BB C C 111A C BC ⊥11A BC 又由平面,得为直角三角形,由“堑堵”的定义可得为直角三角形,BC ⊥11AA C C 1A BC 11AC C 为直角三角形,∴ 四面体为“鳖膈”,故B 正确;1CC B 11AC CBC 选项,在底面有,即,当且仅当2242AC BC AC BC =+≥⋅2AC BC ⋅≤AC BC ==,最大值为,故C 错误;1111111243333B A ACC A ACC V S BC AA AC BC AC BC -=⨯=⨯⨯=⨯≤43D 选项,因为,,,所以平面,故D 正确;1AE A B ⊥1EF A B ⊥AE EF E ⋂=1A B ⊥AEF 故选:C12.已知分别为椭圆的左、右焦点,过的直线与交于两点,12,F F 2222:1(0)x y C a b a b +=>>1F C ,P Q 若,则的离心率是( )12125PF PF F Q==CA B C D D【分析】由已知,画出图像,根据,可令,然后表示出,,12125PF PF F Q==1F Q t=1PF 2PF 然后利用椭圆定义找到与之间的关系,然后用分别表示出、、,在中,t a a PQ1QF 2QF 2PQF 利用勾股定理判定,然后在中,可表示出与之间的关系,从而求解离心率.2π2QPF ∠=12PF F △c a 【详解】由已知,可根据条件做出下图:因为,令,12125PF PF F Q==1F Q t=所以,,由椭圆的定义可知,15PF t =252PF t =125152522PF PF a t t t +==+=所以,所以,,,,415t a =143PF a =223PF a=1415F Q a =11442431515PQ PF F a a a Q =+=+=由椭圆的定义可知,12226215QF QF a QF a +=⇒=在中,,所以,2PQF 22222QF QP PF =+2π2QPF ∠=在中, ,所以12PF F △122FF c =2112222F F F P PF =+所以2222216454999c c a a c e a a +=⇒=⇒==所以C 故选:D.二、填空题13.若点在圆的外部,则实数a 的取值范围是___________.()1,1()225x a y -+=()(),13,-∞-⋃+∞【分析】根据题意,建立不等式即可求解.【详解】由题意可知,解得或,()22115a -+>1a <-3a >则实数a 的取值范围是,()(),13,-∞-⋃+∞故()(),13,-∞-⋃+∞14.数列中,,则__________.{}n a 23n S n n=+n a =22n +当时,,当时,根据,即可求得,综合即可得答案.1n =114a S ==2n ≥1n n n a S S -=-n a 【详解】当时,,1n =114a S ==当时,,2n ≥221(1)3(1)2n S n n n n -=-+-=+-所以,2213(2)22n n n a S S n n n n n -=-=+-+-=+又,满足上式,所以,14a =*22()n n n N a =+∈故22n +15.若三棱锥的各顶点都在球的表面上,,-P ABC O AB BC CA ===PA PB PC ===则球的表面积为___________.O 64π【分析】由已知条件可知三棱锥是正三棱锥,设的中心为,则外接球的球心在-P ABC ABC 1O O 所在直线上,在在中,由勾股定理求得外接球半径,再由球的表面积公式即可求解.1PO 1Rt AOO R【详解】因为三棱锥中,,-P ABC AB BC CA ===PA PB PC ===所以此三棱锥为正三棱锥,设底面的中心为,连接并延长交于点,则为的中点,ABC 1O 1AO BC D D BC 外接球球心在所在直线上,O 1PO因为,AB =122433AO AD ==⨯=因为,所以,PA =14PO ===设球的半径为,在中,,,,O R 1Rt AOO 14AO =AO R =14OO R =-由可得,解得,12122OO AO AO +=()22164R R +-=4R =所以即为球心,球的半径,所以球的表面积为.1O O 4R =O 24π464π⨯=故答案为.64π16.某海轮以海里/时的速度航行,在点测得海面上油井在南偏东方向上,向北航行30A P 60分钟后到达点,测得油井在点的南偏东方向上,海轮改为北偏东的航向再行驶40B P B 30 60 分钟到达点,则、间的距离为______海里.80C P C【分析】根据题意,画出草图,在中由正弦定理解出,在中,根据勾股定理求ABP BP Rt BPC △得.PC 【详解】如图,在中,(海里),ABP 40302060AB =⨯=,,120BAP ∠=︒30BPA ∠=︒由,得,sin sin AB BPBPA BAP =∠∠20sin 30sin120BP =解得海里.BP =在中,(海里),BPC △80304060BC =⨯=由已知得,90PBC ∠=︒所以(海里),PC ===所以、间的距离为P C故答案为.三、解答题17.已知斜率k且过点A (5,﹣4)的直线l 1与直线l 2:x ﹣2y ﹣5=0相交于点P .12=-(1)求以点P 为圆心且过点B (4,2)的圆C 的标准方程:(2)求过点Q (﹣4,1)且与圆C 相切的直线方程.(1)(x ﹣1)2+(y +2)2=25;(2)x =﹣4或8x ﹣15y +47=0【分析】(1)先求出直线的方程,与直线联立求出点P ,P 为圆心且过点B ,可得半径,即得标1l 2l 准方程;(2)根据圆的方程可知点Q 在圆外,设过Q 点圆的切线方程为l ,当直线斜率存在时,由点到直线的距离等于圆的半径可求得斜率k ,当斜率不存在时,x =﹣4复合题意,综上,即得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三上期11月月考试题
