行列式及其性质
行列式知识点
行列式知识点行列式是线性代数中的重要概念之一,广泛应用于数学、物理、工程和计算机科学等领域。
本文将介绍行列式的基本概念、性质和计算方法,帮助读者更好地理解和应用行列式知识。
一、行列式的定义行列式是一个与矩阵相关的数值。
对于一个n阶方阵A,它的行列式表示为det(A),其中n表示方阵的阶数。
行列式的计算涉及到矩阵的元素和排列的概念,下面将详细介绍。
二、行列式的性质1. 行列式的对角线规则:对于一个n阶方阵A,行列式det(A)等于主对角线元素相乘的积减去次对角线元素相乘的积。
2. 行列式的性质之一:交换行(列)位置,行列式的值不变。
3. 行列式的性质之二:若行(列)中有两行(列)元素成比例,行列式的值为0。
4. 行列式的性质之三:行列式的某一行(列)乘以一个数k,等于行列式的值乘以k。
三、行列式的计算方法1. 二阶和三阶行列式的计算:对于二阶行列式A,可以用交叉相乘法计算,即ad-bc。
对于三阶行列式A,可以用Sarrus法则计算。
2. 高阶行列式的计算:对于n阶行列式A,可以利用拉普拉斯展开定理进行计算。
具体步骤是选择一行(列)作为展开行(列),将行列式展开为以该行(列)元素为首的n个代数余子式的乘积之和。
四、行列式的应用1. 线性方程组的解:行列式可以用于求解线性方程组的解。
若系数矩阵的行列式不为0,则方程组有唯一解;若行列式为0,则方程组无解或有无穷解。
2. 矩阵的逆:若一个n阶方阵A的行列式不为0,则矩阵A可逆,且其逆矩阵A^{-1}的元素可以用A的伴随矩阵元素和行列式的倒数表示。
3. 坐标变换:在几何学中,行列式可以用于坐标变换。
例如,二维平面上坐标变换时,坐标的旋转、平移和缩放可以用行列式进行表示。
五、总结本文介绍了行列式的基本概念、性质和计算方法,并提供了行列式在线性方程组、矩阵逆和坐标变换中的应用。
行列式作为线性代数中的基础知识,对于深入理解和应用相关领域的知识具有重要作用。
通过学习和掌握行列式的知识点,读者可以更好地理解相关的数学和科学问题,并灵活运用行列式进行问题求解和分析。
线性代数行列式的性质与计算
下页
2 1 3 1
例1. 计算行列式 D = 3 1 0 7 1 2 4 2 1 0 1 5
解:
1 0 1 5 r2 3r1 1 0 1 5
r3 +r1
r1r4 3 1 0 7 0 1 r4 2r1 3 8
D =
=
1 2 4 2
02 3 3
2 1 3 1
0 1 1 11
令Aij=(1)i+jMij, Aij称为元素aij的代数余子式.
例如,求4阶行列式中a32的代数余子式
a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a41 a42 a43 a44
M32=
A32= (1)3+2M32 = M32
a11 a13 a14 a21 a23 a24 a41 a43 a44
下页
范得蒙(Vandermonde)行列式
1
a1 a12 Dn = a1n3 a1n2 a1n1
下页
1
1
0
Dn
=
0
0
0
a2 a1 a22 a1a2
a2n2 a1a2n3
a2n1 a1a2n2
1
a3 a1 a32 a1a3
a3n2 a1a3n3 a3n1 a1a3n2
1
an a1
an2 a1an
ann2 a1ann3
ann1 a1ann2
a2 a1 a22 a1a2
按第二列展开
D=a12A12 +a22A22 +a32A32
=0 (1)1+2 1 3 +1 (1)2+2 1 2 +3 (1)3+2 1 2
行列式的运算法则
行列式的运算法则行列式是线性代数中的一个重要概念,它在矩阵运算和方程组求解中起着重要的作用。
行列式的运算法则是指对于不同类型的行列式,我们可以通过一系列的运算来求得其值。
本文将介绍行列式的运算法则,包括行列式的定义、性质以及常见的运算方法。
1. 行列式的定义行列式是一个数学概念,用来描述一个方阵(即行数等于列数的矩阵)所固有的一种性质。
对于一个n阶方阵A,其行列式记作det(A),可以通过以下方法来计算:- 当n=1时,det(A) = a11,即一个1阶方阵的行列式就是它的唯一元素。
- 当n=2时,det(A) = a11 * a22 - a12 * a21,即一个2阶方阵的行列式是其主对角线上元素的乘积减去次对角线上元素的乘积。
- 当n>2时,可以通过递归的方法将n阶方阵的行列式表示为n-1阶方阵的行列式的线性组合,直到n=2时再利用上述方法计算。
2. 行列式的性质行列式具有许多重要的性质,其中包括:- 互换行列式的两行(列)会改变行列式的符号,即det(-A)= (-1)^n * det(A),其中n为方阵的阶数。
- 如果方阵A的某一行(列)全为0,则det(A) = 0。
- 如果方阵A的两行(列)成比例,则det(A) = 0。
- 如果方阵A的某一行(列)是另一行(列)的线性组合,则det(A) = 0。
- 如果方阵A的某一行(列)加上另一行(列)的k倍,行列式的值不变。
3. 行列式的运算法则在实际应用中,我们经常需要对行列式进行一系列的运算,常见的运算包括:- 行列式的加法:如果方阵A、B的行数和列数相等,则它们的行列式可以相加,即det(A + B) = det(A) + det(B)。
- 行列式的数乘:如果方阵A的行列式为det(A),则kA的行列式为k^n * det(A),其中k为常数,n为方阵的阶数。
- 行列式的乘法:如果方阵A、B的行数和列数相等,则它们的行列式可以相乘,即det(AB) = det(A) * det(B)。
行列式的性质与计算方法
行列式的性质与计算方法行列式是线性代数中非常重要的概念,是矩阵的一个标量。
它可以用来描述线性方程组的解的情况,也可以用来判断矩阵是否可逆等。
在本文中,我们将探讨行列式的性质和计算方法。
一、行列式的性质1. 行列式与转置矩阵矩阵的转置是指将矩阵的行和列调换,得到的新矩阵称为原矩阵的转置矩阵。
如果行列式的元素都是实数,那么它的值不会受转置操作的影响,即$\left|A\right|=\left|A^{T}\right|$2. 行列式的行列互换行列式的行列互换是指将行列式的任意两行或两列互换位置,得到的新行列式称为原行列式的行列互换。
行列互换会改变行列式的符号,即$\left|A\right|=-\left|A_{i j}\right| \text { , } i \neq j$其中$A_{i j}$表示将矩阵$A$的第$i$行和第$j$列删除后得到的$(n-1)\times(n-1)$矩阵的行列式。
3. 行列式的元素线性组合如果一个行列式的某一列(或某一行)减去另一列(或行)的$k$倍,得到的新行列式的值等于原行列式的值乘以$k$,即$\left|\begin{array}{cccc}{a_{1}} & {a_{2}} & {\cdots} & {a_{n}} \\ {\vdots} & {} & {\vdots} & {\vdots} \\ {a_{i}} & {a_{i}} & {\cdots} & {a_{i}}+k a_{j} \\ {\vdots} & {} & {\vdots} & {\vdots} \\ {a_{j}}& {a_{j}} & {\cdots} &{a_{j}}\end{array}\right|=\left|\begin{array}{cccc}{a_{1}} & {a_{2}} & {\cdots} & {a_{n}} \\ {\vdots} & {} & {\vdots} & {\vdots} \\ {a_{i}} & {a_{i}} & {\cdots} & {a_{i}} \\ {\vdots} & {} & {\vdots} & {\vdots} \\ {a_{j}} & {a_{j}} & {\cdots} &{a_{j}}\end{array}\right|+k\left|\begin{array}{cccc}{a_{1}} &{a_{2}} & {\cdots} & {a_{n}} \\ {\vdots} & {} & {\vdots} & {\vdots} \\ {a_{i}} & {a_{i}} & {\cdots} & {a_{j}} \\ {\vdots} & {} & {\vdots}& {\vdots} \\ {a_{j}} & {a_{j}} & {\cdots} &{a_{j}}\end{array}\right|$4. 行列式的行列成比例如果一个行列式的某两行或某两列成比例,那么该行列式的值为$0$,即$\left|\begin{array}{cccc}{a_{1}} & {a_{2}} & {\cdots} & {a_{n}} \\ {\vdots} & {} & {\vdots} & {\vdots} \\ {k a_{i 1}} & {k a_{i 2}} & {\cdots} & {k a_{i n}} \\ {\vdots} & {} & {\vdots} & {\vdots} \\{a_{j}} & {a_{j}} & {\cdots} & {a_{j}}\end{array}\right|=0$其中$\left(a_{i 1}, a_{i 2}, \cdots, a_{i n}\right)$和$\left(a_{j 1},a_{j 2}, \cdots, a_{j n}\right)$是比例行列式的两行,$k$是一个非零实数。
行列式的性质及求解方法
行列式的性质及求解方法行列式是线性代数中的一个重要概念,具有广泛的应用领域,例如矩阵求逆、线性方程组的解法、空间向量的叉积等。