数 学(理)
一、选择题(本大题共12小题,每小题5分,共60分) 1.复数3i z i =
+ (i 为虚数单位)的共轭复数为( ) A .131010
i +
B .
131010
i - C .
931010
i + D .
931010
i -
2.已知角α的终边上有一点(1,3)P ,则sin()sin()
22cos(2)
π
παααπ--+-的值为( )
A .1
B .45
-
C .1-
D .4-
3.已知展开式中,各项系数的和与其各二项式系数的和之比,则等于( ) A .
B .
C .
D .
4.已知实数0,0a b >>,若2是4a 与2b
的等比中项,则
12
a b
+的最小值是( ) A .
83
B .
113
C . 4
D .8
5.从数字中任取两个不同的数字构成一个两位数,这个两位数大于的概率是( ) A .
B .
C .
D .
6.已知单位向量,a b 满足a b a b +=-,则a 与b a -的夹角是( )
A .
6π B .3π C .4π D .
34
π
7.若sin cos 4sin 5cos αααα+=-,则cos2α=( )
A .2425-
B .725-
C .2425
D .
725
8.等差数列{a n }和{b n }的前n 项和分别为S n 与Tn ,对一切自然数n ,都有
n
n T S =132+n n
,则
5
5
b a 等于( ) A .
3
2
B .
14
9 C .
31
20 D .
17
11
9.已知P 是ABC ∆所在平面内一点,且20PB PC PA ++=,现将一粒黄豆随机撒在
ABC ∆内,则黄豆落在PBC ∆内的概率是( )
A .
14
B .
13
C .
12
D .
23
10.()5
2
2121x x ⎛⎫
+- ⎪⎝⎭
的展开式的常数项是( )
A .3
B .-2
C .2
D .-3
11.函数()()sin ()2
f x x π
ωϕϕ=+<
的图象如图所示,为了得到sin y x ω=的图象,只
需将()y f x =的图象上所有点( )个单位长度.
A .向右平移
6
π
B .向右平移
12
π C .向左平移
6
π D .向左平移
12
π 12.已知函数()f x 的导函数为()f x ',且对任意的实数x 都有5
()(2)()2
x f x e x f x -'=+-(e
是自然对数的底数),且(0)1f =,若关于x 的不等式()0f x m -<的解集中恰有唯一一个整数,则实数m 的取值范围是( ) A .(,0)2
e
-
B .(,0]2
e
-
C .3(,0]4
e -
D .39(,]42e e
-
二、填空题(本大题共4小题,每小题5分,共20分)
13.现要将五名大学生分配到四所学校实习,每名大学生只能去一所学校,每所学校至少一
名大学生,则不同分配方法有种.
14.已知各项均为正数的等比数列{a n },其前n 项和S n ,若S n =2,S 3n =14,则S 5n =_________. 15.函数1
1
y x =
-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于 .
16.等差数列{}n a 的前n 项和为n S ,已知21
()21
x x f x -=+,且22014(2)sin 3f a π-=,
20142015(2)cos
6
f a π
-=,则2015S =__________. 三、解答题(本大题共6小题,共70分)
17.已知n S 是正项数列{}n a 的前n 项和,()
2*2112,2n n n a S a a n N ++==-∈.
(1)证明:数列{}n a 是等差数列; (2)设()*2
n
n n a b n N =∈,求数列{}n b 的前n 项和n T .
18.一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何—个小球的可能性相同).
(1)求取出的3个小球中,含有编号为4的小球的概率;
(2)在取出的3个小球中,小球编号的最大值设为X ,求随机变量X 的分布列.
19.已知在锐角△ABC 中,a ,b ,c 为角A ,B ,C 所对的边,且(b ﹣2c )cosA=a ﹣2acos 2.
(1)求角A 的值; (2)若a=,求b+c 的取值范围.
20.已知函数()2211
sin 3sin cos cos 22
f x x x x x =
-. (1)求函数()y f x =在[]
0,π上的单调递增区间.
(2)若π7π,312α⎛⎫
∈ ⎪⎝⎭
且()35f α=,求π12f α⎛⎫+ ⎪⎝⎭的值.
21.已知函数2
()ln ()f x x a x a R =-+∈。

(1)当2a =时,求函数()f x 在点(1,(1))f 处的切线方程; (2)若函数2
()()22g x f x x x =-+,讨论函数()g x 的单调性;
(3)若(2)中函数()g x 有两个极值点12,x x 12()x x <,且不等式12()g x mx ≥恒成立,求实数m 的取值范围.
选做题,请从22,23题中任选一题作答,若两题都选,则按22题给分。

22.在直角坐标系xOy 中,直线1;2C x =-,圆()()2
2
2:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.
(1)求1C ,2C 的极坐标方程; (2)若直线3C 的极坐标方程为()4
R π
θρ=∈,
设23,C C 的交点为,M N ,求2C MN ∆的面积.
23.已知函数()|1||1|f x x x =-++.
(1)求不等式()3f x ≥的解集;
(2)若关于x 的不等式2
()2f x a x x >+-在R 上恒成立,求实数a 的取值范围.。

相关文档
最新文档