在本文中,我们将探讨行列式的性质及其求解方法。
一、行列式的定义及性质1.1 行列式的定义对于一个$n$阶方阵$A=[a_{ij}]$,定义它的行列式为:$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\\\end{vmatrix}=\sum_{\sigma \in S_n}(-1)^{\mathrm{sgn}(\sigma)}a_{1\sigma(1)}a_{2\sigma(2)}\cdotsa_{n\sigma(n)}$$其中,$\sigma$是$n$个元素的全排列,$S_n$表示$n$个元素的置换群,$\mathrm{sgn}(\sigma)$表示$\sigma$的符号,即$(-1)^k$,其中$k$为$\sigma$的逆序数。
1.2 行列式的性质- 行列式的值不变性行列式的值只与矩阵的元素有关,而与矩阵的行列变换或线性组合无关。
- 互换矩阵的两行或两列,行列式变号将矩阵的两行(列)互换,则该行列式的值取相反数。
- 矩阵的某一行(列)乘以一个数$k$,行列式的值乘以$k$将矩阵的某一行(列)乘以一个数$k$,则该行列式的值乘以$k$。
- 矩阵的某一行(列)加上另一行(列)的k倍,行列式不变将矩阵的某一行(列)加上另一行(列)的k倍,行列式的值不变。
- 方阵的行列式等于其转置矩阵的行列式$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\\\end{vmatrix}=\begin{vmatrix}a_{11} & a_{21} & \cdots & a_{n1} \\a_{12} & a_{22} & \cdots & a_{n2} \\\vdots & \vdots & \ddots & \vdots \\a_{1n} & a_{2n} & \cdots & a_{nn}\\\end{vmatrix}$$二、行列式的求解方法2.1 按定义计算法按照上述定义,计算行列式涉及到全排列的遍历与逆序数的计算,这种方法虽然理论上可行,但计算量较大,不适用于较大的矩阵。
行列式_克莱姆法则
是一算式.当n=1时,定义D1 a11 a11 ;当n 2时, 定义 a22 Dn (1)11 a11 an 2 a23 a2 n a21
1+n + +(-1) a1n
a23 a2 n an 3 ann (2.5)
(1)1 2 a12 a22 a2, n 1 an 2 an ,n 1
即:
b1 d1 b2 d 2
b3 d3 b1
b3 d1 d 2
注:行列式加法与矩阵加法不同。
性质5:将行列式某一行(列)的每个元素同 乘以数k后加于另一行(列)对应位置的元素 上,行列式不变。
例如:
a1 b1 c1 a2 b2 c2 a3 c3
性5
a1 c1 a1 c1 a2 b2 c2 a3 c3
0
推论 2
性2
c1 c2
性质4:如果行列式D中的某一行(列)的每一 个元素都写成两个数的和,则此行列式可以写 成两个行列式的和,这两个行列式分别为这两 个数为所在行(列)对应位置的元素,其他位 置元素与D相同。
a1 c1 a2 c2 a3 c3 a1 a2 b2 c2 c1 a3 c3 a1 c1 a2 c2 a3 d3 c3
1 0 0 0 1 0 E3 0 0 1
等……
1 0...... 0 0 1......0 E n ...... 0 0......1
●上三角形矩阵——主对角线下方元素全为零、上方的
元素不全为0的方阵。如:
D
a11 a12 a1n
a21 an1 a22 an 2 a2 n ann
行列式的运算法则公式
行列式的运算法则公式1.行列式的性质:(1)交换定理:对于n阶行列式,将其行与列调换,则行列式的值不变。
(2)对角线法则:对于n阶行列式,行标和列标的和为偶数,则行列式的值为主对角线上各元素的乘积之和;行标和列标的和为奇数,则行列式的值为主对角线上各元素的乘积之差。
2.行列式的递推公式:(1)二阶行列式:对于2阶行列式,行列式的值等于左上角元素乘以右下角元素,减去右上角元素乘以左下角元素。
(2)三阶行列式:对于3阶行列式,行列式的值等于三个主对角线上元素的乘积之和,减去三个副对角线上元素的乘积之和。
3.行列式的初等变换:(1)行(列)交换:交换两行(列),行列式的值不变。
(2)行(列)倍乘:将其中一行(列)的元素乘以k,行列式的值乘以k。
(3)行(列)倍加:将其中一行(列)的k倍加到另一行(列)上,行列式的值不变。
4.行列式的倍数的性质:(1)行(列)成比例:若有两行(列)是成比例的,则行列式的值为0。
(2)带公因子:若行(列)中存在公因子,可提出公因子,行列式的值等于公因子乘以去掉公因子的行列式的值。
5.行列式的秩:(1)非零行列式:对于非零行列式,如果有r行(列)成线性相关,则行列式的值为0。
(2)对角行列式:对于对角行列式,主对角线上的元素均不为0,则行列式的值等于主对角线上各元素的乘积。
6.行列式的乘改定义:(1) 行列式的乘积定义:两个行列式A和B的乘积定义为C=AB,其中C的元素为C_ij = ∑(A_i1*B_1j),即A的第i行与B的第j列对应元素的乘积之和。
(2)顺序可交换:行列式的乘法满足顺序可交换,即AB=BA。
7.行列式的乘积规则:(1)两个行列式的乘积的维数:如果A是m×n的矩阵,B是n×p的矩阵,则AB的维数为m×p。
(2)AB的行列式的值:如果AB的行列式的值存在,且A的行行列式的值不为0,B的列行列式的值不为0,则AB的行列式的值等于A的行列式的值乘以B的行列式的值。
行列式及其性质
行列式及其性质行列式是线性代数中的重要概念,它是一个正方形矩阵所具有的一个标量值。
在实际应用中,行列式有着广泛的用途,可以用来求解线性方程组、判断矩阵的可逆性以及描述线性变换的性质等。
本文将从定义、性质和应用等方面进行论述,以帮助读者更好地理解行列式及其相关概念。
一、行列式的定义行列式的定义涉及到矩阵元素的排列和正负号的组合。
对于一个n阶方阵A = [a_ij],其中a_ij表示矩阵A的第i行第j列的元素,则A的行列式记作|A|或det(A),即:|A| = a_11 * a_22 * ... * a_nn - a_11 * a_23 * ... * a_n(n-1) + a_12 *a_23 * ... * a_n(n-1) - ... + (-1)^(n-1) * a_1n * a_2(n-1) * ... * a_nn二、行列式的性质1. 行列式的性质1:行列式与转置若A是一个n阶方阵,则有det(A) = det(A^T),即行列式与其转置矩阵的行列式相等。
2. 行列式的性质2:行列式的倍数若将矩阵A的某一行(列)的元素都乘以同一个数k,得到矩阵B,则有det(B) = k * det(A)。
3. 行列式的性质3:交换行(列)若交换矩阵A的两行(列),得到矩阵B,则有det(B) = -det(A)。
4. 行列式的性质4:行列式的线性性质对于矩阵A的两行(列),如果将其中一行(列)的元素乘以一个数k后,加到另一行(列)对应位置上,则行列式的值不变。
5. 行列式的性质5:行列式的性质与矩阵的性质之间的关系如果矩阵A中存在一行(列)全为0,则行列式det(A) = 0;如果矩阵A的某一行(列)成比例,则行列式det(A) = 0。
三、行列式的应用1. 行列式在线性方程组求解中的应用行列式可以用来判断线性方程组的解的唯一性以及是否有解。
对于一个n阶齐次线性方程组,如果其系数矩阵的行列式不为零,则该方程组只有零解;如果行列式为零,则该方程组有非零解。
行列式的性质及其运用
1111
解: D 1
3
1
1 r1 r2 r3 r4
1
3
1
11 6
3
1
r2 r1
1 6 0 r3 r1
2
0
0
1131
1131
1 1 3 1 r4 r1 0 0 2 0
1113
1 1 1 3 1113
0002
6 23 48 .
1.2 行列式性质的运用
例题
ab
c
d
例 5 计算行列式 D a a b a b c
0 0 a 2a b
0 0 3a 7a 3b
00 0
a
1.2 行列式性质的运用
例题
方法二:
ab
c
a ab abc D
a 2a b 3a 2b c
d abcd 4a 3b 2c d
ab c
d
0 a r4 r3
r3 r2
ab
abc
r2 r1 0 a 2a b 3a 2b c
a 3a b 6a 3b c 10a 6b 3c d
a11 a12
a1n
a11
a12
a1n
ai1 ai2 D
a j1 a j2
ain
ai1 ka j1 ai2 ka j2
ri krj
a jn
a j1
aj2
ain ka jn a jn
an1 an2
ann
an1
an2
ann
1.1 行列式的性质
性质
性质 2、性质 3 和性质 5 常用来计算行列式,它们的标记如下. ① 互换 i,j 两行(列): ri rj (ci c j ) . ② 第 i 行(列)乘以某非零常数 k: kri (kci ) . ③ 将第 j 行(列)的 k 倍加到第 i 行(列)上: ri krj (ci kcj ) .
行列式的性质与计算行列式的性质有哪些行列式的计算方法
一、行列式的性质有哪些
(1) 行列式行列互换,其值不变;
(2) 互换两行(列),行列式的值变号;
(3) 某行(列)有公因子,可将公因子提出;
(4) 某行(列)的每个元素为两数之和,可以将行列式拆为两个行列式之和;
(5) 某行(列)的k倍加另一行(列),其值不变.
(6) 两行(列)成比例,其值为零;
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。
无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。
或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
二、行列式的计算方法是什么
1.若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。
因此化三角形是行列式计算中的一个重要方法。
2.化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。
这是计算行列式的基本方法重要方法之一。
因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。
3.原则上,每个行列式都可利用行列式的性质化为三角形行列式。
但对于阶数高的行列式,在一般情况下,计算往往较繁。
因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。
矩阵的行列式
矩阵的行列式行列式是线性代数中的一个重要概念,它在代数方程、矩阵计算和向量空间等方面都有广泛应用。
本文将介绍行列式的定义、性质和应用,并且重点解释行列式的计算方法。
一、行列式的定义行列式是一个方块矩阵中用一对竖线“| |”括起来的一个特殊代数表达式,可表示为:│a11 a12 … a1n││a21 a22 … a2n││ … … … … ││an1 an2 … ann│行列式的值可以用“det(A)”来表示,其中“A”为一个n阶方阵,即A 是一个n×n的矩阵,而“n”为行列式的阶数。
二、行列式的性质行列式具有以下几个重要的性质:1. 行对换的性质:如果行列式中交换了两行的位置,行列式的值会变号。
2. 列对换的性质:如果行列式中交换了两列的位置,行列式的值会变号。
3. 行成比例的性质:如果行列式中有两行成比例,行列式的值为零。
4. 元素乘法的性质:如果行列式中某一行的元素都乘以同一个数k,那么行列式的值也要乘以k。
5. 行列式具有可加性:如果行列式中某一行的每个元素都加上对应的另一行的元素,行列式的值保持不变。
这些性质是行列式计算的基础,可以通过这些性质来简化行列式的计算过程。
三、行列式的计算方法行列式的计算主要有两种方法:代数余子式法和按行(列)展开法。
1. 代数余子式法:代数余子式法是行列式计算的常用方法。
它通过选定行或列,将行列式展开为该行(列)上的元素与其对应的代数余子式的乘积之和,即:det(A) = a11A11 + a12A12 + … + a1nA1n其中,A11、A12、…、A1n就是a11、a12、…、a1n的代数余子式。
2. 按行(列)展开法:按行(列)展开法是行列式计算的另一种方法。
它通过选定一行(列),展开为该行(列)上的每个元素与对应的代数余子式乘积之和的形式,即:det(A) = a11C11 + a12C12 + … + a1nC1n其中,C11、C12、…、C1n就是a11、a12、…、a1n的代数余子式。
初数数学中的行列式公式详解
初数数学中的行列式公式详解行列式是初等数学中非常重要的概念之一,它在线性代数、线性方程组以及向量空间等领域具有广泛的应用。
本文将详细解析行列式的定义、性质和相关公式,帮助读者更好地理解和应用行列式。
一、行列式的定义行列式是一个方阵的标量量,它的值为一个数。
对于一个n阶方阵A=[a[i,j]],它的行列式记为|A|或det(A)。
行列式的计算需要按照一定的规则进行,下面将介绍常用的行列式计算方法。
二、行列式的计算方法1. 一阶行列式对于一个1×1的行列式,例如A=[a],它的值就是a。
2. 二阶行列式对于一个2×2的行列式,例如A=[a11,a12;a21,a22],它的值可以通过交叉相乘再相减的方法进行计算:|A|=a11·a22-a12·a21。
3. 三阶及以上的行列式对于三阶及以上的方阵,可以使用拉普拉斯展开或三角形法则进行计算。
拉普拉斯展开的思想是:把一个n阶行列式按照某一行(或列)的元素展开,然后递归地计算这些元素的(n-1)阶行列式,直到计算到二阶行列式为止。
三、行列式的性质行列式具有多种重要的性质,下面将介绍几条常用的性质。
1. 行列互换性质行列式的值不变,当互换它的任意两行(或两列)时。
2. 行列式倍乘性质行列式中的一行(或一列)的每个元素都乘上同一个数k,行列式的值也同样乘以k。
3. 行列式的展开性质行列式可以按任意一行(或一列)展开,得到的结果相同。
4. 行列式的转置性质一个方阵与其转置阵的行列式相等。
5. 行列式的相似性质相似矩阵的行列式相等。
四、常见的行列式公式1. 三阶行列式的展开式对于一个三阶行列式A=[a[i,j]],可以使用拉普拉斯展开进行计算:|A|=a11·a22·a33+a12·a23·a31+a13·a21·a32-a13·a22·a31-a12·a21·a33-a11·a23·a32。
行列式性质及其计算方法
目录页
Contents Page
1. 行列式基本定义与性质 2. 行列式的基本运算规则 3. 行列式的展开定理证明 4. 特殊行列式的计算方法 5. 行列式与矩阵的关系 6. 行列式在线性方程组中的应用 7. 行列式的几何意义解释 8. 行列式计算实例与解析
行列式性质及其计算方法
行列式与矩阵的关系
▪ 行列式与矩阵在计算科学中的实现
1.在计算机中,可以通过编写程序来实现行列式和矩阵的计算 。 2.常用的计算行列式的方法包括:化三角形法、按行(列)展 开法等。 3.对于大型矩阵,可以采用一些高效算法来计算行列式,例如 LU分解法、QR分解法等。
行列式性质及其计算方法
行列式在线性方程组中的应用
行列式的基本运算规则
▪ 拉普拉斯定理
1.在n阶行列式中,取定k行(列),由这k行(列)的元素所 构成的一切k阶子式与其代数余子式的乘积的和等于行列式。 2.拉普拉斯定理亦称按k行展开定理,是行列式计算的重要工 具之一,可以用于化简和计算行列式。在使用拉普拉斯定理时 ,需要选择合适的k行(列)进行展开,并注意计算过程中的 符号变化。 以上内容仅供参考,建议查阅线性代数书籍或咨询专业人士获 取更全面和准确的信息。
行列式性质及其计算方法
行列式的基本运算规则
行列式的基本运算规则
▪ 行列式基本性质
1.行列式与其转置行列式相等。 2.互换行列式的两行(列),行列式变号。 3.行列式的某一行(列)的所有的元素都乘以同一数k,等于 用数k乘此行列式。 行列式的基本性质是行列式计算的基础,必须熟练掌握。这些 性质表明了行列式的一些基本特性和变化规律,为行列式的计 算和化简提供了重要的依据和方法。在利用性质进行计算时, 需要注意性质的适用条件和范围,以及计算过程中的符殊行列式的计算方法
2.行列式的性质和展开
ain a jn ain ann
ain ain 0 ain ann
推论 如果行列式中两行(列)相同,则行列式值为0,即:
性质4 行列式的某一行(列)中所有的元素都乘 以同一数 k 等于用数k乘此行列式,即:
a12 ai 2 ai 2 an 2
ain ain a jn ann
ain ain ain ann
a11 a j1 ai1 an1
a11 ai1 ai1 an1
a12 a j2 ai 2 an 2
ai1 bi1 ai 2 bi 2 ain bin ai1 ai 2 ain bi1 bi 2 bin
性质3 互换行列式的两行(列) 则行列式变号即
a11 ai1 a j1 an1
a11 ai1 ai1 an1
a12 ai 2 a j2 an 2
a b 0 例3 a b满足什么条件时有 b a 0 0 ? 1 0 1 解 a b 0 b a 0 a2b2 1 0 1
若要a2b20 则a与b须同时等于零 因此当a0且b0时 给定的行列式等于零
r4r3 r3r2 解 D r2r1 a b c d abc 0 a ab 0 a 2ab 3a2bc 0 a 3ab 6a3bc r4r3 a b c d r3r2 0 a ab abc 0 0 a 2ab 0 0 a 3ab a b c d r4r3 0 a ab abc a4 0 0 a 2ab 0 0 0 a
性质4行列式的某一行列中所有的元素都乘以同一数推论如果行列式中有两行列成比例则行列式值为0性质5把行列式的某一行列的各元素乘以同一数然后加到另一行列对应的元素上去行列式不变a是任意的n阶矩阵对于n阶的初等阵e有deteadetedeta以及detaedetadete推论利用上述的性质和推论结合特殊类型的行列式的结果可以计算一般的行列式
行列式的性质及应用知识点总结
行列式的性质及应用知识点总结行列式是线性代数中一个重要的概念,对于矩阵运算和求解线性方程组等问题具有重要的应用价值。
本文将对行列式的性质及其在实际问题中的应用进行总结,以帮助读者更好地理解和应用这一概念。
一、行列式的定义和性质1. 行列式的定义行列式是一个与方阵相关的标量,在实际运算中通常用大写字母表示。
对于一个n阶方阵A = (a_ij),其行列式记作det(A)或|A|,其中a_ij代表矩阵A的第i行第j列的元素。
2. 行列式的性质(1)行列互换性:如果交换矩阵的两行(列),行列式的值不变,即|A| = -|A' |,其中A'是A行列互换后的矩阵。
(2)行列式的倍乘性:如果矩阵A的某一行(列)的元素分别乘以同一常数k,那么行列式的值也相应地乘以k,即|kA|=k^n|A|。
(3)行列式的加性:如果有两个矩阵A和B,它们唯一的区别是其中某一行(列)不同,那么这两个行列式的和等于另一个行列式,即|A+B|=|A'|+|B|。
(4)行列式的三角形性质:如果矩阵A是一个上(下)三角矩阵,那么它的行列式等于对角线上各元素的乘积,即|A| = a_11 * a_22 * ... *a_nn。
二、行列式的应用1. 矩阵的逆行列式在求解矩阵的逆时起到关键作用。
如果一个n阶方阵A存在逆矩阵A^-1,那么有A * A^-1 = I,其中I是单位矩阵。
利用行列式的性质,我们可以通过求解行列式的值来判断矩阵是否可逆,即当|A| ≠ 0时,矩阵A可逆。
2. 线性方程组的求解行列式也可以应用于求解线性方程组。
对于一个有n个未知数和n 个方程的线性方程组,可以使用Cramer法则来求解,其中每个未知数的值等于其对应行列式除以总行列式的值,即x_i = |A_i| / |A|,其中A_i是将方程组中第i个未知数对应的列替换为方程组右侧的常数列得到的矩阵。
3. 矩阵的秩行列式还可以用于求解矩阵的秩。
矩阵的秩是一个衡量矩阵线性无关性的指标,它表示矩阵的行(列)向量组的最大线性无关组的向量个数。
行列式
行列式的定义定义1.1 n阶行列式即:n2个数构成的n阶行列式等于所有取自不同行与不同列元素乘积的代数和。
一共有n!项,一半带负号,一半带正号。
其中为任意一个n级排列,为n级排列的逆序数。
我们知道n级排列一共有n!种。
行列式的性质性质1.1. 转置性质:行列式的行和列互换,其值不变。
这个性质说明行列式中行和列的地位是相当的,对称的。
通常,人们把一个行列式的第i行元素依次写成第j列()的元素,所得的新的行列式称为原行列式的转置行列式。
如果原行列式记作D,则其转置行列式记作D T。
由性质1知,。
性质1.2. 互换性质:行列式的两行(两列)互换,其值变号。
也就是说,交换行列式两行(两列)的所有对应位置上的元素,所得的新的行列式的值等于原行列式的值的相反数。
性质1.3. 数乘性质:若行列式的某行(某列)有公因子k,则可把公因子k提到行列式外面。
即:,若把上述等式反过来看,即:,也可认为:数k与一个行列式的乘积等于在该行列式的某一行或某一列中各元素乘以k.性质1.4. 倍加性质(消法性质):把行列式某行(某列)的所有元素的k倍,加到另一行(另一列)的相应元素上去,所得的新的行列式的值等于原行列式的值。
性质1.5. 加法性质:如果行列式有某行(列)的所有元素均可写成两个加数的和,即该行(列)有两个分行(分列),则这个行列式等于两个行列式的和,而这两个行列式分别以这两个分行(分列)为该行(列),其他行(列)与原行列式相同。
例:行列式按行、按列展开法则定理1.1 n阶行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即(1.1)(1.2)定理1.2 n阶行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即(1.3)(1.4)三、典型例题剖析数字型行列式类型:按形状【考点一】形如的行列式称为两条线形行列式,可直接展开降阶,利用行列式按行、按列展开法则进行计算。
【例题1·填空题】n阶行列式【答疑编号811010101:针对该题提问】按第一列展开【考点二】形如的行列式称为范德蒙行列式。
行列式及其性质
在求解特征值和特征向量的过程中,首先需要构建特征多项式,这个多项式的根即为特征值。而特征 多项式就是由原矩阵的行列式按照一定规则构造出来的,因此,利用行列式可以方便地找到特征值。 找到特征值后,再通过求解线性方程组可以得到对应的特征向量。
THANK YOU
感谢聆听
代数余子式的性质
代数余子式与原来的行列式具 有相同的符号。
行列式的转置
定义
行列式的转置是将行列式的行变为列,列变为行。
计算方法
将行列式的行和列互换,得到一个新的行列式即 为原行列式的转置。
转置的性质
行列式的转置与原行列式具有相同的值。
行列式的乘法性质
定义
01
两个行列式相乘得到一个新的行列式。
计算方法
05
行列式的应用实例
在线性方程组求解中的应用
总结词
行列式在求解线性方程组中起到关键作用,通过克拉默法则,可以基于行列式 值直接求解方程组。
详细描述
在求解线性方程组时,克拉默法则利用了行列式的性质,通过计算方程组系数 行列式,然后对每个方程分别除以对应的系数行列式,从而得到方程的解。
在矩阵求逆中的应用
02
将一个行列式的行与另一个行列式的列相乘,得到一个新的行
列式即为两个行列式的乘积。
乘法性质
03
两个行列式相乘时,其结果行列式的行和列的元素等于原来两
个行列式对应元素相乘之和。
行列式的加法性质
01
02
03
定义
两个同阶行列式相加得到 一个新的行列式。
计算方法
将两个同阶行列式的对应 元素相加,得到一个新的 行列式即为两个行列式的 和。
性质
三阶行列式满足交换律、结合律和代数余子式定理 。
行列式性质详解及应用
行列式性质详解及应用行列式是线性代数中的一个重要概念,用于描述矩阵的性质和解决线性方程组的问题。
本文将详细解析行列式的性质以及其在数学和实际问题中的应用。
一、行列式的定义与基本性质行列式是一个方阵所对应的一个数值,它由矩阵中的元素按照一定的规则组合而成。
设A为n阶矩阵,A的行列式记作|A|或det(A)。
根据定义,当n=1时,矩阵A的行列式即为该矩阵的唯一元素;当n>1时,A的行列式由以下公式计算:|A| = a11·A11 + a12·A12 + … + a1n·A1n其中,a11为A的元素,A11是删去第1行第1列后的(n-1)阶子矩阵的行列式。
行列式具有以下基本性质:1. 行列式与转置矩阵:若A与A'是同阶矩阵,则|A'| = |A|2. 行列式与元素交换:若把方阵A的两列(两行)互换,行列式的值变号,即|A| = -|A'|3. 行列式的奇偶性:方阵A的行列式是其元素的排列的一个定义。
若有奇数对元素互换位置,行列式的值为负数;若有偶数对元素互换位置,行列式的值为正数。
二、行列式的求解方法1. 拉普拉斯展开法拉普拉斯展开法是求解行列式的一种常用方法。
该方法通过选取某一行或某一列,构造与之对应的代数余子式,然后利用代数余子式的性质进行递归计算。
2. 三角矩阵法三角矩阵法是一种简化行列式计算的方法。
通过进行初等行变换,将矩阵化为上三角矩阵或下三角矩阵,然后计算对角线上元素的乘积即可。
三、行列式的性质及应用行列式除了在数学理论中的应用外,还广泛地应用于各个领域,包括物理、经济、计算机科学等。
1. 线性方程组的解行列式可以用于求解线性方程组的解。
对于n个未知数、n个线性方程的齐次线性方程组,当系数矩阵的行列式不为零时,方程组有唯一解;当行列式为零时,方程组有无穷多解或者无解。
2. 矩阵的可逆性对于n阶方阵A,当行列式|A|不等于零时,矩阵A可逆,即存在逆矩阵A-1,使得A·A-1 = A-1·A = I;当|A|等于零时,矩阵A不可逆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ann
a11 A11 a21 A21 L an1 An1
n
ai1 Ai1 i 1
按第一列展开
上三角形行列式
a11 a12 a13 a14 a22 a23 a24 a33 a34 a44
逐次按第一列 展开
a11a22a33a44
上三角形行列式的值为 主对角线上的元素之乘积
a21 a31
a22 a32
a11 A11 a12 A12 a13 A13
a11 a12 a13 a21 a22 a23 a31 a32 a33
元素 a12 的余子式 元素 a12 的代数余子式
a21 a31
a23 a33
M12
(1)12 M12 A12
●余子式
元素 a的ij 余子式 M就i是j 在行列式中划掉元素 a所ij
a21 a22 a23 a11a22a33 a12a23a31 a13a21a32
a31 a32 a33
a13a22a31 a12a21a33 a11a23a32
a11(a22a33 a23a32 ) a21(a12a33 a13a32 ) a31(a12a23 a13a22 )
514 3 2 1 2 0 2
对角线 法则
522 1(1)(2) 430
4 2 (2) 13 2 5 (1) 0 32
a11 a12 a13
a21 a22 a23 a11a22a33 a12a23a31 a13a21a32
a31 a32 a33
a13a22a31 a12a21a33 a11a23a32
a11(a22a33 a23a32 ) a12 (a21a33 a23a31) a13 (a21a32 a22a31)
a11
a22 a32
a23 a33
a12
a21 a31
a23 a33
a13
换法变换 倍法变换 消法变换
交换i, j两行 数K乘第 i 行 数K乘第 j 行后 加到第 i 行上去 交换i, j两列 数K乘第 i 列
ri rj k ri ri krj ci c j k ci
数K乘第 j 列后 加到第 i 列上去
第 一 节 n 阶行列式
学习重点
余子式与代数余子式的概念 n阶行列式的概念
●行列式的引入
引例:用加减消元法求解
二元线性方程组
aa2111
x1 x1
a12 x2 a22 x2
b1 b2
当 a11a22 a12a21 0 时
方程组有唯一解
x1
b1a22 a11a22
b2a12 a12a21
例 计算行列式的值
1 2 30 0 0 10 3 0 01 0 1 0 2
按第一列展开
0 10
2 30
1 (1)11 0 0 1 3 (1)31 0 1 0
1 0 2
1 0 2
134 11
第 二 节 行列式的性质及计算
学习重点
行列式的性质 行列式的按行按列展开定理
n
a1 j A1 j j 1
按第一行展开
例 根据定义计算行列式的值
1 0 30 2 0 10 3 0 01 0 1 0 2
0 10
200
1 (1)11 0 0 1 3 (1)13 3 0 1
1 0 20 1 2 132 5下三角形行列式
逐次按第一行 展开
x2
b2a11 a11a22
b1a21 a12a21
如果规定
a11
a21
则有
a12 a22
a11a22 a12a21 D
b1 a12
x1
b2 a11
a22 a12
D1 D
a21 a22
x2
a11 a21 a11 a21
b1 b2 a12 a22
D2 D
●二阶行列式 定义
a11 0 0 0 a21 a22 0 0 a31 a32 a33 0 a41 a42 a43 a44
a11a22a33a44
下三角形行列式的值等于主对角线上各元素的乘积
特别
a11 0 0 0 0 a22 0 0 0 0 a33 0 0 0 0 a44
a11a22a33a44
a11 a12 a13
在的行和列,余下的元素按原来的相对位置而构成 的行列式
●代数余子式 Aij
Aij (1)i j Mij
三阶行列式的值等于它的第一行的所有元素与各 自的代数余子式的乘积之和
●n 阶行列式的定义(P222定义1)
a11 a12 L a1n a21 a22 L a2n M
an1 an2
ann
a11 A11 a12 A12 L a1n A1n
a11 a12 a13 a21 a22 a23 a31 a32 a33
对角线法则
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32
a11 a12 a13
a21 a22
a23
a31 a32 a33
例 根据定义计算行列式的值
a11
a22 a32
a23 a33
a21
a12 a32
a13 a33
a31
a12 a22
a13 a23
a11 A11 a21 A21 a31 A31
三阶行列式等于 第一列所有元素与其代数余子式乘积之和
●定理
a11 a12 L a1n a21 a22 L a2n M
an1 an2
determinant
ab ad bc
cd
a
b
c
d
例 根据定义计算行列式的值
6 2 6(3) 2(5) 8
5 3
cos sin cos2 (sin2 ) 1
sin cos
主对角线元素之积减去副对角线元素之积 ——对角线法则
●三 阶行列式
●行列式的几种变换
1、转置变换 a11 a12 L a1n
Transpose D a21 a22 L a2n M
an1 an2
annn
行、列对掉
ri ci
a11 a21 L an1 D a12 a22 L an2
M
或记作 DT
a1n a2n
ann
称 DT 为行列式 D 的转置行列式
2、换法变换 3、倍法变换 4、消法变换